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TORSIONS OF CONNECTIONS ON
TIME-DEPENDENT WEIL BUNDLES

BY

MIROSLAV DOUPOVEC (Brno)

Abstract. We introduce the concept of a dynamical connection on a time-dependent
Weil bundle and we characterize the structure of dynamical connections. Then we describe
all torsions of dynamical connections.

1. Introduction. Roughly speaking, non-autonomous Lagrangian dy-
namics can be considered as an extension of autonomous Lagrangian dy-
namics by introducing the additional time coordinate. From this point of
view, many structures and geometric objects from autonomous Lagrangian
dynamics can be naturally extended and introduced also in the non-autono-
mous case. In this way we can define time-dependent (or dynamical) vector
fields, Lagrangians, connections, sprays and other structures. For example,
if ' FM — J'FM is a general connection on a natural bundle F, a dy-
namical connection is a section Iy : R x FM — J*(R x FM). We remark
that the concept of a dynamical connection on the tangent bundle T'M was
introduced by de Leén and Rodrigues in [13]. Time-dependent geometri-
cal objects and structures have also been studied e.g. by Anastasiei and
Kawaguchi [1], by Crampin et al. [2], Krupkova [7] and Vondra [15], [16].

The aim of this paper is to describe torsions of dynamical connections on
time-dependent Weil bundles. We show that a time-dependent connection
has three types of torsion. The first torsion is an extension of the autonomous
torsion by means of some difference tensor and the second one is completely
determined by the generalized tension of the associated autonomous con-
nection.

All manifolds and maps are assumed to be infinitely differentiable. In
what follows we shall use the terminology and notations from the book [6].

2. The general torsion and tension. We recall that the Frolicher—
Nijenhuis bracket is a map [, ] which transforms a tangent valued p-form
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K and a tangent valued ¢-form L on a manifold M into a tangent valued
(p + q)-form [K, L] (cf. [6]). In general, an affinor on a manifold M is a
linear morphism T'M — T'M over the identity of M. Clearly, this is exactly
a tangent valued one-form on M, i.e. a section of TM Q T*M.If I' : Y —
J'Y is a general connection on a fibered manifold Y — M, then I" can be
identified with its horizontal projection TY — T'Y, which is a special affinor
on Y. Taking an arbitrary canonical affinor @ on Y, the (general) torsion of
I' is defined as the Frolicher—Nijenhuis bracket [I, Q] of I" and Q.

Consider now a natural bundle F' on the category M f,,, of m-dimensional
manifolds and their local diffeomorphisms and let I : FM — J'FM be a
connection on F'M.

DEFINITION. A natural affinor on the natural bundle F' is a system of
affinors Qp : TFM — TFM for every m-manifold M satisfying TF f o
Ry = Qn o TFf for every local diffeomorphism f: M — N.

DEFINITION. Let Q be a non-identical natural affinor on F. The
Frolicher—Nijenhuis bracket [I', Q)] is called a (general) torsion of the con-
nection I'.

The above definition of a torsion is due to I. Kolaf and M. Modugno [5]
and generalizes the classical torsion of a linear connection. In this way all
general torsions of I' are completely determined by the list of all natural
affinors on F'M. That is why there are numerous papers which classify all
natural affinors on some natural bundles (cf. [3], [8], [11], [14]).

Let (2%, yP) be some local fibered coordinates on Y. Then a connection
I': Y — J'Y has equations

(1) dy? = I (z,y)da’
and an affinor @ € C°(TY @ T*Y) on Y has the coordinate form
(2) (da', dy?) +— (Qjda’ + Qudy”, Q7 dx’ + Qhdy?).

By Kures [12], the Frolicher—Nijenhuis bracket [I', Q] is of the form
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Clearly, [I, Q] € C>(TY @A\’ T*Y). An affinor Q € C*°(TY @T*Y) is called
vertical if ) has values in the vertical bundle VY, ie. Q € C®(VY @ T*Y).
Moreover, taking into account the canonical inclusion T*M C T*Y, we can
consider vertical affinors of the form Q € C*(VY @ T*M), called soldering
forms. The coordinate expression of a soldering form @ : TM — VY is

(dz") — (0, QYdz").
Let J : (dz’,dyP) — (0, dx") be the canonical almost tangent structure of
the tangent bundle TM and let L = ypa%p be the classical Liouville vector

field. Clearly, J is a natural affinor on T'M. Grifone [4] identified connections
on T'M with vector valued one-forms I : TTM — TT M satisfying JI' = J,

lj J = —J and defined the weak torsion t and the tension h of a connection
I' by
(4) t:%[J,I:}, h:%[L,I:}.

Obviously, I' = $(Idra +1") is the horizontal form of a connection I :
TM — JYTM — M) (denoted by the same symbol I'). In this way Gri-
fone’s formulas (4) can be rewritten in the form

(5) t=[JI), h=I[LT]

Thus the definition of a general torsion [I', @] of a connection I" on a natural
bundle F' as the Frolicher—Nijenhuis bracket of I" with an arbitrary natural
affinor @) can be viewed as a generalization of Grifone’s formula for the weak
torsion ¢ on T'M. It turns out that it is also useful to study the tension of a
connection from a more general point of view. Analogously to the concept
of a general torsion, if we replace the Liouville vector field L on TM with
an arbitrary natural vector field X on a natural bundle F, we obtain the
concept of a general tension.

DEFINITION. A natural (or absolute) vector field on a natural bundle F’
is a system of vector fields Xy : FM — TFM for every m-manifold M
satisfying TF f o Xy = Xy o F'f for all local diffeomorphisms f : M — N.

DEFINITION. Let X be a natural vector field on F'. The Frolicher—Nijen-
huis bracket H = [I, X] is called a (general) tension of the connection
I':FM — J'FM.

One finds easily that the tension of I' is a soldering form on F'M, i.e.
H e C*(VFM @ T*M). For example, the classical tension of a connection
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(1) on T'M has the coordinate form

orr 0 :
6 = (1?7 - —yF ) — @da’
©) " <Z ayky>5yp®m

Obviously, H = 0 iff the connection I is linear.

3. Time-dependent bundles and connections. Let T4 be a Weil
functor corresponding to a Weil algebra A (see [6]). Then T is a bundle
functor on the category M f D M f,, of all smooth manifolds and all smooth
maps, which transforms every manifold M into a fibered manifold T4 M
— M and every smooth map f: M — N into a fibered manifold morphism
TAf: TAM — TAN. The most important examples are the functors 17 of
k-dimensional velocities of order r,

TiM = J5(R*, M)
and the tangent functor T' = T!. By [6], there is a complete description of all
product preserving bundle functors on M f in terms of Weil functors: every
product preserving bundle functor F on Mf is a Weil functor F = T4,

where the corresponding Weil algebra is of the form A = FR. The well
known time-dependent tangent bundle RxT'M can be generalized as follows:

DEFINITION. The time-dependent Weil bundle TI{Q corresponding to the
Weil algebra A is defined by Tg'! M = R x T4 M for every manifold M and
by T f =Idgr x TAf : T M — TZ N for every smooth map f: M — N.

Clearly, the restriction of a time-dependent Weil bundle 7; ]f{‘ to the cat-
egory M f,, is a natural bundle over m-manifolds, which will be called the
natural m-bundle Tg'.

DEFINITION. A connection I' : R x TAM — JY (R x TAM — R x M)
on a time-dependent Weil bundle is called a time-dependent connection (or
a dynamical connection).

If we denote by (') the local coordinates on M, by (y?) the addi-
tional fiber coordinates on TAM and by t the coordinate on R, then a
time-dependent connection I has equations
(7) dy? = I'P(t,z,y)dz" + ['P(t,x,y)dt.

We have

LEMMA 1. Each connection A on TAM — M determines a dynamical
connection I' .= A on Rx TAM — R x M.

Proof. A connection A : TAM — JYTAM — M) is of the form
A(x,y)=jlu, where u : M — TAM is a section. Then the map s : Rx M —
RxTAM defined by s = Idg xu is another section and we can define a con-
nection I' := A : RxTAM — JYRxTAM — RxM) by I'(t,z,y) = jtlvxs. m
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If a connection A on T4 M has the coordinate form
dy? = Af(x,y)da’,
then the equations of the induced connection I := Aon R x TAM are
Irr=A" 1°?=0.
Quite analogously we can prove

LEMMA 2. A dynamical connection I' on R x TAM determines a one-
parameter family of autonomous connections {A; t € R} on TAM.

Clearly, each connection A; from this one-parameter family has equa-
tions

(8) dy? = I'P(t,z,y)dz".

LEMMA 3. For a given t € R, a dynamical connection I' on R x TAM
can be expressed in the form

(9) F:Avt—i-!pt

where ANt is a dynamical connection on R x TAM induced from a fized
connection Ay on TAM and ¥, € C®(V(R x TAM) @ T*(R x M)) is an
affinor on R x TAM.

Proof. Let {A; t € R} be the one-parameter family of connections on

TAM from Lemma 2 and denote by Ay the connection on R x T4 M induced
by A;. The first jet prolongation J'Y — Y of a fibered manifold Y — M
is an affine bundle with the associated vector bundle VY ® T*M, so that
JYR x TAM) — R x TAM is an affine bundle with the associated vector
bundle V(R x TAM) ® T*(R x M). Then the difference ¥, := I' — A, of
connections is a section of the associated vector bundle. m

Obviously, the connection A, on R x T4M has equations (8) and the
affinor ¥ : T(R x M) — V(R x T4 M) is of the form

(dt, dz’) — (0,0, P (t,z, y)dt).

We can see that ¥, is even a soldering form on R x T4 M.

4. Natural affinors on time-dependent Weil bundles. We first
recall the description of all natural affinors on the Weil bundle T4. Every
element a € A induces a natural affinor Q(a) on the natural m-bundle T4 as
follows. Denote by ppr : RxT M — T M the multiplication of tangent vectors
by reals. Applying the functor T4 we obtain T4y : TAR x TATM —
TATM. From the general theory of Weil functors it follows that T4R = A
and there is a canonical exchange map TATM ~ TTAM. Hence Ty
can be interpreted as a map A x TTAM — TTAM and its restriction to
a € A defines a natural affinor Q(a)y : TTAM — TTAM. By Kolai and
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Modugno [5], all natural affinors on the natural m-bundle T4 are of the
form Q(a), a € A.

The natural affinor Q(a) on T induces a natural affinor Q(a) on T4 by
means of the product structure on R XATAM . Analogously, the identity of
TR determines another natural affinor Idrgr on TH‘{‘.

Let X be a vector field on T4 M and dt be the canonical one-form on R.
Then the tensor product X @ dt is an affinor on R x T4 M. This is a general
model of the third type of natural affinors on R x T4 M, which are tensor
products of absolute vector fields on TAM with the canonical one-form
dt on R. Denote by Der A the space of all derivations of the algebra A.
By [6], every element D € Der A determines an absolute vector field D on
the natural m-bundle 74 in the following way. We have an identification of
Der A with the Lie algebra of the Lie group Aut A of all automorphisms of A.
Hence D € Der A is of the form 4 ’05(t), where 0(¢) is a curve on Aut A. By
[6], every &(t) determines a natural transformation 6(¢)a : TAM — TAM
and we can define Dy, = %‘Og(t)M. Proposition 42.8 from [6] states that
all absolute vector fields on T4 are of the form D, D € Der A. Then the
tensor products Dy ® dt define a natural affinor D ® dt on Tg' for every
D € Der A. 1. Kolar and the author have proved in [3] the following:

PROPOSITION 1. All natural affinors on the natural m-bundle Tg' are
linear combinations of

() Qa), a € A,
(ii) D ® dt, D € Der A,
(iii) Id7g,
the coefficients being arbitrary smooth functions on R.

Recall that (¢,z°,yP) are the local coordinates on R x T4M. Then the

natural affinors from Proposition 1 are of the form:

" a=e Q(e)(dt,dz’,dy?) = (0,dx’,dyP),
i ~ , .
a € A nilpotent:  Q(a)(dt,dz’, dy?) = (0,0, Q7dz" + Qb dy?),

where e € A denotes the unit element. We can see that for nilpotent a € A,
all natural affinors Q(a), are vertical, i.e. Q(a) : T(R x TAM) — V(R x
TAM — R x M).

Clearly, every absolute vector field D on T4 M is vertical, so that also
all affinors D ® dt, D € Der A, are vertical. Moreover, all such affinors are
even soldering forms T(R x M) — V(R x TAM — R x M) of the form

(ii) (D ® dt)(dt,dz") = (0,0, QPdt).
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Finally
(i) Idrg(dt, dz’, dyP) = (dt,0,0).
From (i) and (iii) we can see that the sum Q(e)+Idrg is an identical affinor
on R x TAM.

For example, on the time-dependent tangent bundle R x T'M, all natural

affinors are generated by Q(dt,dz?,dy?) = (0, dz", dyP), Qz(dt,dz?, dyP) =
(0,0,dx?), Qz(dt,dz?, dyP) = (0,0, yPdt), Q4(dt,dx?, dyP) = (dt,0,0).

5. Torsions of a time-dependent connection. Let I : R x T4M —
JY R x TAM — R x M) be a time-dependent connection. The Frolicher—
Nijenhuis bracket of I" with the natural affinors Q(a), D ®dt and Idrg from
Proposition 1 gives rise to three types of torsion of I'. In what follows we
shall discuss these torsions in detail.

I 74 := [I‘,@(a)], a€ A.

By a direct computation we deduce from (3) that 7. = 0, so that
e = 0 for A € R. Let A; be a fixed connection on TAM from the
one-parameter family of connections induced by I' (see Lemma 2) and let
Q(a)yr : TTAM — TTAM be the affinor on T4M defined by Koldi and
Modugno. Then

Tat = [As,Q(a)]  for nilpotent a € A

is the torsion of A; on TAM, Tat € C®(VTAM ® /\2 T*TAM). Obviously,
if a = Xe, A € R, then 7, ; = 0. Denote by 7, ; the vector-valued two-form on
R x TAM induced by Ta,t Dy means of the product structure. By Lemma 3,

the connection I' can be written in the form I' = ANt + ¥;, where ¥; is an
affinor on R x T4M. Then we can write

1, Q(a)] = [Ar, Qa)] + [#. Q(a)] = [Ar, Q(a)] + [, Q(a)],
so that we have proved

PROPOSITION 2. Let a € A. The torsion 7, is of the form
{0 fora=MXe, A € R,
Ta =

Tat + Tay  for nilpotent a,

where T, = [, Q(a)].

We can see that for fixed ¢ € R, the torsion 7, on R x TAM can be
expressed as a sum of the extension 7, ; of the “autonomous” torsion 7, ; on

TAM and some difference tensor ot Since both affinors @(a) and ¥, are
vertical, we have 77, € C*°(V(R x T4 M) @ A’ T*(R x TAM)).
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COROLLARY 1. If a time-dependent connection I' on R x TAM is in-
duced by a connection A on TAM, then the difference tensor Ta ¢ vanishes.

ExXAMPLE 1. Let I' be a time-dependent connection on R x T'M with
equations (7). The canonical almost tangent structure J is the only natural

affinor on TM. Then J induces a natural affinor J(dt, dx?, dy?) = (0,0, dz*)
on R x T'M. By (3), the corresponding torsion 7y := [I', J] on R x T M is of
the form
ory(t,x,y) 0 ; o OIP(t,x,y) O :
=t 2 @(d' Ndr!) + —————F — @ (dt Adx?).
By 8yp@(ac x’) + 47 8y1’®( z’)
The first term of (10) is the torsion of an autonomous connection A; :
TM — J'TM on TM, which was geometrically constructed by Koldf and
Modugno in [5].

(10) T1

REMARK 1. Up till now, geometrical constructions of all torsions on
TAM are known only for some particular Weil functors T#. For example,
Kolar and Modugno [5] constructed all torsions on the tangent bundle 7'M,
on the bundle of k-dimensional 1-velocities T}t M, on the bundle T¢ M and
on the frame bundle PM . Further, Kures described torsions on iterated tan-
gent bundles, on the bundles 77 M and on non-holonomic bundles of higher
order velocities (see [10], [9] and [11]). But there is no universal geometrical
description of all general torsions on T4 M for every Weil functor T4.

1. 75 = [I, D ® dt], where D : TAM — TT#M is the absolute vector
field determined by D € Der A.

We first show that one can define the exterior product of an affinor and
a one-form as follows. Let K € C*(T'M ® T*M) be an affinor on M and
w: M — T*M a one-form. Then K is locally a sum of (X ® ¢)’s, where
X : M — TM is a vector field and ¢ : M — T*M is a one-form. We can
define K Aw € C(TM @ N> T*M) by (X ® ¢) Aw = X @ (¢ Aw).

Take a fixed connection A; from the one-parameter family of connections
on T4M induced by I" and denote by

Hﬁ,t = [At,D]

the general tension of A¢. By Section 2, Hp , : TM — VTAM is a solder-
ing form on T4M. Denote further by ﬁﬁ,t :T(R x M) — V(R x TAM)
the extension of Hp, to an affinor on R x TAM by means of the product
structure.

PROPOSITION 3. Let D be an absolute vector field on TAM and Hp =
[As, D] the general tension of an induced connection Ay on TAM. Then

75 =, D®dt] = Hp, Adt.
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In this way the torsion 75 of a dynamical connection I on R x TAM is
completely determined by the general tension Hp , of an induced connection
A; on T‘iM. Further, 75 € C®°(V(R x TAM) ® \* T*(R x M)) because all
affinors D ® dt are soldering forms on R x T4 M.

Proof of Proposition 3. Every absolute vector field D on T4 M is vertical,
so that its coordinate form in local fiber coordinates (z*,4”) on TAM is
D = AP9/0yP. Then the affinor D ® dt is a soldering form on R x T4M of
the form (dt, dz?, dy?) — (0,0, APdt). From (3) it follows that

_ oAY AT\ 9 ;

H = [F,D@dt] = (8—quZ —A 8—yq a—yp@(da: /\dt).

On the other hand, applying the general formula 8.10 from [6] for the coor-
dinate form of the Frolicher—Nijenhuis bracket, we obtain directly

_joAr . OIP\ & .
HD,t:[At7D]:(a—qui_ qa—yq)a—yp(@d:(}.l

ExaMPLE 2. The only absolute vector field on T'M is the Liouville vector

field L = ypa%p and the corresponding affinor L ® dt on R x TM is of

the form (dt,dx?,dy?) — (0,0,yPdt). By a direct computation we deduce
from (3) that

orr 0 ;
= [[LL®@dt] = (Ff—a—zﬁyl>8—w®(dﬂfl/\dt)-

Clearly, from the formula (6) for the classical tension H on T'M we can see
that 7, = H A dt, where H is the extension of H to R x TM by means of
the product structure.

We remark that dynamical connections on R x T'M were also studied by
Vondra [15]. He called the difference 71, — 71 a weak torsion.

COROLLARY 2. Let I' = A be a connection on R x TM induced by a
connection A on TM. Then 1, = 0 if and only if A is linear.

IIL. 7, := [, Td7g).

Using (3) we compute directly

OI7 0 dt A dz?
Tt = W 8_yp & ( X )
The torsion 7; has the following geometric interpretation:

PROPOSITION 4. (a) If a connection I' on R x TAM s induced by a
connection A on TAM, then 7, = 0.
(b) If 7+ = 0, then I" induces a unique connection A on TAM. In this

case the expression (9) is of the form I' = A+,
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Proof. The equation 7 = 0 is equivalent to the condition that the IV

are independent of t. m

[10]
[11]
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