VOL. 96

2003

NO. 1

A NOTE ON INTERSECTIONS OF NON-HAAR NULL SETS

BҮ

EVA MATOUŠKOVÁ and MIROSLAV ZELENÝ (Praha)

Abstract. We show that in every Polish, abelian, non-locally compact group G there exist non-Haar null sets A and B such that the set $\{g \in G; (g+A) \cap B \text{ is non-Haar null}\}$ is empty. This answers a question posed by Christensen.

Let G be a Polish abelian group. A universally measurable set $A \subset G$ is said to be a *Haar null set* if there exists a probability Borel measure on G such that $\mu(g + A) = 0$ for every $g \in G$. This family was introduced by Christensen [C] to have an analogy of Lebesgue null sets also in nonlocally compact groups. Haar null sets were used to study differentiation properties of Lipschitz function on separable Banach spaces (cf. [C, p. 121]). Christensen proved the following result.

THEOREM 1 (Christensen, [C, p. 115]). Let $A, B \subset G$ be two universally measurable sets. Then the set

 $F(A,B) = \{g \in G; (g+A) \cap B \text{ is not Haar null}\}\$

is open.

Christensen posed the following question in [C]: Let $A, B \subset G$ be two universally measurable non-Haar null subsets of a Polish abelian group Gand let G be non-locally compact. Can F(A, B) be empty?

This problem was answered positively by Dougherty [D] in $\mathbb{R}^{\mathbb{N}}$ and by Matoušková and Zajíček [MZ] in c_0 . The main aim of this paper is to present an observation that Solecki's method [S] of construction of non-Haar null sets gives a positive answer to the question in every Polish abelian non-locally compact group.

We will need the following theorems; the first one can be found, for example, in [DS, p. 90].

THEOREM 2. Let G be a Polish abelian group. There exists an equivalent complete metric ρ on G, which is invariant (i.e. $\forall g, a, b \in G : \rho(a, b) = \rho(g + a, g + b)$).

²⁰⁰⁰ Mathematics Subject Classification: 28A05, 43A05.

The first author was partially supported by the grant GAAV-A1019103, the second by Research Grant GAUK 160/1999, GAČR 201/97/1161 and MSM 113200007.

THEOREM 3 (Christensen, [C, p. 119]). Let G be a Polish abelian nonlocally compact group. Then every compact subset of G is Haar null.

Let G be a Polish abelian group. The symbol $B(\varepsilon)$ denotes the open ball with center at 0 and radius ε . If $X \subset G$, then $B(X, \varepsilon)$ denotes the set $\{y \in G; \operatorname{dist}(y, X) < \varepsilon\}$. We start with the following lemma.

LEMMA. Let G be a Polish, abelian, non-locally compact group with a complete invariant metric ϱ . Then for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any two finite sets $F_1, F_2 \subset G$ there exists $g \in B(\varepsilon)$ such that $\operatorname{dist}(F_1, g + F_2) \geq \delta$.

Proof. Since the group G is not locally compact, there exist an infinite set $D \subset B(\varepsilon)$ and $\delta > 0$ such that $\varrho(d, d') > 2\delta$ whenever $d, d' \in D$, $d \neq d'$. Suppose that $\operatorname{dist}(F_1, g + F_2) < \delta$ for every $g \in D$. Since F_1 and F_2 are finite, there exist $f_1 \in F_1$, $f_2 \in F_2$ and $g_1, g_2 \in D$, $g_1 \neq g_2$, such that $\varrho(f_1, g_1 + f_2) \leq \delta$ and $\varrho(f_1, g_2 + f_2) \leq \delta$. This implies $\varrho(g_1, g_2) = \varrho(g_1 + f_2, g_2 + f_2) \leq \varrho(g_1 + f_2, f_1) + \varrho(g_2 + f_2, f_1) \leq \delta + \delta = 2\delta$, which is a contradiction.

THEOREM 4. Let G be a Polish, abelian, non-locally compact group. Then there exist closed non-Haar null sets $A, B \subset G$ such that $(g + A) \cap B$ is compact for every $g \in G$. Consequently, F(A, B) is empty.

Proof. According to Theorem 1 there exists an equivalent complete invariant metric on G. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence that is dense in G.

Fix a sequence $\{Q_k\}_{k=1}^{\infty}$ of finite sets such that $Q_k \subset Q_{k+1}$ for every $k \in \mathbb{N}$ and $\bigcup_{k=1}^{\infty} Q_k$ is dense in G.

Fix $\varepsilon > 0$ and take $\delta > 0$ such that 3δ satisfies the conclusion of the Lemma for ε . We find inductively sequences $\{g_k\}_{k=1}^{\infty}$, $\{\tilde{g}_k\}_{k=1}^{\infty}$ such that

- $\forall k \in \mathbb{N} : g_k, \widetilde{g}_k \in B(\varepsilon),$
- $\forall k \in \mathbb{N} : \operatorname{dist}(g_k + Q_k, \bigcup_{i < k} (g_i + Q_i)) \ge 3\delta,$
- $\forall k \in \mathbb{N} : \operatorname{dist}(\widetilde{g}_k + Q_k, \bigcup_{i < k} (\widetilde{g}_i + Q_i)) \ge 3\delta$,
- $\forall n \in \mathbb{N} \ \forall i, j \in \mathbb{N}, \ i, j \ge n : \operatorname{dist}(s_n + g_i + Q_i, \widetilde{g}_j + Q_j) \ge 3\delta.$

Put $g_1 = 0$. Put $F_1 = (g_1 + Q_1) \cup (s_1 + g_1 + Q_1)$ and $F_2 = Q_1$. Now the Lemma gives $\tilde{g}_1 \in B(\varepsilon)$. Suppose that we have defined g_1, \ldots, g_{k-1} , $\tilde{g}_1, \ldots, \tilde{g}_{k-1} \in B(\varepsilon)$. Put

$$F_1 = \bigcup_{j < k} (g_j + Q_j) \cup \bigcup_{l \le k} \bigcup_{j < k} (-s_l + \widetilde{g}_j + Q_j),$$

$$F_2 = Q_k.$$

Applying the Lemma we obtain $g_k \in B(\varepsilon)$ such that $\operatorname{dist}(F_1, g_k + F_2) \geq 3\delta$.

Now put

$$\begin{split} F_1 &= \bigcup_{l \leq k} \bigcup_{j \leq k} (s_l + g_j + Q_j) \cup \bigcup_{j < k} (\widetilde{g}_j + Q_j), \\ F_2 &= Q_k. \end{split}$$

The Lemma gives $\tilde{g}_k \in B(\varepsilon)$ such that $\operatorname{dist}(F_1, \tilde{g}_k + F_2) \geq 3\delta$. This finishes the construction of our sequences.

Fix sequences $\{\varepsilon_m\}_{m=1}^{\infty}$ and $\{\delta_m\}_{m=1}^{\infty}$ such that $\sum_{i>m} \varepsilon_i < \delta_m/2$ and $3\delta_m$ satisfies the conclusion of the Lemma for ε_m .

Using the above construction we obtain $g_k^m, \widetilde{g}_k^m \in G, k, m \in \mathbb{N}$, such that for every $m \in \mathbb{N}$ we have

 $\begin{array}{l} \text{(i)} \ \forall k \in \mathbb{N} : g_k^m, \widetilde{g}_k^m \in B(\varepsilon_m),\\ \text{(ii)} \ \forall k \in \mathbb{N} : \operatorname{dist}(g_k^m + Q_k, \bigcup_{i < k} (g_i^m + Q_i)) \geq 3\delta_m,\\ \text{(iii)} \ \forall k \in \mathbb{N} : \operatorname{dist}(\widetilde{g}_k^m + Q_k, \bigcup_{i < k} (\widetilde{g}_i^m + Q_i)) \geq 3\delta_m,\\ \text{(iv)} \ \forall n \in \mathbb{N} \ \forall i, j \in \mathbb{N}, \ i, j \geq n : \operatorname{dist}(s_n + g_i^m + Q_i, \widetilde{g}_j^m + Q_j) \geq 3\delta_m. \end{array}$

Now we define the desired sets:

$$A = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \overline{B(g_k^m + Q_k, \delta_m)}, \quad B = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \overline{B(\widetilde{g}_k^m + Q_k, \delta_m)}.$$

Conditions (ii) and (iii) give that both A and B are closed. We show that for every compact set K there exists $g \in G$ with $g + K \subset A$. This easily implies that A is not a Haar null set. The same argument works for B. Let $K \subset G$ be a compact set. There exists $n_1 \in \mathbb{N}$ such that $K \subset B(Q_{n_1}, \delta_1/2)$. Thus $g_{n_1}^1 + K \subset B(g_{n_1}^1 + Q_{n_1}, \delta_1/2)$. Now suppose that we have defined n_1, \ldots, n_{k-1} . There exists $n_k \in \mathbb{N}$ such that

$$g_{n_1}^1 + g_{n_2}^2 + \ldots + g_{n_{k-1}}^{k-1} + K \subset B(Q_{n_k}, \delta_k/2).$$

Thus

(*)
$$g_{n_1}^1 + g_{n_2}^2 + \ldots + g_{n_k}^k + K \subset B(g_{n_k}^k + Q_{n_k}, \delta_k/2).$$

The sequence $\{\sum_{j=1}^{m} g_{n_j}^j\}_{m=1}^{\infty}$ is convergent because of our choice of ε_j 's and condition (i). Put $g = \sum_{j=1}^{\infty} g_{n_j}^j$. We have

$$g + K \subset B(g_{n_k}^k + Q_{n_k}, \delta_k) \quad \text{ for every } k \in \mathbb{N},$$

since

$$\sup_{y \in g+K} \operatorname{dist}(g_{n_1}^1 + \ldots + g_{n_k}^k + K, y) \le \sum_{j=k+1}^{\infty} \operatorname{dist}(0, g_{n_j}^j) \le \sum_{j=k+1}^{\infty} \varepsilon_j < \delta_k/2$$

and (\star) holds. Thus we can conclude that $g + K \subset A$, and we have shown that A is not Haar null.

Let $s \in G$ be arbitrary. We will show that the set $(s+A) \cap B$ is compact. Since A and B are closed it is sufficient to prove that our set is totally bounded. Choose $\eta > 0$. It is easy to see that $\lim \delta_m = 0$. We choose $m, n \in \mathbb{N}$ so large that $\delta_m < \eta$ and $\varrho(s, s_n) < \delta_m/2$. Using condition (iv) we obtain

$$(s+A) \cap B \subset \left(s_n + \bigcup_{k=1}^{\infty} \overline{B(g_k^m + Q_k, 3\delta_m/2)}\right) \cap \left(\bigcup_{k=1}^{\infty} \overline{B(\widetilde{g}_k^m + Q_k, \delta_m)}\right)$$
$$= \left(\bigcup_{k=1}^{\infty} \overline{B(s_n + g_k^m + Q_k, 3\delta_m/2)}\right) \cap \left(\bigcup_{k=1}^{\infty} \overline{B(\widetilde{g}_k^m + Q_k, \delta_m)}\right)$$
$$\subset \left(\bigcup_{k=1}^{n-1} \overline{B(s_n + g_k^m + Q_k, 3\delta_m/2)}\right) \cup \left(\bigcup_{k=1}^{n-1} \overline{B(\widetilde{g}_k^m + Q_k, \delta_m)}\right).$$

The last union can be covered by finitely many closed balls with radii $3\delta_m/2 < 2\eta$. Thus we can find a finite 2η -net of the set $(s + A) \cap B$ for each $\eta > 0$ and therefore our set is compact.

REFERENCES

- [C] J. P. R. Christensen, Topology and Borel Structures, North-Holland, 1974.
- [D] R. Dougherty, *Examples of non-shy sets*, Fund. Math. 144 (1994), 73–88.
- [DS] N. Dunford and J. T. Schwartz, *Linear Operators I*, Interscience, 1967.
- [MZ] E. Matoušková and L. Zajíček, Second order differentiability and Lipschitz smooth points of convex functionals, Czechoslovak Math. J. 48 (1998), 617–640.
- [S] S. Solecki, On Haar null sets, Fund. Math. 149 (1996), 205–210.

Mathematical Institute	Faculty of Mathematics and Physics
Czech Academy of Sciences	Charles University
Žitná 25	Sokolovská 83
Praha 115 67, Czech Republic	Praha 186 00, Czech Republic
E-mail: matouse@matsrv.math.cas.cz	E-mail: zeleny@karlin.mff.cuni.cz

Received 15 November 2001

(4133)