
C O L L O Q U I U M M A T H E M A T I C U M
VOL. 95 2003 NO. 1

TORSIONS OF CONNECTIONS ON
TIME-DEPENDENT WEIL BUNDLES

BY

MIROSLAV DOUPOVEC (Brno)

Abstract. We introduce the concept of a dynamical connection on a time-dependent
Weil bundle and we characterize the structure of dynamical connections. Then we describe
all torsions of dynamical connections.

1. Introduction. Roughly speaking, non-autonomous Lagrangian dy-
namics can be considered as an extension of autonomous Lagrangian dy-
namics by introducing the additional time coordinate. From this point of
view, many structures and geometric objects from autonomous Lagrangian
dynamics can be naturally extended and introduced also in the non-autono-
mous case. In this way we can define time-dependent (or dynamical) vector
fields, Lagrangians, connections, sprays and other structures. For example,
if Γ : FM → J1FM is a general connection on a natural bundle F , a dy-
namical connection is a section Γd : R × FM → J1(R × FM). We remark
that the concept of a dynamical connection on the tangent bundle TM was
introduced by de León and Rodrigues in [13]. Time-dependent geometri-
cal objects and structures have also been studied e.g. by Anastasiei and
Kawaguchi [1], by Crampin et al. [2], Krupková [7] and Vondra [15], [16].

The aim of this paper is to describe torsions of dynamical connections on
time-dependent Weil bundles. We show that a time-dependent connection
has three types of torsion. The first torsion is an extension of the autonomous
torsion by means of some difference tensor and the second one is completely
determined by the generalized tension of the associated autonomous con-
nection.

All manifolds and maps are assumed to be infinitely differentiable. In
what follows we shall use the terminology and notations from the book [6].

2. The general torsion and tension. We recall that the Frölicher–
Nijenhuis bracket is a map [ , ] which transforms a tangent valued p-form
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K and a tangent valued q-form L on a manifold M into a tangent valued
(p + q)-form [K,L] (cf. [6]). In general, an affinor on a manifold M is a
linear morphism TM → TM over the identity of M . Clearly, this is exactly
a tangent valued one-form on M , i.e. a section of TM ⊗ T ∗M . If Γ : Y →
J1Y is a general connection on a fibered manifold Y → M , then Γ can be
identified with its horizontal projection TY → TY , which is a special affinor
on Y . Taking an arbitrary canonical affinor Q on Y , the (general) torsion of
Γ is defined as the Frölicher–Nijenhuis bracket [Γ,Q] of Γ and Q.

Consider now a natural bundle F on the categoryMfm ofm-dimensional
manifolds and their local diffeomorphisms and let Γ : FM → J1FM be a
connection on FM .

Definition. A natural affinor on the natural bundle F is a system of
affinors QM : TFM → TFM for every m-manifold M satisfying TFf ◦
QM = QN ◦ TFf for every local diffeomorphism f : M → N .

Definition. Let Q be a non-identical natural affinor on F . The
Frölicher–Nijenhuis bracket [Γ,Q] is called a (general) torsion of the con-
nection Γ .

The above definition of a torsion is due to I. Kolář and M. Modugno [5]
and generalizes the classical torsion of a linear connection. In this way all
general torsions of Γ are completely determined by the list of all natural
affinors on FM . That is why there are numerous papers which classify all
natural affinors on some natural bundles (cf. [3], [8], [11], [14]).

Let (xi, yp) be some local fibered coordinates on Y . Then a connection
Γ : Y → J1Y has equations

(1) dyp = Γ pi (x, y)dxi

and an affinor Q ∈ C∞(TY ⊗ T ∗Y ) on Y has the coordinate form

(2) (dxi, dyp) 7→ (Qijdx
j +Qipdy

p, Qpi dx
i +Qpqdy

q).

By Kureš [12], the Frölicher–Nijenhuis bracket [Γ,Q] is of the form

(3)
(
Γ pi

∂Qkj
∂yp

−Qkp
∂Γ pj
∂xi

)
∂

∂xk
⊗ dxi ∧ dxj

+
(
∂Qki
∂yp

+ Γ qi
∂Qkp
∂yq

+Qkq
∂Γ qi
∂yp

)
∂

∂xk
⊗ dxi ∧ dyp

+
(
∂Qpj
∂xi

+Qki
∂Γ pj
∂xk

− Γ pk
∂Qkj
∂xi

+ Γ qi
∂Qpj
∂yq

+Qqi
∂Γ pj
∂yq

−Qpq
∂Γ qj
∂xi

)
∂

∂yp
⊗ dxi ∧ dxj
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+
(
∂Qpq
∂xi

−Qjq
∂Γ pi
∂xj

− Γ pj
∂Qjq
∂xi

+ Γ pj
∂Qji
∂yq

+ Γ ri
∂Qpq
∂yr

−Qrq
∂Γ pi
∂yr

+Qpr
∂Γ ri
∂yq

)
∂

∂yp
⊗ dxi ∧ dyq.

Clearly, [Γ,Q] ∈ C∞(TY ⊗∧2
T ∗Y ). An affinorQ ∈ C∞(TY ⊗T ∗Y ) is called

vertical if Q has values in the vertical bundle V Y , i.e. Q ∈ C∞(V Y ⊗T ∗Y ).
Moreover, taking into account the canonical inclusion T ∗M ⊂ T ∗Y , we can
consider vertical affinors of the form Q ∈ C∞(V Y ⊗ T ∗M), called soldering
forms. The coordinate expression of a soldering form Q : TM → V Y is

(dxi) 7→ (0, Qpi dx
i).

Let J : (dxi, dyp) 7→ (0, dxi) be the canonical almost tangent structure of
the tangent bundle TM and let L = yp ∂

∂yp be the classical Liouville vector
field. Clearly, J is a natural affinor on TM . Grifone [4] identified connections
on TM with vector valued one-forms Γ : TTM → TTM satisfying JΓ = J ,
ΓJ = −J and defined the weak torsion t and the tension h of a connection
Γ by

(4) t = 1
2 [J, Γ ], h = 1

2 [L,Γ ].

Obviously, Γ = 1
2 (IdTM +Γ ) is the horizontal form of a connection Γ :

TM → J1(TM → M) (denoted by the same symbol Γ ). In this way Gri-
fone’s formulas (4) can be rewritten in the form

(5) t = [J, Γ ], h = [L, Γ ].

Thus the definition of a general torsion [Γ,Q] of a connection Γ on a natural
bundle F as the Frölicher–Nijenhuis bracket of Γ with an arbitrary natural
affinor Q can be viewed as a generalization of Grifone’s formula for the weak
torsion t on TM . It turns out that it is also useful to study the tension of a
connection from a more general point of view. Analogously to the concept
of a general torsion, if we replace the Liouville vector field L on TM with
an arbitrary natural vector field X on a natural bundle F , we obtain the
concept of a general tension.

Definition. A natural (or absolute) vector field on a natural bundle F
is a system of vector fields XM : FM → TFM for every m-manifold M
satisfying TFf ◦XM = XN ◦ Ff for all local diffeomorphisms f : M → N .

Definition. Let X be a natural vector field on F . The Frölicher–Nijen-
huis bracket H = [Γ,X] is called a (general) tension of the connection
Γ : FM → J1FM .

One finds easily that the tension of Γ is a soldering form on FM , i.e.
H ∈ C∞(V FM ⊗ T ∗M). For example, the classical tension of a connection
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(1) on TM has the coordinate form

(6) H =
(
Γ pi −

∂Γ pi
∂yk

yk
)

∂

∂yp
⊗ dxi.

Obviously, H = 0 iff the connection Γ is linear.

3. Time-dependent bundles and connections. Let TA be a Weil
functor corresponding to a Weil algebra A (see [6]). Then TA is a bundle
functor on the categoryMf ⊃Mfm of all smooth manifolds and all smooth
maps, which transforms every manifold M into a fibered manifold TAM
→M and every smooth map f : M → N into a fibered manifold morphism
TAf : TAM → TAN . The most important examples are the functors T rk of
k-dimensional velocities of order r,

T rkM = Jr0 (Rk,M)

and the tangent functor T = T 1
1 . By [6], there is a complete description of all

product preserving bundle functors onMf in terms of Weil functors: every
product preserving bundle functor F on Mf is a Weil functor F = TA,
where the corresponding Weil algebra is of the form A = FR. The well
known time-dependent tangent bundle R×TM can be generalized as follows:

Definition. The time-dependent Weil bundle TAR corresponding to the
Weil algebra A is defined by TARM = R × TAM for every manifold M and
by TAR f = IdR×TAf : TARM → TAR N for every smooth map f : M → N .

Clearly, the restriction of a time-dependent Weil bundle TAR to the cat-
egory Mfm is a natural bundle over m-manifolds, which will be called the
natural m-bundle TAR .

Definition. A connection Γ : R × TAM → J1(R × TAM → R ×M)
on a time-dependent Weil bundle is called a time-dependent connection (or
a dynamical connection).

If we denote by (xi) the local coordinates on M , by (yp) the addi-
tional fiber coordinates on TAM and by t the coordinate on R, then a
time-dependent connection Γ has equations

(7) dyp = Γ pi (t, x, y)dxi + Γ p(t, x, y)dt.

We have

Lemma 1. Each connection ∆ on TAM → M determines a dynamical
connection Γ := ∆̃ on R× TAM → R×M .

Proof. A connection ∆ : TAM → J1(TAM → M) is of the form
∆(x, y)=j1

xu, where u : M → TAM is a section. Then the map s : R×M →
R×TAM defined by s = IdR×u is another section and we can define a con-
nection Γ := ∆̃ : R×TAM → J1(R×TAM → R×M) by Γ (t, x, y) = j1

t,xs.
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If a connection ∆ on TAM has the coordinate form

dyp = ∆p
i (x, y)dxi,

then the equations of the induced connection Γ := ∆̃ on R× TAM are

Γ pi = ∆p
i , Γ p = 0.

Quite analogously we can prove

Lemma 2. A dynamical connection Γ on R × TAM determines a one-
parameter family of autonomous connections {∆t; t ∈ R} on TAM .

Clearly, each connection ∆t from this one-parameter family has equa-
tions

(8) dyp = Γ pi (t, x, y)dxi.

Lemma 3. For a given t ∈ R, a dynamical connection Γ on R × TAM
can be expressed in the form

(9) Γ = ∆̃t + Ψt

where ∆̃t is a dynamical connection on R × TAM induced from a fixed
connection ∆t on TAM and Ψt ∈ C∞(V (R × TAM) ⊗ T ∗(R ×M)) is an
affinor on R× TAM .

Proof. Let {∆t; t ∈ R} be the one-parameter family of connections on

TAM from Lemma 2 and denote by ∆̃t the connection on R×TAM induced
by ∆t. The first jet prolongation J1Y → Y of a fibered manifold Y → M
is an affine bundle with the associated vector bundle V Y ⊗ T ∗M , so that
J1(R × TAM) → R × TAM is an affine bundle with the associated vector
bundle V (R × TAM) ⊗ T ∗(R ×M). Then the difference Ψt := Γ − ∆̃t of
connections is a section of the associated vector bundle.

Obviously, the connection ∆̃t on R × TAM has equations (8) and the
affinor Ψt : T (R×M)→ V (R× TAM) is of the form

(dt, dxi) 7→ (0, 0, Γ p(t, x, y)dt).

We can see that Ψt is even a soldering form on R× TAM .

4. Natural affinors on time-dependent Weil bundles. We first
recall the description of all natural affinors on the Weil bundle TA. Every
element a ∈ A induces a natural affinor Q(a) on the natural m-bundle TA as
follows. Denote by µM : R×TM → TM the multiplication of tangent vectors
by reals. Applying the functor TA we obtain TAµM : TAR × TATM →
TATM . From the general theory of Weil functors it follows that TAR = A
and there is a canonical exchange map TATM ≈ TTAM . Hence TAµM
can be interpreted as a map A × TTAM → TTAM and its restriction to
a ∈ A defines a natural affinor Q(a)M : TTAM → TTAM . By Kolář and
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Modugno [5], all natural affinors on the natural m-bundle TA are of the
form Q(a), a ∈ A.

The natural affinor Q(a) on TA induces a natural affinor Q̃(a) on TAR by
means of the product structure on R × TAM . Analogously, the identity of
TR determines another natural affinor ĨdTR on TAR .

Let X be a vector field on TAM and dt be the canonical one-form on R.
Then the tensor product X⊗dt is an affinor on R×TAM . This is a general
model of the third type of natural affinors on R × TAM , which are tensor
products of absolute vector fields on TAM with the canonical one-form
dt on R. Denote by DerA the space of all derivations of the algebra A.
By [6], every element D ∈ DerA determines an absolute vector field D on
the natural m-bundle TA in the following way. We have an identification of
DerA with the Lie algebra of the Lie group AutA of all automorphisms of A.
Hence D ∈ DerA is of the form d

dt

∣∣
0δ(t), where δ(t) is a curve on AutA. By

[6], every δ(t) determines a natural transformation δ(t)M : TAM → TAM
and we can define DM = d

dt

∣∣
0δ(t)M . Proposition 42.8 from [6] states that

all absolute vector fields on TA are of the form D, D ∈ DerA. Then the
tensor products DM ⊗ dt define a natural affinor D ⊗ dt on TAR for every
D ∈ DerA. I. Kolář and the author have proved in [3] the following:

Proposition 1. All natural affinors on the natural m-bundle TAR are
linear combinations of

(i) Q̃(a), a ∈ A,

(ii) D ⊗ dt, D ∈ DerA,

(iii) ĨdTR,

the coefficients being arbitrary smooth functions on R.

Recall that (t, xi, yp) are the local coordinates on R × TAM . Then the
natural affinors from Proposition 1 are of the form:

(i)
a = e: Q̃(e)(dt, dxi, dyp) = (0, dxi, dyp),

a ∈ A nilpotent: Q̃(a)(dt, dxi, dyp) = (0, 0, Qpi dx
i +Qpqdy

q),

where e ∈ A denotes the unit element. We can see that for nilpotent a ∈ A,
all natural affinors Q̃(a), are vertical, i.e. Q̃(a) : T (R × TAM) → V (R ×
TAM → R×M).

Clearly, every absolute vector field D on TAM is vertical, so that also
all affinors D ⊗ dt, D ∈ DerA, are vertical. Moreover, all such affinors are
even soldering forms T (R×M)→ V (R× TAM → R×M) of the form

(ii) (D ⊗ dt)(dt, dxi) = (0, 0, Qpdt).
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Finally

(iii) ĨdTR(dt, dxi, dyp) = (dt, 0, 0).

From (i) and (iii) we can see that the sum Q̃(e)+ ĨdTR is an identical affinor
on R× TAM .

For example, on the time-dependent tangent bundle R×TM , all natural
affinors are generated by Q1(dt, dxi, dyp) = (0, dxi, dyp), Q2(dt, dxi, dyp) =
(0, 0, dxi), Q3(dt, dxi, dyp) = (0, 0, ypdt), Q4(dt, dxi, dyp) = (dt, 0, 0).

5. Torsions of a time-dependent connection. Let Γ : R×TAM →
J1(R × TAM → R ×M) be a time-dependent connection. The Frölicher–
Nijenhuis bracket of Γ with the natural affinors Q̃(a), D⊗dt and ĨdTR from
Proposition 1 gives rise to three types of torsion of Γ . In what follows we
shall discuss these torsions in detail.

I. τa := [Γ, Q̃(a)], a ∈ A.

By a direct computation we deduce from (3) that τe = 0, so that
τλe = 0 for λ ∈ R. Let ∆t be a fixed connection on TAM from the
one-parameter family of connections induced by Γ (see Lemma 2) and let
Q(a)M : TTAM → TTAM be the affinor on TAM defined by Kolář and
Modugno. Then

τa,t := [∆t, Q(a)] for nilpotent a ∈ A
is the torsion of ∆t on TAM , τa,t ∈ C∞(V TAM ⊗∧2

T ∗TAM). Obviously,
if a = λe, λ ∈ R, then τa,t = 0. Denote by τ̃a,t the vector-valued two-form on
R× TAM induced by τa,t by means of the product structure. By Lemma 3,
the connection Γ can be written in the form Γ = ∆̃t + Ψt, where Ψt is an
affinor on R× TAM . Then we can write

[Γ, Q̃(a)] = [∆̃t, Q̃(a)] + [Ψt, Q̃(a)] = ˜[∆t, Q(a)] + [Ψt, Q̃(a)],

so that we have proved

Proposition 2. Let a ∈ A. The torsion τa is of the form

τa =
{ 0 for a = λe, λ ∈ R,

τ̃a,t + τ∗a,t for nilpotent a,

where τ∗a,t = [Ψt, Q̃(a)].

We can see that for fixed t ∈ R, the torsion τa on R × TAM can be
expressed as a sum of the extension τ̃a,t of the “autonomous” torsion τa,t on
TAM and some difference tensor τ ∗a,t. Since both affinors Q̃(a) and Ψt are
vertical, we have τ ∗a,t ∈ C∞(V (R× TAM)⊗∧2

T ∗(R× TAM)).
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Corollary 1. If a time-dependent connection Γ on R × TAM is in-
duced by a connection ∆ on TAM , then the difference tensor τ∗a,t vanishes.

Example 1. Let Γ be a time-dependent connection on R × TM with
equations (7). The canonical almost tangent structure J is the only natural
affinor on TM . Then J induces a natural affinor J̃(dt, dxi, dyp) = (0, 0, dxi)
on R× TM . By (3), the corresponding torsion τ1 := [Γ, J̃ ] on R× TM is of
the form

(10) τ1 =
∂Γ pi (t, x, y)

∂yj
∂

∂yp
⊗ (dxi ∧ dxj) +

∂Γ p(t, x, y)
∂yj

∂

∂yp
⊗ (dt ∧ dxj).

The first term of (10) is the torsion of an autonomous connection ∆t :
TM → J1TM on TM , which was geometrically constructed by Kolář and
Modugno in [5].

Remark 1. Up till now, geometrical constructions of all torsions on
TAM are known only for some particular Weil functors TA. For example,
Kolář and Modugno [5] constructed all torsions on the tangent bundle TM ,
on the bundle of k-dimensional 1-velocities T 1

kM , on the bundle T 2
1M and

on the frame bundle PM . Further, Kureš described torsions on iterated tan-
gent bundles, on the bundles T r1M and on non-holonomic bundles of higher
order velocities (see [10], [9] and [11]). But there is no universal geometrical
description of all general torsions on TAM for every Weil functor TA.

II. τD = [Γ,D ⊗ dt], where D : TAM → TTAM is the absolute vector
field determined by D ∈ DerA.

We first show that one can define the exterior product of an affinor and
a one-form as follows. Let K ∈ C∞(TM ⊗ T ∗M) be an affinor on M and
ω : M → T ∗M a one-form. Then K is locally a sum of (X ⊗ ϕ)’s, where
X : M → TM is a vector field and ϕ : M → T ∗M is a one-form. We can
define K ∧ ω ∈ C∞(TM ⊗∧2

T ∗M) by (X ⊗ ϕ) ∧ ω = X ⊗ (ϕ ∧ ω).
Take a fixed connection ∆t from the one-parameter family of connections

on TAM induced by Γ and denote by

HD,t := [∆t,D ]

the general tension of ∆t. By Section 2, HD,t : TM → V TAM is a solder-

ing form on TAM . Denote further by H̃D,t : T (R ×M) → V (R × TAM)
the extension of HD,t to an affinor on R × TAM by means of the product
structure.

Proposition 3. Let D be an absolute vector field on TAM and HD,t :=
[∆t,D ] the general tension of an induced connection ∆t on TAM . Then

τD := [Γ,D ⊗ dt] = H̃D,t ∧ dt.
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In this way the torsion τD of a dynamical connection Γ on R× TAM is
completely determined by the general tensionHD,t of an induced connection

∆t on TAM . Further, τD ∈ C∞(V (R×TAM)⊗∧2
T ∗(R×M)) because all

affinors D ⊗ dt are soldering forms on R× TAM .

Proof of Proposition 3. Every absolute vector fieldD on TAM is vertical,
so that its coordinate form in local fiber coordinates (xi, yp) on TAM is
D = Ap∂/∂yp. Then the affinor D ⊗ dt is a soldering form on R × TAM of
the form (dt, dxi, dyp) 7→ (0, 0, Apdt). From (3) it follows that

τD = [Γ,D ⊗ dt] =
(
∂Ap

∂yq
Γ qi − Aq

∂Γ pi
∂yq

)
∂

∂yp
⊗ (dxi ∧ dt).

On the other hand, applying the general formula 8.10 from [6] for the coor-
dinate form of the Frölicher–Nijenhuis bracket, we obtain directly

HD,t = [∆t,D ] =
(
∂Ap

∂yq
Γ qi − Aq

∂Γ pi
∂yq

)
∂

∂yp
⊗ dxi.

Example 2. The only absolute vector field on TM is the Liouville vector
field L = yp ∂

∂yp and the corresponding affinor L ⊗ dt on R × TM is of
the form (dt, dxi, dyp) 7→ (0, 0, ypdt). By a direct computation we deduce
from (3) that

τL := [Γ,L⊗ dt] =
(
Γ pi −

∂Γ pi
∂yl

yl
)

∂

∂yp
⊗ (dxi ∧ dt).

Clearly, from the formula (6) for the classical tension H on TM we can see

that τL = H̃ ∧ dt, where H̃ is the extension of H to R × TM by means of
the product structure.

We remark that dynamical connections on R×TM were also studied by
Vondra [15]. He called the difference τL − τ1 a weak torsion.

Corollary 2. Let Γ = ∆̃ be a connection on R × TM induced by a
connection ∆ on TM . Then τL = 0 if and only if ∆ is linear.

III. τt := [Γ, ĨdTR].

Using (3) we compute directly

τt =
(
∂Γ pj
∂t

)
∂

∂yp
⊗ (dt ∧ dxj).

The torsion τt has the following geometric interpretation:

Proposition 4. (a) If a connection Γ on R × TAM is induced by a
connection ∆ on TAM , then τt = 0.

(b) If τt = 0, then Γ induces a unique connection ∆ on TAM . In this
case the expression (9) is of the form Γ = ∆̃+ Ψt.
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Proof. The equation τt = 0 is equivalent to the condition that the Γ pi
are independent of t.
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