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HARDY’S THEOREM FOR THE HELGASON
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RANK ONE SYMMETRIC SPACES
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Abstract. Let G be a semisimple Lie group with Iwasawa decomposition G = KAN .
Let X = G/K be the associated symmetric space and assume that X is of rank one. Let M
be the centraliser of A in K and consider an orthonormal basis {Yδ,j : δ ∈ K̂0, 1 ≤ j ≤ dδ}
of L2(K/M) consisting of K-finite functions of type δ on K/M . For a function f on X let
f̃(λ, b), λ ∈ C, be the Helgason Fourier transform. Let ht be the heat kernel associated
to the Laplace–Beltrami operator and let Qδ(iλ + %) be the Kostant polynomials. We
establish the following version of Hardy’s theorem for the Helgason Fourier transform: Let
f be a function on G/K which satisfies |f(kar)| ≤ Cht(r). Further assume that for every
δ and j the functions

Fδ,j(λ) = Qδ(iλ+ %)−1
�

K/M

f̃(λ, b)Yδ,j(b) db

satisfy the estimates |Fδ,j(λ)| ≤ Cδ,je−tλ
2

for λ ∈ R. Then f is a constant multiple of the
heat kernel ht.

1. Introduction. A classical theorem of Hardy on Fourier transform
pairs says that if a nontrivial function f on Rn satisfies the estimates |f(x)| ≤
Ce−a|x|

2
and |f̂(ξ)| ≤ Ce−b|ξ|

2
for some constants a, b ≥ 0 then ab ≤ 1/4,

and if ab = 1/4 then f is essentially the Gaussian e−a|x|
2
. This can be

viewed as a theorem on entire functions of order 2 on Cn. In fact, if F (ζ)
is an entire function of order 2 and type b on Cn which decays like e−b|ξ|

2

when restricted to Rn, then F is a constant multiple of the Gaussian e−b|ξ|
2
.

The best possible result of this kind has been proved in [17].
Let us compare this with the classical Paley–Wiener theorem which char-

acterises compactly supported smooth functions in terms of their Fourier
transforms. This can be viewed as a theorem on entire functions of ex-
ponential type which have polynomial decay when restricted to Rn. More
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precisely, if F (ζ) is entire and satisfies |F (ζ)| ≤ CN (1+ |ζ|)−NeR|Im ζ| for all
N then F (ξ) = f̂(ξ) for a smooth f supported in |x| ≤ R. To motivate what
we intend to do let us consider the following refinement of the Paley–Wiener
theorem proved by Helgason [10].

We can view Rn as the homogeneous space M(n)/O(n) where M(n) is
the group of all isometries of Rn and O(n) is the orthogonal group. In this
setup it is better to view the Fourier transform in polar coordinates. Writing
ξ = λw, λ = |ξ| and w ∈ Sn−1, we have

(1.1) f̂(λ,w) =
�
Rn
e−iλx·wf(x) dx.

Note that e−iλx·w are all eigenfunctions of the Laplacian ∆ which generates
the class of all M(n)-invariant differential operators on Rn. Helgason proved
a Paley–Wiener theorem relating support and smoothness properties of f
in terms of properties of f̂(λ,w).

For each nonnegative integer m let Hm be the space of all spherical
harmonics of degree m. If f̂(λ,w) is an entire function of exponential type
satisfying estimates uniformly in w and if for each Sm ∈ Hm the function

(1.2) λ 7→ λ−m
�

Sn−1

f̂(λ,w)Sm(w) dw

is even and holomorphic, then f is a compactly supported smooth function.
In this article we are interested in a version of Hardy’s theorem along these
lines which serves as a motivation for a similar result on symmetric spaces.

Let G/K be a rank one symmetric space of noncompact type. The Hel-
gason Fourier transform f̃(λ, b) of a function f on G/K is given by

(1.3) f̃(λ, b) =
�

G/K

f(x)e(−iλ+%)A(x,b) dx

where λ ∈ C and b ∈ K/M (see Section 3). Helgason [10] characterised
compactly supported smooth functions on G/K in terms of holomorphic
properties of the functions f̃(λ, b) and

(1.4) λ 7→
�

K/M

f̃(λ, b)e(iλ+%)A(x,b) db.

There is a refinement of this theorem, due to Strichartz [24] and Bray [4],
in terms of the spectral projections f ∗Φλ where Φλ are spherical functions
on G/K.

For each irreducible unitary representation δ of K with a unique M -
fixed vector, there are functions Yδ on K/M which play the role of spherical
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harmonics. The holomorphic properties of the functions

λ 7→ (Qδ(%+ iλ)Qδ(%− iλ))−1
�
K

f ∗ Φλ(kar)Yδ(k) dk

are used in [4] to characterise compactly supported functions f on G/K. In
this article we establish a version of Hardy’s theorem in terms of exponential
decay and growth of the functions

λ 7→ Qδ(%+ iλ)−1
�

K/M

f̃(λ, b)Yδ(b) db.

See Theorem 5.1 for the precise statement.
We conclude this introduction with the following remarks and references

on Hardy’s theorem. In 1933, Hardy [8] proved his theorem for the Fourier
transform on the real line. The most optimal result for the Euclidean Fourier
transform was proved in [17] by Pfannschmidt. Analogues of Hardy’s theo-
rem for Fourier transforms on Lie groups have attracted considerable atten-
tion in recent years. It all started with the work of Sitaram and Sundari [21]
who established a Hardy theorem for certain semisimple Lie groups. For
other versions of this theorem for semisimple Lie groups see Cowling et al. [5]
and Sengupta [20]. Analogues of Hardy’s theorem for the Heisenberg group
have been obtained in Sitaram et al. [22] and Thangavelu [25]–[27]. Step two
nilpotent Lie groups were considered by Bagchi and Ray [3], Astengo et al.
[2], and general nilpotent Lie groups by Kaniuth and Kumar [13]. General
symmetric spaces of noncompact type were considered by Narayanan and
Ray [16] and solvable extensions of H-type groups were treated in [2]. See
also the works of Sarkar [18] and [19] for semisimple groups. For the latest
works of the author on Hardy’s theorem and related results we refer to [28]
and [29].

The author wishes to thank Ms. Ashalata for her excellent job of typing
the manuscript. We also thank the referee for his thorough reading of the
manuscript and for making many valuable suggestions which have greatly
improved the exposition of this paper.

2. The Euclidean case. Consider the Euclidean Fourier transform
written in polar coordinates as

(2.1) f̂(λ,w) =
�
Rn
e−iλx·wf(x) dx

where w ∈ Sn−1 and λ ≥ 0. Let Hm be the space of spherical harmonics of
degree m on Sn−1. Let

pt(x) = (4πt)−n/2e−|x|
2/(4t)
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be the heat kernel associated to the Laplacian on Rn. The following is our
version of Hardy’s theorem for the Euclidean Fourier transform written in
the above form. It should be compared with the Paley–Wiener theorem
proved in Helgason [9].

Theorem 2.1. Let f be a measurable function on Rn which satisfies
the estimate |f(x)| ≤ Cps(x), s > 0. For each nonnegative integer m and
Sm ∈ Hm assume that

∣∣∣λ−m
�

Sn−1

f̂(λ,w)Sm(w) dw
∣∣∣ ≤ Cme−tλ

2

for all λ > 0 for some constants Cm ≥ 0 and t > 0. Then

(i) f = 0 when s < t;
(ii) f is a constant multiple of pt when s = t;
(iii) there are infinitely many linearly independent functions satisfying

the above two conditions when s > t.

Proof. Consider the integral
�

Sn−1

f̂(λ,w)Sm(w) dw =
�
Rn

( �
Sn−1

eiλx·wSm(w) dw
)
f(x) dx.

Writing x = rx′, x′ ∈ Sn−1, and using the identity (see Helgason [9])

(2.2)
�

Sn−1

eiλrx
′·wSm(w) dw = Cn,m

Jn/2+m−1(λr)
(λr)n/2−1

Sm(x′)

we get

�
Sn−1

f̂(λ,w)Sm(w) dw = Cn,m

∞�
0

fm(r)
Jn/2+m−1(λr)
(λr)n/2+m−1

(λr)mrn−1 dr,

where fm(r) is defined by

(2.3) fm(r) =
�

Sn−1

f(rx′)Sm(x′) dx′

and Jα stands for the Bessel function of order α.
From the above equation it follows that the function

Fm(λ) = λ−m
�

Sn−1

f̂(λ,w)Sm(w) dw

is an even function of λ ∈ R and satisfies the estimate

|Fm(λ)| ≤ Cme−tλ
2
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for λ ∈ R. Using the formula for the Fourier transform of a radial function
on Rn we infer that

(2.4) Fm(λ) = C
�

Rn+2m

fm(|x|)|x|−me−iλx·w dx

for any w ∈ Sn+2m−1. Under the hypothesis on f , we see that |fm(|x|)| ≤
Cmps(x) and hence Fm can be extended to the complex plane as an entire
function of λ. It is easy to see that for λ ∈ C we have

|Fm(λ)| ≤ Cm(1 + |λ|)n+m−1es|Imλ|2 ,

which follows from the estimate |ps(x)| ≤ Ce−|x|2/(4s).
We now appeal to the following complex-analytic lemma, a proof of which

can be found in [16], [18].

Lemma 2.2. Let f be an entire function of one complex variable which
satisfies the following estimates for some a > 0:

(i) |f(z)| ≤ C(1 + |z|)mea|Im z|2 for z ∈ C;

(ii) |f(x)| ≤ C(1 + |x|)me−ax2
for x ∈ R.

Then f(z) = P (z)e−az
2

where P is a polynomial of degree ≤ m.

Applying this lemma to Fm(λ) we conclude that Fm(λ) = Cme
−tλ2

in
the case when s ≤ t. Since Fm(λ) is the Fourier transform of fm(|x|)|x|−m
on Rn+2m we see that

fm(|x|) = Cm|x|mpt(x).

If s < t, this is not compatible with the estimate |fm(|x|)| ≤ Cps(x) unless
of course Cm = 0 for all m. Thus we get f = 0 when s < t. Again when
s = t we get fm = 0 for all m > 0 and therefore f(x) = f0(|x|) = C0pt(x).

Let P be a solid harmonic of degree k ≥ 1. When s > t choose δ > 0
such that s > (1 + δ)t and consider

(2.5) hk,δ(x) = P (x)p(1+δ)−1s(x).

Then it is clear that

|hk,δ(x)| ≤ Cps(x).

We also have ĥk,δ(λ,w) = CP (λw)e−sλ
2/(1+δ). It follows that for any S ∈

Hm, ∣∣∣λ−m
�

Sn−1

ĥk,δ(λ,w)S(w) dw
∣∣∣ ≤ Ce−tλ2

since s > (1 + δ)t. This completes the proof of Theorem 2.1.
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We conclude this section with the following observation. Let Lαk (t) be
the Laguerre polynomials of type α > −1 and consider the conditions

(2.6)
∣∣∣λ−m

�
Sn−1

f̂(λ,w)Smj(w) dw
∣∣∣ ≤ Cmj |Ln/2+m−1

k (λ2)|e−λ2/2

where {Smj : j = 1, . . . , dm} is an orthonormal basis for Hm. Suppose f
satisfies the estimate

|f(x)| ≤ C(1 + |x|2)Ne−|x|
2/2

where N is a nonnegative integer. Then by appealing to the general form of
the complex-analytic Lemma 2.2 we can conclude that

λ−m
�

Sn−1

f̂(λ,w)Smj(w) dw = Pmj(λ)e−λ
2/2

where Pmj(λ) is a polynomial satisfying

|Pmj(λ)| ≤ Cmj |Ln/2+m−1
k (λ2)|.

As all the zeros of the Laguerre polynomial Lαk (t) are real we conclude that

Pmj(λ) = CmjL
n/2+m−1
k (λ2).

If we let fmj(|x|) = �
Sn−1 f(|x|w)Smj(w) dw then we conclude that the

Fourier transform of fmj(|x|)|x|−m considered as a function on Rn+2m is
given by the Laguerre function. Thus we have

�
Rn+2m

fmj(|x|)|x|−me−iλx·w dx = CmjL
n/2+m−1
k (λ2)e−λ

2/2.

Since Laguerre functions Lαk (t2)e−t
2/2 are eigenfunctions of the Hankel trans-

form we get

fmj(|x|) = Cmj |x|mLn/2+m−1
k (|x|2)e−|x|

2/2.

The estimate on f(x) implies that fmj(|x|) = 0 for m > 2(N − k). In
conclusion

f(x) =
2(N−k)∑

m=0

( dm∑

j=1

CmjSmj(x′)|x|m
)
L
n/2+m−1
k (|x|2)e−|x|

2/2.

Thus we have

Theorem 2.3. Suppose f satisfies |f(x)| ≤ C(1 + |x|2)N+ke−|x|
2/2 for

some nonnegative integers N and k, and for each Sm ∈ Hm,
∣∣∣λ−m

�
Sn−1

f̂(λ,w)Sm(w) dw
∣∣∣ ≤ Cm|Ln/2+m−1

k (λ2)|e−λ2/2.
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Then

f(x) =
( 2N∑

m=0

Pm(x)Ln/2+m−1
k (|x|2)

)
e−|x|

2/2

where Pm are homogeneous harmonic polynomials of degree m.

3. Preliminaries on symmetric spaces. In this section we collect
relevant material from the theory of symmetric spaces. General references
for this section are the monographs [9] and [10] of Helgason.

Let X = G/K be a noncompact, rank one symmetric space. The semi-
simple Lie group G is assumed to be connected with finite centre. Let G =
NAK be the Iwasawa decomposition with N nilpotent, K maximal compact
and A one-dimensional. Every g ∈ G has the unique decomposition g =
n(g) expA(g)k(g) where A(g) belongs to the Lie algebra of A. Let M be
the centraliser of A in K. Then the function A(gK, kM) = A(k−1g) is right
K-invariant in g and right M -invariant in K. We use the symbols x and b
to denote elements of X and K/M respectively.

In the rank one case there are two roots, denoted by γ and 2γ, and
we define % = 1

2 (mγ + 2m2γ) where mγ and m2γ are the multiplicities
of γ and 2γ. Then for each λ ∈ C, the function x 7→ e(iλ+%)A(x,b) is a
joint eigenfunction of all invariant differential operators on X. Using these
functions we define the Helgason Fourier transform of a function by

(3.1) f̃(λ, b) =
�
X

f(x)e(−iλ+%)A(x,b) dx

where dx is the measure induced from the Haar measure dg on G via�
G

f(gK) dg =
�
X

f(x) dx.

For the Helgason Fourier transform we have inversion and Plancherel theo-
rems. For instance, the inversion formula for compactly supported smooth
f says that

f(x) = C

∞�
−∞

�
K/M

f̃(λ, b)e(iλ+%)A(x,b)|c(λ)|−2 dλ db.

Here dλ is the usual Lebesgue measure on R, db is the normalised measure
on K/M and c(λ) is the Harish-Chandra c-function.

In the spectral Paley–Wiener theorem proved in [4] a key role is played
by certain irreducible unitary representations of K with M -fixed vectors.
Let K̂0 ⊂ K̂ stand for the set of all irreducible unitary representations of K
with M -fixed vectors. Let Vδ, δ ∈ K̂0, be the finite-dimensional vector space
on which δ is realised. Then it is known (see Kostant [15]) that Vδ contains
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a unique normalised M -fixed vector. Let {v1, . . . , vdδ} be an orthonormal
basis for Vδ with v1 as the M -fixed vector. Define the functions

Yδ,j(kM) = (vj , δ(k)v1)

on K/M for δ ∈ K̂0 and 1 ≤ j ≤ dδ. We have the following result (see
Helgason [10]).

Proposition 3.1. The system {Yδ,j : 1 ≤ j ≤ dδ, δ ∈ K̂0} is an or-
thonormal basis for L2(K/M).

If we make use of the identification of K/M with the unit sphere in the
Lie algebra corresponding to AN , we can get an explicit realisation of K̂0.
With this identification L2(K/M) has the spherical harmonic decomposition
and so the functions Yδ,j can be identified with spherical harmonics. The
spherical harmonic decomposition leads to a parametrisation of K̂0 by a pair
(p, q) of integers. This was first proved by Kostant [15]; see also the works
of Johnson [11] and Johnson and Wallach [12]. In the rank one case p and q
are integers, p ≥ 0 and p± q is always even and nonnegative (see Bray [4]).

For each δ ∈ K̂0 and λ ∈ C we can define the functions

(3.2) Φλ,δ(x) =
�
K

e(iλ+%)A(x,kM)Yδ,1(kM) dk.

These are called spherical functions of type δ. Note that Φλ,δ are K-biinvar-
iant and they are eigenfunctions of the Laplace–Beltrami operator L with
eigenvalue −(λ2 + %2). When δ is the unit representation, Φλ,δ is denoted
by Φλ and is simply called the spherical function. This is given by

(3.3) Φλ(x) =
�
K

e(iλ+%)A(x,kM) dk.

The spherical functions are expressible in terms of Jacobi functions (see
Helgason [10]). In fact, let α = 1

2 (mγ +m2γ − 1) and β = 1
2 (m2γ − 1). Then

for each δ ∈ K̂0 there is a pair (p, q) of integers such that

(3.4) Φλ,δ(x) = Qδ(iλ+ %)(α+ 1)−1
p (sh r)p(ch r)qϕ(α+p,β+q)

λ (r),

where ϕ(α+p,β+q)
λ are the Jacobi functions with parameters (α + p, β + q),

(z)m = Γ (z +m)/Γ (z) and Qδ are the polynomials

(3.5) Qδ(iλ+%) =
(

1
2

(α+β+1+iλ)
)

(p+q)/2

(
1
2

(α−β+1+iλ)
)

(p−q)/2

(called the Kostant polynomials). In the above formula r = log a if x = gK
and g = kak′ is the polar decomposition of g. By abuse of notation we will
denote this correspondence by writing x = kar.
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We conclude this section by recalling the following formula which is
crucial for us. For each δ ∈ K̂0 we have

(3.6)
�
K

e(iλ+%)A(x,k′M)Yδ,j(k′M) dk′ = Yδ,j(kM)Φλ,δ(ar)

if x = kar. A proof can be found in Helgason [10].

4. Results from Jacobi analysis. In this section we will collect some
information about Jacobi functions which are needed in the proof of Hardy’s
theorem for symmetric spaces. General reference for this section is Koorn-
winder [14]. See also Anker et al. [1].

When f is a K-invariant function on X the Helgason Fourier transform
f̃(λ, b) is independent of b and is given by

(4.1) f̃(λ) =
�
X

f(x)Φλ(x) dx.

Writing this in the polar form we get

(4.2) f̃(λ) =
∞�
0

f(ar)ϕλ(r)∆(r) dr,

where ∆(r) = ∆α,β(r) = (2 sh r)2α+1(2 ch r)2β+1 and ϕλ(r) = ϕ
(α,β)
λ (r) is

the Jacobi function of type (α, β). Thus results about the spherical Fourier
transforms of K-biinvariant functions on G follow from the general theory
of Jacobi transform.

The Jacobi functions ϕ(α,β)
λ (r) are defined by hypergeometric functions

for all α, β, λ ∈ C, α not a negative integer. These functions are eigenfunc-
tions of the Jacobi operator

Lα,β =
d2

dr2 + ((2α+ 1) coth r + (2β + 1) + th r)
d

dr

with eigenvalues −(λ2 + %2) where % = α + β + 1. The Jacobi transform of
a suitable function f on R+ is given by

(4.3) f̃(λ) =
∞�
0

f(r)ϕ(α,β)
λ (r)∆α,β(r) dr.

For this transform we have inversion, Plancherel and Paley–Wiener theo-
rems. For instance we have

Theorem 4.1. Let α, β be real , α > −1 and |β| ≤ α+1. For f ∈ C∞0 (R)
which is even we have

f(r) =
1

2π

∞�
0

f̃(λ)ϕ(α,β)
λ (r)|cα,β(λ)|−2 dλ
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where cα,β(λ) is the Harish-Chandra c-function

cα,β(λ) =
2%−iλΓ (α+ 1)Γ (iλ)

Γ
(

1
2 (iλ+ %)

)
Γ
(

1
2 (iλ+ α− β + 1)

) .

We need asymptotic properties of the Jacobi functions. If Imλ < 0, then

(4.4) ϕ
(α,β)
λ (r) = cα,β(λ)e(iλ−%)r(1 +O(1))

as r → ∞. A more precise expansion of ϕ(α,β)
λ in terms of Bessel functions

can be found in Stanton and Tomas [23]. We will make use of the estimate

(4.5) |ϕ(α,β)
λ (r)| ≤ C(1 + r)er(|Imλ|−%)

valid for all r ≥ 0 and λ ∈ C. A proof of this estimate can be found in
Flensted-Jensen [7].

The Jacobi transform and the Euclidean Fourier transform are related
via the Abel transform. This transform is defined as the composition of two
Weyl fractional integral operators. For Reµ > 0, τ > 0 define

(4.6) W τ
µ f(r) =

1
Γ (µ)

∞�
r

f(s)(ch τs− ch τr)µ−1 d(ch τs).

The Abel transform Af of a function f is then given by

(4.7) Af(r) = 23α+1/2π−1/2Γ (α+ 1)W 1
α−βW

2
β+1/2f(r).

The Jacobi transform and the Abel transform are related by

(4.8) f̃(λ) =
∞�
−∞

eiλrAf(r) dr.

Therefore, if we can invert A then an inversion formula for the Jacobi trans-
form can be obtained.

In order to invert the Abel transform we can make use of the fact that
{W τ

µ : µ ∈ C} is a one-parameter group of transformations with

W τ
−1f(r) = − d

d(ch τr)
f(r).

Thus A−1 is given by

A−1f(r) = π1/22−3α−1/2Γ (α+ 1)−1W 2
−β−1/2W

1
β−αf(r).

More explicitly, letting Dτ stand for the differential operator −d/d(ch τr),
we have

(4.9) A−1f(r) = c(α, β)Dβ+1/2
2 Dα−β

1 f(r)
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when β + 1/2 and α− β are integers. If α− β is an integer and 2β + 1 is an
odd integer, then

(4.10) A−1f(r) = c′(α, β)
∞�
r

Dβ+1
2 Dα−β

1 f(s)
d(ch s)√

ch 2s− ch 2r
.

We obtain f by applying A−1 to the Euclidean inverse Fourier transform of
f̃(λ).

Let ht(r) = h
(α,β)
t (r), t > 0, r ≥ 0, be the heat kernel associated with

the operator Lα,β . Since ϕ(α,β)
λ are eigenfunctions of the operator Lα,β , the

heat kernel is defined by the condition

(4.11)
∞�
0

ht(r)ϕ
(α,β)
λ (r)∆α,β(r) dr = e−(λ2+%2)t.

By the inversion formula,

(4.12) ht(r) =
1

2π

∞�
0

e−(λ2+%2)tϕ
(α,β)
λ (r)|cα,β(λ)|−2 dλ.

In terms of the Abel transform

(4.13) Aht(r) = (4πt)−1/2e−%
2te−r

2/(4t).

We require the following sharp estimate on the heat kernel proved in Anker
et al. [1].

Theorem 4.2. Let α ≥ β be integers, 2β + 1 ≥ 0. Let ht, t > 0, be the
heat kernel (4.12) associated to the operator Lα,β. Then there are constants
C1 and C2 such that

C1t
−3/2e−%

2tHt(r) ≤ ht(r) ≤ C2t
−3/2e−%

2tHt(r)

where Ht(r) = H
(α,β)
t (r) is given by

Ht(r) = (1 + r)(1 + (1 + r)/t)α−1/2e−%re−r
2/(4t), % = α+ β + 1.

In [1] the authors estimated the heat kernel associated to the Laplace–
Beltrami operator on an NA group. There the parameters are given by
α = (m+ k − 1)/2 and β = (k − 1)/2 where m is an even integer. The
same proof applies to our kernels h(α,β)

t under the conditions on α and β
stated in the theorem. This covers all rank one symmetric spaces except the
real hyperbolic case in which α = (n− 2)/2 and β = −1/2. For this case
heat kernel estimates of the above type are already known (see for example
Davies and Mandouvalos [6]).

5. Hardy’s theorem. We are now ready to state and prove our version
of Hardy’s theorem for the Helgason Fourier transform on rank one symmet-
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ric spaces. Let ht be the heat kernel associated with the Laplace–Beltrami
operator on G/K.

Theorem 5.1. Let f be a measurable function on G/K which satisfies
the following two conditions for some s, t > 0:

(i) |f(kar)| ≤ Chs(r) for all kar ∈ G/K;
(ii) for each δ ∈ K̂0 and 1 ≤ j ≤ dδ the function

Fδ,j(λ) = Qδ(iλ+ %)−1
�

K/M

f̃(λ, kM)Yδ,j(kM) dk

satisfies the estimate |Fδ,j(λ)| ≤ Cδ,je−tλ
2

for all λ ∈ R.

Then

(a) f = 0 whenever s < t;
(b) f(x) = cht(x) when s = t;
(c) there are infinitely many linearly independent functions satisfying (i)

and (ii) when s > t.

Proof. Let F̃δ,j(λ) = �
K/M

f̃(k, b)Yδ,j(b) db. Recalling the definition of

f̃(λ, b) we have

F̃δ,j(λ) =
�

G/K

�
K/M

f(x)e(−iλ+%)A(x,b)Yδ,j(b) db dx.

Writing x = kar and using the formula (3.6) we have

F̃δ,j(λ) =
�

G/K

f(x)Yδ,j(kM)Φλ,δ(ar) dx.

Integrating in polar coordinates we get the formula

(5.1) F̃δ,j(λ) =
∞�
0

fδ,j(r)Φλ,δ(ar)∆α,β(r) dr,

where α, β are the parameters associated to the group G and

(5.2) fδ,j(r) =
�
K

f(kar)Yδ,j(kM) dk.

Recall that for each δ there are integers p and q such that

Φλ,δ(ar) = Qδ(iλ+ %)(α+ 1)−1
p (sh r)p(ch r)qϕ(α+p,β+q)

λ (r).

In view of this we have

(5.3) Fδ,j(λ) =
4p+q

(α+ 1)p

∞�
0

f̃δ,j(r)ϕ
(α+p,β+q)
λ (r)∆α+p,β+q(r) dr
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where we have written

(5.4) f̃δ,j(r) = fδ,j(r)(sh r)−p(ch r)−q.

Now the condition |f(kar)| ≤ Chs(r) leads to the estimate

(5.5) |fδ,j(r)| ≤ C1(δ, j)(1 + r)(1 + (1 + r)/s)α−1/2e−%re−r
2/(4s).

If we use this estimate in the integral defining Fδ,j(λ) then in view of the
estimate (4.5) for the Jacobi functions we get

|Fδ,j(λ)| ≤ C2(δ, j)
∞�
0

(1 + r)2(1 + (1 + r)/s)α−1/2e−r
2/(4s)+r|Imλ| dr.

From this it is clear that Fδ,j(λ) extends to an entire function of order 2
which satisfies

(5.6) |Fδ,j(λ)| ≤ C3(δ, j)(1 + |λ|)α+3/2es|Imλ|2

for all λ ∈ C.
With this estimate and hypothesis (ii) on Fδ,j(λ) we can appeal to the

complex-analytic lemma to conclude that if s ≤ t, then

Fδ,j(λ) = C4(δ, j)e−tλ
2
.

But Fδ,j(λ) is the Jacobi transform of type (α + p, β + q) of the function
f̃δ,j(r) and so we get, by the inversion formula for the Jacobi transform,

(5.7) f̃δ,j(r) = C5(δ, j)
∞�
0

e−tλ
2
ϕ

(α+p,β+q)
λ (r)|cα+p,β+q(λ)|−2 dλ.

If hδt is the heat kernel associated to Lα+p,β+q then we have proved

(5.8) fδ,j(r) = C6(δ, j)e(%+p+q)2t(sh r)p(ch r)qhδt (r).

Since fδ,j satisfies the estimate (5.5) we conclude that

(sh r)p(ch r)qhδt (r) ≤ C7(δ, j)(1 + (1 + r)/s)α−1/2(1 + r)e−%re−r
2/(4s).

In view of the estimates given in Theorem 4.2 this is not possible for s < t
unless C7(δ, j) = 0. As this is true for all j and δ, we conclude that f = 0.

When s = t, again by Theorem 4.2 the above estimate is possible only
when p = q = 0. Therefore, fδ,j = 0 for all δ except the unit representation.
Hence f has to be a constant multiple of ht.

In the case of the group G = SU(1, n), the integer q parametrising δ ∈ K̂0

can be negative. Since β = 0 in this case we have

Φλ,δ(r) = Qδ(iλ+ %)(α+ 1)−1
p (sh r)p(ch r)qϕ(n−1+p,q)

λ (r).

If q is negative we can use the relation

ϕ
(α,β)
λ (r) = (2 ch r)−2βϕ

(α,−β)
λ (r)



276 S. THANGAVELU

to get the formula

Φλ,δ(r) = 2−2qQδ(iλ+ %)(α+ 1)−1
p (sh r)p(ch r)−qϕ(n−1+p,−q)

λ (r)

and therefore, there is no problem in appealing to Theorem 4.2 for estimating
the kernel hδt .

Given δ ∈ K̂0 which is not the unit representation consider

(5.9) f(kar) = Yδ,1(k)hδt (r)(sh r)
p(ch r)q.

Then for any δ′ not equivalent to δ, Fδ′,j(λ) = 0 and Fδ,j(λ) = 0 for any
j > 1. Since Fδ,1(λ) = Ce−tλ

2
condition (ii) of the theorem is satisfied for

these functions. As in the Euclidean case, given s > t choose ε > 0 such
that s > (1 + ε)t and let

(5.10) fp,q(kar) = Yδ1(k)hδs/1+ε(r)(sh r)
p(ch r)q.

Then we see that the estimate

|fp,q(kar)| ≤ Chs(r)
holds and as s > (1+ε)t the second condition of the theorem is also satisfied
for these functions. This proves (c) of the conclusion.

Corollary 5.2. In the above theorem replace condition (i) by the esti-
mate

|f(kar)| ≤ C(1 + r)Nht(r)

for some nonnegative integer N . Then f(kar) is a finite linear combination
of terms of the form Yδ,j(k)(sh r)p(ch r)qhδt (r).

6. Some remarks. We would like to conclude with the following re-
marks concerning Theorems 2.1 and 5.1. First of all, we can prove a “spec-
tral version” of Hardy’s theorem for the Euclidean Fourier transform. Let
us write down the inversion formula on Rn in the form

(6.1) f(x) = Cn

∞�
0

f ∗ ϕλ(x)λn−1 dλ

where ϕλ(x) = 2n/2−1Γ (n/2)Jn/2−1(λ|x|)(λ|x|)−n/2+1. The following ver-
sion of Hardy’s theorem for the spectral projections f ∗ ϕλ is an easy con-
sequence of Theorem 2.1.

Theorem 6.1. Let f satisfy for some t > 0 the estimates |f(x)| ≤
Cpt(x) and �

Rn
f ∗ ϕλ(x)f(x) dx ≤ Ce−tλ2

, λ ∈ R+.

Then f is a constant multiple of the heat kernel pt.
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To see this, let {Smj : 1 ≤ j ≤ dm} be an orthonormal basis for Hm.
Then using the formula (2.2) we have the addition theorem for the Bessel
functions:

ϕλ(x− y) =
∞∑

m=0

dm∑

j=1

CmjSmj(x′)Smj(y′)
Jn/2+m−1(λ|x|)

(λ|x|)n/2−1
· Jn/2+m−1(λ|y|)

(λ|y|)n/2−1

where x′, y′ ∈ Sn−1. From this it follows that

�
Rn
f ∗ ϕλ(x)f(x) dx =

∞∑

m=0

dm∑

j=1

|Cmj |2
∣∣∣∣
∞�
0

fmj(r)
Jn/2+m−1(λr)

(λr)n/2−1
rn−1 dr

∣∣∣∣
2

.

Therefore, we see that hypothesis (ii) of Theorem 2.1 is satisfied. Hence we
obtain the result.

A similar version of Theorem 5.1 is also available. Consider the spectral
projections f ∗ Φλ defined by

(6.2) f ∗ Φλ(x) =
�
G

f(y)Φλ(y−1x) dy

where f and Φλ are considered as right K-invariant functions on the group
G. A simple calculation shows that

(6.3)
�

G/K

f ∗ Φλ(x)f(x) dx =
�

K/M

|f̃(λ, b)|2 db.

This follows from the fact that

f ∗ Φλ(x) =
�

K/M

e(iλ+%)A(x,b)f̃(λ, b) db.

Therefore, the condition
( �
K/M

|f̃(λ, b)|2 db
)1/2

≤ Ce−tλ2

will guarantee that condition (ii) of Theorem 5.1 is true. Hence we have

Theorem 6.2. Let f satisfy for some t > 0 the estimates |f(kar)| ≤
Cht(r) and �

G/K

f ∗ Φλ(x)f(x) dx ≤ Ce−tλ2

for all λ ∈ R. Then f is a constant multiple of the heat kernel ht.

In view of the above remarks, this theorem is a restatement of Theo-
rem 3.2 in [16] for the rank one case. Finally, we indicate how to get a ver-
sion of Hardy’s theorem for the group Fourier transform on the semisimple
Lie group G.
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For each λ ∈ R there is an irreducible unitary representation πλ of G
realised on L2(K/M) which is given explicitly by

πλ(g)f(k) = e(iλ+%)A(g,k)f(κ(g−1k))

where κ(g) is the k-part of theKAN decomposition of g. These are called the
spherical principal series representations. Define the group Fourier transform
of a function f on G by

f̂(λ) =
�
G

f(g)πλ(g) dg.

For right K-invariant functions, the Plancherel measure is supported on the
spherical principal series. Using the orthonormal basis {Yδj : δ ∈ K̂0, 1 ≤
j ≤ dδ} we calculate that

(6.4) ‖f̂(λ)‖2HS =
�

K/M

|f̃(λ, b)|2 db =
�

K/M

|f̂(λ)Y0(b)|2 db

where Y0 is the constant function corresponding to the unit representation.
Therefore, the condition on f ∗Φλ in the above theorem can be replaced

by ‖f̂(λ)‖HS ≤ Ce−tλ
2
, which gives Theorem 3.1 in [16]. If we use Theo-

rem 5.1 we get the following refinement.

Theorem 6.3. Let f be a right K-invariant function on the Lie group
G which satisfies the estimate |f(kark′)| ≤ Cht(r) for some t > 0. Further
assume that

|Qδ(iλ+ %)−1(f̂(λ)Y0, Yδ,j)| ≤ Cδ,je−tλ
2

for every δ ∈ K̂0, 1 ≤ j ≤ dδ and λ ∈ R. Then f is a constant multiple
of ht.

The relation between the Helgason Fourier transform and the group
Fourier transform of a right K-invariant function is given by f̃(λ, b) =
f̂(λ)Y0(b). Hence �

K/M

f̃(λ, b)Yδ,j(b) db = (f̂(λ)Y0, Yδ,j)

and so Theorem 6.3 follows from Theorem 5.1.
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