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AFFINE AND CONVEX FUNCTIONS
WITH RESPECT TO THE LOGARITHMIC MEAN

BY

JANUSZ MATKOWSKI (Zielona Góra)

Abstract. The class of all functions f : (0,∞) → (0,∞) which are continuous at
least at one point and affine with respect to the logarithmic mean is determined. Some
related results concerning the functions convex with respect to the logarithmic mean are
presented.

1. Introduction. The logarithmic mean L : (0,∞)2→(0,∞) defined by

L(x, y) :=

{ x− y
log x− log y

, x 6= y,

x, x = y,

has numerous applications in physics (cf. for instance [14]).
The aim of this paper is to determine the class of functions f : (0,∞)→

(0,∞) which are affine with respect to this mean (briefly, L-affine), which
means that

f(L(x, y)) = L(f(x), f(y)), x, y > 0.

Since the logarithmic mean essentially differs from all the classical means—it
is not quasi-arithmetic (cf. [4])—the problem appears to be rather difficult.

In Section 2 we recall the notions of a mean M , M -affine and M -
convex functions. Some properties of the logarithmic mean (homogeneity,
superadditivity, etc.) are presented in Section 3. The main result assert-
ing that a function f : (0,∞) → (0,∞) continuous at least at one point
is L-affine if , and only if , either f is constant or f(x) = f(1)x for all
x > 0, is proved in Section 4. Thus the family of all L-affine functions is
the minimal one as the constant functions and linear functions are M -affine
for every positively homogeneous mean. In particular, the functions of the
form f(x) = ax + b (x > 0) with a, b > 0 are not L-affine. At the end of
Section 4 some open questions are presented. In Section 5 we apply the main
result to determine all (continuous at a point) functions affine with respect
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to the quasi-logarithmic mean. Some examples, remarks and results related
to convex, geometrically convex (i.e. convex with respect to the geometric
mean) and L-convex functions, as well as some open questions are presented
in Section 6.

2. Functions affine with respect to a mean. Let J ⊂ R be an
interval. A function M : J2 → R is said to be a mean on J if

min(x, y) ≤M(x, y) ≤ max(x, y), x, y ∈ J ;

moreover, if for all x, y ∈ J , x 6= y, these inequalities are strict, then M is
called a strict mean; and if M(x, y) = M(y, x) for all x, y ∈ I, then M is
called symmetric.

If M : J2 → R is a mean then M is reflexive, that is,

M(x, x) = x, x ∈ J,
which implies that M(I2) = I for every interval I ⊂ J , and M |I×I is a
mean on I. This property permits us to generalize the classical notion of
affine functions in the following way:

Definition 1. Let J ⊂ R be an interval, M : J2 → J a mean on J , and
I ⊂ J an interval. A function f : I → J is said to be affine with respect to
M on I (briefly, M -affine on I) if

f(M(x, y)) = M(f(x), f(y)), x, y ∈ I.
A function f : I → J satisfying the inequality

f(M(x, y)) ≤M(f(x), f(y)), x, y ∈ I,
is calledM -convex on I, and one satisfying the reverse inequality,M -concave
on I (cf. [11], [12]).

Note that taking in these definitions M = A where A denotes the arith-
metic mean, A(x, y) = (x + y)/2, we obtain the classical Jensen affine and
Jensen convex functions.

Remark 1. Suppose thatM : (0,∞)2 → (0,∞) is a homogeneous mean,
i.e.

M(tx, ty) = tM(x, y), t, x, y > 0.

Then

(i) for every interval I ⊆ (0,∞) any function f : I → (0,∞) which is
constant or of the form f(x) = f(1)x (x ∈ I) is M -affine;

(ii) if c ∈ (0,∞) and f : I → (0,∞) is M -affine, then so is cf.

Remark 2. Suppose that M : J2 → J is a mean and If , Ig ⊆ J are
intervals. If g : Ig → If and f : If → J are M -affine, then, clearly, the
composition f ◦ g is also M -affine.
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3. Some properties of the logarithmic mean. We denote by log the
real natural logarithmic function defined on (0,∞). The logarithmic mean
L : (0,∞)2 → (0,∞) defined by (cf. [2, p. 345])

L(x, y) :=

{ x− y
log x− log y

, x 6= y,

x, x = y,

has the following properties, easy to verify:

Property 1. L is symmetric.

Property 2. L is homogeneous.

Property 3. L is continuous and increasing with respect to each vari-
able; moreover , for all x, y > 0, L(x, y) = x⇔ y = x, and

lim
y→0

L(x, y) = 0, lim
y→∞

L(x, y) =∞, x > 0.

Property 4. The function L0 : [0,∞)2 → [0,∞) defined by

L0(x, y) :=
{
L(x, y), x, y > 0,

0, xy = 0,

is a continuous homogeneous mean on [0,∞)2.

Property 5. For all x, y ≥ 0,
√
xy ≤ L0(x, y) ≤ x+ y

2
, x, y ≥ 0;

moreover these inequalities are strict for all x, y > 0, x 6= y.

Remark 3. The logarithmic mean is not quasi-arithmetic (cf. J. Aczél
[1, p. 82], also [4]), i.e. there is no continuous and strictly monotonic function
g : (0,∞)→ R such that

L(x, y) = g−1
(
g(x) + g(y)

2

)
, x, y > 0.

For the proof of the next property we need the following (cf. [6]–[8], [10])

Lemma 1. A function h : (0,∞) → R is strictly convex (respectively
strictly concave) iff the function F : (0,∞)2 → R defined by

F (x, y) := yh

(
x

y

)
, x, y > 0,

is subadditive on (0,∞)2, i.e.

(y1 + y2)h
(
x1 + x2

y1 + y2

)
≤ y1h

(
x1

y1

)
+ y2h

(
x2

y2

)
, x1, x2, y1, y2 > 0,
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(respectively the reverse inequality holds), and this inequality becomes an
equality if , and only if , there is a constant k > 0 such that

yi = kxi, i = 1, 2.

Property 6. The logarithmic mean is superadditive, i.e.

L(x1 + x2, y1 + y2) ≥ L(x1, y1) + L(x2, y2), x1, x2, y1, y2 > 0,

and this inequality becomes an equality iff there is a constant k > 0 such
that

yi = kxi, i = 1, 2.

Proof. Define h : (0,∞)→ (0,∞) by h(t) := L(t, 1). Then

h(t) =





t− 1
log t

, t 6= 1, t > 0,

1, t = 1.
Calculating the second derivative of h we get

t2(log t)3h′′(t) = 2(t− 1)− (t+ 1) log t, t > 0, t 6= 1; h′′(1) = −1
6
.

From Property 5 we have
t− 1
log t

≤ t+ 1
2

, t > 0, t 6= 1.

It follows that h′′(t) < 0 for all t > 0, and consequently, h is strictly concave
in (0,∞). Now an application of Lemma 1 completes the proof.

Property 7 (cf. [15]). The logarithmic mean is strictly concave on
(0,∞)2.

Proof. Making use of the homogeneity of L, by Lemma 1 we have

L

(
x1 + x2

2
,
y1 + y2

2

)
=

1
2
L(x1 + x2, y1 + y2) ≥ 1

2
(L(x1, y1) + L(x2, y2))

for all x1, x2, y1, y2 > 0, which shows that L is Jensen concave. The continu-
ity of L implies that L is concave (cf. [5]). The strict concavity of L results
from the “equality” part of Lemma 1.

Property 8 (cf. [13]). For all x, y > 0,

L(x, y) =
1�

0

xty1−t dt.

Proposition 1. For a one-to-one f : (0,∞) → R define a function
F : (0,∞)2 → R by

F (x, y) :=

{ x− y
f(x)− f(y)

, x 6= y,

x, x = y.
Then
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(i) F is a mean iff f = log +c for some c ∈ R; moreover F = L;
(ii) F is homogeneous iff the function g defined by g := f −f(1) satisfies

the equation
g(rx) = g(r) + g(x), r, x > 0.

If moreover the graph of f is not dense in (0,∞)× R or f is measurable,
then f = c log +f(1) for some constant c ∈ R.

Proof. The first part is an immediate consequence of the definition of a
mean. To show the second, observe that g satisfies the Cauchy functional
equation and apply the well known theory (e.g. [1], [4]).

4. L-affine functions. Let I ⊆ (0,∞). Since the logarithmic mean L
is homogeneous, in view of Remark 1, the functions f : I → (0,∞) that are
constant or satisfy f(x) = f(1)x for x ∈ I, are L-affine, i.e.

f(L(x, y)) = L(f(x), f(y)), x, y ∈ I.
Now we prove the following

Theorem 1. Let I ⊆ (0,∞) be an interval , and suppose that f, g : I →
(0,∞) are L-affine. Then the function f+g is L-affine if , and only if , there
is a c > 0 such that g = cf .

Proof. By the assumptions we have

f(L(x, y)) = L(f(x), f(y)), g(L(x, y)) = L(g(x), g(y)), x, y ∈ I.
The function f + g is L-affine iff

f(L(x, y)) + g(L(x, y)) = L(f(x) + g(x), f(y) + g(y)), x, y ∈ I,
i.e., iff

L(f(x), f(y)) + L(g(x), g(y)) = L(f(x) + g(x), f(y) + g(y)), x, y ∈ I.
In view of the equality part of Lemma 1, for every x, y ∈ I there exists a
k(x, y) > 0 such that

f(y) = k(x, y)f(x), g(y) = k(x, y)g(x).

Hence
g(x)
f(x)

=
g(y)
f(y)

, x, y ∈ I.

It follows that g = cf for some c > 0.

Remark 4. Fix a, b > 0. The functions f(x) = ax, g(x) = b, x > 0, are
L-affine but, in view of the above proposition, the function (f + g)(x) =
ax+ b, x > 0, is not.

Lemma 2. Let I ⊆ R be an interval. If f : I → (0,∞) is L-affine and
continuous at least at one point , then f is continuous everywhere.
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Proof. Suppose that f is L-affine in I and continuous at a point z ∈ I.
Since L(z, ·) is an increasing homeomorphism of (0,∞) (cf. Property 3), the
set L(z, I) = {L(z, y) | y ∈ I} is an open interval. As L is a mean, we have
z ∈ L(z, I), and L(z, I) ⊆ I. Fix x ∈ L(z, I), x 6= z. Then there is exactly
one y ∈ I such that x = L(z, y). Take a sequence (xn), xn ∈ L(z, I) (n ∈ N),
such that limn→∞ xn = x. By Property 3, for every n ∈ N there is a unique
zn ∈ (0,∞) such that xn = L(zn, y). Since L(·, y) is a homeomorphism of
(0,∞), we have limn→∞ zn = z, and as L(z, I) is open and z, x ∈ L(z, I),
there is an n0 such that zn, xn ∈ L(z, I) for n ≥ n0. Now, as f is L-affine,
we have

f(xn) = f(L(zn, y)) = L(f(zn), f(y)), n ≥ n0.

Letting here n → ∞ and making use of the continuity of f at the point z
and L-affinity of f , we get

lim
n→∞

f(xn) = lim
n→∞

f(L(zn, y)) = lim
n→∞

L(f(zn), f(y)) = L(f(z), f(y))

= f(L(z, y)) = f(x),

which proves that f is continuous at x. Thus f is continuous on L(z, I).
(The idea of this proof is taken from [9].)

Now let (a, b) ⊆ I be a maximal open interval of continuity of f . Suppose
that b < sup I. Choose c ∈ (b, sup I) and u ∈ (a, b) such that L(u, c) = b. For
every sequence (bn) with bn ∈ I (n ∈ N) and limn→∞ bn = b, there exists a
sequence un > 0 (n ∈ N) such that bn = L(un, c). The properties of L imply
that limn→∞ un = u. Thus, for sufficiently large n we have un ∈ (a, b), and

lim
n→∞

f(bn) = lim
n→∞

f(L(un, c)) = lim
n→∞

L(f(un), f(c)) = L(f(u), f(c))

= f(L(u, c)) = f(b),

which proves that f is continuous at b. By the previous part of the proof,
f is continuous on the open interval L(b, I). Since b ∈ L(b, I), the func-
tion f is continuous on the open interval (a, b) ∪ L(b, I), which is strictly
larger than (a, b). This contradicts the maximality of (a, b) and proves that
b = sup I. In a similar way one can show that inf I = a.

Lemma 3. Let I ⊆ (0,∞) be an interval. If f : I → (0,∞) is L-affine
and continuous at least at one point , then either f is strictly monotonic and
continuous everywhere, or f is a constant function.

Proof. By Lemma 2 the function f is continuous on I. Suppose that f is
not strictly monotonic. Then there are a, b ∈ I with a < b such that f(a) =
f(b). Put C := {x ∈ [a, b] | f(x) = f(a)}. First we show that C = [a, b].
Suppose that [a, b] \ C 6= ∅. By the continuity of f the set C is closed. It
follows that there is a nonempty open maximal interval (c, d) ⊂ [a, b] \ C.
Of course we have c, d ∈ C, i.e. f(c) = f(d) = f(a), and c < d. Hence, as f
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is L-affine,

f(L(c, d)) = L(f(c), f(d)) = L(f(a), f(a)) = f(a),

which means that L(c, d)∈C. This is a contradiction because c<L(c, d))<d.
Let (α, β) ⊂ I be a nonempty maximal open interval such that f(x) = a

for all x ∈ (α, β) and suppose that β < sup I. Put γ := (α+ β)/2. Since

L(γ, β) < L(β, β) = β,

the continuity of L implies that there is a u ∈ (β, sup I) such that

L(γ, u) < β.

Since γ < L(γ, u), we have L(γ, u) ∈ (α, β). Hence, as f is L-affine,

f(a) = f(L(γ, u)) = L(f(γ), f(u)) = L(f(a), f(u)).

Since L(f(a), f(a)) = f(a) and the function L(f(a), ·) is strictly increasing,
we get f(u) = f(a). According to the first part of the proof, f(x) = f(a) for
all x ∈ (α, u), which contradicts the maximality of (α, β). Thus β = sup I.
In a similar way one can show that α = inf I.

In what follows we assume that I = (0,∞).

Lemma 4. If f : (0,∞) → (0,∞) is L-affine and at least one of the
limits

f(0+) := lim
x→0+

f(x), f(+∞) := lim
x→∞

f(x)

exists, is positive and finite, then f is constant.

Proof. Suppose that c := f(0+) exists and 0 < c < ∞. Letting y → ∞
in the relation

f(L(x, y)) = L(f(x), f(y)), x, y > 0,

and making use of Property 3, we get

c = L(f(x), c), x > 0.

Since the function L(f(x), ·) is strictly increasing and L(c, c) = c, we infer
that f(x) = c for all x > 0.

If f(+∞) exists, is positive and finite, we can apply a similar argument.

Now we shall prove the main result of this paper.

Theorem 2. Let f : (0,∞)→ (0,∞) be continuous at least at one point.
Then f is L-affine if , and only if , either f is constant or f(x) = f(1)x for
all x > 0.

Proof. Suppose that f is L-affine. By Lemma 3, f is either constant, or
strictly monotonic and continuous in (0,∞). If f is constant there is nothing
to prove. Suppose that f is strictly monotonic. Then f(0+) exists and

0 ≤ f(0+) ≤ ∞.
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The case 0 < f(0+) < ∞ cannot occur because, in view of Lemma 4, the
function f would be constant. Thus either f(0+) = 0 or f(0+) =∞.

Consider the first case: f(0+) = 0. By Property 4, setting additionally

L(x, 0) = L(0, x) := 0, x ≥ 0,

we extend L to a continuous homogeneous mean on [0,∞)2. If we set
f(0) := 0, it is easy to see that the function f is L-affine in [0,∞), i.e.

(1) f(L(x, y)) = L(f(x), f(y)), x, y ≥ 0.

Take an arbitrary a > 0 and define g : [0,∞)→ [0,∞) by

(2) g(x) := a
f(x)
f(a)

, x ≥ 0.

Since the logarithmic mean is positively homogeneous and g(x) > 0 for all
x > 0, from (2) we infer that g is L-affine in [0,∞), i.e.

(3) g(L(x, y)) = L(g(x), g(y)), x, y ≥ 0,

and we have

(4) g(0) = 0, g(a) = a.

We shall show that

(5) g(x) = x, x ∈ [0, a].

Put
C := {x ∈ [0, a] | g(x) = x},

and suppose that [0, a] \C is nonempty. By the continuity of g the set C is
closed. Therefore there is a maximal nonempty interval (c, d) ⊂ [0, a] \ C.
Then, of course,

g(c) = c, g(d) = d,

and, by (3),
g(L(c, d)) = L(g(c), g(d)) = L(c, d),

which means that L(c, d) ∈ C. On the other hand, since c < d, we have
L(c, d) ∈ (c, d) and, consequently, L(c, d) 6∈ C. This contradiction proves
that (5) holds true.

Now (5) and (2) imply that

f(x)
x

=
f(a)
a

, x ∈ [0, a].

Since a is chosen arbitrarily, we have f(x) = f(1)x for all x > 0.
Now suppose that f(0+) =∞. By Lemma 4 we have

f(+∞) := lim
x→∞

f(x) = 0
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(in the opposite case f would be a constant function). Consequently, f must
be a decreasing bijection of (0,∞). Clearly, there is a unique a > 0 such
that

f(a) = a.

Since the composition of two L-affine functions is L-affine (cf. Remark 2),
the function f2 := f ◦ f is L-affine. Moreover, f 2 is strictly increasing, and
f2(a) = a. According to the previous part of the proof we have

f2(x) = x, x > 0.

Hence the substitution y := f(x) in (1) gives

f(L(x, f(x))) = L(f(x), f2(x)) = L(f(x), x), x > 0,

which, by the symmetry of L, can be written in the form

f(L(x, f(x))) = L(x, f(x)), x > 0.

Since a is the only fixed point of f in (0,∞), it follows that

L(x, f(x)) = a, x > 0.

Hence, by the definition of L, we have

(6) x− f(x) = a log x− a log f(x), x > 0.

For every c0 > 0, c0 6= 1, the function g := c0f is also an L-affine decreasing
bijection of (0,∞) (cf. Remark 1.2). It follows that there is a unique b > 0,
b 6= a, such that g(b) = b. Therefore we have g2(x) = x for all x > 0, and in
the same way as in the case of the function f , we obtain

L(x, g(x)) = b, x > 0,

i.e.

(7) x− g(x) = b log x− b log g(x), x > 0.

Multiplying (6) and (7) by b and a, respectively, gives

bx− bf(x) = ab log x− ab log f(x), x > 0,

ax− ag(x) = ab log x− ab log g(x), x > 0.

Subtracting these equations we obtain

(8) (b− a)x = bf(x)− ag(x)− ab log f(x) + ab log g(x), x > 0.

Since the function g ◦ f is L-affine and strictly increasing, according to the
already proved part of the theorem, there is a constant c > 0 such that

g(f(x)) = cx, x > 0.

Hence, replacing x by f(x) in (8) and making use of the relation f 2(x) = x
for x > 0, we obtain

(b− a)f(x) = (b− ac)x+ ab log c, x > 0,
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i.e.
f(x) = Ax+ b, x > 0,

where

A :=
b− ac
b− a and B :=

b− ac
b− a log c.

This contradicts the assumption that f(0+) = +∞, and proves the “only if”
part of our theorem. Since the converse implication is obvious, the proof is
complete.

The following problems are open:

Problem 1. Let I ⊂ (0,∞) be a proper subinterval of (0,∞). Suppose
that h : I → (0,∞) is L-affine on I. Does there exist an L-affine function
f : (0,∞)→ (0,∞) such that f |I = h?

Remark 5. The uniqueness of the extension function f in Problem 1 is
obvious.

Problem 2. Determine all continuous L-affine functions defined on an
interval I ⊂ (0,∞).

Remark 6. If the answer to Problem 1 is affirmative, then, of course,
Theorem 2 gives the solution of Problem 2.

Problem 3. Does there exist a discontinuous L-affine function?

Problem 4. Determine all L-affine functions.

5. Functions affine with respect to quasi-logarithmic means. Let
I ⊂ R be an interval, and ϕ : I → (0,∞) be a continuous and strictly
monotonic function. It is easy to verify that the function L[ϕ] : I2 → I
defined by

L[ϕ](x, y) := ϕ−1(L(ϕ(x), ϕ(y))), x, y ∈ I,
is a mean on I. By analogy to the quasi-arithmetic mean, we call L[ϕ] a
quasi-logarithmic mean, and ϕ its generator .

Applying Theorem 2 we prove the following

Theorem 3. Let I ⊂ R be an open interval and suppose that ϕ,ψ : I →
(0,∞) are continuous, strictly monotonic and onto. Then L[ψ] = L[ϕ] if ,
and only if , ψ = cϕ for some c > 0.

Proof. Suppose that L[ψ] = L[ϕ], that is,

ψ−1L(ψ(x), ψ(y))) = ϕ−1L(ϕ(x), ϕ(y)), x, y ∈ I.
Putting f := ψ ◦ ϕ−1 and setting here x := ϕ−1(s), y := ϕ−1(t) we obtain

f(L(s, t)) = L(f(s), f(t)), s, t > 0,
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which means that f is L-affine on (0,∞). Since f is not constant, by The-
orem 2, f(t) = f(1)t for all t > 0. From the definition of f we get ψ = cϕ
where c := f(1). The converse implication is obvious.

The next result establishes the form of L[ϕ]-affine functions which are
continuous at a point.

Theorem 4. Let I ⊂ R be an open interval and ϕ : I → (0,∞) continu-
ous, strictly monotonic and onto. Then a function g : I → (0,∞) continuous
at least at one point is L[ϕ]-affine if , and only if , either g is constant or

g(x) = ϕ−1(aϕ(x)), x ∈ I,
where a := ϕ ◦ g ◦ ϕ−1(1).

Proof. By the definition, a function g is L[ϕ]-affine iff

g(ϕ−1L(ϕ(x), ϕ(y))) = ϕ−1L(ϕ(g(x), ϕ(g(y))), x, y ∈ I.
Setting f := ϕ ◦ g ◦ ϕ−1 we can write this equation in the equivalent form

f(L(s, t)) = L(f(s), f(t)), s, t > 0,

which means that f is L-affine. Now the result is a consequence of Theo-
rem 2.

Example 1. Taking ϕ := exp we obtain

Lexp(x, y) =





log
(
ex − ey
x− y

)
, x 6= y,

x, x = y.

Applying Theorem 4 we infer that a function g : R→(0,∞) is Lexp-affine
iff either g is constant or

g(x) = f(0) + x, x ∈ R.

6. Some remarks on L-convex functions. In [11] some general cri-
terions of convexity with respect to a positively homogeneous mean and
some examples are given. In particular it is shown that, for each a > 1, the
exponential function f(x) = ax, x > 0, is L-convex, and, for each a ∈ (0, 1),
this function is neither L-convex nor L-concave.

Remark 7. To compare the classical convexity and L-convexity, recall
that a function F defined on an open interval I is convex iff for each point
x0 ∈ I there is at least one A-affine function f ,

f(x) = m(x− x0) + F (x0), x ∈ R,
supporting F , i.e. such that f(x) ≤ F (x) for all x ∈ I. Since, in view of
Theorem 3 in [11], the function f := exp−1 is L-convex, Theorem 2 shows
that the L-convex functions do not reveal similar properties.
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Property 8 allows us to give a new proof of the following

Theorem 5 (cf. [11]). Let I ⊆ (0,∞) be an open interval. If f, g : I →
(0,∞) are L-convex then so is f + g.

Proof. Fix t ∈ (0, 1) and x, y ∈ I. The function h : (0,∞) → (0,∞),
h(u) := ut, is concave. Applying Lemma 1 with

x1 := f(x), y1 := f(y), x2 := g(x), y2 := g(y),

we obtain the inequality

f(x)tf(y)1−t + g(x)tg(y)1−t ≤ (f(x) + g(x))t(f(y) + g(y))1−t.

Making use in turn of: the L-convexity of f and g, Property 8, the above
inequality, and again Property 8, we obtain

(f + g)(L(x, y)) = f(L(x, y)) + g(L(x, y)) ≤ L(f(x), f(y)) + L(g(x), g(y))

=
1�

0

f(x)tf(y)1−t dt+
1�

0

g(x)tg(y)1−t dt =
1�

0

[f(x)tf(y)1−t + g(x)tg(y)1−t] dt

≤
1�

0

[f(x) + g(x)]t[f(y) + g(y)]1−t dt = L((f + g)(x), (f + g)(y)).

Hence, applying Theorem 2, we obtain

Corollary 1. If a, b > 0 then f : (0,∞) → (0,∞), f(x) = ax + b, is
L-convex , but not L-concave.

Let G : (0,∞)2 → (0,∞), G(x, y) :=
√
xy, denote the geometric mean.

The functions which are G-convex (resp. G-concave, G-affine) are called
geometrically convex (resp. geometrically concave, geometrically affine). In
some papers “geometrically” is replaced by “multiplicatively”.

Theorem 6. Let I ⊆ (0,∞) be an open interval. If f : I → (0,∞) is
convex (resp. concave), and geometrically convex (resp. concave), i.e.

f(
√
xy) ≤

√
f(x)f(y) (resp. f(

√
xy) ≥

√
f(x)f(y)), x, y > 0,

then f is L-convex (resp. L-concave).

Proof. Take arbitrary x, y > 0. Applying in turn: Property 8, the inte-
gral Jensen inequality for (arithmetically) convex functions (cf. for instance
[4, p. 181]), the geometrical convexity of f , and finally Property 8, we obtain

f(L(x, y)) = f
( 1�

0

xty1−t dt
)
≤

1�

0

f(xty1−t) dt ≤
1�

0

f(x)tf(y)1−t dt)

= L(f(x), f(y)).

Example 2. The tangent function is L-convex in (0, π/2).
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Proof. The function f := arctan is concave on (0,∞). Note that f is
geometrically concave iff log ◦f ◦ exp is concave. Thus to prove that f is
geometrically concave it is sufficient to show that the function g : (0,∞)→ R
defined by

g(x) :=
f ′(x)
f(x)

x, x > 0;

is decreasing on (0,∞). We have

g(x) =
x

(1 + x2) arctanx
, x > 0,

and, by simple calculations,

g′(x)[(1 + x2) arctanx]2 = (1− x2) arctanx− x, x > 0.

Hence g′(x) < 0 for all x > 1. For x ∈ (0, 1) we have

arctanx =
∞∑

k=0

(−1)k
x2k+1

2k + 1
and

x

1− x2 =
∞∑

k=0

x2k+1.

It follows that
x

1− x2 − arctanx > 0, x ∈ (0, 1),

or, equivalently,

(1− x2) arctanx− x < 0, x ∈ (0, 1),

which shows that g′(x) < 0 for all x ∈ (0, 1). Thus f = arctan is geomet-
rically concave on (0,∞). By Theorem 6 the function f is L-concave and,
consequently, its inverse f−1 = tan is L-convex in (0,∞).

Example 3. It is easy to verify that the functions f, g : (0,∞)→ (0,∞)
given by

f(x) =
{

1, 0 < x ≤ 1,

x, x > 1,
g(x) =

{
x, 0 < x ≤ 1,

1, x > 1,
are, respectively, L-convex and L-concave. Simple calculations show that for
all a, b > 0, the functions fa,b and ga,b,

fa,b(x) := af(bx), ga,b(x) := ag(bx), x > 0,

are, respectively, L-convex and L-concave. For an arbitrary sequence (bn)
with bn > 0 (n ∈ N) one can choose (an) with an > 0 (n ∈ N) such that the
series

h(x) :=
∞∑

k=0

anf(bnx), x > 0,

converges. Applying Theorem 4 (cf. [11, Corollary 1]) one can show that
the function h is L-convex. It is easy to see that choosing the sequence (bn)
properly, one can get h which is not differentiable on a dense set of points.



230 J. MATKOWSKI

REFERENCES

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia
Math. Appl. 31, Cambridge Univ. Press, Cambridge, 1989.
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