COLLOQUIUM MATHEMATICUM

a Note on intersections of Non-HaAr NULL SETS

BY
EVA MATOUŠKOVÁ and MIROSLAV ZELENÝ (Praha)

Abstract

We show that in every Polish, abelian, non-locally compact group G there exist non-Haar null sets A and B such that the set $\{g \in G ;(g+A) \cap B$ is non-Haar null $\}$ is empty. This answers a question posed by Christensen.

Let G be a Polish abelian group. A universally measurable set $A \subset G$ is said to be a Haar null set if there exists a probability Borel measure on G such that $\mu(g+A)=0$ for every $g \in G$. This family was introduced by Christensen [C] to have an analogy of Lebesgue null sets also in nonlocally compact groups. Haar null sets were used to study differentiation properties of Lipschitz function on separable Banach spaces (cf. [C, p. 121]). Christensen proved the following result.

Theorem 1 (Christensen, [C, p. 115]). Let $A, B \subset G$ be two universally measurable sets. Then the set

$$
F(A, B)=\{g \in G ;(g+A) \cap B \text { is not Haar null }\}
$$

is open.
Christensen posed the following question in [C]: Let $A, B \subset G$ be two universally measurable non-Haar null subsets of a Polish abelian group G and let G be non-locally compact. Can $F(A, B)$ be empty?

This problem was answered positively by Dougherty $[\mathrm{D}]$ in $\mathbb{R}^{\mathbb{N}}$ and by Matoušková and Zajíček [MZ] in c_{0}. The main aim of this paper is to present an observation that Solecki's method [S] of construction of non-Haar null sets gives a positive answer to the question in every Polish abelian non-locally compact group.

We will need the following theorems; the first one can be found, for example, in [DS, p. 90].

Theorem 2. Let G be a Polish abelian group. There exists an equivalent complete metric ϱ on G, which is invariant (i.e. $\forall g, a, b \in G: \varrho(a, b)=$ $\varrho(g+a, g+b))$.

[^0]Theorem 3 (Christensen, [C, p. 119]). Let G be a Polish abelian nonlocally compact group. Then every compact subset of G is Haar null.

Let G be a Polish abelian group. The symbol $B(\varepsilon)$ denotes the open ball with center at 0 and radius ε. If $X \subset G$, then $B(X, \varepsilon)$ denotes the set $\{y \in G ; \operatorname{dist}(y, X)<\varepsilon\}$. We start with the following lemma.

Lemma. Let G be a Polish, abelian, non-locally compact group with a complete invariant metric ϱ. Then for every $\varepsilon>0$ there exists $\delta>0$ such that for any two finite sets $F_{1}, F_{2} \subset G$ there exists $g \in B(\varepsilon)$ such that $\operatorname{dist}\left(F_{1}, g+F_{2}\right) \geq \delta$.

Proof. Since the group G is not locally compact, there exist an infinite set $D \subset B(\varepsilon)$ and $\delta>0$ such that $\varrho\left(d, d^{\prime}\right)>2 \delta$ whenever $d, d^{\prime} \in D$, $d \neq d^{\prime}$. Suppose that $\operatorname{dist}\left(F_{1}, g+F_{2}\right)<\delta$ for every $g \in D$. Since F_{1} and F_{2} are finite, there exist $f_{1} \in F_{1}, f_{2} \in F_{2}$ and $g_{1}, g_{2} \in D, g_{1} \neq g_{2}$, such that $\varrho\left(f_{1}, g_{1}+f_{2}\right) \leq \delta$ and $\varrho\left(f_{1}, g_{2}+f_{2}\right) \leq \delta$. This implies $\varrho\left(g_{1}, g_{2}\right)=$ $\varrho\left(g_{1}+f_{2}, g_{2}+f_{2}\right) \leq \varrho\left(g_{1}+f_{2}, f_{1}\right)+\varrho\left(g_{2}+f_{2}, f_{1}\right) \leq \delta+\delta=2 \delta$, which is a contradiction.

Theorem 4. Let G be a Polish, abelian, non-locally compact group. Then there exist closed non-Haar null sets $A, B \subset G$ such that $(g+A) \cap B$ is compact for every $g \in G$. Consequently, $F(A, B)$ is empty.

Proof. According to Theorem 1 there exists an equivalent complete invariant metric on G. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence that is dense in G.

Fix a sequence $\left\{Q_{k}\right\}_{k=1}^{\infty}$ of finite sets such that $Q_{k} \subset Q_{k+1}$ for every $k \in \mathbb{N}$ and $\bigcup_{k=1}^{\infty} Q_{k}$ is dense in G.

Fix $\varepsilon>0$ and take $\delta>0$ such that 3δ satisfies the conclusion of the Lemma for ε. We find inductively sequences $\left\{g_{k}\right\}_{k=1}^{\infty}$, $\left\{\widetilde{g}_{k}\right\}_{k=1}^{\infty}$ such that

- $\forall k \in \mathbb{N}: g_{k}, \widetilde{g}_{k} \in B(\varepsilon)$,
- $\forall k \in \mathbb{N}: \operatorname{dist}\left(g_{k}+Q_{k}, \bigcup_{i<k}\left(g_{i}+Q_{i}\right)\right) \geq 3 \delta$,
- $\forall k \in \mathbb{N}: \operatorname{dist}\left(\widetilde{g}_{k}+Q_{k}, \bigcup_{i<k}\left(\widetilde{g}_{i}+Q_{i}\right)\right) \geq 3 \delta$,
- $\forall n \in \mathbb{N} \forall i, j \in \mathbb{N}, i, j \geq n: \operatorname{dist}\left(s_{n}+g_{i}+Q_{i}, \widetilde{g}_{j}+Q_{j}\right) \geq 3 \delta$.

Put $g_{1}=0$. Put $F_{1}=\left(g_{1}+Q_{1}\right) \cup\left(s_{1}+g_{1}+Q_{1}\right)$ and $F_{2}=Q_{1}$. Now the Lemma gives $\widetilde{g}_{1} \in B(\varepsilon)$. Suppose that we have defined g_{1}, \ldots, g_{k-1}, $\widetilde{g}_{1}, \ldots, \widetilde{g}_{k-1} \in B(\varepsilon)$. Put

$$
\begin{aligned}
F_{1} & =\bigcup_{j<k}\left(g_{j}+Q_{j}\right) \cup \bigcup_{l \leq k} \bigcup_{j<k}\left(-s_{l}+\widetilde{g}_{j}+Q_{j}\right) \\
F_{2} & =Q_{k}
\end{aligned}
$$

Applying the Lemma we obtain $g_{k} \in B(\varepsilon)$ such that $\operatorname{dist}\left(F_{1}, g_{k}+F_{2}\right) \geq 3 \delta$.

Now put

$$
\begin{aligned}
& F_{1}=\bigcup_{l \leq k} \bigcup_{j \leq k}\left(s_{l}+g_{j}+Q_{j}\right) \cup \bigcup_{j<k}\left(\widetilde{g}_{j}+Q_{j}\right), \\
& F_{2}=Q_{k} .
\end{aligned}
$$

The Lemma gives $\widetilde{g}_{k} \in B(\varepsilon)$ such that $\operatorname{dist}\left(F_{1}, \widetilde{g}_{k}+F_{2}\right) \geq 3 \delta$. This finishes the construction of our sequences.

Fix sequences $\left\{\varepsilon_{m}\right\}_{m=1}^{\infty}$ and $\left\{\delta_{m}\right\}_{m=1}^{\infty}$ such that $\sum_{i>m} \varepsilon_{i}<\delta_{m} / 2$ and $3 \delta_{m}$ satisfies the conclusion of the Lemma for ε_{m}.

Using the above construction we obtain $g_{k}^{m}, \widetilde{g}_{k}^{m} \in G, k, m \in \mathbb{N}$, such that for every $m \in \mathbb{N}$ we have
(i) $\forall k \in \mathbb{N}: g_{k}^{m}, \widetilde{g}_{k}^{m} \in B\left(\varepsilon_{m}\right)$,
(ii) $\forall k \in \mathbb{N}: \operatorname{dist}\left(g_{k}^{m}+Q_{k}, \bigcup_{i<k}\left(g_{i}^{m}+Q_{i}\right)\right) \geq 3 \delta_{m}$,
(iii) $\forall k \in \mathbb{N}: \operatorname{dist}\left(\widetilde{g}_{k}^{m}+Q_{k}, \bigcup_{i<k}\left(\widetilde{g}_{i}^{m}+Q_{i}\right)\right) \geq 3 \delta_{m}$,
(iv) $\forall n \in \mathbb{N} \forall i, j \in \mathbb{N}, i, j \geq n: \operatorname{dist}\left(s_{n}+g_{i}^{m}+Q_{i}, \widetilde{g}_{j}^{m}+Q_{j}\right) \geq 3 \delta_{m}$.

Now we define the desired sets:

$$
A=\bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \overline{B\left(g_{k}^{m}+Q_{k}, \delta_{m}\right)}, \quad B=\bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \overline{B\left(\tilde{g}_{k}^{m}+Q_{k}, \delta_{m}\right)} .
$$

Conditions (ii) and (iii) give that both A and B are closed. We show that for every compact set K there exists $g \in G$ with $g+K \subset A$. This easily implies that A is not a Haar null set. The same argument works for B. Let $K \subset G$ be a compact set. There exists $n_{1} \in \mathbb{N}$ such that $K \subset B\left(Q_{n_{1}}, \delta_{1} / 2\right)$. Thus $g_{n_{1}}^{1}+K \subset B\left(g_{n_{1}}^{1}+Q_{n_{1}}, \delta_{1} / 2\right)$. Now suppose that we have defined n_{1}, \ldots, n_{k-1}. There exists $n_{k} \in \mathbb{N}$ such that

$$
g_{n_{1}}^{1}+g_{n_{2}}^{2}+\ldots+g_{n_{k-1}}^{k-1}+K \subset B\left(Q_{n_{k}}, \delta_{k} / 2\right) .
$$

Thus

$$
g_{n_{1}}^{1}+g_{n_{2}}^{2}+\ldots+g_{n_{k}}^{k}+K \subset B\left(g_{n_{k}}^{k}+Q_{n_{k}}, \delta_{k} / 2\right) .
$$

The sequence $\left\{\sum_{j=1}^{m} g_{n_{j}}^{j}\right\}_{m=1}^{\infty}$ is convergent because of our choice of ε_{j} 's and condition (i). Put $g=\sum_{j=1}^{\infty} g_{n_{j}}^{j}$. We have

$$
g+K \subset B\left(g_{n_{k}}^{k}+Q_{n_{k}}, \delta_{k}\right) \quad \text { for every } k \in \mathbb{N},
$$

since

$$
\sup _{y \in g+K} \operatorname{dist}\left(g_{n_{1}}^{1}+\ldots+g_{n_{k}}^{k}+K, y\right) \leq \sum_{j=k+1}^{\infty} \operatorname{dist}\left(0, g_{n_{j}}^{j}\right) \leq \sum_{j=k+1}^{\infty} \varepsilon_{j}<\delta_{k} / 2
$$

and (\star) holds. Thus we can conclude that $g+K \subset A$, and we have shown that A is not Haar null.

Let $s \in G$ be arbitrary. We will show that the set $(s+A) \cap B$ is compact. Since A and B are closed it is sufficient to prove that our set is totally
bounded. Choose $\eta>0$. It is easy to see that $\lim \delta_{m}=0$. We choose $m, n \in \mathbb{N}$ so large that $\delta_{m}<\eta$ and $\varrho\left(s, s_{n}\right)<\delta_{m} / 2$. Using condition (iv) we obtain

$$
\begin{aligned}
(s+A) \cap B & \subset\left(s_{n}+\bigcup_{k=1}^{\infty} \overline{B\left(g_{k}^{m}+Q_{k}, 3 \delta_{m} / 2\right)}\right) \cap\left(\bigcup_{k=1}^{\infty} \overline{B\left(\widetilde{g}_{k}^{m}+Q_{k}, \delta_{m}\right)}\right) \\
& =\left(\bigcup_{k=1}^{\infty} \overline{B\left(s_{n}+g_{k}^{m}+Q_{k}, 3 \delta_{m} / 2\right)}\right) \cap\left(\bigcup_{k=1}^{\infty} \overline{B\left(\widetilde{g}_{k}^{m}+Q_{k}, \delta_{m}\right)}\right) \\
& \subset\left(\bigcup_{k=1}^{n-1} \overline{B\left(s_{n}+g_{k}^{m}+Q_{k}, 3 \delta_{m} / 2\right)}\right) \cup\left(\bigcup_{k=1}^{n-1} \overline{B\left(\widetilde{g}_{k}^{m}+Q_{k}, \delta_{m}\right)}\right)
\end{aligned}
$$

The last union can be covered by finitely many closed balls with radii $3 \delta_{m} / 2<2 \eta$. Thus we can find a finite 2η-net of the set $(s+A) \cap B$ for each $\eta>0$ and therefore our set is compact.

REFERENCES

[C] J. P. R. Christensen, Topology and Borel Structures, North-Holland, 1974.
[D] R. Dougherty, Examples of non-shy sets, Fund. Math. 144 (1994), 73-88.
[DS] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, 1967.
[MZ] E. Matoušková and L. Zajíček, Second order differentiability and Lipschitz smooth points of convex functionals, Czechoslovak Math. J. 48 (1998), 617-640.
[S] S. Solecki, On Haar null sets, Fund. Math. 149 (1996), 205-210.

Mathematical Institute
Czech Academy of Sciences
Žitná 25
Praha 115 67, Czech Republic
E-mail: matouse@matsrv.math.cas.cz

Faculty of Mathematics and Physics
Charles University Sokolovská 83
Praha 186 00, Czech Republic
E-mail: zeleny@karlin.mff.cuni.cz

[^0]: 2000 Mathematics Subject Classification: 28A05, 43A05.
 The first author was partially supported by the grant GAAV-A1019103, the second by Research Grant GAUK 160/1999, GAČR 201/97/1161 and MSM 113200007.

