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Abstract. Let I be an interval, 0 < A < 1 be a fixed constant and A(z,y) = Az +
(1 =Ny, x,y € I, be the weighted arithmetic mean on I. A pair of strict means M and
N is complementary with respect to A if A(M(z,y), N(z,y)) = A(x,y) for all z,y € I.
For such a pair we give results on the functional equation f(M(z,y)) = f(N(z,y)). The
equation is motivated by and applied to the Matkowski—Sut6 problem on complementary
weighted quasi-arithmetic means M and N.

1. Introduction. We call a convex subset I of R an interval. An interval
is proper when it has more than one element. We shall assume that I is
proper. A function M : I? — I is said to be a mean on I if it satisfies the
following conditions:

(M1)  min{z,y} < M(z,y) <max{z,y} for all z,y € I,z # y;
(M2) M is continuous on I2.

A mean is called strict if the inequalities in (M1) are strict. If M is
a mean on I, then M(z,z) = x for all x € I. Let CM(I) denote the
class of all continuous and strictly monotonic real functions defined on I.
Let 0 < A < 1 be a fixed number. A function M : I? — [ is called a
weighted quasi-arithmetic mean on I (see [1]) if there exists ¢ € CM(I) such
that

M(z,y) = ¢~ (dp(x) + (1= Ne(y) = Ap(z,y; )

for all x,y € I. In this case, ¢ € CM([) is called the generating func-
tion of the weighted quasi-arithmetic mean with weight A\. Weighted quasi-
arithmetic means are strict.
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If ,x € CM(I) then A, (z,y; A) = Ay (x,y; A) for all x,y € I if and only
if there exist real constants o # 0 and ( such that

o(r)=ax(x)+p forallzel.

If p,x € CM(I) and the above equation holds for some constants o # 0
and § on a subset J C I then we say that ¢ is equivalent to x on J; and,
in this case, we write ¢ ~ x on J. For fixed J, it is easy to verify that ~
is indeed an equivalence relation on CM([]), i.e., it is reflexive, symmetric
and transitive. When ¢(x) = z for all = € I, or when ¢ is equivalent to the
identity map id on I, A,(z,y; A) is simply denoted by A(z,y; ) and is the
well known weighted arithmetic mean

Az, y; ) = e+ (1 =Ny (z,y € ).

Let M be a strict mean on [ and let 0 < A < 1/2. Then the function
defined by

A
T E Ty =1y (x,y) (zyel)
is also a strict mean on I and for each z,y € I, M(x,y) = Az + (1 — Ny if
and only if My (z,y) = Az + (1 — A)y. The pair M, M), satisfies

(1) )\M(az,y)—l—(l—)\)l/w\)\(x,y) :A(l‘,y,)\)

]\/4\,\($,y) =

for all z,y € I. In this sense, M A is complementary to M with respect to
the weighted arithmetic mean.

The Matkowski-Suté problem for weighted quasi-arithmetic means is
the following: When will two complementary means M and M be weighted
quasi-arithmetic means with the same weight A on I? In more detail, this
means finding those functions ¢, € CM(I) which satisfy

(2) AT (Ap() + (1= Ne(y) + (1= N~ (A(z) + (1= N)eb(y))
=Xz + (1-Ny

for all x,y € I.

The case A = 1/2 is the original Matkowski—Sut6 problem (see [7], [8], [2],
[4]), which has recently been solved in [5] completely. The case A # 1/2 has
been solved in [6] under the assumptions that I is open and the generating
functions are continuously differentiable on I with nonvanishing derivatives.
Under this assumption, the conclusion is that ¢ ~ id and ¥ ~ id on I.
Conversely, it is easy to verify that when ¢ ~ id and ¢ ~ id on I, (2) is
satisfied. It is natural to ask if the differentiability assumption in the forward
statement can be reduced.

Without loss of generality we can suppose that A < 1/2, otherwise we
change the roles of ¢ and 1, and of z and y. So in what follows A < 1/2 is
assumed.
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We ask the following local versus global question. Suppose that o, €
CM(I) satisfy (2) on I and there exists a proper interval J C I such that
@ ~id and 1 ~ id on J. Is it true then that ¢ ~ id and ¢ ~ id on I?7 In this
paper we give an affirmative answer. With this result, the differentiability
conditions on I used in [6] can be relaxed to their holding on some open
subinterval of I. In Section 2 we solve an equivariance functional equation
which is later applied in Section 3 to give the main result.

2. An equivariance equation on complementary means. Let M
be a strict mean on I and let 0 < A < 1/2. A function f : I — R is called
(M, N)-associate if it has the following property:

(MA) If xz,y € I satisfy M(z,y) = Az + (1 — Ny and f(x) = f(Ax +
(1= A)y) then f(y) = f(x).
One can easily check that if f is (M, A)-associate then it is also (]\/Z,\,)\)—

associate.
In this section we solve the equivariance functional equation

f(M(a:,y)):f(]\/f,\(:U,y)) (x7y61)7
where 0 < A < 1/2 is fixed.

THEOREM 1. Let M be a strict mean on I, 0 < X < 1/2, and let f :
I — R be a function satisfying the functional equation

® Frte) = 1254y - o M)

for all x,y € I. Then

(a) For all x,y € I where M(x,y) # A(z,y;\), f is locally constant at
Az, y; A).
(b) If f is continuous and (M, \)-associate then either

(i) f is constant on I, or
(ii) f is ingective on I and M(xz,y) = A(z,y; A) for all xz,y € I.

Proof. Denote by I, the closed interval joining M (z,y) and M Az, y)
and recall that A(z,y; A) := Az + (1 — A)y is the weighted arithmetic mean

on I. We also recall that AM (z,y) + (1 — )\)MA(ﬂj,y) = A(z,y; \).
Cram 1. For all zo,yo € I two cases are possible:
(1) If M(xo,y0) < Ma(xo,y0) then

J(A(zo,90; A) — 8) = f(A(xo,yo; A)+ 1 i N\ 8)

for all 0 < s < A(xo,y0; A) — M (20, yo)-
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(I1) 1f ]\/Zx(mo,yo) < M(zo,yo) then

J( Ao, 903 A) = 8) = f<A(:L“o,yo; A+ 3 A s)

for all 0 < s < A(zo, yo; ) — M (20, 0)-

Proof. The assertion is trivial when I, is a singleton. Suppose Iy,
is proper. There are two cases: either g < yg or yg < xo. First let xy < yo.

Consider x; := xg + t,y; := yo — ﬁt for 0 <t < A(zo,y0; A) — xo. We
note that for all ¢ € [0, A(xo, yo; A)—x0] we have Az +(1-\)yr = A(xo,yo; A),
and consequently AM (x4, y¢) + (1 — )\)]\//B(ast, yt) = A(xo,yo; \)-

Now suppose M (xq, yo) <M, (20, yo0). This immediately implies M (xq, yo)
< A(zo,yo; A). The function t — M (z,y) is continuous and takes the
values M(xg,yo) and A(xg,yo; A). By the Intermediate Value Theorem, for
each 0 < s < A(zo,yo; A) — M(zo,yo), there exists t € [0, A(zo, yo; A) — o]
such that M(:I;t? yt) = A(l‘o, Yo; )‘) —s and ]/\4\)\(33157 yt) = A(l‘o, Yo; )‘) + ﬁs‘
Thus by (3),

f(A(zo,y0; \) — 8) = f<A(fU0,y0; A) + 1 i \ 5)'

A similar argument proves that if M Ao, Y0) < M(xo,yo) then for each
0<s<A(xg,yo; A) — ]\7,\(300,3/0), there exists t € [0, A(zo, yo; \) — x| such
that ]\/ZA(a:t,yt) = A(xo,y0; \) —s and M (x4, y:) = A(xo,yo; \) + %s. Then
again by (3),

(Ao, yo; A) = 5) = f<A(930,y0; A) + ! ; A s).

If yg <z then let x; := xg— %t,yt = yo+1t for 0<t < A(zo,yo; A) —¥o-
The rest of the proof goes as above. =

CLAIM 2. Suppose I, is proper. Then f is locally constant at the point
A(zo,yo; A); i.e., there exists a neighbourhood of A(xo,yo; \) on which f is
constant.

Proof. We only examine case (I), when M(z¢,y0) < ]\/Zx(mo,yo). Let
o < Yo, say. For some sufficiently small § > 0, we have [A(xo,yg; A) — 0,

A(zo,yo; ) + ﬁé] C Iyy, for all x € [xg, 20 + 6]
Now for all © € [z, zo + 9], Iy, is proper, and by Claim 1,

A0 ) = 5) = (Al )+ 25 5)
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whenever both arguments are in [A(mo, Yo; A) — 9, A(xo, yo; \) + ﬁé] The
point A(x,yo; A) being arbitrary in [A(zo, yo; A), A(xo, Yo; A) + Ad], this gives
the constancy of f on [A(;I:Q, Yo; A) — 9, A(z0, yo; A) + ﬁé]

The other cases, when yo < z¢ and (II) holds, can be proved similarly. m

The above proves (a) of Theorem 1. To prove (b), in what follows we
assume that f is continuous and (M, \)-associate.

CLAIM 3. Suppose there exist xog < yo such that I,
is constant on I.

s proper. Then f

oYo

Proof. Let J C I be the mazimal interval containing A(xg,yo; \) on
which f is constant, i.e.,

J:={x eI]| f(y) =cfor all y in the closed interval joining
x and A(zo,yo; M)},

where ¢ := f(A(xo,y0; \)). By the continuity of f, J is closed relative to I;
and by Claim 2, it is a proper interval neighbourhood of A(zg,yo;A). We
shall argue that J = I; thus f is constant on I.

Suppose that § := sup J is an interior point of I. Then there exists € > 0
such that § —e¢ € J and 8 + ﬁe € I. Now for each y € ]ﬂ,ﬁ—i— ﬁe]
there exists a unique = € [§ — ¢, ] such that A(x,y; \) = (. If the interval
I, were proper then f would be constant in a neighbourhood of 3 by
Claim 2 and so J would not be maximal. Therefore I, is a singleton, that

iSa M(.’E,y) = ]/w\)\(l',y) So
M(z,y) = A(z,y; A) = 0.
Because xz and 3 belong to J,

flx) =f(B)=c

and since f is (M, \)-associate, we get f(y) = c. Asy € ]ﬁ,ﬁ + ﬁe] is
arbitrary, this implies that g + %5 is in J, contradicting the assumption
that 8 = supJ. Thus supJ = sup . One can similarly prove that inf J =
inf I. Since J is closed in I, we have J = 1. =

Cram 4. If f is nonconstant on I, then M(x,y) = A(z,y; \) for all
x,yel.

Proof. By Claim 3, I, is a singleton for all =,y € I, that is, M(z,y) =
My(z,y). As A(x,y; \) = AM (z,y) + (1 — A) My (z,y), we get A(z,y; ) =
M(z,y). =
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Cram 5. If f is nonconstant, then it is injective on I.

Proof. By Claim 4, the continuous and nonconstant function f : I — R
satisfies the condition (MA):

(4)  f(y) = f(z) whenever f(x) = f(A(z,5; ), wyel.

(I) CASE 1. Suppose A = 1/2. This has been dealt with in [3], where the
proof of injectivity of f on all closed [a,b] C I is given. So f is injective on 1.

(II) CASE 2. Suppose 0 < A < 1/2. Let ¢ := 125. Since 0 < A < 1/2, we
have 0 < o < 1. We rewrite (4) in the form

(5)  f(u)=f(v) implies f(u+ o(u—v))=f(u)=f(v),

u,v,u~+ o(u —v) € I.

Suppose to the contrary that f is not injective. Then there exist 1 < 2 in
the interior of I which are as close as we wish so that

f@1) = f(w2).

Let them be chosen close enough that xo + o(x2 — x1) stays in I. We shall
now argue that

(6) f is constant on [x1, x2].

If this were not true, then there would exist a proper connected component
interval |xs, z4[ of the nonempty open set {t € |z1, 2] | f(t) # f(x1)} for
which

(1) f(x1) = f(22) = f(w3) = f(x4), but f(t) # f(w1) for allt € Jag, z4].

Since z9 + o(x2 — x1) € I, this implies x5 := x4 + o(x4 — x3) € I. Applying
(5) once we get f(xs) = f(xq) = f(x3). Let x6 := x4 + o(x4 — x5). Then
r6 = 24 + 0(—0(z4 — x3)) = x4 — 0*(v4 — x3) Where 0 < @ < 1; we
have z¢ € |x3,x4]. Applying (5) once more we get f(zg) = f(z4) = f(w5),
ie. f(zg) = f(x1) while z¢ € |x3,z4[. This is a contradiction to (7). This
proves (6).

Let K be the maximal interval containing [z, x2] on which f is constant.
Then K is proper, and is closed relative to I. It is easy to see that K must
be equal to I. For otherwise, say k := sup K is an interior point in I; then by
(5), f will remain constant on [k, k+o(k—xz1)]NI and K will not be maximal.
This contradiction shows that sup K = sup I. Similarly, inf K = inf I holds.
K being closed in I, this gives K = I. Thus f is constant on I, and this is
a contradiction. m

This completes the proof of Theorem 1. m
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3. The extension theorem

LEMMA 1. Let ¢, € CM(!) satisfy (2) on I and let J C I be a proper
subinterval on which ¢ ~ id and ¢ ~ id. Then there exist o, € CM(I)
satisfying (2) such that ¢ ~ @ and 1 ~ 1 on I and

Px)=z, Y@)=x forall zelJ
Proof. There exist constants a; # 0 and (; (i = 1,2) such that
arp(x) + 01 =z, as)p(z) + P2 =
for all x € J. Then ¢ := ayp + (1 and {/;(;1:) := ap1) + (B2 have the asserted

properties. m

THEOREM 2. Let ¢, € CM(I) satisfy (2) for all z,y € I and let J be
a proper subinterval of I such that ¢ ~id and ¢ ~ id on J. Then ¢ ~ id
and ¢ ~id on I.

Proof. According to Lemma 1, we can suppose that
@)=z, Y@)=z (z€J)

and we need to show that ¢ = ¢ = id on the full interval I. Let K C I be
the maximal interval containing J such that

(8) pe) =z, Y)=z (reK).

We are going to show that K = I. By the continuity of ¢ and v, K is closed
in I. Suppose to the contrary that K # I; then either inf K or sup K is an
interior point of I. Say, a := inf K is an interior point of I.

Choose another element b € K which is above a, i.e. a < b. Then ]a, b[ is
an open neighbourhood of A, (a,b; \) and Ay (a, b; \) because the two means
are strict. By the continuity of A, (:,b; A\) and Ay(-,b; A), and the fact that
a is an interior point of I, there exists § > 0 such that [a — d,a] C I and
A, (z,b;X) and Ay (z,b; A) are both in |a, b[ for all z € [a — 0, a].

Let x € [a — d,a]. Then from (2) and (8) we have

AAp(z) + (1 =XN)b) + (1 = N (Mp(z) + (1 — A)b) = Ax + (1 — )b,

which implies A¢p(x)+(1—\)1p(z) = x. The latter also holds true for = € [a, b]
where ¢(x) = ¢(x) = x and so we have

9) Ap(z)+ (1= Ny(z) =2 forall z € [a—4d,b].
That is,
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Since
Mo(z,y; A) + (1 = XAy (z,y;0) = Az + (1 — Ny,
P(Ap(z, 13 0) = Ap(z) + (1 = Ne(y),
P(Ap(z,y;0)) = Mp() + (1 = N)b(y),

equation (9) yields
for all z,y € [a — §,b]. Now let f(t) := p(t) —t. Then
(10) f(Ay(z,y; N)) = f(Ap(x,y;A))  forall x € [a —6,b)].

We show that f is (A, (z,y; ), A)-associate. Let z,y € [a — 6, a] be such
that Ay (z,y;A) = A + (1 — Ny and f(z) = f(Ax + (1 — A)y). Then

Ap(@) + (1= Ne(y) = (A + (1 = A)y)
and
pa) -z =pr+ (1= Ay) = Az + (1= A)y).
These equations imply
p(y) —y = e(@) -,
that is, f is (Ae(x,y; ), A)-associate.

By Theorem 1, either f is constant or A,(x,y;\) = A(x,y; A) for all
x,y € [a— 0,b]. In both cases p(x) = ax + [ for all z € [a — 9, b] follows for
some a # 0 and B. Comparing this with ¢(x) = x for all = € [a,b], we get
a =0 and § = 0. This in turn implies ¢(x) = z for all z € [a — 4, b]. Putting
this in (8) we also have ¢ (z) = x for all € [a — §,b]. Thus [a — 6,b] U K
is an interval larger than K on which (8) holds, and this is a contradiction

to the maximality of K. Similarly, sup K cannot be an interior point of I.
This proves that K = 1. =

The results of [6] and Theorem 2 yield the following corollary.

COROLLARY 1. Suppose A\ # 1/2. Let p,1p € CM(I) satisfy (2) for all
x,y € I and let K be a proper open subinterval of I such that ¢ and 1 are
continuously differentiable on K. Then ¢ ~ id and ¢ ~id on I.

Proof. Let H :={z | x € K, ¢'(z) = 0}, which is a closed set in K.
Then H # K, because ¢ € CM(I). Therefore there exists a proper open
interval K; C K such that ¢'(x) # 0 if x € K;. Similarly, let H; := {x |
x € Ky, ¢/(x) = 0}. Then there exists a proper open interval Ky C K3
such that ¢'(z) # 0 if x € K5. Thus ¢’(z) # 0 and ¢'(z) # 0 if z € Ks. By
[6], ¢ ~ id and ¢ ~ id on K3. Now Theorem 2 implies ¢ ~ id and 1) ~ id
onl. m
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