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RANKS FOR BAIRE MULTIFUNCTIONS

BY

PANDELIS DODOS (Athens)

Abstract. Various ordinal ranks for Baire-1 real-valued functions, which have been
used in the literature, are adapted to provide ranks for Baire-1 multifunctions. A new
rank is also introduced which, roughly speaking, gives an estimate of how far a Baire-1
multifunction is from being upper semicontinuous.

1. Introduction. The purpose of this paper is to show that certain
ordinal ranks which have been defined in the study of Baire-1, real-valued
functions (see for instance [8] and the references therein) can be successfully
adapted to give ranks for Baire-1 multifunctions F : X → Pk(Y ) (where X
is a Polish space and Y a separable metrizable space).

In Section 3 we present the separation rank by modifying Bourgain’s def-
inition of the α rank. In Section 4 an equivalent characterization of locally
compact, Baire-1 multifunctions is given in terms of distance functions. This
description permits us to associate (indirectly), to each such multifunction,
any of the existing ranks for real-valued Baire-1 functions, via a supremum
formula. Note that without additional assumptions, the so called conver-
gence rank γ cannot be directly associated to a Baire-1 multifunction, since
the description of a real-valued Baire-1 function as the limit of a sequence of
continuous functions is not in general valid for multifunctions (see however
[5]).

In Section 5 we define the rank δ (when Y is a compact metrizable
space) which is not symmetric with respect to both kinds of semicontinuity.
The rank δ has the property that the bigger δ, the less F looks like an
upper semicontinuous multifunction (in particular δ(F ) = 1 if and only if
F is upper semicontinuous). In the last section we discuss some possible
applications of the tools developed in this paper in nonsmooth analysis.

Finally, we should point out that the oscillation rank, although not pre-
sented in this paper, may well be defined for Baire-1 multifunctions since
the oscillation function is defined for any function which takes values in a
metrizable space.
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2. Preliminaries. Let X and Y be sets. For any multifunction (set-
valued map) F :X→2Y \{∅} and any set A⊆Y one defines the weak inverse
image and strong inverse image of A under F by F−(A) = {x ∈X : F (x)
∩A 6= ∅} and F+(A) = {x∈X :F (x)⊆A} respectively. It is easy to see that
X \F−(A) =F+(Y \A) for any A⊆Y . In addition, if {Ai}i∈I ⊆Y , we have

(i) F−
(⋃

i∈I
Ai

)
=
⋃

i∈I
F−(Ai), F−

(⋂

i∈I
Ai

)
⊆
⋂

i∈I
F−(Ai);

(ii) F+
(⋃

i∈I
Ai

)
⊇
⋃

i∈I
F+(Ai), F+

(⋂

i∈I
Ai

)
=
⋂

i∈I
F+(Ai).

The graph of a multifunction, denoted by GrF , is defined to be the set
GrF = {(x, y) ⊆ X × Y : y ∈ F (x)}. For a not necessarily everywhere
defined multifunction F : X → 2Y , the domain of F , denoted by dom(F ),
is defined to be the set dom(F ) = {x ∈ X : F (x) 6= ∅}.

Let X and Y be Hausdorff topological spaces. A multifunction F : X →
2Y \ {∅} is said to be lower semicontinuous if F−(U) is an open subset of
X for every U ⊆ Y open; it is upper semicontinuous if F+(U) is an open
subset of X for every U ⊆ Y open; and it is continuous if it is both upper
and lower semicontinuous. Of course we can have local versions of the above
notions. So, for instance, F is said to be lower semicontinuous at x ∈ X
if for every U ⊆ Y with F (x) ∩ U 6= ∅, there exists V ∈ N(x) such that
F (z)∩U 6= ∅ for every z ∈ V (i.e. V ⊆ F−(U)). As usual, N(x) denotes the
filter of neighborhoods of x. For more information about continuity concepts
for multifunctions one can consult [6].

We widely use the definitions and notations from descriptive set theory.
So for a metrizable space X, we denote by Σ0

1(X) the open subsets of X,
by Π0

1(X) the closed subsets, by Σ0
2(X) the Fσ, by Π0

2(X) the Gδ, etc.
For more information we refer to [7]. Recall that if X and Y are metriz-
able spaces, then a function f : X → Y is said to be a Baire-1 function
if f−1(U) ∈ Σ0

2(X) for every U ⊆ Y open. Now let X be a Polish space.
To any real-valued Baire-1 function f : X → R, one associates three differ-
ent ordinal ranks: (i) the separation rank α (introduced by Bourgain, see
[3]), (ii) the oscillation rank β, and (iii) the convergence rank γ. For their
definitions and properties, we refer to [8].

For any topological space X, we denote by Pk(X) the collection of all
non-empty, compact subsets of X. If X is separable metrizable, then Pk(X)
equipped with the Vietoris hyperspace topology, denoted by (Pk(X), τV ),
becomes a separable metrizable space (see [7, p. 25]). A compatible metric
is the Hausdorff metric dH : Pk(X)× Pk(X)→ R, defined by

dH(A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}
where as usual, for any set A ⊆ X, Aε denotes the ε-ball around A.
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Now let X and Y be metrizable spaces.

Definition 1. A multifunction F : X → 2Y \{∅} is said to be a Baire-1
multifunction if F+(U) ∈ Σ0

2(X) and F−(U) ∈ Σ0
2(X) for every U ⊆ Y

open.

The class of Baire-1 multifunctions was introduced by Kuratowski. We
have the following basic fact concerning Baire-1 multifunctions. For the proof
we refer to [9].

Proposition 2. Let X and Y be metrizable spaces, with Y separable,
and F : X → Pk(Y ) a multifunction. Then F is a Baire-1 multifunction if
and only if F is a Baire-1 function viewed as a single-valued function from
X into (Pk(Y ), τV ).

The following lemma will be useful in what follows. It is a straight-
forward consequence of the definition.

Lemma 3. A multifunction F : X → 2Y \{∅} is a Baire-1 multifunction
if and only if F−(C) ∈ Π0

2(X) and F+(C) ∈ Π0
2(X) for every C ⊆ Y

closed.

It follows directly from the Kuratowski–Ryll-Nardzewski selection the-
orem (see [10]) that each Baire-1, compact-valued multifunction admits a
Baire-1 selection. If Y is Polish, then this is also true for closed-valued mul-
tifunctions.

3. The separation rank. Throughout this section X will be a Polish
space and Y a separable metrizable space. Fix a countable dense subset D
of Y and put

B = {B(y, r) : y ∈ D, r ∈ Q+}.
Clearly B is a base for Y . Now let

B̆ = {U c : U ∈ B} and B = {U : U ∈ B}.
Recall that for any given class F of subsets of Y , Fs denotes the collection
of all finite unions of members of F , and Fd the collection of all finite
intersections of members of F . One easily checks that B̆d = {U c : U ∈ Bs}
and Bs = {U : U ∈ Bs}. The following lemmas are obvious.

Lemma 4. B̆d and Bs are countable families of closed sets.

Lemma 5. If U ∈ Bs, then there exist {Un}n≥1 ⊆ Bs and {Cn}n≥1 ⊆
Bs, with Cn+1 ⊇ Un ⊇ Cn for every n ≥ 1, such that U =

⋃
n Un =

⋃
nCn.

Let A and B be disjoint subsets of X and P ⊆ X closed. One associates
with them a derivation on closed sets by

P ′A,B = P ∩ A ∩ P ∩B
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and then by transfinite induction P (0)
A,B = P , P (ξ+1)

A,B = (P (ξ)
A,B)′A,B and P (λ)

A,B =
⋂
ξ<λ P

(ξ)
A,B for limit λ. Then we set

α(P,A,B) =

{
least ξ with P

(ξ)
A,B = ∅ if such a ξ exists,

ω1 otherwise,

and let α(A,B) = α(X,A,B). It is well known that α(A,B) < ω1 if and
only if one can separate A from B by a set which is a transfinite difference
of closed sets.

Now let F : X → Pk(Y ) be a multifunction. Let K ∈ B̆d and C ∈ Bs
with K ∩ C = ∅. Put

α(F,K,C) = sup{α(F+(K), F−(C)), α(F+(C), F−(K))}.
Note that α(F,K,C) is symmetric with respect to both inverse images.
Finally define the separation rank by

α(F ) = sup{α(F,K,C) : K ∈ B̆d, C ∈ Bs with K ∩ C = ∅}.
Lemma 6. Let F : X → Pk(Y ) be a multifunction. If {Cn}n≥1 is a se-

quence of closed subsets of Y with Cn ↓ C, then F−(
⋂
nCn) =

⋂
n F
−(Cn).

Also, if {Un}n≥1 is a sequence of open subsets of Y with Un ↑ U , then
F+(

⋃
n Un) =

⋃
n F

+(Un).

Proof. Clearly F−(
⋂
nCn) ⊆ ⋂n F

−(Cn). So let x ∈ ⋂n F
−(Cn). Then

Ln := F (x)∩Cn 6= ∅ for every n ≥ 1. The sequence {Ln}n≥1 is a decreasing
sequence of closed subsets of F (x), so it has the finite intersection property.
Since F (x) is compact, we conclude that it has non-empty intersection.
But observe that F (x) ∩ ⋂nCn =

⋂
n Ln 6= ∅, which implies that x ∈

F−(
⋂
nCn) and we are done. By taking complements we get the other half

of the statement.

Theorem 7. Let F : X → Pk(Y ) be a multifunction. Then F is a
Baire-1 multifunction if and only if α(F ) < ω1.

Proof. [⇒] If F is a Baire-1 multifunction, then from Lemma 3, for any
two sets K ∈ B̆d and C ∈ Bs with K ∩ C = ∅, F+(K) and F−(C) are
disjoint Gδ sets, since K and C are closed. So they can be separated by a
∆0

2(X) set. The same holds for F+(C) and F−(K). So we conclude that
α(F,K,L) < ω1. Finally α(F ) is also less than ω1, since both B̆d and Bs are
countable.

[⇐] Assume that α(F ) < ω1. Then, from the definition of α, given
K ∈ B̆d and C ∈ Bs with K ∩ C = ∅, we can find A,B ∈ ∆0

2(X) such that
F−(C) ⊆ A, F+(K) ⊆ Ac and F+(C) ⊆ B, F−(K) ⊆ Bc. We need to prove
that F−(U) ∈ Σ0

2(X) and F+(U) ∈ Σ0
2(X) for any U ⊆ Y open. This will

be done in a number of claims.
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Claim 1. If U ∈ Bs, then F−(U) ∈ Σ0
2(X).

Proof. Pick {Un}n≥1 ⊆ Bs and {Cn}n≥1 ⊆ Bs, with Cn+1 ⊇ Un ⊇ Cn,
such that U =

⋃
n Un =

⋃
nCn (Lemma 5). For every n ≥ 1 put Kn = U c

n.
Note that Kn ∈ B̆d, Cn ∈ Bs and Kn ∩Cn = ∅. So there exists An ∈∆0

2(X)
such that F−(Cn) ⊆ An and F+(Kn) ⊆ Ac

n. Finally let C = U c and observe
that

F−(U) = F−
( ⋃

n≥1

Cn

)
=
⋃

n≥1

F−(Cn) ⊆
⋃

n≥1

An,

F+(C) = F+
( ⋂

n≥1

Kn

)
=
⋂

n≥1

F+(Kn) ⊆
⋂

n≥1

Ac
n.

Since F−(U) = F+(C)c, we conclude that F−(U) =
⋃
nAn ∈ Σ0

2(X), as
desired.

Claim 2. If U ⊆ Y is open, then F−(U) ∈ Σ0
2(X).

Proof. Since the weak inverse image behaves well with respect to unions,
this follows easily from Claim 1 and the fact that Bs is a base for Y .

Claim 3. If U ∈ Bs, then F+(U) ∈ Σ0
2(X).

Proof. Let Un, Cn and Kn be as in the proof of Claim 1. Again, since
Kn ∈ B̆d and Cn ∈ Bs with Kn ∩ Cn = ∅, pick Bn ∈ ∆0

2(X) such that
F+(Cn) ⊆ Bn and F−(Kn) ⊆ Bc

n for every n ≥ 1. Note that

F+(U) = F+
( ⋃

n≥1

Cn

)
= F+

( ⋃

n≥1

Un

)
.

As the sets Un are open and Un ↑ U , from Lemma 6 we get F+(U) =⋃
n F

+(Un). But observe that F+(Cn) ⊆ F+(Un) ⊆ F+(Cn+1) for every
n ≥ 1. So we finally get

F+(U) =
⋃

n≥1

F+(Cn) ⊆
⋃

n≥1

Bn.

On the other hand, letting C = U c, we have Kn ↓ C, with Kn closed for
every n ≥ 1. Invoking Lemma 6, we get

F−(C) = F−
( ⋂

n≥1

Kn

)
=
⋂

n≥1

F−(Kn) ⊆
⋂

n≥1

Bc
n.

So we conclude that F+(U) =
⋃
nBn ∈ Σ0

2(X) and the claim is proved.

Claim 4. If U ⊆ Y is open, then F+(U) ∈ Σ0
2(X).

Proof. Since B is a base for Y , pick {Um}m≥1 ⊆ B such that U =
⋃
m Um.

Let {Vi}i≥1 be the (countable) collection of all finite unions of Um’s. Note
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that U =
⋃
m Um =

⋃
i Vi. We claim that

F+(U) = F+
( ⋃

m≥1

Um

)
= F+

(⋃

i≥1

Vi

)
=
⋃

i≥1

F+(Vi).(1)

It is clear that F+(U) ⊇ ⋃i F
+(Vi). So let x ∈ F+(U), which implies that

F (x) ⊆ ⋃m Um. Since F (x) is compact, there exists a finite subcover, say
{Um}km=1. From the definition of Vi’s, there exists i ≥ 1 such that Vi =⋃k
m=1 Um, which implies that F (x) ⊆ Vi. So F+(U) ⊆ ⋃i F

+(Vi) and (1) is
proved. Since each Vi is a finite union of members of B, we conclude that
Vi ∈ Bs for every i ≥ 1. So, from (1) and Claim 3, we see that F+(U) ∈
Σ0

2(X) and this completes the proof.

The next result is in the spirit of Proposition 2.2 in [8].

Proposition 8. Let F : X → Pk(Y ) be a multifunction.

(i) F is continuous if and only if α(F ) = 1.
(ii) If F is upper or lower semicontinuous, then α(F ) ≤ 2.

Proof. (i) The “only if” part is trivial. For the “if” part, observe that if
α(F ) = 1, then for any K ∈ B̆d and C ∈ Bs with K ∩ C = ∅, we have

F+(K) ∩ F−(C) = ∅ and F+(C) ∩ F−(K) = ∅.
So the sets An and Bn in the proof of Theorem 7 can be chosen to be open.
Following the proof of Theorem 7 we conclude that for any U ⊆ Y open,
F+(U) and F−(U) are open subsets of Y respectively, which implies that F
is continuous.

(ii) If F is, say, lower semicontinuous, then F+(K) is closed for any
K ⊆ Y closed. So given K ∈ B̆d and C ∈ Bs disjoint, letting A = F+(K)
and B = F−(C), we have

P ′A,B = P ∩ A ∩ P ∩B ⊆ A ∩ P ∩B ⊆ A
and so P ′′A,B = (P ′A,B)′A,B ⊆ A ∩B = ∅, for any P ⊆ X closed. The same
is true if A = F+(C) and B = F−(K). So we conclude that α(F ) ≤ 2.
Similarly we deal with the case of F upper semicontinuous.

An immediate corollary is the following well-known result.

Corollary 9. If F : X → Pk(Y ) is an upper or lower semicontinuous
multifunction, then F is a Baire-1 multifunction.

Remark 1. For every set A ⊆ X, define the indicator multifunction
FA : X → Pk(R) by

FA(x) =
{

[0, 1] if x ∈ A,
{0} otherwise.
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Note that for C ⊆ X closed, FC is upper semicontinuous, while for U ⊆ X
open, FU is lower semicontinuous. Also observe that for every A ⊆ X, FA
is a Baire-1 multifunction if and only if A ∈ ∆0

2(X). Moreover it is easy to
see that α(FA) = α(A,Ac).

4. Distance functions. In this section we will give an equivalent char-
acterization of Baire-1 multifunctions, via distance functions. As before let
X be a Polish space and Y a separable metrizable space. Fix a countable
dense subset D of Y and a compatible metric d for Y , with respect to which
the d-diameter of Y is less than one. Given F : X → 2Y \ {∅} and y ∈ Y ,
we define the distance function dy : X → R+ by

dy(x) = d(y, F (x)) = inf{d(y, z) : z ∈ F (x)}.
Observe that if F has compact values then the above infimum is attained.
Recall the following definitions.

Definition 10. Let F : X → 2Y be a not necessarily everywhere de-
fined multifunction.

(i) F is said to be locally compact if for every x ∈ X, there exists a
U ∈ N(x) such that F (U) is compact.

(ii) F is said to be closed at x ∈ X if given {(xn, yn)}n≥1 ⊆ GrF such
that xn → x and yn → y, we have (x, y) ∈ GrF .

The following proposition provides a very useful criterion of upper semi-
continuity. For the proof we refer to [6].

Proposition 11. Let F : X → Pk(Y ) be a locally compact multifunc-
tion. Then F is upper semicontinuous at x ∈ X if and only if F is closed
at x.

We will also need the following lemma.

Lemma 12. Let C be a completely metrizable space, Y a Polish space
and F : C → 2Y \ {∅} a multifunction such that F−(U) ∈ Σ0

2(C) for every
U ⊆ Y open. Then F is lower semicontinuous on a dense Gδ subset of C.

Proof. Let {Un}n≥1 be a countable base for Y . Put Cn = F−(Un) ∈
Σ0

2(C) for every n ≥ 1. Let D =
⋃
n≥1Cn \ int(Cn). It is easy to see that

D ∈ Σ0
2(C) is of first category. To see that F is lower semicontinuous on Dc,

let x ∈ Dc and U ⊆ Y be open such that F (x) ∩ U 6= ∅. Pick Un ⊆ U basic
open with F (x) ∩ Un 6= ∅. Since x ∈ Cn and x 6∈ D, we get x ∈ int(Cn).
Then F (z) ∩ U ⊇ F (z) ∩ Un 6= ∅ for every z ∈ int(Cn), which implies that
F is lower semicontinuous at x ∈ Dc and completes the proof.

Using Proposition 11 and Lemma 12, we will give an equivalent charac-
terization of locally compact, Baire-1 multifunctions.
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Theorem 13. Let F : X → Pk(Y ) be a locally compact multifunction.
Then the following are equivalent.

(i) F is a Baire-1 multifunction.
(ii) For every y ∈ Y , dy is a Baire-1 function.

(iii) For every y ∈ D, dy is a Baire-1 function.

Proof. (i)⇒(ii). Assume that F is a Baire-1 multifunction. Let y ∈ Y
and r > 0. Then observe that

d−1
y ((−∞, r)) = {x ∈ X : F (x) ∩B(y, r) 6= ∅} = F−(B(y, r)) ∈ Σ0

2(X),

d−1
y ((−∞, r]) = {x ∈ X : F (x) ∩B(y, r) 6= ∅} = F−(B(y, r)) ∈ Π0

2(X),

where the last equality follows from the fact that F is compact-valued. So,
given b > a, we have

d−1
y ((a, b)) = d−1

y ((−∞, b)) ∩ d−1
y ((a,∞))

= d−1
y ((−∞, b)) ∩ d−1

y ((−∞, a])c ∈ Σ0
2(X),

which implies that dy is a Baire-1 function.
(ii)⇒(iii). Obvious.
(iii)⇒(i). In light of Proposition 2, it suffices to show that F is a Baire-1

function from X into (Pk(Y ), τV ). From the well-known characterization of
Baire-1 functions (see for instance [7, p. 193]), it is enough to show that F |C
has a point of continuity for every C ⊆ X non-empty closed. So let C ⊆ X
be one. Note that F |−C(U) = {x ∈ C : F (x) ∩ U 6= ∅} = F−(U) ∩ C. As
before, for any y ∈ D and r > 0, we have

F−(B(y, r)) = d−1
y ((−∞, r)) ∈ Σ0

2(X).

Since the family {B(y, r)}y∈D,r∈Q+ is a base for Y we easily conclude that
F−(U) ∈ Σ0

2(X) for every U ⊆ Y open. So F |−C(U) ∈ Σ0
2(C) for every

U ⊆ Y open (note that C ∈ Σ0
2(X) and so Σ0

2(C) = Σ0
2(X)|C). From

Lemma 12, we see that F |C is lower semicontinuous on a dense Gδ subset of
C, say B. On the other hand, for every y ∈ D, the function dy|C is Baire-1,
so it is continuous on a dense Gδ subset of C, say By. Put A = B∩⋂y∈DBy,
which is dense Gδ.

We will show that F |C is continuous on A and this will finish the proof.
Clearly it is enough to show that F |C is upper semicontinuous on A. Since
F |C is locally compact, from Proposition 11, it suffices to show that F |C
is closed on A. So let {(xn, zn)}n≥1 ⊆ C × Y , with zn ∈ F (xn), be such
that xn → x ∈ A and zn → z ∈ Y . We need to prove that z ∈ F (x). Pick
{yn}n≥1 ⊆ D such that d(yn, zn) ≤ 1/n. Observe that yn → z. We have

d(z, F (x)) ≤ d(z, yn) + d(yn, F (x)) = d(z, yn) + dyn(x).

From the definition of A, dyn is continuous at x ∈ A, for every n ≥ 1. Since
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xn → x, for every n ≥ 1 pick m = m(n) > n such that

dyn(x) ≤ dyn(xm) + 1/n = d(yn, F (xm)) + 1/n ≤ d(yn, zm) + 1/n.

Combining the above inequalities we get

d(z, F (x)) ≤ d(z, yn) + d(yn, zm) + 1/n

≤ d(z, yn) + d(yn, zn) + d(zn, zm) + 1/n

≤ d(z, yn) + d(zn, zm) + 2/n.

Letting n → ∞, since m > n, we get d(z, F (x)) = 0 ({zn}n≥1 is Cauchy).
Since F has non-empty, compact values we conclude that z ∈ F (x). So F is
closed at x ∈ A and the proof is complete.

Remark 2. We should point out that the implication (i)⇒(ii) is valid
without the assumption of local compactness.

Besides its independent interest, Theorem 13 is useful because it permits
us to use standard ranks for Baire-1 real-valued functions to define ranks for
Baire-1 locally compact multifunctions. Specifically, for any multifunction
F : X → Pk(Y ), we define the ranks α, β and γ by

α(F ) = sup{α(dy) : y ∈ D}, β(F ) = sup{β(dy) : y ∈ D},
γ(F ) = sup{γ(dy) : y ∈ D}.

The following proposition is a straightforward consequence of Theorem 13.

Proposition 14. Let F : X → Pk(Y ) be a locally compact multifunc-
tion. Then F is a Baire-1 multifunction if and only if α(F ) < ω1 (and
similarly for β and γ).

From the fact that α(f)≤β(f)≤γ(f) for any Baire-1 function f :X→R,
we immediately see that α(F ) ≤ β(F ) ≤ γ(F ). In the next proposition
we give the relationship between α and the separation rank defined in the
previous section.

Proposition 15. Let F : X → Pk(Y ) be a locally compact , Baire-1
multifunction. Then α(F ) ≤ α(F ).

Proof. Let y ∈ D and r1, r2 ∈ Q with 0 < r1 < r2. Put C = B(y, r1) and
K = B(y, r2)c = {z ∈ Y : d(y, z) ≥ r2}. Then, as in the proof of Theorem
13, we have

d−1
y ((−∞, r1]) = F−(C), d−1

y ([r2,∞)) = F−(B(y, r2))c = F+(K).

Note that, under the notation of the previous section, C ∈ Bs, K ∈ B̆d and
K ∩ C = ∅. It follows immediately that α(F,K,C) ≥ α(dy, r1, r2), which
implies that α(F ) ≥ α(F ), as desired.
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5. The rank δ. In this section we will define a rank for Baire-1 multi-
functions which, roughly speaking, gives a quantitative estimate of how far
a Baire-1 multifunction F is from being upper semicontinuous; the bigger
the rank, the less F looks like an upper semicontinuous multifunction. Note
that upper semicontinuous multifunctions occur naturally in analysis and
are standard tools in a variety of problems.

Throughout this section X will be a Polish space and Y a compact
metrizable space. In what follows, d will be a compatible metric for Y . We
make the following definition.

Definition 16. Let F : X → 2Y be a not necessarily everywhere
defined multifunction. Then the multifunction F̂ : X → 2Y defined by
Gr F̂ = GrF is said to be the closed hull of F (not to be confused with F ).

In the following lemma we gather some elementary properties of the
closed hull. The proof is left to the reader.

Lemma 17. Let F : X → 2Y be a multifunction.

(i) For every x ∈ X, F̂ (x) is a closed subset of Y (possibly empty).
(ii) Gr F̂ is closed in X × Y .

(iii) F (x) = F̂ (x) if and only if F is closed at x.
(iv) dom(F̂ ) = dom(F ) and so if dom(F ) is closed they coincide.

Now let F : X → Pk(Y ) be a multifunction. For every ε > 0 and every
P ⊆ X closed, consider the derivative operation

P ′ε = {x ∈ P : dH(F (x), F̂ |P (x)) ≥ ε}
where F̂ |P is the closed hull of the multifunction F |P : X → 2Y defined by

F |P (x) =
{
F (x) if x ∈ P ,

∅ otherwise.

Observe that as F (x) ⊆ F̂ |P (x) for every x ∈ P , we have

dH(F (x), F̂ |P (x)) = inf{r > 0 : F̂ |P (x) ⊆ F (x)r}.
So for every P ⊆ X closed and every ε > 0, P ′ε is the closure of the set of
points where F̂ |P (x) * F (x)ε (i.e. the closure of the set of points where F |P
is not ε-closed).

By iterating, define again P
(ξ)
ε for ξ < ω1, and set

δ(F,P, ε) =

{
least ξ with P

(ξ)
ε = ∅ if such a ξ exists,

ω1 otherwise,

and let δ(F, ε) = δ(F,X, ε). Finally put

δ(F ) = sup
n≥1

δ(F, 1/n).
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Theorem 18. Let F : X → Pk(Y ) be a multifunction. Then F is a
Baire-1 multifunction if and only if δ(F ) < ω1.

Proof. [⇒] Assume that F is a Baire-1 multifunction. Fix ε > 0. We
will show that for every P ⊆ X non-empty closed, we have P ′ε  P . Put
C = {x ∈ P : dH(F (x), F̂ |P (x)) ≥ ε}. Assume, towards a contradiction,
that P = P ′ε = C. Recall that the oscillation function of F |P at x, defined
by

osc(F |P )(x) = inf
V ∈N(x)

sup
x1,x2∈V ∩P

dH(F (x1), F (x2)),

is an upper semicontinuous, real-valued function and that F |P is continuous
at x ∈ P if and only if osc(F |P )(x) = 0.

Claim. If x ∈ C, then osc(F |P )(x) ≥ ε/4.

Proof. Let x ∈ C. Then there exists y ∈ F̂ |P (x) such that d(y, F (x)) ≥
ε/2. From the definition of the closed hull, there exist {(zn, yn)}n≥1 ⊆
GrF |P with zn → x and yn → y. Let n0 ≥ 1 be such that d(y, yn) ≤ ε/4 for
every n ≥ n0. Then note

dH(F (zn), F (x)) ≥ d(yn, F (x)) ≥ d(y, F (x))− d(y, yn) ≥ ε/4
for all n ≥ n0. As zn → x and zn ∈ P , it follows that osc(F |P )(x) ≥ ε/4
and the claim is proved.

Now if C were dense in P , then for any x ∈ P , pick {xn}n≥1 ⊆ C such
that xn → x. From the upper semicontinuity of osc(F |P ), we get

osc(F |P )(x) ≥ lim sup
n→∞

osc(F |P )(xn) ≥ ε/4,

which implies that F |P is nowhere continuous on P , contradicting the fact
that F is a Baire-1 multifunction. So P ′ε  P , which implies that P (ξ)

ε must
be stabilized at ∅. Thus δ(F, ε) < ω1 for every ε > 0, and finally δ(F ) < ω1
too.

[⇐] Assume that F is not a Baire-1 multifunction. Then there exist
P ⊆ X non-empty closed and ε > 0 such that osc(F |P )(x) ≥ ε for every
x ∈ P .

Let K ⊆ X be closed with K ⊇ P . Put C = {x ∈ K : dH(F (x), F̂ |K(x))
≥ ε/4}. We claim that C = K ′ε/4 ⊇ P . Assume not. Put U = P∩(X\C) 6= ∅.
Then U is a relatively open subset of P and moreover

dH(F (x), F̂ |K(x)) < ε/4

for every x ∈ U . From the definition of the closed hull and the fact that
K ⊇ P , we have F̂ |K(x) ⊇ F̂ |P (x) ⊇ F (x) for every x ∈ U . It follows that

dH(F (x), F̂ |P (x)) < ε/4
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for every x ∈ U . From Lemma 17, we know that F̂ |P is closed (i.e. Gr F̂ |P
is closed) and that dom(F̂ |P ) = P . So, from Proposition 11, F̂ |P is upper
semicontinuous on P . Corollary 9 shows that F̂ |P is a Baire-1 multifunction.
Since the points of continuity of F̂ |P form a dense Gδ subset of P , it follows
that the set V = {x ∈ P : osc(F̂ |P )(x) < ε/4} is relatively open and dense
in P . Put W = U ∩ V 6= ∅. Given x1, x2 ∈W we have

dH(F (x1), F (x2)) ≤ dH(F (x1), F̂ |P (x1)) + dH(F̂ |P (x1), F̂ |P (x2))

+ dH(F (x2), F̂ |P (x2))

≤ dH(F̂ |P (x1), F̂ |P (x2)) + ε/2.

From the definition of the oscillation function and the fact that W is a
relatively open subset of P , we see that for any x ∈W ⊆ P ,

osc(F |P )(x) ≤ osc(F̂ |P )(x) + ε/2 < 3ε/4 < ε,

which is a contradiction. So for any K ⊆ X closed with K ⊇ P , we have
K ′ε/4 ⊇ P . Thus, from the induction hypothesis, we conclude that X (ξ)

ε/4 ⊇ P
for all ξ < ω1 and so δ(F ) = ω1 from the definition of the rank.

In the following corollary we isolate a useful property of the derivative
operation P ′ε defined above.

Corollary 19. Let F : X → Pk(Y ) be a Baire-1 multifunction. Then
for every P ⊆ X non-empty closed and every ε > 0, the set P ′ε is a nowhere
dense subset of P .

Proof. Assume on the contrary that P ′ε has non-empty interior in the
relative topology of P (recall that P ′ε is closed). Put U = int(P ′ε) 6= ∅.
Working as in the proof of Theorem 18, we find that osc(F |P )(x) ≥ ε/4 for
every x ∈ U . This contradicts the fact that the points of continuity of F |P
form a dense Gδ subset of P .

The rank δ has the following interesting property.

Proposition 20. Let F : X → Pk(Y ) be a multifunction. Then F is
upper semicontinuous if and only if δ(F ) = 1.

Proof. If F is upper semicontinuous, then F (x) = F̂ (x) for every x ∈ X.
So δ(F, ε) = 1 for every ε > 0, which implies that δ(F ) = 1.

Conversely, if δ(F ) = 1, then F̂ (x) ⊆ F (x)1/n for all x ∈ X and n ≥ 1.
Since F has compact values, we deduce that F̂ (x) ⊆ ⋂n≥1 F (x)1/n = F (x).
On the other hand, from the properties of the closed hull, we have F (x) ⊆
F̂ (x). Thus F (x) = F̂ (x) for every x ∈ X. It follows that F is closed at
every x ∈ X and so, from Proposition 11, we conclude that F is upper
semicontinuous.
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Remark 3. We point out that δ is well defined if Y is a separable metriz-
able space and F : X → Pk(Y ) a locally compact, Baire-1 multifunction.
In this case, it is clear that both Theorem 18 and Proposition 20 are still
valid.

One might expect to get a relatively small bound for δ(F ) when F is
a lower semicontinuous multifunction. This is not the case, as is shown
in the following example (similar to the example given in Proposition 2.2
of [8]).

Example 1. Let {Kn}n≥1 be a decreasing sequence of non-empty closed
subsets of X such that K1 is nowhere dense in X and Kn+1 is nowhere
dense in Kn for every n ≥ 1. Put K =

⋂
nKn and K0 = X. Define the

multifunction F : X → Pk(R) by

F (x) =





[0, 1] if x ∈ K0 \K1,

[0, 1/2n] if x ∈ Kn \Kn+1,

{0} if x ∈ K.
Note that F is well defined even if K = ∅. We claim that F is lower semi-
continuous. Indeed, let U ⊆ R be open. Note that

F−(U) =
⋃

n≥0

{Kc
n : [0, 1/2n] ∩ U 6= ∅}

if U ∩ {0} = ∅ and F−(U) = X otherwise. As the sets Kn are closed,
it follows that F is a lower semicontinuous multifunction. Now it is easy
to see that if m ≥ 1 and 0 < ε < 1/2m+1, then X ′ε = K1 and X

(n)
ε =

(Kn)′ε = Kn+1 for every 1 ≤ n ≤ m. As the sets Kn are non-empty,
we see that δ(F, ε) ≥ m for every 0 < ε < 1/2m+1. Using similar ar-
guments, it is also easy to verify that if m ≥ 1 and ε ≥ 1/2m+1, then
δ(F, ε) ≤ m + 1. It follows directly from the definition of the rank that
δ(F ) = ω.

The above example shows that the ranks α and δ are incomparable.
Indeed, let F be an upper semicontinuous but not continuous multifunc-
tion. Then, from Propositions 8 and 20, we have α(F ) = 2 and δ(F ) = 1.
On the other hand, if F is the multifunction of the above example, then
α(F ) = 2 (as F is lower semicontinuous but not continuous) and δ(F ) = ω.
We could say that this expresses the fact that upper and lower semicontinu-
ity of multifunctions is quite different from upper and lower semicontinuity
of real-valued functions. This difference is a typical phenomenon and occurs
in many aspects of multivalued analysis.

6. Comments. Clearly the ordinal ranks defined in this paper may be
used to classify multifunctions according to their complexity. However we
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feel that these ranks, and especially the rank δ, may also be used to classify
Lipschitz functions. Let us be more precise.

Let X be a separable Banach space and U a non-empty bounded open
subset of X. For r > 0, denote by Lip(U, r) the set of all Lipschitz func-
tions f : U → R with Lipschitz constant less than or equal to r. For every
f ∈ Lip(U, r), the Clarke subdifferential ∂cf of f is an upper semicontin-
uous multifunction from X into X∗w∗ (X∗w∗ stands for the topological dual
of X equipped with the weak∗ topology). ∂cf is an extensively investigated
multifunction (see [4]). It has gained its widespread utility due to its rich cal-
culus and powerful analytical properties. However, Clarke’s subdifferential
is too large to reveal any structure. As has been shown in [2] by J. M. Bor-
wein, W. B. Moors and X. F. Wang, for almost every f ∈ Lip(U, 1) (in
a precise topological sense), ∂cf(x) is identical to the dual ball, for every
x ∈ U .

So, instead of working with Clarke’s subdifferential, one may use the
Michel–Penot subdifferential ∂mpf of f , which has the following remarkable
property: ∂mpf(x) coincides with the Gateaux derivative of f whenever the
latter exists (for the proof as well as for the definition of the Michel–Penot
subdifferential we refer to [11]). There is however one disadvantage. As a
multifunction ∂mp is not always upper semicontinuous.

Nevertheless, we may restrict ourselves to those functions f for which
the Michel–Penot subdifferential is a Baire-1 multifunction (the study of
subclasses of Lip(U, r) with good properties is an important part of non-
smooth analysis; see [1] and the references therein). Specifically, for r > 0,
let Y be the closed ball in X∗ of radius r, endowed with the weak∗ topology.
Then Y is a compact metrizable space and moreover for every f ∈ Lip(U, r),
∂mpf is a multifunction from U to Pk(Y ). So, all the tools developed in this
paper can be applied. Thus, for every countable ordinal ξ, we may consider
the classes

Lξ(U, r) = {f ∈ Lip(U, r) : δ(∂mpf) ≤ ξ}.
From the properties of δ, for every f ∈ Lξ(U, r), one may replace the patho-
logical ∂cf with the certainly well-behaved ∂mpf and still have good ana-
lytical properties. Furthermore, one has additional information on the set
of points where ∂mpf is not ε-closed. As closedness and ε-closedness of the
subdifferential are the crucial properties in many applications, we believe
that these classes may be of interest.

Remark 4. It follows from the properties of the Michel–Penot subdif-
ferential that the class L1(U, r) contains all continuous convex functions and
all continuously Gateaux differentiable functions. Moreover, it can be shown
that every f ∈ L1(U, r) is an essentially smooth Lipschitz function.
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