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ABSENCE OF GLOBAL SOLUTIONS TO A CLASS
OF NONLINEAR PARABOLIC INEQUALITIES

BY

M. GUEDDA (Amiens)

Abstract. We study the absence of nonnegative global solutions to parabolic in-
equalities of the type ut ≥ −(−∆)β/2u − V (x)u + h(x, t)up, where (−∆)β/2, 0 < β ≤ 2,
is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies
that the only global solution is trivial if p > 1 is small. Among other properties, we derive
a necessary condition for the existence of local and global nonnegative solutions to the
above problem for the function V satisfying V+(x) ∼ a|x|−b, where a ≥ 0, b > 0, p > 1 and
V+(x) := max{V (x), 0}. We show that the existence of solutions depends on the behavior
at infinity of both initial data and h.

In addition to our main results, we also discuss the nonexistence of solutions for some
degenerate parabolic inequalities like ut ≥ ∆um + up and ut ≥ ∆pu + h(x, t)up. The
approach is based upon a duality argument combined with an appropriate choice of a test
function. First we obtain an a priori estimate and then we use a scaling argument to prove
our nonexistence results.

1. Introduction and main results. The broad goal of this paper is
to discuss the nonexistence of nonnegative solutions to a class of nonlinear
parabolic inequalities of the type

ut ≥ −(−∆)β/2u− V (x)u+ h(x, t)up(1.1)

in RN × (0, T ), 0 < T ≤ ∞, subject to the initial condition

u(x, 0) = u0(x), x ∈ RN .(1.2)

Here (−∆)β/2, 0 < β ≤ 2, is the β/2 fractional power of the Laplacian. The
function h > 0 and the potential V ≥ 0 are locally bounded and satisfy some
growth conditions at infinity which we shall specify later. The initial data
u0 ≥ 0 is locally integrable and is such that a local solution to (1.1)–(1.2)
exists.

Our initial intention is to find a sufficient condition which asserts that
any possible local solution to (1.1)–(1.2) ceases to exist after a finite time.
Our analysis is divided into two parts. The first part is devoted to the nonex-
istence of global solutions in the case where the exponent p is sufficiently
small, say 1 < p ≤ pc. In the second part we investigate the relationship
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between the nonexistence result and the behavior at infinity of both the
initial data and the function h, where p > pc and the potential V behaves
like a|x|−b, a ≥ 0, b > 0, at infinity.

The problem of blowing up solutions has a long history, which dates back
to the pioneering work by Fujita [4] on the nonlinear heat equation

ut = ∆u+ up.(1.3)

Fujita [4, 5] proved that (1.3) has no global positive solutions if 1 < p ≤
pc := 1 + 2/N . On the other hand, we can choose δ > 0 such that (1.3) has
a global solution whenever 0 ≤ u0(x) ≤ δe−k|x|2 and p > pc. The number pc
is called the critical exponent .

In [6] Galaktionov showed that the critical exponent for the porous
medium equation

ut = div(um∇u) + up, m > 0,

is m+ 1 + 2/N . For the problem

ut = ∆um + |x|σtsu1+p, t > 0, x ∈ RN ,
the critical exponent is pc = (m− 1)(s− 1) + (2 + 2s+ σ)/N > 0 (see [21]).
We refer the reader to [22] and [1] for other results in this direction.

The first result concerning the blow up of solutions to evolution equa-
tions with the fractional power of the Laplacian is due to Sugitani [23] who
generalized the results of Fujita to the problem

ut = −(−∆)β/2u+ up, (x, t) ∈ RN × R+.(1.4)

In this case the critical exponent is 1 + β/N . Later Guedda and Kirane [10]
discussed the absence of global solutions to

ut = −(−∆)β/2u+ h(t)up, (x, t) ∈ RN × R+,(1.5)

where h(t) behaves like tσ, σ > −1. Using the method of [4] they showed
that nontrivial solutions are not global if 1 < p < 1+β(σ + 1)/N . The proof
is based on a reduction of equation (1.5) to an ordinary differential inequality
satisfied by u(t) :=

�
RN p(x, t)u(x, ·) dx, where p is the fundamental solution

of Lβ := ∂/∂t+ (−∆)β/2.
More recently parabolic-hyperbolic equations and systems associated

with the fractional power of the Laplacian have been investigated by Guedda
and Kirane [11]. They proved, among other results, that the only global so-
lution to

ut = −(−∆)β/2u+ ts|x|σup

is the trivial one if 1 < p ≤ pc := 1 + (s+ β(1 + σ))/N .
The constant pc will appear also in the study of (1.1) with h(x, t) =

ts|x|σ. Concerning (1.1) with equality instead of inequality, Zhang [26, 27]
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studied the problem
ut = ∆u− V (x)u+ up.

In the first paper [26] it is shown that if the potential V satisfies

0 ≤ V (x) ≤ a

1 + |x|b , a > 0, b > 2,

then all positive solutions blow up at a finite time if 1 < p < 1 + 2/N . The
second paper [27] deals with the problem in which the potential V behaves
like

V (x) ∼ ± a

1 + |x|b , a > 0, b > 0,

except for the case

V (x) ∼ − a

1 + |x|2 , a > 0.

In this paper we will prove that in this case the problem has no global
solution for any 1 < p ≤ 1 + 2/N and we give a partial answer to the
open questions [27, Remark 1.1, pp. 190–191]. We also obtain a sufficient
condition for the local and global nonexistence of solutions for any p > 1.

To understand the influence of both u0 and h on the nonexistence of
solutions, Baras and Kersner [2] proved, among other results, that if

lim
|x|→∞

u0(x)p−1h(x)|x|2 =∞,

then no global solution to

ut = ∆u+ h(x)up, u(x, 0) = u0(x),

exists.
As was mentioned at the beginning of this introduction, we are interested

in the nonexistence of global solutions to (1.1)–(1.2). We will make the
following assumptions.

There exist γ > 0 and l > 0 such that for any compact Ω ⊂ RN ,

lim
R→∞

Rγ(N+β)−l(p′−1) �
Ω

V (Rγy)p
′
dy = 0, p′ =

p

p− 1
,(1.6)

and for any 0 < t1 < t2,

h(Rγx,Rβγt)
Rl

≥ C(1.7)

uniformly in Ω × (t1, t2).
A classical example is h(x, t) = tτ |x|σ and V (x) = a/(1 + |x|b) where

σ > β(p− 1), τ > 0 and b > N(p− 1)/p.
We shall prove the following result concerning the absence of global so-

lutions to (1.1)–(1.2).
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Theorem 1.1. Let γ > 0. Assume that conditions (1.6) and (1.7) are
satisfied where

(p− 1)N/β − 1 ≤ γl.(1.8)

Then Problem (1.1)–(1.2) has the only global nonnegative solution u ≡ 0.

By a global nonnegative solution to (1.1)–(1.2) we mean a locally inte-
grable function hup ∈ L1

loc(R
N+1
+ ) such that

(1.9) �
RN

u0ζ(·, 0) + �
RN+1

+

hupζ

≤ �
RN+1

+

u(−∆)β/2ζ − �
RN+1

+

uζt + �
RN+1

+

V (x)uζ

for any positive ζ ∈ C∞0 (RN+1
+ ). Here RN+1

+ := RN × R+ and the integral�
RN u0ζ(·, 0) is understood in the weak sense, i.e.,

�
RN

u(·, t)ζ(·, t)→ �
RN

u0ζ(·, 0) as t→ 0+, ∀ζ ∈ Cc(RN+1
+ ).

Theorem 1.1 will be proved in Section 2. We shall see from the proof that
the positivity condition on the initial data can be relaxed to

�
RN

u0 ≥ 0

if we consider the inequality

ut ≥ −(−∆)β/2u− V u+ h(x, t)|u|p.
In this introduction we have restricted our presentation to V ≥ 0. The

general case where V is not necessarily nonnegative is also considered.
In Section 3, we study the nonexistence of local and global solutions to

ut ≥ −(−∆)β/2u+ h(x, t)up,(1.10)

completing in this way the results of [23], [2], [10], [11], [19], [20].

Theorem 1.2. Let p > 1. There is no local nonnegative solution u to
(1.10) on (0, T ) such that u(·, 0) = u0 if

lim
|x|→∞

u0(x)p−1h(x, t) =∞ for any t ∈ (0, T ).

Assume that h(x, t) ≥ g(x) for any t ≥ 0. Then there is no global non-
negative solution if

lim
|x|→∞

u0(x)p−1g(x)|x|β =∞.
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In fact, the proof of the above theorem leads us to a necessary condition
for local solvability. This condition is given by

lim inf
|x|→∞

u0(x)p−1g(x) <
2

p− 1
· 1
T
.

This means that if L := lim inf |x|→∞ u0(x)p−1g(x) > 0, then the maximal
interval of existence is included in

(
0, 2

p−1
1
L

)
. For nonglobal solvability, we

will show the existence of a positive constant L? such that if

lim inf
|x|→∞

u0(x)p−1g(x)|x|β > L?,(1.11)

then any possible local solution to (1.10) where h(x, t) ≥ g(x) is not global.
For the problem

ut ≥ ∆um + |x|lup,
the constant L? is equal to λ1 if 0 < m ≤ 1. Here λ1 is the first eigenvalue
of the Laplacian in the unit ball and l is a real strictly larger than −2. In
this case (1.11) reads

lim inf
|x|→∞

u0(x)p−m|x|l+2 > λ1.

This will be proved in Section 4. The same result was obtained in [14], [24]
for

ut = ∆u+ up.

It is worth noting that those papers were preceded by the work of Baras
and Kersner [2] where the local nonexistence of solutions was also studied.

The technique we use is based on a duality argument and a judicious
choice of test functions [2], [3], [15]. The main results of this paper were
announced in [9].

2. Blow up of solutions to a semilinear parabolic problem. In
the present section we will give the proof of Theorem 1.1, and we discuss an
extension to a more general case where the positivity of V is not required.
We first analyze the absence of global nonnegative solutions to{

ut ≥ −(−∆)β/2u− V (x)u+ h(x, t)up, (x, t) ∈ RN+1
+ ,

u(x, 0) = u0(x) ≥ 0, x ∈ RN ,(2.1)

where the potential V ≥ 0 is a locally Hölder, continuous function. For
the function h we assume throughout this section that hypothesis (1.7) is
satisfied; that is, there exist γ, l > 0 such that

h(Rγy,Rβγt)
Rl

≥ C(2.2)

uniformly in Ω × (t1, t2).
For the convenience of the reader we recall Theorem 1.1 below.
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Theorem 2.1. Assume that (2.2) holds where

1 < p ≤ 1 +
γβ + l

γN
,(2.3)

and V satisfies

lim
R→∞

Rγ(N+β)−l(p′−1) �
Ω

V (Rγx)p
′
dx = 0,(2.4)

where p′ = p/(p − 1). Then Problem (2.1) has the only global nonnegative
solution u ≡ 0.

Proof. Without loss of generality we may assume that Ω ⊂ {x ∈ RN ;
|x| ≤ 2}. Let u be a global nonnegative solution and ζ be a smooth nonneg-
ative test function such that

�
RN+1

+

|ζt|p′

ζp
′−1 + �

RN+1
+

|(−∆)β/2ζ|p′

ζp
′−1 <∞.(2.5)

According to (2.1) we have
�
RN

u0ζ(·, 0) + �
RN+1

+

hupζ ≤ �
RN+1

+

u(−∆)β/2ζ − �
RN+1

+

uζt + �
RN+1

+

V uζ.(2.6)

By the Young inequality

�
RN

u0ζ(·, 0) + �
RN+1

+

hupζ ≤ 1
6

�
RN+1

+

hupζ + C �
RN+1

+

|(−∆)β/2ζ|p′(ζh)1−p′

+
1
6

�
RN+1

+

hupζ + C �
RN+1

+

|ζt|p
′
(ζh)1−p′

+
1
6

�
RN+1

+

hupζ + C �
RN+1

+

h1−p′V p′ζ

with C = p−1
p

(6
p

)1/(p−1). Therefore we get

(2.7)
1

2C
�

RN+1
+

hupζ

≤ �
RN+1

+

|ζt|p
′
(hζ)1−p′+ �

RN+1
+

|(−∆)β/2ζ|p′(hζ)1−p′+ �
RN+1

+

h1−p′V p′ζ.

Next we consider φ ∈ C∞0 (R+) satisfying

φ(r) =
{

1 if r ≤ 1,
0 if r ≥ 2,

(2.8)

and

0 ≤ φ ≤ 1.(2.9)
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Set

ζ(t, x) =
(
φ

(
t2α + |x|2βα

R2

))λ
, R > 0,

where α = 1/(βγ) and λ is large enough such that condition (2.5) holds.
After the change of variables

τ = tR−1/α, y = xR−1/(βα),

using estimate (2.5), we easily obtain

�
RN+1

+

hupζ ≤ C
(
Rs +R

1
αβ

(N+β)−l(p′−1) �
|y|≤
√

2

V (R
1
αβ y)p

′
dy
)
,(2.10)

where

s =
1
αβ

[N + β − βp′ − αβl(p′ − 1)].

Since s ≤ 0, by (2.3), we conclude from the hypothesis on V that hup ∈
L1(RN+1

+ ). So

lim
R→∞

�
ΩR

ζhup = 0

where
ΩR = {(x, t) ∈ RN+1

+ ; R2 ≤ t2α + |x|2αβ ≤ 2R2}.
On the other hand, according to (2.6) and to the Hölder inequality, one finds
that the integral

�
RN+1

+
ζhup is bounded by

( �
ΩR

ζhup
)1/p[( �

ΩR

|ζt|p
′
(ζh)1−p′

)1/p′

+
( �
ΩR

|(−∆)β/2ζ|p′(hζ)1−p′
)1/p′]

+
( �
RN+1

+

ζhup
)1/p( �

RN+1
+

h1−p′V p′ζ
)1/p′

.

Passing to the limit as R→∞ shows that
�
RN+1

+
hup = 0. Thus u = 0, which

ends the proof.

Remark 2.1. In the case where Ω ⊂ {x ∈ RN ; |x| ≤ r0}, r0 > 0, we
may choose the function φ such that suppφ ⊂ [0, r0).

The above proof leads to the following theorem.

Theorem 2.2. Let 1 < p ≤ 1 + β/N . Assume that the function h satis-
fies (2.2) for some l > γβ/(p′ − 1). Suppose

0 ≤ V (x) ≤ a

1 + |x|b =: w(x),(2.11)

with b > N(p− 1)/p, a > 0. Then Problem (2.1) has no global nonnegative
solution except the trivial one.
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Proof. According to the preceding theorem we check that V satisfies
hypothesis (2.4). So it is sufficient to show that the function

I(R) := Rγ(N+β)−l(p′−1)
r0�
0

w(Rγr)p
′
rN−1dr, r0 = const > 0,

tends to 0 as R goes to infinity. A routine calculation yields the estimate

I(R) ≤ KRβγ−l(p′−1)
rb0R

bγ

�
0

sN/b−1

(1 + s)p′
ds.

Therefore, since b > N(p − 1)/p, we have I(R) ≤ CRβγ−l(p
′−1), and thus

assumption (2.4) holds because βγ < l(p′ − 1).

To illustrate this analysis by an example we consider h(x, t) = tτ |x|σ.
Then the condition l > γβ/(p′ − 1) reads

β < (σ + βτ)(p′ − 1).

Remark 2.2. If we have |u|p instead of up, the positivity of the initial
data may be replaced by

�
RN u0 ≥ 0. In the same spirit we can obtain the

absence of a nontrivial global solution to the problem

ut = −(−∆)β/2u+ h(x)up + f(x, t).

Here the function f is assumed to be nonnegative. No assumption on the
integrability of f or its regularity are required. A similar result can be ob-
tained if we assume �

RN+1
+

f ≥ 0.

In [20] the problem ut = ∆u + h(x)up + λg(x) was considered. It was
shown that, for example, if h(x) and g(x) are greater respectively than
|x|m and |x|−q for large |x|, then no global nonnegative solution can exist
whenever

1 < p < 1 +
2 +m

q − 2
, 2 < q < N.

According to our conclusion, the result still holds if q ≥ N+2 since 1+ 2+m
q−2 ≤

1 + 2+m
N .

Remark 2.3. Let us point out that by the above proofs the positivity
of V is not necessary. For the general case the nonexistence result is an
immediate consequence of Theorem 2.2.

Theorem 2.3. Assume that (2.2) holds where

1 < p ≤ 1 +
γβ + l

γN
,(2.12)
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and V satisfies

lim
R→∞

Rγ(N+β)−l(p′−1) �
|x|≤r0

V+(Rγx)p
′
dx = 0,(2.13)

where V+ = max{V, 0}. Then the only global nonnegative solution to Prob-
lem (2.1) is u ≡ 0.

Corollary 2.1. Assume V ≤ 0. Let 1 < p ≤ 1 + β/N . Then there
exists no nontrivial solution to

ut = −(−∆)β/2u− V u+ up, u ≥ 0.

Remark 2.4. This corollary proves in particular that the critical expo-
nent 1 + 2/N of the problem

ut = ∆u− V u+ up,

where
−δ 1

1 + |x|b ≤ V (x) ≤ 0, b > 2,

belongs to the blow up case [27].

Remark 2.5. The condition l > 0 is important if N(p− 1)/p < b < 2,
since it is easily shown that there exists a global positive solution to

ut ≥ ∆u−
c

1 + |x|b u+ h(t)|u|p,

of the form

U(x, t) =
h(t)1/(1−p)

(A+ |x|2)b/(2(p−1))
,

where 0 < h(t) ≤ C and h′(t) ≤ 0 for any t ≥ 0.

Before closing this section we note that the above result can be inter-
preted as a necessary condition on the exponent p for global solvability. But
can we obtain a global solution to (2.1) if p > pc? In the following section
we shall see that the answer depends on the behavior at infinity of both h
and the initial data.

3. Nonexistence of local and global nonnegative solutions to the
heat inequality. In this section we turn our attention to the nonexistence
of solution to{

ut ≥ −(−∆)β/2u+ h(x, t)up, (x, t) ∈ RN × (0, T ),
u(x, 0) = u0(x) ≥ 0, x ∈ RN ,(3.1)

where p > 1, 0 < T ≤ ∞, and u0 ≥ 0 and h > 0 are locally bounded
functions. We have argued in Section 2 that if N is small enough any possible
local nonnegative solution ceases to exists in a finite time. On the other hand,
it is well known [4], [23] that if p is greater than the critical exponent both
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global and nonglobal solutions may exist. For Problem (3.1) it is easy to see
that if we have

h(x, t) = et
a+|x|b , a, b > 0,

then condition (2.3) is satisfied for any l > 0. Therefore, there is no global
nonnegative and nontrivial solution to (3.1) for any p > 1. So our intention
here is to study the effect of h on the nonexistence of local and global
solutions.

This work is motivated by the paper of Baras and Kersner in [2] in which
the local solvability of

{
ut = ∆u+ h(x)up, (x, t) ∈ RN × (0, T ),
u(x, 0) = u0(x), x ∈ RN ,(3.2)

was considered. The authors proved that the result depends on the behavior
at infinity of both u0 and h. In particular, it is shown that no solution to
(3.2) exists if

lim
|x|→∞

u0(x)p−1h(x) =∞.

In this section we extend this result to (3.1). We shall show that existence
of global solutions requires suitable behavior of the initial data and h at
infinity. To prove Theorem 1.2 we shall need some additional lemmas.

Lemma 3.1. Let p > 1. Assume that u is a nonnegative solution to (3.1)
on (0, T ), T <∞. Then, for any Φ ∈ C∞0 (RN ), Φ ≥ 0, we have

(3.3) �
RN

Φu0 ≤ (p− 1)21/(p−1)p−p/(p−1)
{(

p

p− 1

)p′
T−p

′ �
QT

Φh1−p′

+ �
QT

((−∆)β/2Φ)p
′

+(Φh)1−p′
}
,

where QT := RN × [0, T ), and

lim inf
|x|→∞

u0(x)p−1h(x, t) ≤ 2
p− 1

· 1
T

(3.4)

for any 0 ≤ t < T .

Proof. Let ζ ∈ C∞0 (QT ), ζ ≥ 0. One has

�
RN

u0ζ(·, 0) + �
QT

hup ≤ �
QT

u(−ζt)+ + �
QT

u((−∆β/2)ζ)+.(3.5)

Using the estimates

�
QT

u(−ζt)+ ≤
1
2

�
QT

uph+ (p− 1)21/(p−1)p−p/(p−1) �
QT

(−ζt)p
′

+(hζ)1−p′
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and
�
QT

u((−∆)β/2ζ)+

≤ 1
2

�
QT

uphζ + (p− 1)21/(p−1)p−p/(p−1) �
QT

((−∆)β/2ζ)p
′

+(hζ)1−p′ ,

we deduce
�
RN

u0ζ(·, 0)

≤ (p− 1)21/(p−1)p−p/(p−1)
[ �
QT

(−ζt)p
′

+(hζ)1−p′ + �
QT

((−∆)β/2ζ)p
′

+(hζ)1−p′
]
.

Next, estimate (3.3) is obtained immediately by taking

ζ(x, t) = (1− t/T )p
′
Φ(x),

where Φ ∈ C∞0 (RN ), Φ ≥ 0.
To verify (3.4) we consider

Φ(x) = ϕ(x/R), R > 0,

where ϕ ∈ C∞0 (RN ), 0 ≤ ϕ ≤ 1, suppϕ ⊂ {1 < |x| < 2}, and

(−∆)β/2ϕ ≤ kϕ, k = const.

Together with (3.3) we find that

inf
|x|>R, 0≤t<T

(u0(x)h(x, t)p
′−1) �

QT

Φh1−p′

≤ (p− 1)21/(p−1)p−p/(p−1)
[(

p

p− 1

)p′
T 1−p′ �

QT

Φh1−p′ + T
C

Rβp′
�
QT

Φh1−p′
]
.

We then divide by
�
QT

Φh1−p′ and let R→∞ to obtain

lim inf
|x|→∞

u0(x)h(x, t)p
′−1 ≤ 21/(p−1)(p− 1)−1/(p−1)T 1−p′ ,

which completes the proof.

From this result one deduces immediately the following corollaries.

Corollary 3.1. There is no local (and then no global) solution to (3.1)
if

lim
|x|→∞

u0(x)p−1h(x, t) =∞.

Corollary 3.2. Assume that h(x, t) = h(x) and

lim inf
|x|→∞

u0(x)p−1h(x) > 0.
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Then any possible local solution to (3.1) ceases to exists before a finite time
T0 such that

T0 ≤
2

p− 1
(lim inf
|x|→∞

u0(x)p−1h(x))−1.

In the case where h(x, t) ≥ g(x) for |x| large we improve results in
Corollaries 3.1 and 3.2. In fact our strategy also gives a necessary condition
for the global existence.

Proposition 3.1. Let u be a global nonnegative solution to (3.1) where
h(x, t) ≥ g(x) for |x| large. Then

(3.6) �
RN

Φu0

≤ p

p− 1

(
2
p

)1/(p−1)

(p− 1)1/p
{ �
RN

g1−p′Φ
}1/p′{ �

RN
((−∆β/2)Φ)p

′
+(Φg)1−p′

}1/p

for any Φ ∈ C∞0 (RN ), Φ ≥ 0, and

lim inf
|x|→∞

u0(x)p−1g(x)|x|β ≤ C,

where C is a positive constant depending on p.

Proof. Since u is also a solution to (3.1) on (0, T ) we deduce from the
proof of the previous lemma that

�
RN

u0Φ ≤ K(p)
[
p′p
′
T 1−p′ �

RN
g1−p′Φ+ T �

RN
((−∆)β/2Φ)p

′
+(Φg)1−p′

]
,(3.7)

where
K(p) = (p− 1)21/(p−1)p−p/(p−1).

A simple minimization of the right hand side of (3.7) with respect to T > 0
yields (3.6).

Next, we take, as above,

Φ(x) = ϕ(x/R).

Therefore
�

|x|>R
u0Φ ≤ K(p)

1
Rβp

′/p
�

|x|>R
g1−p′Φ,

and since

inf
|x|>R

(u0(x)g(x)p
′−1|x|βp′/p) �

|x|>R
g1−p′Φ|x|−βp′/p ≤ �

|x|>R
u0Φ,

we deduce that
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1
(2R)βp′/p

inf
|x|>R

(u0(x)g(x)p
′−1|x|βp′/p) �

|x|>R
g1−p′Φ ≤ K(p)

1
Rβp

′/p
�

|x|>R
g1−p′Φ.

Therefore the limit
lim inf
|x|→∞

u0(x)g(x)|x|βp′/p

is finite.

Now we are in a position to state our main results of this section.

Theorem 3.1. Assume that

lim
|x|→∞

u0(x)p−1h(x, t) =∞(3.8)

for any t ≥ 0. Then Problem (3.1) has no nonnegative local solution.

Theorem 3.2. Assume that h(x, t) ≥ g(x) and

lim
|x|→∞

u0(x)p−1g(x)|x|β =∞.

Then Problem (3.1) has no nonnegative global solution.

Example. Assume h(x) ≈ |x|σ for |x| large and u0(x) = C0|x|τ . Then
we require σ and τ to satisfy

τ(p− 1) + σ + β > 0.

The following result is proved by Kalashnikov [13], [2] for the heat equa-
tion and it is an immediate consequence of Theorem 3.1.

Corollary 3.3. Assume that g(x) goes to infinity with |x|. Then no
local solution u exists such that

u(x, t) ≥ a > 0 for any (x, t).

Remark 3.1. As was mentioned in [20], in general if a solution u to (3.1)
is not global, it is not easy to prove, via comparison theorems, that there is
no global solution to (3.1) with h1 and v0 instead of h and u0 respectively
where h1 ≥ h and v0 ≥ u0. However, it is transparent from Theorem 3.2
that in this case no global nonnegative solution can exist, since

u0(x)p−1h(x)|x|β ≤ v0(x)p−1h1(x)|x|β.
The following result gives a necessary condition for global solvability

of (3.1).

Proposition 3.2. Assume that (3.1) has a global solution. Then there
exists a positive constant C = C(p,N) such that

�
|x|<r

u0 ≤ C lim inf
R→∞

R−β/(p−1) �
|x|<R

g1−p′ for any r > 0.(3.9)



208 M. GUEDDA

Proof. We take Φ(x) = ϕ(x/R) where ϕ ∈ C∞0 (RN ) is positive, ϕ = 1 on
|x| ≤ 1, ϕ = 0 on |x| ≥ 2 and (−∆)β/2ϕ ≤ Kϕ. Then Proposition 3.1 shows
that

�
|x|<R

u0 ≤ C
1

Rβp′/p

( �
|x|<2R

g1−p′
)1/p′( �

R<|x|<2R

g1−p′
)1/p

.

Now take R > r and define

F (R) = �
|x|<R

g1−p′ .

Then we have

Rβp
′/pI ≤ F (2R)1/p′ [F (2R)− F (R)]1/p,

where
I = const · �

|x|<r
u0.

Next we define a sequence (wn)n∈N? by wn = F (2nR). Then

2βnp
′/pRβp

′/pI ≤ w1/p′
n+1(wn+1 − wn)1/p,

hence
2βnp

′
Rβp

′
Ip ≤ wpn+1 − wpn.

Summing these inequalities from 1 to n = j − 1, one sees that

Rβp
′ 2jβp

′ − 2βp
′

2βp′ − 1
Rβp

′
Ip ≤ wpn

for any j ≥ 2, which yields

F (2nR) ≥ const · (2nR)βp
′/pI,

and this implies the desired estimate.

Remark 3.2. For the case h = 1 condition (3.9) can be formulated as

lim sup
R→∞

Rβ/(p−1)−N �
|x|<R

u0 <∞.

Therefore if 1 < p < 1 + β/N , we deduce that u0 ≡ 0 (see Section 2), while
u0 is integrable if p = 1 + β/N .

For instance, if u0(x) = a|x|−b, a > 0, b > 0, then the last condition is
equivalent to b ≤ β/(p− 1). Now consider h(x) = |x|l; then if 1 < p <
1 + (β + l)/N , no global nontrivial solution to (3.1) exists (see [10]).

Remark 3.3. The proof of Proposition 3.2 produces also a necessary
condition for the global existence of solutions to

ut = −(−∆)β/2u+ h(x, t)up + f(x).
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This condition is given by the inequality

C �
|x|<r

f ≤ lim inf
R→∞

R−β/(p−1) �
|x|<R

g1−p′(3.10)

for any r > 0, where g(x) ≤ h(x, t) and C is a positive constant.

Remark 3.4. By using the test function ζ = (1− t/T )p
′
Φ as above, we

can also obtain a nonexistence result for the problem

ut ≥ −(−∆)β/2u− V (x)u+ h(x)up, u(x, 0) = u0(x),(3.11)

in which the potential V := V+ − V− satisfies, for |x| → ∞,

V+(x) ∼ a|x|−b, a, b > 0.

The above method yields precisely the following estimate:

�
|x|>R

u0Φ ≤ C
[
T 1−p′ �

R<|x|<2R

Φ

hp
′−1

+ T

{
R−βp

′ �
R<|x|<2R

Φ

hp
′−1 + �

R<|x|<2R

V p′
+

Φ

hp
′−1

}]

for any T > 0. As usual we obtain, for γ > 0 and any T > 0,

inf
|x|>R

u0(x)h(x)p
′−1|x|γ ≤ CRγ [T 1−p′ + T (R−βp

′
+R−bp

′
)].

A routine minimization with respect to T yields

inf
|x|>R

u0(x)h(x)p
′−1|x|γ ≤ CRγ−

1
p−1 inf{β,b}

.

We formulate this conclusion in the following.

Proposition 3.3. Let p > 1 and suppose V satisfies

V+(x) ∼ a|x|−b, a, b > 0,

for |x| large. Then there is no global nonnegative solution to (3.11) such that

lim
|x|→∞

u0(x)p−1h(x)|x|inf{β,b} =∞.

Remark 3.5. From the above results we can derive nonexistence results
for the stationary problems of the preceding inequalities. For example there
is no nonnegative solution to

−(−∆)β/2u− V (x)u+ h(x)up = 0,

defined on RN such that

lim
|x|→∞

u(x)p−1h(x)|x|inf{β,b} =∞,

where V+(x) ∼ a|x|−b, a, b > 0.
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4. Porous medium inequalities. A simple model of the problem con-
sidered in this section is the following:

ut ≥ ∆um + up,(4.1)

where p > max{1,m}, m > 0. In the case of equality instead of inequality,
the problem

ut = ∆um + up, m > 1,(4.2)

describes processes with a finite speed of propagation of perturbation [22].
It is known that if the initial data u0 ≥ 0 is a bounded continuous function,
then Problem (4.2) has a unique, local-in-time, weak, continuous solution
u(x, t) ≥ 0. This solution is not global if 1 < p ≤ m+2/N (see [22]). On the
other hand, by the same argument as before, if u0 tends to infinity with |x|,
there is no local solution.

In [18] Mukai et al. presented some properties of solutions to (4.2) where
initial data slowly decay near x = ∞. For instance, in the case u0(x) ∼
λ|x|−a the authors obtained global existence and nonglobal existence in
terms of λ > 0 and a ≥ 0.

In [21] it is proved that any nontrivial local solution to (4.2) blows up in
finite time if 0 < m < 1 and 1 < p < m+ 2/N . Concerning Problem (4.1),
with the help of the argument used in Section 2, we easily get the following.

Theorem 4.1. Let p > max{m, 1}. Assume that

p ≤ m+ 2/N.

Then the only global nonnegative solution to (4.1) is the trivial one.

The technique of the preceding section can also be applied to the case
where p > m+ 2/N .

Theorem 4.2. Let p > max{m, 1}. Assume that

lim
|x|→∞

u0(x)|x|2/(p−m) =∞.(4.3)

Then any possible local solution u(x, t) to (4.1) such that u(x, 0) = u0(x) is
not global.

In this section we shall see that the result of the above theorem still holds
if condition (4.3) is satisfied in a weak sense. More precisely, we assume that
u0 satisfies

lim
|x|→∞

u0(x)|x|2/(p−m) = A(4.4)

for some A ∈ [0,∞], in the following weak sense: for any ϕ ∈ W 1,∞
0 (RN ),

ϕ ≥ 0,
lim
R→∞

�
RN

ϕ(x)|Rx|2/(p−m)u0(Rx) dx = A �
RN

ϕ(x) dx.
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Define
A? = λ

1/(p−m)
1 C(p,m),

where

C(p,m) =
p

p− 1

(
2
p

)1/(p−m)

(p−m)1/pmm/(p(p−m)),

and λ1 is the first eigenvalue of −∆ in the unit ball B with zero Dirichlet
boundary condition. Then we have

Proposition 4.1. Let p > m + 2/N . Assume that u0 satisfies (4.4)
where A > A?. Then Problem (4.1) has no global solution.

Proof. Assume that (4.1) has a global solution with the initial data u0.
Arguing as in the proof of Proposition 3.1 we first deduce that for any
Φ ∈W 1,∞

0 (RN ) such that Φ ≥ 0 and ∆Φ ∈ L∞0 (RN ), we have

�
RN

Φu0 ≤ C(p,m)
{ �
RN

Φ
}1/p′{ �

RN
(−∆Φ)p/(p−m)

+ Φ−m/(p−m)
}1/p

.(4.5)

Let ϕ1 ∈ C∞0 (B), ϕ1 ≥ 0, be the first eigenfunction of −∆ in the unit ball B:

−∆ϕ1 = λ1ϕ1.

Setting

ϕ(x) =
{
ϕ1(x) if |x| < 1,
0 if |x| ≥ 1,

and using (4.5) with Φ(x) = ϕ(x/R) yields

R2/(p−m) �
RN

ϕ(x/R)u0(x) dx ≤ λ1/(p−1)
1 C(p,m) �

RN
ϕ(x/R) dx.

Since
�
RN

ϕ(x/R)u0(x) dx = �
RN

ϕ(x/R)u0(x)|x|2/(p−m)|x|−2/(p−m) dx,

we infer that
�
RN

ϕ(x/R)|x|2/(p−m)u0(x) dx ≤ λ1/(p−1)
1 C(p,m) �

RN
ϕ(x/R) dx.

Changing the variables y = Rx yields
�
RN

ϕ(y)|Ry|2/(p−m)u0(yR) dy ≤ λ1/(p−1)
1 C(p,m) �

RN
ϕ(y) dy.

Passing to the limit as R→∞ implies

A ≤ λ1/(p−1)
1 C(p,m).

This contradicts (4.4) and the proof is finished.
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The above result can be easily extended to the inequalities

ut ≥ ∆um + |x|lup.(4.6)

Here we obtain the nonexistence result for 0 < m ≤ 1 and −2 < l < 0.

Proposition 4.2. Let 0 < m ≤ 1 and −2 < l < 0. There is no global
nonnegative solution to (4.6) such that the initial data satisfies, in the weak
sense,

lim
|x|→∞

|x|(2+l)/(p−m)u0(x) > λ
1/(p−m)
1 .

Proof. Assume that u is a global nonnegative solution to (4.6). Put

w(t) = R−N �
|x|<R

u(x, t)ϕ1(x/R) dx,

where ϕ1 is the first eigenfunction satisfying
�
B ϕ1 = 1. Using (4.6) we

deduce that
wt ≥ Rlwp − λ1R

−2wm

for all t ≥ 0, thanks to the Jensen and Hölder inequalities. Next a simple
analysis of the above ordinary differential inequality yields the estimate

w(0) ≤ (λ1R
−l−2)1/(p−m);

that is,
�

|x|≤R
R−N+(l+2)/(p−m)u0(x)ϕ1(x/R) dx ≤ λ1/(p−m)

1 .

Now we conclude as in the proof of Proposition 4.1.

Remark 4.1. Let us consider the particular case

ut ≥ −(−∆)β/2um + up, p > m,(4.7)

where u0(x) ∼ |x|−a for |x| large. Set

a? =
β

p−m.

According to our discussion, if 0 ≤ a < a? there is no global solution. On
the other hand, it is shown in [18] that if a? < a < N where β = 2 and
p > m+ 2/N , then there exist global solutions to ut = ∆um + up such that
the limit lim|x|→∞ u(x, 0)|x|a is finite and positive. Based on this observation
it is natural to address the following question. Can we identify all real a
such that the corresponding solution is not global? Is the constant a? the
threshold between the blow up case and the global existence if p > m+β/N?
For (3.10) the answer is no. In fact a? may be infinite as we now show. For
simplicity we take m = 1 and consider

ut = −(−∆)β/2u+ up + λf(x),
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where λ > 0, with f ≥ 0 satisfying

lim
|x|→∞

f(x)p−1|x|β =∞.

By the same strategy as in the proof of Theorem 2.1, one easily obtains the
nonexistence of global solutions for any nonnegative initial data even if the
data has compact support. Now if we assume that lim inf |x|→∞ f(x)p−1|x|β
> 0, then there exists λc > 0 such that the problem has no global solution
for any λ > λc. Note that the last condition on f asserts that if p > 1 +β/2
then

�
RN

f(x)
|x|N−2 dx =∞,

which is the same condition as in [20] for the case β = 2. However if
1 < p < β/2 and if we take, for example,

f(x) = (1 + |x|)−β/(p−1),

then the function f/|x|N−2 is integrable, but there is no global solution for
λ large.

In the next section we shall show that a similar result is valid for an
inequality with gradient-dependent diffusivity (so-called p-Laplacian opera-
tor).

5. Parabolic inequalities associated to the p-Laplacian operator.
In this section we will obtain reasonable assumptions for the nonexistence
of global nonnegative solutions to

ut ≥ ∆pu+ h(x, t)uq,(5.1)

where q > p− 1 > 0 and ∆p is the p-Laplacian operator defined by

∆pu = div(|∇u|p−2∇u).

To this end we will follow the strategy of the previous sections.
The stationary problem was considered by many authors. In that case

it is known [12] that if p − 1 < q < Np/(N − p) − 1, then there exists no
positive radial solution to

div(|∇u|p−2∇u) + uq = 0,

and if q = Np/(N − p)− 1 then the only positive radial solutions are of the
form

ua(x) = C(N, p)(a+ |x|p/(p−1))(p−N)/p,

where a is any positive number. Later Mitidieri and Pokhozhaev [16] showed
the nonexistence of nonnegative solutions to
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div(|∇u|p−2∇u) + uq ≤ 0

if one of the following conditions holds:

(a) p− 1 < q ≤ N(p− 1)/(N − p), p < N ,
(b) 0 ≤ 0 ≤ p− 1, N ≥ 1.

For Problem (5.1) with h = 1 Mitidieri and Pokhozhaev [17] proved the
absence of global solutions if q is not (strictly) larger than a critical exponent.
These results are preceded by the work of Galaktionov [6], [7] on the problem

ut = div(|∇u|p−2∇u) + uq.

He showed that if 1 ≤ p < p − 1 + p/N then no global nontrivial solution
exists, while for q > p−1+p/N there is a class of small global solutions. This
means that the critical exponent for the last equation is qc = p− 1 + p/N .

In this section we will combine the argument of [16] and the technique
used above to obtain necessary conditions for the existence of local and
global solutions to (5.1). Below we assume the function h satisfies condi-
tion (2.2). The first result on nonexistence of global nonnegative solutions
to (5.1) is formulated below.

Theorem 5.1. Let q > p − 1 > 1. Then there exists Nc = Nc(p, q, l)
such that for N ≤ Nc there are no global solutions to (5.1).

Proof. Let u be a nonnegative solution to (5.1) with initial data u0.
Without lost of generality we may suppose that u > 0. Let −1 < α < 0 be
a fixed number. Taking uαζ as a test function where ζ ∈ C∞0 (RN+1

+ ), ζ ≥ 0,
one sees that

�
QT

huq+αζ +
1

1 + α
�
RN

u1+α
0 ζ(·, 0) + |α| �

QT

|∇u|puα−1ζ

≤ �
QT

|∇u|p−1uα|∇ζ| − 1
1 + α

�
QT

uα+1ζt.

Making use of the Young inequality once and twice, one finds, for ε1, ε2, ε3

> 0,

�
QT

huq+αζ +
1

1 + α
�
RN

u1+α
0 ζ(·, 0) + |α| �

QT

|∇u|puα−1ζ

≤ ε1
�
QT

uα−1|∇u|pζ + Cε1
�
QT

uα+p−1|∇ζ|pζ1−p

+ ε2
�
QT

uα+qhζ + Cε2
�
QT

|ζt|(q+α)/(q−1)(hζ)−(1+α)/(q−1),
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�
QT

huq+αζ +
1

1 + α
�
RN

u1+α
0 ζ(·, 0) + |α| �

QT

|∇u|puα−1ζ

≤ ε1
�
QT

uα−1|∇u|pζ + Cε1

[
ε3

�
QT

uα+qhζ + Cε3
�
QT

|∇ζ|τp
hτ−1ζτp−1

]

+ ε2
�
QT

uα+qhζ + Cε2
�
QT

|ζt|(q+α)/(q−1)(hζ)−(1+α)/(q−1),

where

s(α+ p− 1) = α+ q,
1
s

+
1
τ

= 1.(5.2)

This implies in particular

(5.3) K1
�
QT

huq+αζ +K2
�
QT

|∇u|puα−1ζ +
1

1 + α
�
RN

u1+α
0 ζ(·, 0)

≤ �
QT

|∇ζ|τp
hτ−1ζτp−1 + �

QT

|ζt|(q+α)/(q−1)(hζ)−(1+α)/(q−1).

The remainder of the proof is based on an appropriate choice of the test
function ζ. As in the first section, we consider

ζ(x, t) = ϕ

(
tγ1 + |x|γ2

R

)
,

where γ1, γ2 are real parameters which will be specified later and the non-
negative function ϕ ∈ C∞0 (R+) is defined by (2.8)–(2.9) in Section 2. After
the standard change of variables t 7→ tR−γ1 and x 7→ xR−γ2 , inequality (5.3)
takes the form �

QT

uqhζ + �
RN

u0ζ(·, 0) ≤ KRr,

where

r =
1
γ1

+
N

γ2
− τp

γ2
− l 1 + α

q − 1
.

Here the real l is determined from the asymptotic behavior at infinity of h,
that is,

h(xRγ2 , tRγ1) ∼ Rl

for R large. The expression of r is obtained with the help of the following
assumption on γ1 and γ2:

l(τ − 1) +
τp

γ2
=

1
γ1

q + α

q − 1
+ l

1 + α

q − 1
.

Therefore there exists Nc > 0 such that if N ≤ Nc then r ≤ 0 and so u ≡ 0,
which ends the proof.
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Remark 5.1. To conclude we obtain, as in Section 2, an estimate of the
integral

�
QT

uqhζ + �
RN

u0ζ(·, 0).

Since this estimate is the key to nonexistence of local and global solutions
if N > Nc, we give here its proof.

Lemma 5.1. Assume that q > max{p − 1, 1}. Let u be a local positive
solution to (5.1). Then for any α ∈ (−(q + 1− p)/p, 0), there exists a > 0
such that

�
QT

uqhζ + �
RN

u0ζ(·, 0) ≤ K
{

�
QT

|ζt|q′

hζq′−1 + �
QT

|∇ζ|τp
hτ−1ζτp−1

+ �
QT

|ζt|(q+α)/(q−1)(hζ)−(1+α)/(q−1) + �
QT

|∇ζ|pa′

ζpa
′−1ha

′−1

}

for some constant K > 0, where a′ = a/(a− 1).

Proof. In fact, since by (5.1),

�
QT

uqhζ + �
RN

u0ζ(·, 0) ≤ �
QT

|∇u|p−1|∇ζ|+ �
QT

u|ζt|,

we deduce that

�
QT

uqhζ ≤ ε �
QT

uqhζ + Cε
�
QT

|ζt|q′

hζq′−1 + �
QT

|∇u|p−1|∇ζ|.

The last integral can be written as

�
QT

|∇u|p−1|∇ζ| = �
QT

|∇u|p−1u(α−1)(p−1)/pζ1/p′u(1−α)(p−1)/pζ−1/p′ |∇ζ|.

Therefore, by the Hölder inequality, we get

�
QT

|∇u|p−1|∇ζ| ≤
{ �
QT

|∇u|puα−1ζ
}(p−1)/p

{
�
QT

u(1−α)(p−1) |∇ζ|p
ζp−1

}1/p

≤
{ �
QT

|∇u|puα−1ζ
}(p−1)/p{ �

QT

uq+αhζ
}1/(ap)

{
�
QT

|∇ζ|pa′

ζpa′−1ha′−1

}1/(a′p)

,

where (p− 1− q)/p < α < 0 and

(1− α)(p− 1)a = q + α, 1/a+ 1/a′ = 1.
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Thus

(1− ε) �
QT

uqhζ ≤ Cε �
QT

|ζt|q′

hζq′−1 +
{ �
QT

|∇u|puα−1ζ
}(p−1)/p

×
{ �
QT

uq+αhζ
}1/(ap)

{
�
QT

|∇ζ|pa′

ζpa′−1ha′−1

}1/(a′p)

.

Next using estimate (5.3), we deduce for some positive constant K the de-
sired estimate

�
QT

uqhζ + �
RN

u0ζ(·, 0)

≤ K
{

�
QT

|ζt|q′

hζq′−1 +
[

�
QT

|∇ζ|τp
hτ−1ζτp−1

+ �
QT

|ζt|(q+α)/(q−1)(hζ)−(1+α)/(q−1)
]1/p′+1/(ap){ �

QT

|∇ζ|pa′

ζpa
′−1ha

′−1

}1/(a′p)}
.

Note that, since 1/p′ + 1/(ap) + 1/(a′p) = 1, this estimate leads to

�
QT

uqhζ + �
RN

u0ζ(·, 0) ≤ K
{

�
QT

|ζt|q′

hζq
′−1 + �

QT

|∇ζ|τp
hτ−1ζτp−1

+ �
QT

|ζt|(q+α)/(q−1)(hζ)−(1+α)/(q−1) + �
QT

|∇ζ|pa′

ζpa′−1ha′−1

}
.

Remark 5.2. When h = 1 the nonexistence result is very simple to
formulate. In this case γ1 and γ2 satisfy γ1/γ2 = (q + α)/(τp(q − 1));
that is,

γ1

γ2
=
q − p+ 1
p(q − 1)

.

Thus �
QT

uqhζ ≤ CRr1 .

Therefore if
q ≤ p− 1 + p/N

then the exponent r1 is nonpositive, which leads to the conclusion u ≡ 0.

In the remainder of this section we argue as in Section 3 to exhibit
necessary conditions for local and global existence of solutions to

ut ≥ div(|∇u|p−2∇u) + h(x)uq, u(x, 0) = u0(x).(5.4)

Since the results are the analogues of those obtained before, they are stated
without proofs.
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Put
g(x) = inf{h(x), h(x)(τ−1)(q−1)/(1+α)},

where τ is given by (5.2).

Theorem 5.2. Assume that q > max{p − 1, 1}. Let u be a local non-
negative solution to (5.4) defined in (0, T ). Then for any fixed α such that
(p+ 1− q)/p < α < 0 there exists C0 > 0 such that

lim inf
|x|→∞

u0(x)q−1g(x) ≤ C0/T .

It is not hard to obtain explicitly the expression for C0.
Let us now consider the function

h(x) = (1 + |x|2)a, a > 0,

and the initial data defined by

u0(x) = T−1/(q−1)A(1 + |x|2)−1/(b(q−1)).

Then we have

Corollary 5.1. Let p ≥ 2 and q > p− 1. Assume that

A ≤ C1/(q−1)
0 .

Then any solution u to (5.4) such that u(·, 0) = u0 ceases to exist after a
finite time not longer than T .

The following result gives a sufficient condition for nonglobal solvability.

Theorem 5.3. Let q > max{1, p− 1}. Assume that

lim
|x|→∞

u0(x)q−1g(x)|x|p(q−1)/(q−p+1) =∞.

Then any local solution to (5.4) is not global.

Remark 5.3. In [16] the authors constructed an explicit stationary so-
lution in the case h = 1. This solution is given by

u(x) =
a

(1 + |x|p′)(p−1)/(q−p+1)
,

where the parameter a > 0 is small enough, namely

aq−p+1 <

(
p

q − p+ 1

)p−1 q(N − p)−N(p− 1)
q − p+ 1

=: aN,p,q,

and satisfies
|x|p/(q−p+1)u(x)→ a as |x| → ∞.

It is easily seen [12] that the function

u(x) = aN,p,q|x|−p/(q−p+1)

is a solution to ∆pu+ uq = 0 in RN \ {0}. Note that this solution is locally
integrable if q > p− 1 + p/N .
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Remark 5.4. If we have −uq instead of uq, Gmira [8] showed that
the problem ut = div(|∇u|p−2∇u) − uq has a global solution u such that
lim|x|→∞ u(x, t)|x|p/(q−p+1) =∞ for any t.

We finish this section with an extension of Theorem 3.2.

Proposition 5.1. Let q > max{p − 1, 1} and (p+ 1− q)/p < α < 0.
Assume that the initial data u0 produces a global solution to (5.4). Then for
any γ > 0 there exists a positive constant C such that

�
|x|≤γ

u0 ≤ C lim inf
R→∞

Rp(1+α)/(q−p+1) �
|x|<R

g−(1+α)/(q−1).
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