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ADDITIVE FUNCTIONS
MODULO A COUNTABLE SUBGROUP OF R

BY

NIKOS FRANTZIKINAKIS (State College, PA)

Abstract. We solve the mod G Cauchy functional equation

f(x+ y) = f(x) + f(y) (modG),

where G is a countable subgroup of R and f : R→ R is Borel measurable. We show that
the only solutions are functions linear mod G.

1. Introduction. It is well known that under very mild measurability
assumptions the Cauchy functional equation has only linear solutions. In
this article we study the Cauchy functional equation modulo a countable
subgroup G of the real numbers. More precisely, assuming that f : R → R
is a Borel measurable function and that the Cauchy difference

f(x+ y)− f(x)− f(y)

takes values in G, we shall show that there exists a ∈ R such that

f(x)− ax
takes values in G.

Our motivation comes from a problem in ergodic theory. There we want
to solve in g the functional equation

g(x+ t)− g(x) = c(t) + ht(x+ a)− ht(x) (mod 1),(1)

where a is irrational, g and ht are 1-periodic Lebesgue measurable functions,
and (1) is valid for every t for some choice of ht and c(t). It turns out that
the function c(t) can be chosen to be Borel measurable and additive mod G,
where G is the countable dense subgroup Z+Za of the reals. Knowing that
c(t) is linear mod G enables us to show that the solutions of (1) have the
form

g(x) = mx+ c+ h(x+ a)− h(x) (mod 1).

The functional equation (1) was originally studied by Conze and Lesigne
and was actually solved in [3] but using a different argument than ours.
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2. An extension result. To facilitate the reading we quickly review
some basic notions and facts from elementary topology. A subset of Rn
(with the standard topology) is a meager (or first category) set if it is a
countable union of nowhere dense sets. A set is of the second category if it
is not meager. A residual set is the complement of a meager set. A property
holds quasi-everywhere (we write q.e.) in a set A if it is true for all but a
meager set of elements in A. A set has the Baire property if it is equal to the
symmetric difference of an open set and a meager set. The space Rn is of the
second category. All Borel subsets of Rn have the Baire property. Finally, the
topological analogue of Fubini’s theorem states that if E is a meager subset
of Rn+m then for q.e. x ∈ Rn the x-section Ex = {y ∈ Rm : (x, y) ∈ E} is a
meager subset of Rm. Proofs for these facts can be found in [4].

A crucial step needed for the proof of our theorem is the extension result
stated in the lemma below. Note that we do not need to assume any kind
of measurability for this part. To prove it we use ideas from [1] and [2].

Lemma. Suppose that the function g : R→ R satisfies the Cauchy func-
tional equation g(x+ y) = g(x) + g(y) q.e. in D, where D = (a, b)× (d, e)
is a nonempty open rectangle. Then there exists a nonempty open interval
I ⊂ (a, b), a constant c ∈ R, and an everywhere additive function h : R→ R
such that g = h+ c q.e. in I.

Proof. We first assume that D = Ir × Ir, where Ir = (−r, r) for some
r > 0. At the end we deal with the general case.

Our starting point is to define the function h. We claim that for every
x ∈ Ir/2, the function g(x + y) − g(y) is equal to a constant h(x) y-q.e.
in Ir/2. To see this, observe that our assumption and the topological version
of Fubini’s theorem show that there exists a set Jr, residual in Ir, such that
for every x ∈ Jr,

g(x+ y) = g(x) + g(y) y-q.e. in Ir.(2)

Denote by Jr/2 the set Jr ∩ Ir/2. The interval Ir/2 is centered at 0 and Jr/2
is residual in Ir/2, so for every x ∈ Ir/2 the sets Jr/2 and x − Jr/2 have
nonempty intersection. Hence, for given x ∈ Ir/2 there exists a(x) ∈ Jr such
that x − a(x) ∈ Jr/2. Applying (2) twice shows that for every x ∈ Ir/2 we
have

g(x+ y) = g(a(x) + x− a(x) + y)

= g(a(x)
)

+ g(x− a(x) + y) y-q.e. in Ir/2

= g(a(x)) + g(x− a(x)) + g(y) y-q.e. in Ir/2.

Hence, for every x ∈ Ir/2 we have

g(x+ y)− g(y) = g(a(x)) + g(x− a(x)) = h(x) y-q.e. in Ir/2,(3)

proving our claim.
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Next we prove that h is additive everywhere in Dr/4 = Ir/4× Ir/4. So let
(u, v) ∈ Dr/4. Our assumption combined with (3) gives

g(u+ w + v + z) = g(u+ w) + g(v + z) (w, z)-q.e. in D3r/4,(4)

g(w + z) = g(w) + g(z) (w, z)-q.e. in Dr,(5)

g(u+ w)− g(w) = h(u) w-q.e. in Ir/2,(6)

g(v + z)− g(z) = h(v) z-q.e. in Ir/2,(7)

g(u+ v + ξ)− g(ξ) = h(u+ v) ξ-q.e. in Ir/2.(8)

Since (4)–(7) hold q.e. there exist w and z in Ir/4 such that ξ = w + z
satisfies (8). For this choice of w and z we have

h(u+ v) = g(u+ v + w + z)− g(w + z) (by (8))

= g(u+ w) + g(v + z)− g(w + z) (by (4))

h(u) + h(v) = g(u+ w) + g(v + z)− g(w)− g(z) (by (6), (7))

= g(u+ w) + g(v + z)− g(w + z) (by (5)).

Thus,
h(u+ v) = h(u) + h(v).

The choice of (u, v) ∈ Dr/4 was arbitrary, so h is additive everywhere in
Dr/4, proving our claim.

Using a standard argument we extend h to an everywhere additive func-
tion in R. (For example h(x) = nh(x/n), for x ∈ n Ir/4, defines unambigu-
ously an everywhere additive function in R.) Finally, for q.e. x ∈ Ir/4 we
have

g(x+ y)− g(y) = g(x) y-q.e. in Ir/4.

So h(x) = g(x) for q.e. x ∈ Ir/4. This completes the proof of the lemma in
the special case where D is centered at the origin.

Now we deal with the general case, where D = (a, b)× (d, e). We would
like to use the previous argument, so we define a function w that is additive
q.e. in a neighborhood of the origin. Our assumption and Fubini’s theorem
give

g(u+ v) = g(u) + g(v) (u, v)-q.e. in D,(9)

for q.e. u in (a, b) g(u+ y) = g(u) + g(y) y-q.e. in (d, e),(10)

for q.e. v in (d, e) g(x+ v) = g(x) + g(v) x-q.e. in (a, b).(11)

There exists (u, v) ∈ D that satisfies all (9)–(11). For this choice of u and v
choose r such that the rectangle (u − r, u + r) × (v − r, v + r) is contained
in D, and consider the function w : (−2r, 2r)→ R defined by w(s) = g(u+
v+s)−g(u+v). We claim that for q.e. s ∈ Ir we have w(s+t) = w(s)+w(t),
t-q.e. in Ir. To see this observe that (10) and (11) show that for q.e. s ∈ Ir,
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w(s+ t) = g(u+ s+ v + t)− g(u+ v)

= g(u+ s) + g(v + t)− g(u+ v) t-q.e. in Dr.

Moreover, by (9)–(11) we have, for q.e. s ∈ Ir,
w(s) + w(t) = g(u+ s+ v) + g(u+ v + t)− 2g(u+ v)

= g(u+ s) + g(v) + g(u) + g(v + t)− g(u)− g(v)− g(u+ v)

= g(u+ s) + g(v + t)− g(u+ v) t-q.e. in Dr.

Hence, for q.e. s ∈ Ir we have

w(s+ t) = w(s) + w(t) t-q.e. in Ir,

which proves our claim.
Next observe that we can apply the first part of the proof to the func-

tion w. Indeed, although our assumption here is weaker (we do not have
additivity q.e. in Dr), it is all we need to carry out the previous argument.
So there exists an everywhere additive function h such that h(s) = w(s) for
q.e. s ∈ Ir/4. We want to relate h to g. We write any x ∈ (u− r/4, u+ r/4)
as x = u+ s, where s ∈ Ir/4. Using (9)–(11) we see that for q.e. s in Ir/4,

h(u+ s) = h(u) + h(s) = h(u) + w(s) = h(u) + g(u+ v + s)− g(u+ v)

= h(u) + g(u+ s) + g(v)− g(u)− g(v) = g(u+ s) + h(u)− g(u).

Hence, h(x) = g(x)+c for q.e. x ∈ (u−r/4, u+r/4), where c = h(u)−g(u).

3. The mod G Cauchy functional equation. We are now ready to
prove our main result.

Theorem. Let G be a countable subgroup of R. Suppose that f : R→ R
is Borel measurable and satisfies the functional equation

f(x+ y) = f(x) + f(y) (modG)

for all x, y ∈ R. Then f is linear mod G.

Proof. The function F (x, y) = f(x+y)−f(x)−f(y) is Borel measurable
and countable-valued (G is countable). Since R2 is of the second category, F
is equal to a constant c1 in a second category Borel subset B of R2. The set
B being Borel has the Baire property, so it is equal to a nonempty (B is of
the second category) open set modulo a meager set. As a result, there exists
a (nonempty) rectangle D = (a, b) × (c, d) contained in B up to a meager
set. If we define g(x) = f(x) + c1, we have

g(x+ y) = g(x) + g(y) q.e. in D.

By the Lemma there exists an additive function h : R→ R and a nonempty
open interval I ⊂ (a, b) such that
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g(x) = h(x) + c2 q.e. in I(12)

for some c2 ∈ R.
We claim that h is linear. To see this, observe that R =

⋃
k∈Z(I + kl)

where l is half the length of I. Since h(x+ kl) = h(x) + h(kl) we have

AM = {x ∈ R : |h(x)| ≤M} =
⋃

k∈Z
{x ∈ I : |h(x) + h(kl)| ≤M}.

By (12) the last set is equal to the Borel set⋃

k∈Z
{x ∈ I : −M − h(kl) + c2 ≤ g(x) ≤M − h(kl) + c2}

up to a meager set. It follows that the set AM has the Baire property. In
addition, the union of the AM ’s is R, a second category set, so there exists
M0 ∈ R such that the set AM0 is of the second category. Then AM0 is equal
to a nonempty open set U up to a meager set. Observing that U+d intersects
U nontrivially for small d, we conclude that the difference set AM0 − AM0

contains a nonempty open interval centered at the origin. On this interval
h will be bounded by 2M0, so we can use a standard argument to conclude
that h is linear. This proves our claim.

So there exist a, c3 ∈ R such that f(x) = ax+c3 q.e. in I. The function f
is additive mod G, so c3 ∈ G. Moreover, an easy inductive argument gives

f(qx) = qf(x) (modG′)

for every q ∈ Q, where G′ = {g/n : g ∈ G, n ∈ N}. Since R =
⋃
q∈Q qI we

get
f(x) = ax (modG′) q.e. in R.

Let C be the residual set where the last relation holds. Since C and x− C
have nonempty intersection for every x ∈ R, every real number has the form
x = x1 + x2 for some x1, x2 ∈ C. So

f(x) = f(x1) + f(x2) = ax1 + ax2 = ax (modG′)

for every x ∈ R.
It remains to show that we can replace G′ by G in the last equation. For

this we define q(x) = f(x)−ax and claim that q(R) ⊂ G. The function q(x)
is additive mod G, Borel measurable, and q(R) ⊂ G′. For some r ∈ G′ the
Borel set q−1(r) is of the second category. Choose n ∈ N such that nr ∈ G
and let E = nq−1(r). Then E is a second category Borel set and q(E) ⊂ G.
Since q is additive we get q(E−E) ⊂ G. As before we see that E−E contains
a nonempty interval J centered at the origin. Then q(J) ⊂ G and because
G is a group we have nq(J) ⊂ G for every n ∈ N. Since q(R) =

⋃
n∈N q(nJ)

and q(nJ) = nq(J) mod G we get q(R) ⊂ G, which proves our claim. Thus,

f(x) = ax (modG)

for every x ∈ R.
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Remark. Suppose that the mod G Cauchy functional equation is satis-
fied for q.e. (x, y) ∈ R2. Then we can use the previous argument to show that
every Borel measurable solution is equal q.e. to a linear function mod G.

Our argument does not work when f is assumed to be just Lebesgue
measurable. The reason is that although every Borel measurable subset of R2

is equal to an open set modulo a meager set, not every Lebesgue measurable
subset of R2 is equal to an open set modulo a set of measure zero. We leave
the following question open.

Question. Let G be a countable dense subgroup of R and f : R → R
be a Lebesgue measurable function that is additive mod G. Is f necessarily
linear mod G?
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