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Abstract. Let I be an interval, 0 < λ < 1 be a fixed constant and A(x, y) = λx +
(1 − λ)y, x, y ∈ I, be the weighted arithmetic mean on I. A pair of strict means M and
N is complementary with respect to A if A(M(x, y), N(x, y)) = A(x, y) for all x, y ∈ I.
For such a pair we give results on the functional equation f(M(x, y)) = f(N(x, y)). The
equation is motivated by and applied to the Matkowski–Sutô problem on complementary
weighted quasi-arithmetic means M and N .

1. Introduction. We call a convex subset I of R an interval. An interval
is proper when it has more than one element. We shall assume that I is
proper. A function M : I2 → I is said to be a mean on I if it satisfies the
following conditions:

(M1) min{x, y} ≤M(x, y) ≤ max{x, y} for all x, y ∈ I, x 6= y;
(M2) M is continuous on I2.

A mean is called strict if the inequalities in (M1) are strict. If M is
a mean on I, then M(x, x) = x for all x ∈ I. Let CM(I) denote the
class of all continuous and strictly monotonic real functions defined on I.
Let 0 < λ < 1 be a fixed number. A function M : I2 → I is called a
weighted quasi-arithmetic mean on I (see [1]) if there exists ϕ ∈ CM(I) such
that

M(x, y) = ϕ−1(λϕ(x) + (1− λ)ϕ(y)) =: Aϕ(x, y;λ)

for all x, y ∈ I. In this case, ϕ ∈ CM(I) is called the generating func-
tion of the weighted quasi-arithmetic mean with weight λ. Weighted quasi-
arithmetic means are strict.
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If ϕ, χ ∈ CM(I) then Aϕ(x, y;λ) = Aχ(x, y;λ) for all x, y ∈ I if and only
if there exist real constants α 6= 0 and β such that

ϕ(x) = αχ(x) + β for all x ∈ I.
If ϕ, χ ∈ CM(I) and the above equation holds for some constants α 6= 0
and β on a subset J ⊂ I then we say that ϕ is equivalent to χ on J ; and,
in this case, we write ϕ ∼ χ on J. For fixed J , it is easy to verify that ∼
is indeed an equivalence relation on CM(I), i.e., it is reflexive, symmetric
and transitive. When ϕ(x) = x for all x ∈ I, or when ϕ is equivalent to the
identity map id on I, Aϕ(x, y;λ) is simply denoted by A(x, y;λ) and is the
well known weighted arithmetic mean

A(x, y;λ) := λx+ (1− λ)y (x, y ∈ I).

Let M be a strict mean on I and let 0 < λ ≤ 1/2. Then the function
defined by

M̂λ(x, y) :=
λ

1− λ x+ y − λ

1− λ M(x, y) (x, y ∈ I)

is also a strict mean on I and for each x, y ∈ I, M(x, y) = λx+ (1− λ)y if
and only if M̂λ(x, y) = λx+ (1− λ)y. The pair M , M̂λ satisfies

(1) λM(x, y) + (1− λ)M̂λ(x, y) = A(x, y;λ)

for all x, y ∈ I. In this sense, M̂λ is complementary to M with respect to
the weighted arithmetic mean.

The Matkowski–Sutô problem for weighted quasi-arithmetic means is
the following: When will two complementary means M and M̂ be weighted
quasi-arithmetic means with the same weight λ on I? In more detail, this
means finding those functions ϕ,ψ ∈ CM(I) which satisfy

(2) λϕ−1(λϕ(x) + (1− λ)ϕ(y)) + (1− λ)ψ−1(λψ(x) + (1− λ)ψ(y))

= λx+ (1− λ)y

for all x, y ∈ I.
The case λ = 1/2 is the original Matkowski–Sutô problem (see [7], [8], [2],

[4]), which has recently been solved in [5] completely. The case λ 6= 1/2 has
been solved in [6] under the assumptions that I is open and the generating
functions are continuously differentiable on I with nonvanishing derivatives.
Under this assumption, the conclusion is that ϕ ∼ id and ψ ∼ id on I.
Conversely, it is easy to verify that when ϕ ∼ id and ψ ∼ id on I, (2) is
satisfied. It is natural to ask if the differentiability assumption in the forward
statement can be reduced.

Without loss of generality we can suppose that λ ≤ 1/2, otherwise we
change the roles of ϕ and ψ, and of x and y. So in what follows λ ≤ 1/2 is
assumed.
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We ask the following local versus global question. Suppose that ϕ,ψ ∈
CM(I) satisfy (2) on I and there exists a proper interval J ⊂ I such that
ϕ ∼ id and ψ ∼ id on J . Is it true then that ϕ ∼ id and ψ ∼ id on I? In this
paper we give an affirmative answer. With this result, the differentiability
conditions on I used in [6] can be relaxed to their holding on some open
subinterval of I. In Section 2 we solve an equivariance functional equation
which is later applied in Section 3 to give the main result.

2. An equivariance equation on complementary means. Let M
be a strict mean on I and let 0 < λ ≤ 1/2. A function f : I → R is called
(M,λ)-associate if it has the following property:

(MA) If x, y ∈ I satisfy M(x, y) = λx + (1 − λ)y and f(x) = f(λx +
(1− λ)y) then f(y) = f(x).

One can easily check that if f is (M,λ)-associate then it is also (M̂λ, λ)-
associate.

In this section we solve the equivariance functional equation

f(M(x, y)) = f(M̂λ(x, y)) (x, y ∈ I),

where 0 < λ ≤ 1/2 is fixed.

Theorem 1. Let M be a strict mean on I, 0 < λ ≤ 1/2, and let f :
I → R be a function satisfying the functional equation

(3) f(M(x, y)) = f

(
λ

1− λ x+ y − λ

1− λ M(x, y)
)

for all x, y ∈ I. Then

(a) For all x, y ∈ I where M(x, y) 6= A(x, y;λ), f is locally constant at
A(x, y;λ).

(b) If f is continuous and (M,λ)-associate then either

(i) f is constant on I, or
(ii) f is injective on I and M(x, y) = A(x, y;λ) for all x, y ∈ I.

Proof. Denote by Ixy the closed interval joining M(x, y) and M̂λ(x, y)
and recall that A(x, y;λ) := λx+ (1− λ)y is the weighted arithmetic mean
on I. We also recall that λM(x, y) + (1− λ)M̂λ(x, y) = A(x, y;λ).

Claim 1. For all x0, y0 ∈ I two cases are possible:

(I) If M(x0, y0) ≤ M̂λ(x0, y0) then

f(A(x0, y0;λ)− s) = f

(
A(x0, y0;λ) +

λ

1− λ s
)

for all 0 ≤ s ≤ A(x0, y0;λ)−M(x0, y0).



156 Z. DARÓCZY ET AL.

(II) If M̂λ(x0, y0) < M(x0, y0) then

f(A(x0, y0;λ)− s) = f

(
A(x0, y0;λ) +

1− λ
λ

s

)

for all 0 ≤ s ≤ A(x0, y0;λ)− M̂λ(x0, y0).

Proof. The assertion is trivial when Ix0y0 is a singleton. Suppose Ix0y0

is proper. There are two cases: either x0 < y0 or y0 < x0. First let x0 < y0.
Consider xt := x0 + t, yt := y0 − λ

1−λ t for 0 ≤ t ≤ A(x0, y0;λ)− x0. We
note that for all t ∈ [0, A(x0, y0;λ)−x0] we have λxt+(1−λ)yt = A(x0, y0;λ),
and consequently λM(xt, yt) + (1− λ)M̂λ(xt, yt) = A(x0, y0;λ).

Now supposeM(x0, y0)<M̂λ(x0, y0). This immediately impliesM(x0, y0)
< A(x0, y0;λ). The function t 7→ M(xt, yt) is continuous and takes the
values M(x0, y0) and A(x0, y0;λ). By the Intermediate Value Theorem, for
each 0 ≤ s ≤ A(x0, y0;λ)−M(x0, y0), there exists t ∈ [0, A(x0, y0;λ)− x0]
such that M(xt, yt) = A(x0, y0;λ)− s and M̂λ(xt, yt) = A(x0, y0;λ) + λ

1−λs.
Thus by (3),

f(A(x0, y0;λ)− s) = f

(
A(x0, y0;λ) +

λ

1− λ s
)
.

A similar argument proves that if M̂λ(x0, y0) < M(x0, y0) then for each
0 ≤ s ≤ A(x0, y0;λ)− M̂λ(x0, y0), there exists t ∈ [0, A(x0, y0;λ)− x0] such
that M̂λ(xt, yt) = A(x0, y0;λ)−s and M(xt, yt) = A(x0, y0;λ)+ 1−λ

λ s. Then
again by (3),

f(A(x0, y0;λ)− s) = f

(
A(x0, y0;λ) +

1− λ
λ

s

)
.

If y0<x0 then let xt := x0− 1−λ
λ t, yt := y0 +t for 0≤ t≤A(x0, y0;λ)−y0.

The rest of the proof goes as above.

Claim 2. Suppose Ix0y0 is proper. Then f is locally constant at the point
A(x0, y0;λ); i.e., there exists a neighbourhood of A(x0, y0;λ) on which f is
constant.

Proof. We only examine case (I), when M(x0, y0) < M̂λ(x0, y0). Let
x0 < y0, say. For some sufficiently small δ > 0, we have

[
A(x0, y0;λ)− δ,

A(x0, y0;λ) + λ
1−λδ

]
⊂ Ixy0 for all x ∈ [x0, x0 + δ].

Now for all x ∈ [x0, x0 + δ], Ixy0 is proper, and by Claim 1,

f(A(x, y0;λ)− s) = f

(
A(x, y0;λ) +

λ

1− λ s
)
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whenever both arguments are in
[
A(x0, y0;λ)− δ,A(x0, y0;λ) + λ

1−λδ
]
. The

point A(x, y0;λ) being arbitrary in [A(x0, y0;λ), A(x0, y0;λ)+λδ], this gives
the constancy of f on

[
A(x0, y0;λ)− δ,A(x0, y0;λ) + λ

1−λδ
]
.

The other cases, when y0 < x0 and (II) holds, can be proved similarly.

The above proves (a) of Theorem 1. To prove (b), in what follows we
assume that f is continuous and (M,λ)-associate.

Claim 3. Suppose there exist x0 < y0 such that Ix0y0 is proper. Then f
is constant on I.

Proof. Let J ⊂ I be the maximal interval containing A(x0, y0;λ) on
which f is constant, i.e.,

J := {x ∈ I | f(y) = c for all y in the closed interval joining

x and A(x0, y0;λ)},

where c := f(A(x0, y0;λ)). By the continuity of f , J is closed relative to I;
and by Claim 2, it is a proper interval neighbourhood of A(x0, y0;λ). We
shall argue that J = I; thus f is constant on I.

Suppose that β := supJ is an interior point of I. Then there exists ε > 0
such that β − ε ∈ J and β + λ

1−λε ∈ I. Now for each y ∈
]
β, β + λ

1−λε
]

there exists a unique x ∈ [β − ε, β[ such that A(x, y;λ) = β. If the interval
Ixy were proper then f would be constant in a neighbourhood of β by
Claim 2 and so J would not be maximal. Therefore Ixy is a singleton, that
is, M(x, y) = M̂λ(x, y). So

M(x, y) = A(x, y;λ) = β.

Because x and β belong to J ,

f(x) = f(β) = c,

and since f is (M,λ)-associate, we get f(y) = c. As y ∈
]
β, β + λ

1−λ ε
]

is
arbitrary, this implies that β + λ

1−λε is in J, contradicting the assumption
that β = supJ . Thus supJ = sup I. One can similarly prove that inf J =
inf I. Since J is closed in I, we have J = I.

Claim 4. If f is nonconstant on I, then M(x, y) = A(x, y;λ) for all
x, y∈I.

Proof. By Claim 3, Ixy is a singleton for all x, y ∈ I, that is, M(x, y) =
M̂λ(x, y). As A(x, y;λ) = λM(x, y) + (1 − λ)M̂λ(x, y), we get A(x, y;λ) =
M(x, y).
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Claim 5. If f is nonconstant , then it is injective on I.

Proof. By Claim 4, the continuous and nonconstant function f : I → R
satisfies the condition (MA):

(4) f(y) = f(x) whenever f(x) = f(A(x, y;λ)), x, y ∈ I.

(I) Case 1. Suppose λ = 1/2. This has been dealt with in [3], where the
proof of injectivity of f on all closed [a, b] ⊂ I is given. So f is injective on I.

(II) Case 2. Suppose 0 < λ < 1/2. Let % := λ
1−λ . Since 0 < λ < 1/2, we

have 0 < % < 1. We rewrite (4) in the form

(5) f(u) = f(v) implies f(u+ %(u− v)) = f(u) = f(v),

u, v, u+ %(u− v) ∈ I.
Suppose to the contrary that f is not injective. Then there exist x1 < x2 in
the interior of I which are as close as we wish so that

f(x1) = f(x2).

Let them be chosen close enough that x2 + %(x2 − x1) stays in I. We shall
now argue that

(6) f is constant on [x1, x2].

If this were not true, then there would exist a proper connected component
interval ]x3, x4[ of the nonempty open set {t ∈ ]x1, x2[ | f(t) 6= f(x1)} for
which

(7) f(x1) = f(x2) = f(x3) = f(x4), but f(t) 6= f(x1) for all t ∈ ]x3, x4[.

Since x2 + %(x2 − x1) ∈ I, this implies x5 := x4 + %(x4 − x3) ∈ I. Applying
(5) once we get f(x5) = f(x4) = f(x3). Let x6 := x4 + %(x4 − x5). Then
x6 = x4 + %(−%(x4 − x3)) = x4 − %2(x4 − x3) where 0 < %2 < 1; we
have x6 ∈ ]x3, x4[. Applying (5) once more we get f(x6) = f(x4) = f(x5),
i.e. f(x6) = f(x1) while x6 ∈ ]x3, x4[. This is a contradiction to (7). This
proves (6).

Let K be the maximal interval containing [x1, x2] on which f is constant.
Then K is proper, and is closed relative to I. It is easy to see that K must
be equal to I. For otherwise, say k := supK is an interior point in I; then by
(5), f will remain constant on [k, k+%(k−x1)]∩I and K will not be maximal.
This contradiction shows that supK = sup I. Similarly, inf K = inf I holds.
K being closed in I, this gives K = I. Thus f is constant on I, and this is
a contradiction.

This completes the proof of Theorem 1.
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3. The extension theorem

Lemma 1. Let ϕ,ψ ∈ CM(I) satisfy (2) on I and let J ⊂ I be a proper
subinterval on which ϕ ∼ id and ψ ∼ id. Then there exist ϕ̃, ψ̃ ∈ CM(I)
satisfying (2) such that ϕ ∼ ϕ̃ and ψ ∼ ψ̃ on I and

ϕ̃(x) = x, ψ̃(x) = x for all x ∈ J.

Proof. There exist constants αi 6= 0 and βi (i = 1, 2) such that

α1ϕ(x) + β1 = x, α2ψ(x) + β2 = x

for all x ∈ J . Then ϕ̃ := α1ϕ+ β1 and ψ̃(x) := α2ψ + β2 have the asserted
properties.

Theorem 2. Let ϕ,ψ ∈ CM(I) satisfy (2) for all x, y ∈ I and let J be
a proper subinterval of I such that ϕ ∼ id and ψ ∼ id on J . Then ϕ ∼ id
and ψ ∼ id on I.

Proof. According to Lemma 1, we can suppose that

ϕ(x) = x, ψ(x) = x (x ∈ J)

and we need to show that ϕ = ψ = id on the full interval I. Let K ⊂ I be
the maximal interval containing J such that

(8) ϕ(x) = x, ψ(x) = x (x ∈ K).

We are going to show that K = I. By the continuity of ϕ and ψ, K is closed
in I. Suppose to the contrary that K 6= I; then either inf K or supK is an
interior point of I. Say, a := inf K is an interior point of I.

Choose another element b ∈ K which is above a, i.e. a < b. Then ]a, b[ is
an open neighbourhood of Aϕ(a, b;λ) and Aψ(a, b;λ) because the two means
are strict. By the continuity of Aϕ(·, b;λ) and Aψ(·, b;λ), and the fact that
a is an interior point of I, there exists δ > 0 such that [a − δ, a] ⊂ I and
Aϕ(x, b;λ) and Aψ(x, b;λ) are both in ]a, b[ for all x ∈ [a− δ, a].

Let x ∈ [a− δ, a]. Then from (2) and (8) we have

λ(λϕ(x) + (1− λ)b) + (1− λ)(λψ(x) + (1− λ)b) = λx+ (1− λ)b,

which implies λϕ(x)+(1−λ)ψ(x) = x. The latter also holds true for x ∈ [a, b]
where ϕ(x) = ψ(x) = x and so we have

(9) λϕ(x) + (1− λ)ψ(x) = x for all x ∈ [a− δ, b].
That is,

ψ(x) = − λ

1− λ ϕ(x) +
x

1− λ.
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Since

λAϕ(x, y;λ) + (1− λ)Aψ(x, y;λ) = λx+ (1− λ)y,

ϕ(Aϕ(x, y;λ)) = λϕ(x) + (1− λ)ϕ(y),

ψ(Aψ(x, y;λ)) = λψ(x) + (1− λ)ψ(y),

equation (9) yields

ϕ(Aψ(x, y;λ))− Aψ(x, y;λ) = ϕ(Aϕ(x, y;λ))− Aϕ(x, y;λ)

for all x, y ∈ [a− δ, b]. Now let f(t) := ϕ(t)− t. Then

(10) f(Aψ(x, y;λ)) = f(Aϕ(x, y;λ)) for all x ∈ [a− δ, b].
We show that f is (Aϕ(x, y;λ), λ)-associate. Let x, y ∈ [a− δ, a] be such

that Aϕ(x, y;λ) = λx+ (1− λ)y and f(x) = f(λx+ (1− λ)y). Then

λϕ(x) + (1− λ)ϕ(y) = ϕ(λx+ (1− λ)y)

and
ϕ(x)− x = ϕ(λx+ (1− λ)y)− (λx+ (1− λ)y).

These equations imply
ϕ(y)− y = ϕ(x)− x,

that is, f is (Aϕ(x, y;λ), λ)-associate.
By Theorem 1, either f is constant or Aϕ(x, y;λ) = A(x, y;λ) for all

x, y ∈ [a− δ, b]. In both cases ϕ(x) = αx+ β for all x ∈ [a− δ, b] follows for
some α 6= 0 and β. Comparing this with ϕ(x) = x for all x ∈ [a, b], we get
α = 0 and β = 0. This in turn implies ϕ(x) = x for all x ∈ [a− δ, b]. Putting
this in (8) we also have ψ(x) = x for all x ∈ [a − δ, b]. Thus [a − δ, b] ∪K
is an interval larger than K on which (8) holds, and this is a contradiction
to the maximality of K. Similarly, supK cannot be an interior point of I.
This proves that K = I.

The results of [6] and Theorem 2 yield the following corollary.

Corollary 1. Suppose λ 6= 1/2. Let ϕ,ψ ∈ CM(I) satisfy (2) for all
x, y ∈ I and let K be a proper open subinterval of I such that ϕ and ψ are
continuously differentiable on K. Then ϕ ∼ id and ψ ∼ id on I.

Proof. Let H := {x | x ∈ K, ϕ′(x) = 0}, which is a closed set in K.
Then H 6= K, because ϕ ∈ CM(I). Therefore there exists a proper open
interval K1 ⊂ K such that ϕ′(x) 6= 0 if x ∈ K1. Similarly, let H1 := {x |
x ∈ K1, ψ

′(x) = 0}. Then there exists a proper open interval K2 ⊂ K1

such that ψ′(x) 6= 0 if x ∈ K2. Thus ϕ′(x) 6= 0 and ψ′(x) 6= 0 if x ∈ K2. By
[6], ϕ ∼ id and ψ ∼ id on K2. Now Theorem 2 implies ϕ ∼ id and ψ ∼ id
on I.



MATKOWSKI–SUTÔ PROBLEM 161

REFERENCES

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press,
New York, 1966.
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problem, Demonstratio Math. 33 (2000), 547–556.
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