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Abstract. Let D be a symmetric Siegel domain of tube type and S be a solvable Lie
group acting simply transitively on D. Assume that L is a real S-invariant second order
operator that satisfies Hormander’s condition and annihilates holomorphic functions. Let
H be the Laplace-Beltrami operator for the product of upper half planes imbedded in D.
We prove that if F' is an L-Poisson integral of a BMO function and HF = 0 then F is
pluriharmonic. Some other related results are also considered.

1. Introduction. Let D be a symmetric Siegel domain of tube type,
i.e. D =V +1if2, where (2 is an irreducible symmetric cone in a Euclidean
space V. Let S be a solvable Lie group acting simply transitively on D
which, as in previous papers [DHMP], [DHP], etc., we identify with D. In a
recent series of articles [BBDHPT], [BDH|, [DHMP)] pluriharmonic functions
have been studied by means of S-invariant operators. More precisely, the
operators of interest are real S-invariant, second order, degenerate elliptic
operators L that annihilate holomorphic functions F' and, consequently, their
real and imaginary parts. Such operators will be called admissible. If L is
hypoelliptic then there is a bounded, integrable, positive function Py, on V
such that the Poisson integrals

(1.1) F(w) = | f(wez)Py(z)dr = Ppf(w),

1%
feLP(V), 1< p < oo, are L-harmonic [DH], [DHP]. A real-valued F' is
pluriharmonic if and only if the (distributional) Fourier transform f satisfies

(1.2) suppr QU -10.
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Granted (1.1), condition (1.2) is equivalent to
(1.3) HF =0,

H being the Laplace—Beltrami operator for the product of upper half planes
imbedded in D [BDH]. If F is real, satisfies (1.1), (1.2) and f € L2(V),
then the conjugate pluriharmonic function F has the same properties (up
to an additive constant) and F + iF is in the Hardy H? space [DHMP)].
It follows from what is shown in the present paper that the same holds if
f e LP(V),1 < p < oo. In general, when F' is a bounded function, then
fv can be only BMO, as in the case example of the upper half plane. The
aim of this paper is to study the Pr-Poisson integrals in the sense of (1.1),
where f € BMO(V). We show that for f € BMO(V) the integral (1.1) is
absolutely convergent, conditions (1.2) and (1.3) are equivalent and, in turn,
they are equivalent to pluriharmonicity of F'. Moreover, for the conjugate
pluriharmonic function F, its boundary value f is also a BMO(V) function.

The group S being identified with D, admissible operators are of the
form

m
(1.4) L=>) X+ X,

j=1
where the X;’s are appropriately chosen elements of the Lie algebra of S. If
Xq,..., X, generate the Lie algebra, then we say that L is of Hérmander
type. If L is admissible of Hérmander type, the bounded L-harmonic func-
tions are integrals of their boundary values on a nilpotent subgroup N (L)
of S against the corresponding Poisson kernel [DH] (!). The fact that L
annihilates holomorphic functions implies that the Shilov boundary V is
contained in N (L) and is not necessarily equal to N(L) ([DHP]). However,
there is a positive Poisson kernel P, on V' with the following properties:

1. The Pr-Poisson integrals F(w) = §,, f(wex)Pr(x) dx of Pr-integrable
functions f are L-harmonic (see (2.11)).

2. Bounded holomorphic and antiholomorphic functions are Pr-Poisson
integrals.

3. § [z|* P (z) dz < oo for some & > 0.

This way we obtain a family of kernels analogous to the Poisson—Szeg6
kernel except that they are not Laplace—Beltrami harmonic, but L-harmonic.
In [BDH] the following theorem was proved:

THEOREM 1.5. Let D be a symmetric tube domain and let L be a Hor-
mander type admissible operator. There is an elliptic degenerate operator Hy,

(1) See (2.9). The origin of this research goes back to H. Furstenberg [F], Y. Guivarc’h
[G] and A. Raugi [Ra] who developed a probabilistic approach to bounded functions on
groups harmonic with respect to a probability measure.
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(see (4.1)) such that if a bounded function F is annihilated by L and Hy,
then F is pluriharmonic (?).

H,, is the Laplace—Beltrami operator for the product of upper half planes
with the usual metric, possibly scaled on each factor by an appropriate
constant. The scaling is done in the way that N(L + H,) = V. This allows
writing F' as the Poisson integral Pr g, f on V. Generally H, depends on
L, but there is quite a freedom in choosing it. Granted F' = Prig, f, (1.2)
is equivalent to H, F' = 0. As a straightforward consequence of Theorem 1.5
we find that if ' = Ppf, f € LP, 1 < p < oo, and H,F = 0, then F
is pluriharmonic. However, no information about the size of the conjugate
function can be deduced from [BDH]. Here we prove more general theorems
that, in particular, solve this problem.

THEOREM 4.3. Let F be the Pr-Poisson integral of a BMO function f.
Let H,, be any operator of the form (4.1) and assume that H,F = 0. Then
F is plurtharmonic and the conjugate function is the Pr-Poisson integral
of a BMO function f with | f|smo < C|fllBmo. Moreover, if F' = Prf,
fELP, 1 <p<oo,then F=Prf and | fllrrvy < | fllecvy for a properly
chosen f (up to an additive constant).

The strategy of the proof is as follows. First we show that Hy F' = 0 im-
plies supp f cQU-0 (Section 4). Then using appropriate singular integral
operators T, T, we obtain two BMO functions T} f, T5 f with supp f;f C 1,
suppf;f C —{2 and such that

Ty f+Tof =f aselements in BMO(V).

Then it remains to prove that the Pp-Poisson integrals of T1f, Tof are
holomorphic and antiholomorphic functions, respectively (Section 5).

A natural problem arises to characterize the Pr-Poisson integrals F' of
BMO functions in terms of F' without referring directly to its boundary
values. In analogy to Poisson integrals of LP functions a first guess could be:

F is the Pr-Poisson integral of a BMO function f if, and only if, LF'=0
and sup,c g, | FyllB7mo, where Fy(z) = F(z + iy).

This however is not true, because adding to F' a function h(y) that is
L-harmonic and constant on any slice V 44y does not change the BMO norm.
It is easy to see that there exist such functions h that are not Pp-Poisson
integrals. Therefore a more appropriate characterization is the following;:

THEOREM 3.13. Assume N(L)=V and LF'=0. Then sup,cq, || FylBmo

< oo if, and only if, F(x +iy) = Prf(x +iy) + h(y), x € V, y € 2, for
some BMO function f and an h with Lh = 0.

(%) Theorem 3.3 in [BDH]. Although L is elliptic there, the result holds for a Hor-
mander type L with the same proof.
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We summarize all these in a slightly more general theorem:

THEOREM 4.2. Given a Hormander type operator L, there is an operator
H, such that if LF = 0, HoF' = 0 and sup,cq, || FyllBMo < oo, then
F(x +1iy) = Prf(z +iy) + h(y), P f is pluriharmonic, Lh = 0, Hyh = 0
and the function conjugate to Prf is the Pr-Poisson integral of a BMO
function and the same norm inequalities as in Theorem 4.3 hold.

An example at the end shows that h does not have to be pluriharmonic
(Section 6).

The organization of the paper is as follows: Preliminaries contain basic
information about tube domains, the action of the group S, admissible op-
erators and Poisson integrals. Section 3 is devoted to Poisson integrals of
BMO functions. In Section 4 we formulate the main results and we prove
that (1.3) implies (1.2). In Section 5 we show that (1.2) implies plurihar-
monicity together with norm inequalities for the boundary functions.

The authors are grateful to Hans M. Reimann and Elias M. Stein for
valuable remarks about BMO functions.

2. Preliminaries

Symmetric tube domains. Let {2 be an irreducible symmetric cone in a
Euclidean space (V, (-, -)) and let

D=V+iRcVC®

be the corresponding tube domain. There is a solvable Lie group S acting
simply transitively on D. To construct S we consider the connected compo-
nent G of the linear group G(£2) = {g € GL(V) : g(£2) = 2}. The Iwasawa
decomposition of G(£2) = SyK yields a triangular group Sy acting simply
transitively on (2. The action of Sy extends to D by

(2.1) so(z+iy)=sox+isoy, xe€V,yef s’
Moreover, V acts on D by translations
(2.2) vo(x+iy)=v+a+iy, wveW.

These actions generate a solvable Lie group S that acts simply transitively
on D. The group § = V.5 is a semidirect product of V' and Sy:

(2.3) (v,8)(v1,81) = (v+sowy,881), wv,v1 €V, 8,5 €5Sp.

The group Sy = NpA is a semidirect product of a nilpotent Lie group Ny
and A = (RT)". The Lie algebra S of S has the decomposition

(2.4) S=N@®A N=VoN,
A being the Lie algebra of A, Ny the Lie algebra of Nj.
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In view of (2.1) and (2.2) we may identify D with S. More precisely, let
e be the stabilizer of K, e = ie and let

(2.5) 0:5>5s—0(s)=soeeD.

Then 6 is a diffeomorphism of S and D. It also identifies the spaces of smooth
functions on S and D. The Lie algebra S then becomes the tangent space T,
of D at e. This allows transfer of the Bergmann metric ¢ and the complex
structure J from D to S, where they become left-invariant tensors.

The group S and its Lie algebra S can also be described in terms of the
Jordan algebra structure of V' ([FK]). Since we will make no use of it in
the paper, we refer the reader to e.g. [DHMP] and [BDH] for more details
concerning symmetric tube domains in the framework adapted to what we
need here.

Under identification (2.5) holomorphic functions on D are called holo-
morphic functions on S. A real left-invariant second order elliptic degenerate
operator L is called admissible if L annihilates holomorphic functions. Ad-
missible operators can be described more precisely in terms of S ([DHP],
[DHMP], [BDH]). Namely, we choose a g-orthonormal basis Hi,..., H, in
A, and we let Ay, ..., A, be the dual basis in A*. It turns out that the spaces
in the decomposition (2.4) are g-orthogonal and we let A C A* be

Az{A";AJQ 1<i<j<r NN

,1§i<j§r}

Then V and Ny admit further orthogonal decompositions
(2.6) V=& Vi, M= P N
1<i<j<r 1<i<j<r
where
Vij = /\[(Az‘-l-)\j)/?’ Nij = /\/(Aj—&‘)/?
and for n € A,
N, ={XeVaN :[HX]|=n(H)X for every H € A}.
Moreover, dim V;; = 1 and dim V;; = dim N;; = d. We denote by
X; the orthonormal basis of Vj;, j=1,...,r,
X
Y&

7

a=1,...,d, an orthonormal basis of V;;, 1 <i<j <,
a=1,...,d, an orthonormal basis of N;j, 1 <i<j<r,
in such a way that

Hy= (X)), Y =J(X5).

Let now
Zj:Xj—iHj jzl,...,r,

Z%=X& —iYe, 1<i<j<r.
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Then {Z; : j =1,...,r}U{Z} : 1 <i<j<r a=1,...,d}isan
orthonormal basis of S-invariant holomorphic vector fields. Any admissible
operator L is a linear combination of the operators

ANZW)=ZW — VW,

V being the Riemannian connection determined by g. V can be easily cal-
culated and

A(Zjvzj) = X]2 +H]2 —H; = Aj?
A(Zj, Z55) = (X5)" + (Y)§)* — H; = A
(see e.g. [DHMP]).

(2.7)

Poisson boundaries. Given a Hormander type admissible operator

L:iX?JrXO

j=1
we write Xo =Y +2Z,Y € A, Z € N and we let
Ag={neA:nY) >0},
(2.8) No(L)= @ Ny, No(L) = expNo(L).
n€do
The space
N(L) = expN/No(L) = S/No(L)A

is the L-Poisson boundary (cf. [DH]). This means that the bounded L-har-
monic functions are in one-one correspondence with the L°° functions on
N (L) via the following Poisson integral:

(2.9) Fw)= | fwewv(u)du, weS,
N(L)

where u — w e u is the action of w € S on N(L).

For an admissible operator of Hormander type its A-component Y of the
first order term is of the form

T
(2.10) Y =) b;H; withb; <0
j=1

(see [DHP]). Therefore, by (2.8), VN Ny(L) = {0}. Thus it follows from the
general theory developed in [DH] that V' is also a boundary for L, i.e. there
is a Poisson kernel Pr, on V such that the functions

(2.11) F(w) =\ f(wez)Py(z)dx, feL>(V),
1%
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are bounded and L-harmonic. Here x — w e x is the action of S on V =
S/NoA. If No(L) = Ny, i.e. N(L) =V, then (2.11) gives all the bounded
L-harmonic functions.

For any admissible operator L of Hormander type the kernel Py, has the
following properties (see [DH]):

PLec L'(V)NL>®(V)nC>(V), Py(z)>0,

there is ¢ = (L) > 0 such that S |z|® Pr(x) dz < oc.
1%

(2.12)

3. Poisson integrals of BMO functions. It is convenient to rewrite
(2.11) in a slightly different form to avoid (, ) in (2.3) and to put (z, s) = ws,
x €V,s €Sy Then the product of two elements of the group S takes the
form

WW, = TST181 = 1'8.1‘1571881,

where sz1s™! = s o7 is the linear action (2.1) of Sy on V. Therefore, the

action S on V = S/NyA in (2.11) becomes

1

(3.1) rseu=xsus  =x+sou, u€cV.

Let det s be the determinant of the linear transformation © — s o« and let

(3.2) P,(z) = det s 1 Pp (s txs).
We define a function P on S by
(3.3) P(zs) = Ps(z), x€V,selbSp.

Then, by (3.1), the Pr-Poisson integral can be written as
(3.4) Prf(xs) = F(xs) = S f(zsus™ ) Pp(u) du

1%
= S f(u)Py(u™'2) du
1%
= f#y Pu(z) = | f(u)P(u" ws) du,

\%4

which shows, in particular, that P is L-harmonic. (3.4) makes sense for
f € BMO(V). Indeed, if f € BMO(V) then g(u) = f(xs e u) is a BMO
function, because the action of S on V is affine. Moreover, we show that in
virtue of (2.12), the integral

\ f(u)P(u)du
14

is absolutely convergent. The proof uses standard techniques, but we include
it for completeness.
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LEMMA 3.5. Let g € L'(RF) N L°(R*) and (g [g(u)] - [ul du < oo for
some € > 0. Then there is a constant C > 0 such that

| § g(w)f(w) du| < CllfImvioe + gl lms (),

Rk

where B is the unit ball in R¥ centered at the origin and

1
mz(f) = @if(u)du-

In particular the integral is absolutely convergent.
Proof. Note that for every 7 > 0,
(3.6) | |g(u)| du < 279 7° | lg(w)| - |ul* du

2i+1r-1B\2i7-1B 2i+17-1B\2i7-1B
< C27957E,

Since (g, [g(w)| - |mp(f)|du < ||g|[L1|mp(f)], it is enough to prove that

(3.7) | 19| - 1£(u) = mp(f)|du < C||f|lBMmo0-
RF

We have

Vgl 1f ) —mp(Hldu< D> | |g(u)|-[f(u) = mp(f)] du

RK j=02i+1B\2i B

+ \ lg(w)] - |f (w) = mp(f)| du.
B

But

Vlg@)] - 1f(w) = mp(H)ldu < |lgll= | |f(u) = mp(f)| du

B B
< lgllz=[Bl- I fllzmo

and

(3.8) Vo L@l 1f () = mp(f)] du

2/+1B\2/ B

< 19 If(u) = masap(f)| du

2i+1B\2i B

+ g Z o 5 (f) — mai s (f)| du.

2i+1B\27 B

Since |moi+15(f) — maig(f)| < ClfllBmo, by (3.6), the second sum-
mand on the right-hand side of (3.8) is smaller than or equal to C(j + 1)
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x 279¢|| f|lsmo- To estimate the first summand we apply the Holder inequal-
ity to obtain

Vo L@l [f(w) = mosep(f)] du

2/+1B\2/ B

<[ 1 tewral] "] | 1) - myes(Pl ]

2/+1B\2/ B 2i+1B

/q

1 1/p .
<Cllghr=" (0§ Jg)lde) 7B flsvo
2i+1B\2i B

< Cllgll =723/ P20 IR o
Taking p close to 1 yields estimate (3.7).

COROLLARY 3.9. Under the assumptions of Lemma 3.5 there exists a
constant C > 0 such that

| § 9@ = w)fw) du| < C(1f o + [ms ().
Rk

Proof. By Lemma 3.5, we obtain
| § 9@ —w)fw)du| = | | g(-u)f@+w) du| < C(lllpro + Ims(af)
Rk: Rk:

= C(|IfllBmo + ImB(2f)]).

Let us remark that Lemma 3.5 yields a formula for the left-invariant
derivatives of F' = Prf, f € BMO(V). Let D be a left-invariant differential
operator on S. Then

(3.10) DF(xs) = | f(u)(DP)(u""s)du,
v
where P is as in (3.3). To prove (3.10) we notice that by the Harnack in-
equality for L and left-invariance of L,
(3.11) sup |(DP)(ww;)| < CpP(w),
w1 EK

for a compact set K C S and for every w € S. Then we use Lemma 3.5.

Taking the partial Fourier transform of P(xs) with respect to x, we see
that for any £ € V, P({,s) as a function of s € Sy is annihilated by a
hypoelliptic operator on Sy (for details see 2.5 in [DHMP] or Lemma 5.4 in

[BDH]). Hence s +— P(g, s) is a smooth function. Moreover, for £ € 2 we
have

~

(3.12) P(&,s) = e~ (600,
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Indeed, given £ € 2, e~ &%) is a bounded antiholomorphic function on D
with the boundary value e~*&%) . Hence
6_i<£7_50ie> — S €_i<£7I>P5($) dl‘
\%

and (3.12) follows.
The following is a characterization of harmonic functions with BMO
boundary values.

THEOREM 3.13. Assume that N(L) = V and LF = 0. For s € Sp,
x €V let Fs(x) = F(xs). Then the condition

(3.14) sup || Fs||lsmo < o0
s€So

is equivalent to: there is f € BMO(V') and an L-harmonic function h(xs) =
h(s), x € V, s € Sy, such that

(3.15) Fy(x) = f* Ps(x) + h(s).

Moreover, given F the representation (3.15) is unique up to an additive

constant.

We start with uniqueness. Suppose

fx Ps(z) + h(s) = f1x Ps(x) + hi(s).
For every ¢ in the Hardy space H!(V') we then have
¢ [ Py(x) = ¢ * f1 % Py(2),

and since BMO(V) is the dual space to HY(V'), ¢* f and ¢x f1 are in L>°(V).
Therefore, (2.11) implies ¢ * f = ¢ * f1, whence f = f; as elements in BMO
and the rest follows.

Now, since the Pr-Poisson integral (3.4) is absolutely convergent, for
every ball B we have

1

(3.16) ﬁ(; [+ Po(@) = mp(f = P)] dz) < Cfllnuo-

Hence (3.15) implies (3.14). To prove the converse, we need the following
lemma.

LEMMA 317, Let H = S Hj, Py = Pogyisr, and let f € BMO(V).
Then for every g € HY(V),

im (f« Py, g) = (f,9)-

Proof. In view of (3.16) it suffices to prove that
tEEIloo<f * Pta ¢> = <f7 ¢>
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for every ¢ € C¢° with {¢ = 0. Fix a ball B centered at the origin such that
supp ¢ C B. Since
fep € LP(V), 1<p< oo,

and P; is an approximate identity as t — —oo, we have

tliljﬂoo<f\2}3 * P, ¢) = (fi2, @) = (f, $)-
Now, we show that there is § > 0 such that for z € B,

(3.18) |fi2B)e| * Py(z) < cet.
If x € B, then
[fipyel * Pu(w) < | |f (@ —w)| Pi(w) du= | [of ()| Pi(u) du=1T.
Be Be

We proceed as in the proof of Lemma 3.5. We have
1<V of(uw) = mp(e)|P(u)du+ | [mp(.f)|Pi(u) du.
Be Be
In view of (3.6), we have
| Imp()Pi(w) du < Cmap(|f]) | Plu)du < Cemap(|f]).
Be (e7tB)e

Then, as in (3.8) with f replaced by . f and g by P, respectively, by (3.6)
we have
J
| B Imaniplef) — maip(af)| du
2i+1B\2i B =0
< CG+DlflBmo | P(u)du < C(j + 1)277%¢"|| f|lzmo
2itle—tB\2ie~tB
and
Vo Lef (W) = maisi (o f)| Peu) du
2i+1B\2i B
< C(HptHLOO)(p*1)/p2*j6/pe€t/p2(j+1)Q/qHfHBMO
< Ce(S/ﬁ—Q(p—l)/p)tQ—js/p+(j+1)Q/qHfHBMO’

where @) = dim V. Now taking p close to 1, for § = (e —Q(p—1))/p > 0
and 01 =¢/p — Q/q > 0, we have

I <0 map(|f]) +C Y (e +1)277° + 2797 fl|pato
=0
< Ce® (map(|f]) + | fllBMo)
and (3.18) follows.
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To complete the proof of Theorem 3.13 we show that

(5.14) implies (3.15). Take s = exptH. There is a sequence t,, — —o0
and a function f € BMO(V) such that for every g € H(V),

(3.19) lim (Fept,m,9) = (f,9)-

tp——00

For ¢ € C2° with {¢ = 0, consider now
Fy(xs) = ¢ x Fs(x).
Then Fy is harmonic and bounded:
16 % Fll~ < [|0]l | FsllBMO-
We are going to prove that
Fy(xs) = ¢ f = Ps(x).

Since N (L) = V, the Poisson integral (2.9) turns into (3.4) and yields the
one-to-one correspondence between bounded L-harmonic functions F' and
L*>°(V'). Moreover,

f(z) = *-Weakt lim F(zexp[tH]).
Therefore it is enough to show that the boundary value of Fy(xs) — ¢ * f *

Py(x) is zero, i.e. the boundary value of Fy is ¢ * f.
Let g € L' and consider

<¢*Fexpth _¢*f7g> = <Fexpth —f7<13*9>.
Since ¢« g € H'(V), by (3.19) we have
lim <Fexpth _fagz*g> = 0.

tp——00
Therefore, for every s € Sy,
¢ Fs(x) = ¢ * [ * Ps(x)
and so Fs = f * P, as elements in BMO(V'). Hence
Fy(x) = f = Ps(z) = h(s)

and since the function on the left-hand side is L-harmonic so is h(s).

4. Pluriharmonicity. For a = (a,..., o) with a; > 0 let
(41) Ha = ZajAj‘
j=1

THEOREM 4.2. Let Lgy be an admissible operator of Hormander type and
let Hy be such that for L = Lo + H, we have N(L) = V. Let F be a
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real-valued function on V.Sg = D such that LF = H,F =0 and

sup || Fs|lBmo < oo.
s€So

Then
F(zs) = G(xs) + h(s),

where G'is a pluritharmonic function and the function h, independent of x,
is annihilated by both L and H,. Both G = Prg and its conjugate G =
Prg are Pp-Poisson integrals of BMO functions. Moreover, ||gllsmo) <

Cllgllsmovy-

REMARK. Given a Hérmander type admissible Lg there is always an H,,
such that N(Lo + H,) =V (see [DHMP], [DHP]). As shown at the end of
the article, the function h is non-zero, in general.

If F' is already of the form F' = Ppf, then « in H, may be arbitrary
and the following theorem holds.

THEOREM 4.3. Let L be an admissible operator of Hormander type and
let H, be as in (4.1). Assume that F' = Prf with f € BMO(V) and

H,F=0.

Then F is pluriharmonic and the conjugate function F s the Pp-Poisson
integral of a BMO function f. Moreover, | f|lsmov) < C|l fllBmov)-

If f € (V). 1 < p < oo, then | fllonw) < Cllfluvy Jor a properly
chosen f (up to an additive constant) (3).

The only difference in the proofs of the above two theorems is that for
the first one we need the conclusion of Theorem 3.13. The rest is the same.

Proof of Theorem 4.2. By Theorem 3.13,
(4.4) F(xs) = f* Ps(z) + h(s)
for a BMO function f. The first step in the proof is to show that
(4.5) supp ]?C NU-0N.
We let ¢ € S(V) be such that
(4.6) P(E) =0 & £=0.
Set f1 =¥« f and Fy(zs) = f1 *x Ps(x). By (3.10) and (4.4),
H,Fi(zs) = S fi(w)(HoP)(utas) du = ¢+ (HoF)(-s)(x) =0,

%

(3) When f € LP(V), 1 < p < oo, pluriharmonicity follows from the results of [BDH],
but the norm inequalities do not.
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and, by (3.11), z — H,P(xs) belongs to L'(V). Since » € HY(V), f1 is a
bounded function. Therefore Wiener’s theorem ([Ru, Theorem 9.3]) implies
that for every s € Sy,

supp f1 C {¢ : (HaP)(€, 5) = 0}
Fix now & € supp ]?1 We then have
(4.7) VseSy (HoP)(E s)=0

On the Fourier transform side for s = na, n € Ny, a € A, (4.7) reads
3" ) (-2Q? + 208, P(E na) = 0,
=1
where
(4.8) na =n ﬁ exp((loga;)H;), n € Ny, aj >0,
j=1

are coordinates in Sy = NA and @Q; = Q;(n,§) is a polynomial in n and
(see [DHMP, Theorem 2.20]). But, in view of (3.2),

|P(€,na)| < ||PLllpvy =1,

S0 P(g, na) must be of the form
PEna = a3 10,.1)
(see [DHMP, Lemma 2.16]). Moreover, g(n) is a constant and so

(4.9) (f,na —cexp< Zaj]Q] n,§)| )

It was proved in [BDH, Lemma 5.7 and Corollary 5.9] that whenever { ¢
2 U —12, (4.9) contradicts smoothness of s P(f, s). Hence supp f1 =
supp 1 * f C 2U {12, and, by (4.6), we obtain (4.5).

Notice that if f € LP(V), 1 < p < 0o, then convolving F' = Pr,f on V on
the left with a C2° function ¢ we obtain the Poisson integral of a bounded
function and so supp $fc U —2. Hence supp fC QU —102. As we will see
in Section 5, (4.5) implies pluriharmonicity. Therefore, granted F' = Py f,
fel’(V),1<p<ooor fe BMO(V), H,F = 0 is equivalent to (4.5).

The rest of the argument is contained in Section 5, where the following
theorem is proved:

THEOREM 4.10. Assume that f is a real-valued BMO function and
supp fC QU -10.
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Then for any admissible operator L of Hormander type the function
F(xzs) = Ppf(ws) = [ * Py(x)

18 plumharmomc and its con]ugate function F is a Pp-Poisson integral of a

BMO function f Moreover, f Tf, where T is an operator that maps all
LP(V) — LP(V), 1 < p < 00, and BMO(V) — BMO(V) boundedly.

5. Proof of Theorem 4.10. Let X' be the unit sphere in V. For a
regular cone {2 we have

2NX)N(-2nx)=0
and so there is a smooth function m; on X such that

ma(€) = 1 for £ € neighbourhood of 2NXYin X,
! 0 forée—0NX.

We extend my to V' by
mi(A§) =mi(§), £€X, A>0,

to obtain a smooth homogeneous function on V'\ {0}. Let ma(§) = m1(—¢),
EeV.
We define two multiplier operators 17 and T, by

T;f =m;f, feL*V), j=12

(5.1)

Clearly

(52) <T1fvg> = <f’T2.g> for f?gELQ(V)v
where (f,g) = {,, f(x)g(z) dz. Moreover, by Theorem 4 in [St, III, §3.2],

(5.3)  T;:HYV)— HYV) and Tj:LP(V)— LP(V), 1 <p < oo,

boundedly.
In view of (5.2) and (5.3), T; may be extended to BMO(V') by setting
(5.4) (I1f,9) = (f,Tag), (Taf,9) = ([, T1g9),

where g € H', f € BMO (see [St, IV, §4.1]). Since T} is defined up to an
additive constant, we choose it so that the integral of T} f over the unit ball
is 0.

Let us note that Theorem 4.10, and consequently Theorem 4.2, will be
proved if we show

THEOREM 5.5. Let f be a real-valued BMO function, Suppr QU-0.
Then

(5.6) Fi(zs) =T f * Ps(x) is holomorphic,
(5.7) Fy(zs) = Tof * Ps(xz) s antiholomorphic,
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(5.8) Fy = Fy,
(5.9) there is a constant ¢ € R such that F = F; + F5 + ¢,

~ 1
(5.10)  the congugate function to F is given by F = = (F; — Fy).
i

We need a few lemmas:

LEMMA 5.11. Assume that supp f is compact and contained in 2U —12.
Then suppTh f C £2.

Proof. Let ¢ € C°(V) with supp e C V'\ £2. In particular, 3 € H'. By
(5.4) we have
<T1f7 <)0> = <T1f7 {5> = <f7 TZ{O\>
Notice that

(5.12) supp f N (= supp ToP) = 0.
Indeed,
To@ = map”™,

where ¢~ (z) = p(z™1). B B
But map™ € C(V) and (suppmap™) N (2 U —§2) = 0, hence (5.12)
follows. Therefore,
<f7 T29/5> =0.

LeEmMA 5.13. Let f € BMO, g € H'. Assume that suppf is compact
and supp f N (—suppg) = 0. Then (f,g) = 0.

Proof. Take a sequence of g,, that tends to g in H' and such that gn
C(V). Let ¢ be a Schwartz function such that 1/1 =1 on —Suppf and
1) =0 on suppg. Then g, 1 — g+ in H' and g %1 = 0. We have

<fa g> = nhigo(fa gn> = nhigo<fa 9n — Gn * d))
But (gn — gn * )Y € C° and (g, — gn * )Y =0 on suppf. Hence
<f)gn —dn *90> = <f>((gn _gn*d))v)/\> =0.

LEMMA 5.14. Assume that supp f is compact and contained in 2U—12.
Then (T +Ts) f = f in BMO.

Proof. Let g € HY(V) be such that 0 ¢ suppg. Then
supp fﬂ —supp (Ty +T» — I)g)" = 0.

Indeed, ((T1+T>—1)g)" = (m1+ma—1)g. By (5.1) there is a neighborhood
of 2U—12 such that (m; +mo — 1)gjy = 0. Therefore, by Lemma 5.13,

(i+ T =D f.g)=(f, (T2 +T1 — I)g) = 0.
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Since {g € HY(V) : 0 ¢ suppg} is a dense set in H'(V), the conclusion
follows.

LEMMA 5.15. Let f be a real-valued BMO function. Then Tof =T\ f as
functions in BMO.

Proof. A simple calculation shows that for a test function ¢ € Cg°(V)
we have Top = T1p. Assume now @(0) = 0. Then

<T2f7 90> = <fa T190> = <f7 T2¢> = <fa T2¢> = <T1f7¢> = <Tf7 90>

Now, to complete the proof of Theorem 5.5 we have to prove the main
point: F(zs) = Ty f * Ps(x) is a holomorphic function. This follows from the
following proposition.

PROPOSITION 5.16. Assume that g € BMO and suppg C 2. Then
h(zs) = g x Ps(x)
is holomorphic.
Proof. Consider A € 2 and gy (z) = ¢/»®) g(z). Then
suppga C A+ 2 C 1.

It is enough to prove that hy(xzs) = gy * Ps(z) is holomorphic because we
then take A = n~'e and observe that hy — h as distributions.
Let now G\ be a function on D determined by G o 8 = h). In view of
(2.5),
(@ +iy) = g * Pu(a),

where y = s o e. We consider the partial Fourier transform of G along the
variable z. For a system of coordinates z1,...,z¢g in V and the correspond-
ing system of coordinates z1,...,2¢g in VC we have

(0,G(E,y) = i6GA(E ), (9,G\)(E y) = 0y, GA(E, y),

where GA(E, Y), (O, GA)(E, Y), (9y, GA)(SA, y) denote the distributions on D
that are the partial Fourier transforms along the x variable of the functions
Ga(z + iy), Oz, GA(x +1y), Oy, Gx(x + iy), respectively. Therefore to show
that 0z, G\ =0, j = 1,...,Q, it suffices to prove that

(5.17) £CA(Ey) + 6ijA(§, y) = 0.
Now we observe that due to the assumptions on the support of g and (3.12),
(5.18) G(Ey) = TAOP:(E) = Ga(©)e

whence (5.17) follows (here gy (&) is understood as a distribution). To finish,
it remains to show the first equality in (5.18):

(5.19) gx * Py(€) = A(©) P (€).
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The proof of (5.19) is based on the following two facts:

(5.20) suppga C 2, {lga(z — y)|Pu(y) dy < 0.
Let now ¢ be a Schwartz function. If supp » N supp g = 0 then (5.20) and
the Fubini theorem imply

<g>\ *P57§/5> =0.

Therefore, we may restrict our attention to ¢ € C°(£2). But then

(5.21)  (ga* Ps, @) = (gx * Ps,07) = (gr, 0~ * PJ) = (gx, (0 x Ps)™).

Since P,(¢) = e~ (&) ¢ € 02, the function $(€)P,(€) belongs to C(£2), so
@ * Ps is a Schwartz function. Consequently, we may write

(5.22) (gx; (9 * P5)™) = (ga, ¢+ Ps) = (gx, @Ps) = (gaFs, §).-
Now (5.21) and (5.22) imply (5.19).

Proof of Theorem 5.5. Note that (5.6)—(5.10) follow immediately from
Proposition 5.16 and Lemmas 5.14 and 5.15 provided supp f is compact. The
constant ¢ in (5.9) is real, because, in fact, T5f = T3 f pointwise according
to our convention SB T;f =0, B being the unit ball in V.

To complete the proof of Theorem 5.5 for arbitrary f € BMO, we may
assume that mp(f) = 0. Let @ be a real-valued C°(V') function such that
P(&) = 1 for ¢ in the unit ball in V, (—¢) = $(€) and let ¢, () = nF¢(nz).
Then f,, = @n * f is a real-valued BMO function with compactly supported
Fourier transform f,, contained in 2 U —{2. Moreover,

(5.23) Tifn=on*Tif —mp(pn*T;f)
pointwise. Indeed, if g € H' then Tj(p, *g) = ¢, *T;g and so (5.23) follows.
Now set
Fjn(zs) =T fn* Ps(z) = pp x Tj f % Ps(x) — mp(pn * T; f).
Then F1 , is holomorphic, F3 ,, is antiholomorphic, F» , = Fl,n; and
F,=pnx fxPy(x) = Fy p(z5) + Fon(xs) + ¢y
pointwise. But all the functions above have pointwise limits as n — oo,
hence lim,,_, - ¢, = ¢ and
f*Ps(x) =T1f x Ps(x) + Taf x Ps(x) + ¢,
which finishes the proof.

6. Example. For the domain D over the cone of 2 x 2 real symmet-
ric positive definite matrices we are going to show a family of functions A
satisfying

(6.1) Lh=0, Huh=0
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that are not pluriharmonic. Let
h(zna) = ai*ay?
in coordinates (4.8). Then, by (2.7),
Ajh = ((aj84;)* = (aj0a,))h = 1j(r; = )b, j=1,2,
Aph = —a;j0s;h = —r2h.
Given L = (1A + B4 + B3A12, B3 > 0, we are going to find H, =
A1+ BAg, >0, and 71,79 different from 0 and 1 such that (6.1) holds, i.e.
ri(r1 —1) + Bra(r2 — 1) = 0,
piri(r1 — 1) + Bara(ra — 1) — B3r2 = 0.
Let
(6.2) r=ri(r; —1).

Notice that if » > —1/4 then there exists r; satisfying (6.2). Therefore we
solve

r 4 Bra(ra —1) =0,
Pir + Bara(ra — 1) — Bara = 0,
for ro # 0, 1. (6.3) is equivalent to

r=—Pra(ra—1), (B2—ppB)(r2—1)=p03, 12#0,

(6.3)

or

__ s (B3t B2 —BiB)Bs
_52—ﬁ16+17 r=-p (B2 — B18)?

Taking [ sufficiently close to 0, we can make ro > 1 and —1/4 < r < 0.

() s 7’2750.
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