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ESTIMATES OF GREEN FUNCTIONS AND THEIR APPLICATIONS
FOR PARABOLIC OPERATORS WITH SINGULAR POTENTIALS

BY

LOTFI RIAHI (Tunis)

Abstract. We prove global pointwise estimates for the Green function of a parabolic
operator with potential in the parabolic Kato class on a C1,1 cylindrical domain Ω. We
apply these estimates to obtain a new and shorter proof of the Harnack inequality [16],
and to study the boundary behavior of nonnegative solutions.

Introduction. The problem of bounding Green functions and its ap-
plications to study elliptic and parabolic equations have received much at-
tention by several authors in different situations. In the elliptic setting, it
was shown by Hueber [8] that the Green function GL of an elliptic operator

L =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
+ c(x)

with bounded Hölder continuous coefficients, c ≤ 0 and real, symmetric,
uniformly elliptic matrix (aij)i,j on a C1,1 bounded domain D ⊂ Rn, n ≥ 3,
satisfies the following pointwise estimates:

k−1 ϕ(x, y)
|x− y|n−2 ≤ GL(x, y) ≤ k ϕ(x, y)

|x− y|n−2

for all x, y ∈ D, where ϕ(x, y) = min
(
1, d(x)d(y)
|x−y|2

)
, d(x) = d(x, ∂Ω).

For the Green function G∆ of the Laplace operator, these estimates are
due to Widman [13], Grüter and Widman [7], and Zhao [19]. As a simple
consequence, GL and G∆ are comparable in the following sense: k−1G∆ ≤
GL ≤ kG∆ for some constant k > 0. This comparison result first proved
by Hueber and Sieveking [9] enabled them to prove the equivalence of the
L-harmonic measure and the ∆-harmonic measure on the boundary of D.
These comparisons are very important in the sense that they allow the
transfer to L of potential-theoretic results valid for ∆. In [19], Zhao studied
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the Schrödinger operator L = 1
2∆+ q, with potential q in the elliptic Kato

class K loc
n , n ≥ 3, i.e. q satisfies

lim
α→0

sup
x∈D

�

|x−y|≤α

|q(y)|
|x− y|n−2 dy = 0,

on a C1,1 bounded domain D. Assuming that (D, q) satisfies the gauge
condition: sup

[
spec

(
1
2∆ + q

)
/D
]
< 0, he proved the comparability of the

Green functions GL and G∆. This allowed him to prove the existence of the
Poisson kernel of the Dirichlet problem corresponding to the Schrödinger
operator. These results were later extended by Cranston, Fabes and Zhao
[3] to the general Schrödinger operator L = A+q where A = −div(A(x)∇x)
and q ∈ K loc

n , n ≥ 3, and so L and A have the same potential theory.
In the parabolic setting, it is well known that the fundamental solution

satisfies the Gaussian estimates in different situations (see Aronson [1, 2],
Fabes and Stroock [6], and Zhang [14–17]). In particular, Zhang proved these
estimates for parabolic operators with lower order terms in some parabolic
Kato classes. The parabolic Kato class is a natural generalization of the el-
liptic Kato class, and it is considered to be the biggest possible space so that
the Gaussian bounds for the fundamental solution hold. The Gaussian esti-
mates are used to study nonnegative solutions of the corresponding parabolic
equations. In the half-space the analogous estimates were proved in [11], and
used to study parabolic potentials. In [10], Hui studied the heat equation
and proved that the Green function of a smooth cylindrical domain satisfies
an upper Gaussian estimate involving the distance to the boundary. More
importantly, lower and upper estimates were proved in [12] for the Green
function of the operator L = ∂/∂t− div(A(x, t)∇x) + B(x, t)∇x with B in
the parabolic Kato class Kn+1 on a C1,1 cylindrical domain; they were then
used to establish the comparability results for Green functions and harmonic
measures extending their elliptic counterparts initially proved by Cranston
and Zhao [4] for 1

2∆ + b(x)∇x. In contrast to the elliptic case, nothing is
proved about the boundary behavior of the Green function for parabolic
operators with singular potentials, and the existence of such estimates in
this case remains unknown.

The main goal of the present paper is to investigate this problem for the
parabolic operator

L =
∂

∂t
− div(A(x, t)∇x) + V (x, t)

on Ω = D× ]0, T [, where D is a C1,1 bounded domain in Rn, n ≥ 1, and 0 <
T <∞. The matrix A is assumed to be real, symmetric, uniformly elliptic,
i.e. (1/µ)I ≤ A(x, t) ≤ µI for some µ ≥ 1, with µ-Lipschitz coefficients,
and V in the parabolic Kato class Kn as introduced by Zhang [16, 17], i.e.
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V ∈ L1
loc(Ω) and limh→0 N

α
h (V ) = 0, where

Nα
h (V ) ≡ sup

x,t

t�

t−h

�

D

|V (z, τ)| 1
(t− τ)n/2

exp
(
−α |x− z|

2

t− τ

)
dz dτ

+ sup
y,s

s+h�

s

�

D

|V (z, τ)| 1
(τ − s)n/2 exp

(
−α |z − y|

2

τ − s

)
dz dτ

for all α > 0. The existence and uniqueness of the L-Green function G on
Ω were shown in [16, 17].

Before describing the main body of our paper we recall the following
estimates of the Green function G0 of Ω of the unperturbed operator L0 =
∂/∂t− div(A(x, t)∇x).

Theorem I ([12]). There exist constants k, c, c′ > 0, depending only on
n, µ, D and T , such that

k−1ψ(x, y, t− s)
exp
(
−c′ |x−y|

2

t−s
)

(t− s)n/2 ≤ G0(x, t, y, s)

≤ kψ(x, y, t− s)
exp
(
−c |x−y|

2

t−s
)

(t− s)n/2

for all (x, t), (y, s) ∈ Ω with s < t, where

ψ(x, y, u) = min
(

1,
d(x)√
u
,
d(y)√
u
,
d(x)d(y)

u

)

and d(x) = d(x, ∂D) denotes the distance from x to the boundary of D.

In Section 1, we prove that the L-Green function G satisfies the esti-
mates of Theorem I with constants depending on V only in terms of the
rate of convergence of Nα

h (V ) to zero as h → 0. Our idea is based on the
resolvent equation G = G0 −G ∗ (V G0) and Theorem I. The control of the
term G ∗ (V G0) constitutes a real difficulty in the proof. Apart from being
interesting in themselves, these estimates reveal the behavior of the Green
function of the perturbed operator L especially near the boundary. More-
over, they simplify proofs of certain known results which were initially ob-
tained by means of involved analytical calculations or considerations based
on boundary Harnack principles (see [16, 17], and [12] for a bibliography).

In Section 2, we give some applications of the Green function estimates.
We first present an alternative and shorter proof of the Harnack inequality
recently established by Zhang [16], using the idea of Fabes and Stroock [6].
Our method is new and can be applied to other operators. We next prove
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a boundary Harnack principle and a comparison theorem for nonnegative
L-solutions vanishing on a part of the lateral boundary. These results, first
proved for elliptic and less general parabolic operators, are the main regu-
larity properties of nonnegative solutions which are used to study the poten-
tial theory of the corresponding operators; for instance, to study the Martin
boundary, to prove the so called doubling property of harmonic measures,
etc. (we refer the reader to [5], [3] and the references given there). Another
important application of the Green function estimates concerns the equiva-
lence of the L-parabolic measure, L∗-parabolic measure and surface measure
on the lateral boundary of Ω, which is stated at the end of the paper. The
proof of this result follows the idea developed in [12]; therefore it is omitted.

We need to recall some known results. For an open subset Ω of Rn+1,
we denote by ∂pΩ the parabolic boundary of Ω, i.e. ∂pΩ is the set of points
on the boundary of Ω which can be connected to some interior point of Ω
by a closed curve having a strictly increasing t-coordinate. We have

Theorem II (Minimum principle). Let Ω be a bounded open set in Rn+1

and u an L-superparabolic function in Ω satisfying lim infz→z0 u(z) ≥ 0 for
all z0 ∈ ∂pΩ. Then u ≥ 0.

The L-Green function G of Ω has the reproducing property :

G(x, t, y, s) =
�

D

G(x, t, ξ, τ)G(ξ, τ, y, s) dξ

for all x, y ∈ D and s < τ < t ([16]).

1. Estimates for the L-Green function. In this section we prove the
following main result.

Theorem 1.1. Let V be in the parabolic Kato class. Then there exist
constants k, c1, c2 > 0, depending on n, µ, T, D, and on V only in terms of
the rate of convergence of Nα

h (V ) to zero as h→ 0, such that

k−1ψ(x, y, t− s)
exp
(
−c2 |x−y|

2

t−s
)

(t− s)n/2 ≤ G(x, t, y, s)

≤ kψ(x, y, t− s)
exp
(
−c1 |x−y|

2

t−s
)

(t− s)n/2

for all (x, t), (y, s) ∈ Ω with s < t, where ψ(x, y, u) = min(1, d(x)/
√
u,

d(y)/
√
u, d(x)d(y)/u).

Proof. We can assume that V ∈ L∞; the general case is covered by a
limiting argument in Lemma 6.3 of [16].
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We first prove the upper bound. By the minimum principle, we have

G ≤ eT‖V ‖∞G0.

In view of Theorem I and the previous inequality, let k0 be the least positive
number such that

(1) G(x, t, y, 0) ≤ k0 min
(

1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
exp
(
− c

2
|x−y|2
t

)

tn/2

for all x, y ∈ D and 0 < t ≤ h for some fixed h. Our aim is to prove that k0

depends on V only in terms of the quantity Nα
h (V ).

From [16] we know the integral equation

(2) G(x, t, y, s) = G0(x, t, y, s)−
t�

s

�

D

G(x, t, z, τ)V (z, τ)G0(z, τ, y, s) dz dτ

for all x, y ∈ D and 0 < t ≤ T . From (1), (2) and Theorem I, it follows that

|G(x, t, y, 0)−G0(x, t, y, 0)| ≤ kk0

t�

0

�

D

ω(z, τ)
exp
(
− c

2
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)|(3)

× exp
(
−c |z−y|

2

τ

)

τn/2
dz dτ,

where

ω(z, τ) = min
(

1,
d(x)√
t− τ

)
min

(
1,

d(z)√
t− τ

)
min

(
1,
d(z)√
τ

)
min

(
1,
d(y)√
τ

)
.

For simplicity we write

J(x, t, y, 0) =
t�

0

�

D

ω(z, τ)
exp
(
− c

2
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)| exp

(
−c |z−y|

2

τ

)

τn/2
dz dτ.

We will estimate J . For % ∈ ]0, 1[ to be chosen later, we have

J(x, t, y, 0) =
( %t�

0

+
t�

%t

) �

D

. . . dz dτ ≡ J1 + J2.

We first estimate J1. To this end let us recall the inequality

(4)
|x− z|2
t− τ +

|z − y|2
τ

≥ |x− y|
2

t
, ∀τ ∈ ]0, t[.

Then we have
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(5) J1(x, t, y, 0) =
%t�

0

�

D

ω(z, τ)
exp
(
− c

2
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)| exp

(
−c |z−y|

2

τ

)

τn/2
dz dτ

=
%t�

0

�

D

ω(z, τ)
exp
(
− c

2

[ |x−z|2
t−τ + |z−y|2

τ

])

(t− τ)n/2
|V (z, τ)| exp

(
− c

2
|z−y|2
τ

)

τn/2
dz dτ

≤ exp
(
− c

2
|x−y|2
t

)

((1− %)t)n/2

%t�

0

�

D

ω(z, τ)|V (z, τ)| exp
(
− c

2
|z−y|2
τ

)

τn/2
dz dτ.

On the other hand,

(6)
%t�

0

�

D

ω(z, τ)|V (z, τ)|exp
(
− c

2
|z−y|2
τ

)

τn/2
dz dτ

=
%t�

0

( �

d(z)≤2d(y)

+
�

d(z)≥2d(y)

)
. . . dz dτ ≡ J11 + J12.

If d(z) ≤ 2d(y) and τ ∈ ]0, %t[, then

ω(z, τ) ≤ 2
1− % min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
.

If d(z) ≥ 2d(y) and τ ∈ ]0, %t[, then

ω(z, τ) ≤ 1
1− % min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
d(z)√
τ

≤ 2
1− % min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

) |z − y|√
τ

.

It follows that

(7) J11 ≤
2

1− % min
(

1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
N
c/2
h (V )

for 0 < t ≤ h, and

J12 ≤
2

1− % min
(

1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
(8)

×
%t�

0

�

d(z)≥2d(y)

|z − y|√
τ
|V (z, τ)| exp

(
− c

2
|z−y|2
τ

)

τn/2
dz dτ

≤ 2
(1− %)

√
c

min
(

1,
d(x)√
t

)
min

(
1,
d(y)√
t

)

×
%t�

0

�

d(z)≥2d(y)

|V (z, τ)| exp
(
− c

4
|z−y|2
τ

)

τn/2
dz dτ

≤ 2
(1− %)

√
c

min
(

1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
N
c/4
h (V )
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for 0 < t ≤ h. Combining (5)–(8), we obtain

(9) J1(x, t, y, 0)

≤ 4c−1/2

(1− %)n/2+1
N
c/4
h (V ) min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
exp
(
− c

2
|x−y|2
t

)

tn/2

for all x, y ∈ D and 0 < t ≤ h.
We next estimate J2. We have

J2(x, t, y, 0) =
t�

%t

�

D

ω(z, τ)
exp
(
− c

2
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)| exp

(
−c |z−y|

2

τ

)

τn/2
dz dτ(10)

=
t�

%t

( �

|z−y|≥ 1√
2
|x−y|

+
�

|z−y|≤ 1√
2
|x−y|

)
. . . dz dτ ≡ J21 + J22.

If |z − y| ≥ 1√
2
|x− y| and τ ∈ ]%t, t[, then

exp
(
−c |z−y|

2

τ

)

τn/2
≤ exp

(
− c

2
|x−y|2
t

)

(%t)n/2
.

Therefore

(11) J21 ≤
exp
(
− c

2
|x−y|2
t

)

(%t)n/2

t�

%t

�

D

ω(z, τ)
exp
(
− c

2
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)| dz dτ.

Now we estimate J22. We have

J22 =
t�

%t

�

|z−y|≤ 1√
2
|x−y|
ω(z, τ)

exp
(
− c

2
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)| exp

(
−c |z−y|

2

τ

)

τn/2
dz dτ(12)

≤ (%t)−n/2
t�

%t

�

|z−y|≤ 1√
2
|x−y|

ω(z, τ)
exp
(
− c

2
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)| dz dτ.

If |z − y| ≤ 1√
2
|x − y|, then |x − z| ≥ |x − y| − |z − y| ≥

(
1 − 1√

2

)
|x − y|.

Hence

exp
(
− c

2
|x− z|2
t− τ

)
≤ exp

(
− c

4
|x− z|2
t− τ

)
exp
(
− c

4
|x− y|2
t− τ

(
1− 1√

2

)2)

≤ exp
(
− c

4
|x− z|2
t− τ

)
exp
(
− c

4
|x− y|2
(1− %)t

(
1− 1√

2

)2)
.

Now taking % so that (1− 1/
√

2)2/(2(1− %)) = 1, we obtain

(13) exp
(
− c

2
|x− z|2
t− τ

)
≤ exp

(
− c

4
|x− z|2
t− τ

)
exp
(
− c

2
|x− y|2

t

)
.
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Combining (12) and (13) yields

(14) J22 ≤
exp
(
− c

2
|x−y|2
t

)

(%t)n/2

t�

%t

�

D

ω(z, τ)
exp
(
− c

4
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)| dz dτ.

From (10), (11) and (14), we have

(15) J2(x, t, y, 0)

≤ 2
exp
(
− c

2
|x−y|2
t

)

(%t)n/2

t�

%t

�

D

ω(z, τ)
exp
(
− c

4
|x−z|2
t−τ

)

(t− τ)n/2
|V (z, τ)| dz dτ.

Note that (15) is similar to the inequality (5) for J1. Then by the same
method used to prove (9), we obtain

(16) J2(x, t, y, 0)

≤ 8c−1/2

%n/2+1
N
c/8
h (V ) min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
exp
(
− c

2
|x−y|2
t

)

tn/2

for all x, y ∈ D and 0 < t ≤ h.
Combining (9), (16) and the fact that (1 − 1/

√
2)2/(2(1− %)) = 1, we

get

(17) J(x, t, y, 0)≤k′N c/8
h (V ) min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
exp
(
− c

2
|x−y|2
t

)

tn/2

for all x, y ∈ D and 0 < t ≤ h. Substituting (17) to (3) gives

G(x, t, y, 0) ≤ k(1 + k0k
′N c/8

h (V )) min
(

1,
d(x)√
t

)
min

(
1,
d(y)√
t

)

× exp
(
− c

2
|x−y|2
t

)

tn/2

for all x, y ∈ D and 0 < t ≤ h. Hence, by definition of k0, we obtain

k0 ≤ k + kk0k
′N c/8

h (V ).

Choosing h sufficiently small so that kk′N c/8
h (V ) < 1/2, we have k0 ≤ 2k.

This completes the proof of the upper bound.
We next prove the lower bound. From (3) and (17), we have

|G(x, t, y, 0)−G0(x, t, y, 0)|

≤ 2k2k′N c/8
h (V ) min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
exp
(
− c

2
|x−y|2
t

)

tn/2
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for all x, y ∈ D and 0 < t ≤ h. Hence, by Theorem I, we deduce that

G(x, t, y, 0) ≥ min
(

1,
d(x)√
t

)
min

(
1,
d(y)√
t

)

×
[

1
k

exp
(
−c′ |x−y|

2

t

)

tn/2
− 2k2k′N c/8

h (V )
1
tn/2

]

for all x, y ∈ D and 0 < t ≤ h. Then, for h so small that 2k2k′N c/8
h (V ) ≤

e−c
′
/(2k), we obtain

(18) G(x, t, y, 0) ≥ e−c
′

2k
min

(
1,
d(x)√
t

)
min

(
1,
d(y)√
t

)
1
tn/2

for all x, y ∈ D and 0 < t ≤ h with |x− y|2/t ≤ 1.
An inequality like (18) together with the reproducing property of the

Green function, and a geometric property of C1,1 domains, imply the re-
quired lower estimate. For all details we refer the reader to [12].

By Theorem 1.1 and a simple argument given in [12], we prove the fol-
lowing comparison result for Green functions.

Corollary 1.2. Let V be in the parabolic Kato class. Then there exist
positive constants k, c3 and c4, depending only on n, µ, T, D, and on V in
terms of the rate of convergence of Nα

h (V ) to zero as h→ 0, such that

k−1Gc3 ≤ G ≤ kGc4
on Ω, where Gci is the Green function of ∂/∂t− ci∆x on Ω.

Remarks 1.3. 1. The constants c3 and c4 are independent of T , in view
of the comparison on D × ]0, 1[ and the reproducing property.

2. In general the estimates in Theorem 1.1 are not global in time. This
is clear from the following simple example. Consider L = ∂/∂t − ∆x + c,
where c is a positive constant, and Ω = B(0, 1)× ]0,∞[. Let G denote the
L-Green function of Ω. The L-fundamental solution is given by

Γ (x, t, y, 0) =
1

(4πt)n/2
exp
(
−|x− y|

2

4t

)
exp(−ct)

for all x, y ∈ Rn and t > 0. Suppose there is a global lower bound. Then

k−1 min
(

1,
d(x)√
t
,
d(y)√
t
,
d(x)d(y)

t

)
exp
(
−c2 |x−y|

2

t

)

tn/2
≤ Γ (x, t, y, 0)

for all t > 0 and x, y ∈ B(0, 1). If we choose x = y, then we get

min(1, d(x)/
√
t, d2(x)/t) ≤ k exp(−ct)

for all t > 0, which is a contradiction.
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3. The estimates in Theorem 1.1 may fail to hold when the domain D
is only Lipschitz. The following example illustrates this point. Let D =
{x = (x1, x2) ∈ R2 : x1 > 0, x2 > 0} and fix y ∈ D with |y| > 1. Put
U = D ∩B(0, 1). Consider the parabolic operators

L1 =
∂

∂t
−∆x, L2 =

∂

∂t
−
(
∂2

∂x2
1
− ∂2

∂x1∂x2
+

∂2

∂x2
2

)

and let u1(x) = x1x2, u2(x) = x2
1x2 + x1x

2
2. The function ui is a positive

Li-solution on Ω = D × ]0, T [ for i = 1, 2. Let Gi denote the Li-Green
function of Ω for i = 1, 2. From the comparison theorem (Theorem 1.6
in [5]), it follows that there exist two positive constants k1 and k2 such that,
for t ∈ ]0, T [ fixed,

k−1
1 ≤ u1(x)

G1(x, t, y, 0)
≤ k1 for all x ∈ U,

k−1
2 ≤ u2(x)

G2(x, t, y, 0)
≤ k2 for all x ∈ U.

This shows that

k−1 ≤ u1(x)G2(x, t, y, 0)
u2(x)G1(x, t, y, 0)

≤ k for all x ∈ U.

Suppose that the estimates of Theorem 1.1 are true. Then

k−1
3 exp

(
−c |x− y|

2

t

)
≤ G1(x, t, y, 0)
G2(x, t, y, 0)

≤k3 exp
(
c
|x− y|2

t

)
for all x∈D.

The previous two-sided inequalities now imply that u1/u2 is bounded near
zero, which is not true.

2. Applications. In this section we give some applications of the Green
function bounds established in Section 1. A new and shorter proof of the
Harnack inequality [16] is given. A boundary Harnack principle and a com-
parison theorem for nonnegative L-solutions which continuously vanish on
a part of the lateral boundary are proved.

2.1. The Harnack inequality. By means of the Green function estimates
and a potential-theoretic argument we present an alternative and shorter
proof of the Harnack inequality [16] for nonnegative L-solutions. Our idea
is new and can be applied to other similar operators.

Theorem 2.1. Let 0 < α2 < β2 < α1 < β1 < 1, δ ∈ ]0, 1[ and R0 > 0
be given. Then there exists k > 0 such that for all (x, s) ∈ Rn × R, all
R ∈ ]0, R0] and all nonnegative L-solutions u in B(x,R) × [s − R2, s], we
have

sup
Q−

u ≤ k inf
Q+

u
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where Q− = B(x, δR) × [s − β1R
2, s − α1R

2] and Q+ = B(x, δR) ×
[s − β2R

2, s − α2R
2]. The constant k depends only on n, µ, the parame-

ters αi, βi, R0, and on V in terms of the rate of convergence of Nα
h (V ) to

zero as h→ 0.

Proof. We may assume (x, s) = (0, 0). For R ∈ ]0, R0] put Ω = B(0, R)×
]−R2, 0[ and let G be the L-Green function of Ω. Let Σ be the open set
B(0, δ′R) × ]−β′R2,−α′R2[, where α′ = α2/2, β′ = (1 + β1)/2 and δ′ =
(1 + δ)/2. We denote by RΣu the nonnegative L-superparabolic envelope of
u with respect to Σ, which is also called the “reduct” of u with respect to Σ,
and defined by

RΣu = inf{v : v a nonnegative L-supersolution on Ω with v ≥ u on Σ}.
Then RΣu is an L-potential on Ω which is harmonic on Ω \ ∂Σ, so there
exists a positive measure supported in ∂Σ such that

RΣu (x, t) =
�

∂Σ

G(x, t, y, s) dµ(y, s) for all (x, t) ∈ Ω.

For (x, t) ∈ Q−, we have, by Theorem 1.1,

u(x, t) = RΣu (x, t) =
�

∂Σ∩ ]−R2,−α1R2[

G(x, t, y, s) dµ(y, s)(19)

≤ k
�

∂Σ∩ ]−R2,−α1R2[

exp
(
−c1 |x−y|

2

t−s
)

(t− s)n/2 dµ(y, s).

Note that

∂Σ ∩ ]−R2,−α1R
2[

= (∂B(0, δ′R)× ]−β′R2,−α1R
2[) ∪ (B(0, δ′R)× {−β′R2}).

If (y, s) ∈ ∂B(0, δ′R)× ]−β′R2,−α1R
2[, then

exp
(
−c1 |x−y|

2

t−s
)

(t− s)n/2 ≤ C

|x− y|n ≤
k′

Rn
.

If (y, s) ∈ B(0, δ′R)× {−β′R2}, then

exp
(
−c1 |x−y|

2

t−s
)

(t− s)n/2 ≤ 1
(t− s)n/2 ≤

k′′

Rn
.

Therefore, from (19) it follows that

(20) sup
Q−

u ≤ C

Rn
µ(∂Σ ∩ ]−R2,−α1R

2]).
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For (x, t) ∈ Q+, we have, by Theorem 1.1,

u(x, t) = RΣu (x, t) ≥
�

∂Σ∩ ]−R2,−α1R2]

G(x, t, y, s)dµ(y, s)(21)

≥ 1
k

�

∂Σ∩ ]−R2,−α1R2]

ψ(x, y, t− s)
exp
(
−c2 |x−y|

2

t−s
)

(t− s)n/2 dµ(y, s).

On the other hand, for (y, s) ∈ ∂Σ∩ ]−R2,−α1R
2] and (x, t) ∈ Q+, we have

(α1 − β2)R2 ≤ t− s ≤ (β′ − α2)R2,

|x− y|2 ≤ 4R2, d(y) ≥ (1− δ′)R, d(x) ≥ (1− δ)R.
Combining the last inequalities with (21), we get

(22) inf
Q+

u ≥ 1
CRn

µ(∂Σ ∩ ]−R2,−α1R
2]).

From (20) and (22), we have

sup
Q−

u ≤ k inf
Q+

u.

2.2. Boundary behavior of nonnegative L-solutions. In this subsection
we prove a boundary Harnack principle and a comparison theorem for non-
negative L-solutions which continuously vanish on a part of the lateral
boundary of Ω. The boundary Harnack principle provides a uniform bound
for such solutions and the comparison theorem proves that two nonnegative
L-solutions continuously vanishing on a portion of the lateral boundary van-
ish at the same rate on a subportion. These results give precise information
on the behavior of these solutions near the lateral boundary. For the unper-
turbed operator L0 these results were proved by Fabes, Garofalo and Salsa
[5], and found their applications in the proofs of the doubling property of
harmonic measure, the existence of kernel functions, etc. In the elliptic set-
ting, these results have been proved in several situations. We refer the reader
to [3], and the references given in [5] and [3]. Here we present new meth-
ods of proof based on the Green function estimates and potential-theoretic
arguments which can be applied to other similar operators.

We first give some notations. For (Q, s) ∈ Rn × R and r > 0, we define
the cylinder

Tr(Q, s) = {(x, t) ∈ Rn × R : |x−Q| < r, |t− s| < r2}.
For (Q, s) ∈ ∂pΩ, we put ∆r(Q, s) = ∂pΩ ∩ T r(Q, s). We know that there
exists r0 > 0 such that for each Q ∈ ∂D, there is a local coordinate system
in which ∂D ∩ B(Q, r0) is the graph of a C1,1 function. When Q ∈ ∂D is
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represented by (x′0, ϕ(x′0)) in the local coordinate system, we set

Mr(Q, s) = (x′0, ϕ(x′0) + r, s+ 2r2),

M∗r (Q, s) = (x′0, ϕ(x′0) + r, s− 2r2).

We have the following result.

Theorem 2.2.1 (Boundary Harnack principle). Let (Q, s) ∈ ∂D× ]0, T [
and r ∈ ]0, r0 ∧

√
T − s[. Then there exists a constant k > 0, depending only

on n, µ, T, D, and on V in terms of the rate of convergence of Nα
h (V ) to

zero as h→ 0, such that for all nonnegative L-solutions u on Ω \ Tr/2(Q, s)
continuously vanishing on ∂pΩ \ Tr/2(Q, s), we have

u(M) ≤ ku(Mr(Q, s)) for all M ∈ Ω \ Tr(Q, s).

Proof. Without loss of generality we assume Q = 0. We first prove the
result for u = GA ≡ G(·, A) with A ∈ Ω ∩ Tr/2(0, s). We write

A = (0, s) + (y, τ) with |y| < r/2 and |τ | < r2/4,

M = (0, s) + (x, t) with |x| ≥ r or |t| ≥ r2,

and we put Mr = Mr(0, s). When t ≤ τ , we know GA(M) = 0. In what
follows we assume t > τ .

By the Green function estimates (Theorem 1.1), we have

GA(M) ≤ k d(y)
(t− τ)(n+1)/2

exp
(
−c1
|x− y|2
t− τ

)
.

If |t| ≥ r2, then

(23) GA(M) ≤ k d(y)
(

3
4r

2
)(n+1)/2

= k′
d(y)
rn+1 .

If |x| ≥ r, then

(24) GA(M) ≤ C d(y)
|x− y|n+1 ≤ C

′ d(y)
rn+1 .

On the other hand, by Theorem 1.1, we also have

GA(Mr) ≥
1
k

d(y)r
(2r2 − τ)n/2+1

exp
(
−c2
|y′|2 + |r − yn|2

2r2 − τ

)
.

Using the fact that |y′|2 + |r − yn|2 ≤ 5
2r

2 and 7
4r

2 ≤ 2r2 − τ ≤ 9
4r

2, we
obtain

(25) GA(Mr) ≥ k′′
d(y)
rn+1 .

Combining (23)–(25) gives

GA(M) ≤ kGA(Mr).
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Note that the same estimate holds when the pole A lies in Ω ∩ Tεr(Q, s)
with 0 < ε < 1. The constant k then depends also on ε.

For the general case, let Σ = Ω \ T2r/3(Q, s). The function RΣu is an
L-potential on Ω with harmonic support in Ω ∩ ∂Σ, and so there exists a
positive measure µ supported in Ω ∩ ∂Σ such that

RΣu =
�

Ω∩∂Σ
GA dµ(A).

For M ∈ Ω \ Tr(Q, s), we have

u(M) = RΣu (M) =
�

Ω∩∂Σ
GA(M) dµ(A)

≤ k
�

Ω∩∂Σ
GA(Mr) dµ(A) = kRΣu (Mr) = ku(Mr).

Theorem 2.2.2 (Comparison theorem). Let (Q, s) ∈ ∂D × ]0, T [ and
r ∈ ]0, r0/2 ∧

√
T − s[. Then there exists a constant k > 0, depending only

on n, µ, T, D, and on V in terms of the rate of convergence of Nα
h (V ) to zero

as h→ 0, such that for all nonnegative L-solutions u and v on Ω∩T2r(Q, s)
continuously vanishing on ∆2r(Q, s), we have

u(M)
v(M)

≤ k u(Mr(Q, s))
v(M∗r (Q, s))

for all M ∈ Ω ∩ Tr(Q, s).

Proof. Without loss of generality we assume Q = 0. We first prove the
estimate for u = GA and v = GB with A,B ∈ Ω ∩ ∂T3r/2(0, s). We write

M = (0, s) + (x, t) with |x| < r and |t| < r2,

A = (0, s) + (y, τ) with

{
|y| = 3

2r and |τ | ≤ 9
4r

2, or

|y| ≤ 3
2r and |τ | = 9

4r
2,

B = (0, s) + (z, %) with

{
|z| = 3

2r and |%| ≤ 9
4r

2, or

|z| ≤ 3
2r and |%| = 9

4r
2.

We will estimate GA(M)GB(M∗r )
GA(Mr)GB(M) . By Theorem 1.1, we have

GA(M)
GA(Mr)

≤ k
(

2r2 − τ
t− τ

)n/2+1

exp
(
−c1
|x− y|2
t− τ

)
exp
(
c2
|(0, r)− y|2

2r2 − τ

)

× min(
√
t− τ , |x|) min(

√
t− τ , |y|)

min(
√

2r2 − τ , r) min(
√

2r2 − τ , |y|)
.

Case 1: |y| ≤ 3
2r and τ = − 9

4r
2. We have

5
4
r2 ≤ t− τ ≤ 13

4
r2, 2r2 − τ =

17
4
r2.
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Hence

(26)
GA(M)
GA(Mr)

≤ k′min
(

1,
|x|
r

)
.

Case 2: |y| = 3
2r and |τ | ≤ 9

4r
2. We have

−9
4
r2 ≤ τ < t < r2, r2 ≤ 2r2 − τ ≤ 17

4
r2.

Then

GA(M)
GA(Mr)

≤ k′
(

2r2 − τ
|x− y|2

)n/2+1

exp
(
c2
|(0, r)− y|2

2r2 − τ

)
(27)

× min(
√
t− τ , |x|) min(

√
t− τ , |y|)

min(
√

2r2 − τ , r) min(
√

2r2 − τ , |y|)

≤ k′′min
(

1,
|x|
r

)
.

In a similar way we prove that

(28)
GB(M∗r )
GB(M)

≤ k′

min(1, |x|/r) .

Combining (26)–(28) gives

GA(M)GB(M∗r )
GA(Mr)GB(M)

≤ k

for all M ∈ Ω ∩ Tr(Q, s) and A,B ∈ Ω ∩ T3r/2(Q, s).
For the general case we consider the set Σ = Ω ∩ T3r/2(Q, s). The func-

tions RΣu and RΣv are two L-potentials on Ω with harmonic support in
Ω ∩ ∂T3r/2(Q, s), and so there exist two positive measures σ and ν sup-
ported in Ω ∩ ∂T3r/2(Q, s) such that

RΣu =
�

Ω∩∂T3r/2(Q,s)

GA dσ(A), RΣv =
�

Ω∩∂T3r/2(Q,s)

GB dν(B).

From the previous inequality, we deduce
���
GA(M)GB(M∗r ) dσ(A) dν(B) ≤ k

���
GB(M)GA(Mr) dσ(A) dν(B),

which means RΣu (M)RΣv (M∗r ) ≤ kRΣv (M)RΣu (Mr), and the equalities RΣu =
u on Σ, RΣv = v on Σ give the required estimate.

2.3. Comparison of parabolic measures. The comparison of harmonic
measures has been studied by several authors in the elliptic and parabolic
settings. We refer the reader to [12] and the references given there. In par-
ticular, for the general Schrödinger operator L = −div(A(x)∇x)+q(x), in a
bounded Lipschitz domain in Rn, n ≥ 3, with potential in the elliptic Kato
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class satisfying the gauge condition this problem was studied by Cranston,
Fabes and Zhao [3].

Basing on the Green function estimates (Theorem 1.1), Corollary 1.2 and
a potential-theoretic approximation argument, we are able to show, as in
[12], the comparability of the L-parabolic measure, the adjoint L-parabolic
measure and the surface measure on the lateral boundary of Ω. Since the
argument is standard, we do not give the details of the proof but we only
state the result. We first introduce the definition of the parabolic measure.

For any ϕ ∈ C(∂pΩ), there exists a unique solution u = HΩ
ϕ of the

Dirichlet problem Lu = 0 on Ω and u|∂pΩ = ϕ. For all M ∈ Ω, the map
M 7→ HΩ

ϕ (M) is a linear positive functional on C(∂pΩ), and so there exists
a unique Borel measure µM on ∂pΩ such that

HΩ
ϕ (M) =

�

∂pΩ

ϕ(ξ) dµM(ξ).

µM will be called the L-parabolic measure at M . The L∗-parabolic measure
µ∗M at M , where L∗ is the adjoint of L, is defined in a similar way.

Let σ be the surface measure on ∂Ω. We have the following.

Theorem 2.3. Let V be in the parabolic Kato class. Let (Q, s) ∈ ∂D ×
]0, T [, let r ∈ ]0, r0] be such that M = (Q, s) + ((0, r), 2r2) ∈ Ω, M∗ =
(Q, s) + ((0, r),−2r2) ∈ Ω, and set F = (∂D × ]0, T [) ∩ Tr(Q, s). There
exists a positive constant k, which depends only on n, µ, D, T , and on V in
terms of the rate of convergence of Nα

h (V ) to zero as h→ 0, such that

k−1σ|F ≤ µM |F ≤ kσ|F , k−1σ|F ≤ µ∗M∗ |F ≤ kσ|F .
Acknowledgments. I thank the referee for informing me that the Green

function bounds in the unperturbed case were also proved by Zhang in his
recent paper [18].
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