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A REPRESENTATION THEOREM FOR CHAIN RINGS
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Abstract. A ring A is called a chain ring if it is a local, both sided artinian, principal
ideal ring. Let R be a commutative chain ring. Let A be a faithful R-algebra which is a
chain ring such that A = A/J(A) is a separable field extension of R = R/J(R). It follows
from a recent result by Alkhamees and Singh that A has a commutative R-subalgebra R0
which is a chain ring such that A = R0 + J(A) and R0 ∩ J(A) = J(R0) = J(R)R0. The
structure of A in terms of a skew polynomial ring over R0 is determined.

Introduction. Let S be a finite local ring. As shown by Wirt [8, The-
orem 2.2] and independently by Clark and Drake [4], S has a commutative
local subring S0 such that S = S0 + J(S) and S0 ∩ J(S) = pS0, where
p = char(S/J(S)). This subring is called a coefficient subring of S. A ring
is called a chain ring if it is a local, both sided artinian and principal ideal
ring. Wirt [8] gave a representation of a finite chain ring S in terms of a
homomorphic image of a skew polynomial ring over its coefficient subring.
On the other hand, Alkhamees and Singh [1] generalized the results on the
existence of coefficient subrings of finite local rings to certain non-finite local
rings.

Let R be a commutative chain ring, and A be a local ring that is a
faithful R-algebra. Then J(R) = R ∩ J(A). Let A = A/J(A) be a separ-
able, algebraic field extension of R, and let A be either a locally finite R-
algebra or an artinian duo ring. As proved in [1], A has a commutative local
R-subalgebra R0 such that A = R0 + J(A) and J(R0) = R0 ∩ J(A) =
J(R)R0. This subalgebra R0 is also called a coefficient subring of A; such a
subring is a commutative chain ring, and is a faithful R-algebra. The group
of R-automorphisms of R0 is investigated in Section 2. Wirt [8] introduced
the concept of a distinguished basis of a bimodule over a Galois ring. In
Section 3 an analogous concept for bimodules over R0 is investigated.

The main purpose of this paper is to prove a representation theorem
for A, in case A is a chain ring, in terms of an appropriate homomorphic
image of a skew polynomial ring over its coefficient subring. Sections 4 and 5
are devoted to proving the main theorem (Theorem 5.5). By Cohen [5], any
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commutative local artinian ring admits a coefficient subring. We outline an
example given in [2] to show that a non-commutative local ring need not
admit a coefficient subring. For such a ring an analogue of Theorem 5.5
cannot be proved.

1. Preliminaries. All rings considered in the paper have 1 6= 0. Let S
be any ring. Then J(S), Z(S) denote its Jacobson radical and center re-
spectively. For any subset X of S, C(X) denotes its centralizer in S. For any
module M , d(M) denotes its composition length. For any automorphism σ
of S, S[x, σ] denotes the left skew polynomial ring over S determined by σ.
Its members are left polynomials

∑
i aix

i, ai ∈ S, and xa = σ(a)x for every
a ∈ S.

Let R be a commutative local ring and R=R/J(R). For any f(x)∈R[x],
let f(x) denote its natural image in R[x]. The ring R is called a Hensel ring
if it has the following property: Given any monic polynomial f(x) ∈ R[x],
if f(x) = a(x)b(x) for some relatively prime monic polynomials a(x), b(x)
∈ R[x], then there exist monic polynomials g(x), h(x) ∈ R[x] such that
f(x) = g(x)h(x), g(x) = a(x) and h(x) = b(x). By the Hensel lemma
[9, p. 279], any commutative, complete local ring R is a Hensel ring. In
particular any commutative local artinian ring is a Hensel ring.

Let A be an algebra over R. If AR is finitely generated, then A is called
a finite R-algebra. The algebra A is called faithful if for any r ∈ R, rA = 0
implies that r = 0; in that case R is regarded a subring of A. Moreover, A is
called unramified if J(A) = J(R)A; R-separable if it is a commutative, local,
finite, faithful and unramified R-algebra such that A = A/J(A) is a finite
separable field extension of R/J(R); and locally separable if it is a local,
faithful, unramified R-algebra such that any finite subset of A is contained
in a separable R-subalgebra. If A is a locally separable R-algebra, then A is
a separable, algebraic field extension of R.

A commutative chain ring R is called a special primary ring [7, p. 200].
A finite special pimary ring S such that J(S) = pS, where p = char(S/J(S)),
is a Galois ring (see [4]). A ring S in which every one-sided ideal is two-sided
is called a duo ring.

2. Ring monomorphisms

Lemma 2.1. Let R be a Hensel ring and A be a commutative, local ,
finite, faithful R-algebra such that J(R) = R ∩ J(A).

(i) A is a Hensel ring.
(ii) Let f(x) ∈ R[x] be a monic polynomial such that f(x) ∈ R[x] is

irreducible and separable. If for some c ∈ A, f(c) = 0, then there exists a
unique a ∈ A such that f(a) = 0 and a = c.



CHAIN RINGS 105

Proof. For (i) see [3, Theorem 32]. For (ii), see [1, Lemma 2.1].

Let A be a separable algebra over a Hensel ring R. An element a ∈ A is
said to be lift algebraic over R if there exists a monic polynomial f(x) ∈ R[x]
such that f(x) is irreducible modulo J(R) and f(a) = 0; we call f(x) an
associated polynomial of a. Throughout this section R is a special primary
ring with J(R) = πR = Rπ and n is the index of nilpotency of π.

Lemma 2.2. Let A be a commutative, local , faithful , unramified R-alge-
bra such that A is a separable algebraic field extension of R.

(I) A is a special primary ring with index of nilpotency of J(A) the
same as that of J(R).

(II) Let a, b ∈ A be lift algebraic over R.

(i) Let f(x) ∈ R[x] be a monic polynomial such that f(x) is irre-
ducible over R. Then T = R[x]/〈f(x)〉 is an unramified , local
finite R-algebra. If , in addition, f(x) is separable over R, then
T is a separable R-algebra.

(ii) If f(x) ∈ R[x] is an associated polynomial of a, then R[a] ∼=
R[x]/〈f(x)〉, R[a] is a separable R-algebra and dR(R[a]) =
ndeg f(x), where n = dR(R).

(iii) If a = b, then R[a] = R[b].
(iv) R[b] ⊆ R[a] if and only if R[ b ] ⊆ R[a].

(III) If A is an R-separable algebra, then there exists a lift algebraic
element a ∈ A such that A = R[a].

Proof. We have J(R) = πR and J(A) = πA. As n is the index of nilpo-
tency of π, we see that A is a special primary ring such that the index of
nilpotency of J(A) is n. This proves (I).

To prove (II)(i), observe that J(T ) = 〈π, f(x)〉/〈f(x)〉= πT , and T/J(T )
∼= R[x]/〈f(x)〉. To prove (ii), let g(x) be a non-zero member of R[x] such
that g(a) = 0 and deg g(x) < deg f(x). We can write g(x) = πkh(x) such
that deg g(x) = deg h(x) and h(x) ∈ R[x]\J(R[x]). Then h(a) ∈ J(A). This
contradicts the fact that f(x) modulo J(R) is the minimal polynomial of a.
Hence R[a] ∼= R[x]/〈f(x)〉. The last part of (ii) follows from (i). Let a = b,
and let g(x) ∈ R[x] be an associated polynomial of b. As R[a] is a Hensel
ring, there exists c ∈ R[a] such that g(c) = 0 and c = b. By 2.1, b = c.
Since R[a] and R[b] have the same composition length as R-modules, we get
R[a] = R[b]. Similar arguments prove (II)(iv).

In case A is a separable R-algebra, A is a simple extension of R: for some
lift algebraic element a ∈ A, A = R[a]. Hence A = R[a]. This proves (III).

Lemma 2.3. Let A be a commutative, local , faithful unramified R-alge-
bra such that A is a separable algebraic field extension of R.
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(i) For any subfield F of A is a finite extension of R, there exists a
unique R-separable subalgebra S of A such that F = S. Further , there
exists a lift algebraic element a ∈ S such that S = R[a].

(ii) For any subfield F of A containing R, there exists a unique locally
R-separable subalgebra S of A such that S = F .

Proof. (i) We have F = R[c] for some c ∈ F . Let f(x) ∈ R[x] be a monic
polynomial which modulo J(R) is the minimal polynomial of c over R. As
A is a Hensel ring we get an a ∈ A such that f(a) = 0 and a = c. As
in 2.2, R[a] is an R-separable subalgebra isomorphic to R[x]/〈f(x)〉. Put
S = R[a]. Clearly F = S. Let T be another such R-separable subalgebra
of A. By 2.2(III) there exists b ∈ T lift algebraic over R such that T = R[b].
AsR[a] = R[ b ], by 2.2(II)(iii) we haveR[a] = R[b], so S = T . This proves (i).

(ii) Let F be any subfield of A containing R. Then F is a directed union
of simple field extensions of R. Apply (i) to complete the proof.

Lemma 2.4. Let A be a commutative, local , faithful unramified R-alge-
bra such that A is a separable algebraic field extension of R. Let a, b ∈ A
be lift algebraic over R.

(i) There exists a c ∈ A lift algebraic over R such that R[a]+R[b] ⊆ R[c].
(ii) A is the union of all the subrings of the form R[a], where a runs

over all the elements of A that are lift algebraic over R.
(iii) A is a locally separable R-algebra.
(iv) If A′ is a locally separable A-algebra, then A′ is a locally separable

R-algebra.

Proof. As a, b are both separable over R, there exists a lift algebraic
element c ∈ A such that R[a, b ] = R[c]. Then 2.2(II)(iv) completes the proof
of (i).

Let B be the union of all the subrings of A of the form R[a], where a
is any element of A lift algebraic over R. (i) shows that B is a subring and
B = A. So A = B + J(A) = B + πA, as J(R) = πR. As π is nilpotent, we
get A = B. This proves (ii); and (iii) is immediate from (ii).

For (iv), the hypothesis on A′ gives J(A′) = J(A)A′ = J(R)A′, so A′ is
an unramified R-algebra. Also A′ is a separable field extension of R. Now
(iii) completes the proof.

Theorem 2.5. Let A and A′ be two commutative, local , faithful , un-
ramified algebras over a special primary ring R such that A and A′ are
both separable field extensions of R. If there exists an R-monomorphism
σ : A→ A′, then σ has a unique lifting to an R-monomorphism η : A→ A′.
Further , η is an automorphism if and only if σ is an automorphism.

Proof. Consider any a, b ∈ A lift algebraic over R. Let f(x), g(x)∈R[x]
be associated polynomials of a, b respectively. Now f(a) = 0 gives
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f(σ(a)) = 0. So we can find a unique a′ ∈ A′ for which f(a′) = 0 and
a′ = σ(a). But R[a] ∼= R[x]/〈f(x)〉 ∼= R[a′], so we get an R-isomorphism
λa : R[a] → R[a′] such that λa(a) = a′. Then λa(a) = σ(a). So λa lifts the
restriction of σ to R[a]. Similarly, for b we get b′ ∈ A′ such that g(b′) = 0,
b′ = σ(b) and we have an R-isomorphism λb : R[b] → R[b′] such that
λb(b) = b′. Suppose R[a] ⊆ R[ b ]. Then R[a] ⊆ R[b]. Now λb(a) = σ(a)
and f(λb(a)) = 0 = f(a′). This gives λb(a) = λa(a). Hence λb is an exten-
sion of λa. As A is the union of all R[a], where a is any element of A lift
algebraic over R, the union of the maps λa gives the desired monomorphism
η : A → A′ which lifts σ. Clearly η is uniquely determined by σ. By using
the arguments in the proof of 2.4(ii) it follows that η is an isomorphism if
and only if σ is an isomorphism.

The following is immediate.

Corollary 2.6. Let A, A′ be two commutative, local , faithful unram-
ified algebras over a special primary ring R such that A and A′ are both
separable algebraic field extensions of R, let G be the set of all R-monomor-
phisms of A into A′, and let G be the set of all R-monomorphisms of A
into A′. Then there is a one-to-one correspondence between G and G given
by η ↔ η, where η ∈ G is induced by η ∈ G. If A = A′, then this corre-
spondence induces an isomorphism between AutR(A) and AutR(A).

Theorem 2.7. Let A be a commutative, local , faithful unramified alge-
bra over a special primary ring R such that A is a separable, algebraic field
extension of R.

(a) AutR(A) ∼= AutR(A).
(b) Let σ : A→ A be an R-monomorphism.

(i) σ is an automorphism of A and for any b ∈ A lift algebraic
over R, b ∈ Aσ if and only if b ∈ Aσ.

(ii) The fixed ring Aσ of σ is a local , unramified R-algebra. If the
order of σ is a positive integer k, then [A :Aσ] = k and A=Aσ[c]
for some c lift algebraic over Aσ. The fixed ring of σ equalsAσ.

Proof. (a) is given in 2.6.
(b) Consider any finite subset T of A. By adjoining all the conjugates

of elements in T over R, in A, we get a finite set T ′ containing T such that
η(R[T ′]) = R[T ′] for any R-monomorphism η : A → A. This in particular
gives σ(A) = A. Thus σ(A) = A, and hence σ is an automorphism. Let
b ∈ A be lift algebraic over R such that b ∈ Aσ. Let f(x) ∈ R[x] be an
associated polynomial of b. Then f(b) = 0 gives f(σ(b)) = 0. But b = σ(b).
By 2.1, b = σ(b). This proves (i).

Every finite separable field extension of R is simple. Let S be the set of all
those a ∈ A such that a is lift algebraic over R, and η(R[a]) = R[a] for every
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η ∈ AutR(A). Then A =
⋃
a∈S R[a]. Now R[a]σ = R[ ba] for some ba ∈ R[a]

lift algebraic over R. It follows by using 2.4(i) that A′ =
⋃
a∈S R[ba] is an

unramified local R-algebra, and A′ ⊆ Aσ. Let c ∈ Aσ. Then c ∈ R[a] for
some a ∈ S. Thus for some c1 ∈ R[ba] lift algebraic over R, c = c1 and
c = c1 + πru1 for some r > 0 and a unit u1 ∈ R[a]. If πru1 = 0, we get
c ∈ A′. Suppose πru1 6= 0. As πru1 ∈ Aσ, we get πr(σ(u1) − u1) = 0, so
u1 ∈ R[ ba]. As for c, we get u1 = c2 + πsu2 for some c2 ∈ R[ba], s > 0 and
u2 some unit in R[a]. Then c = c1 + πrc2 + πr+su2 and r+ s > r. Continue
the process with u2 and so on. As π is nilpotent, we eventually get c ∈ A′.
Clearly, A is unramified over Aσ. Suppose that the order of σ is a positive
integer k; then so is the order of σ. Consequently, [A :Aσ] = k. By 2.2(III),
A = Aσ[c] for some c ∈ A lift algebraic over Aσ. Clearly Aσ ⊆ A′′, the
fixed ring of σ. Let y ∈ A′′. Then for some a ∈ S, y ∈ R[ ba]. As R[ba] is
R-separable, y = c for some c ∈ R[ba] ⊆ Aσ. This proves the result.

3. Distinguished basis. Throughout this sectionR is a special primary
ring and A is a commutative, locally separable R-algebra. Let H be the set
of all R-subalgebras of A of the form R[a] such that a ∈ A is any element
lift algebraic over R. By 2.4, H is an upper semi-lattice, and the union
of members of H is A. Observe that any R[a] ∈ H is projective as an
R-module, so AR is flat. As J(R[a]) = J(R)[a] for each R[a] ∈ H, we have
J(A) = J(R)A, i.e. A is an unramified R-algebra. Let T = A ⊗R A. Then
for any R[a] ∈ H, Ta = A ⊗R R[a] ⊆ T and T is the union of the set of
all such subrings. The concept of a distinguished basis of a bimodule over a
Galois ring is discussed by Wirt [8]. The results in this section are related to
those by Wirt, but in contrast to [8], the underlying rings need not be finite.
Also, there is a marked difference between the proofs in [8] and of similar
results in this section. Any (A,A)-bimodule M is supposed to be such that
rx = xr for any x ∈M and r ∈ R.

Lemma 3.1. Let a ∈ A be lift algebraic over R.

(i) Ta = A⊗R R[a] is a finite direct sum of local rings each of which is
a separable A-algebra (so also a locally separable R-algebra). Further , Ta is
an artinian principal ideal ring and J(Ta) = J(R)Ta. If A is a normal
extension of R, then Ta is a direct sum of copies of A.

(ii) For any maximal ideal P of T there is no ideal L of T such that
P 2 < L < P . For any ideal C of T for which T/C is artinian, T/C is a
principal ideal ring.

(iii) J(T ) = J(R)T .

Proof. (i) Let f(x) ∈ R[x] be an associated polynomial of a. As A is a
Hensel ring, f(x) =

∏t
i=1 fi(x) with each fi(x) monic, and modulo J(A)
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irreducible over A. Then

A⊗R R[a] ∼= A⊗R R[x]/〈f(x)〉 ∼= A[x]/〈f(x)〉 ∼=
t∏

i=1

A[x]/〈fi(x)〉.

Now each A[x]/〈fi(x)〉 is a separable A-algebra. As A is an unramified
R-algebra, by 2.4(iv), A[x]/〈fi(x)〉 is R-unramified. This gives J(Ta) =
J(R)Ta. That Ta is a principal ideal ring follows from the fact that any
locally separable R-algebra is a principal ideal ring. If A is a normal exten-
sion of R, then each fi(x) is of degree one, so each A[x]/〈fi(x)〉 is isomorphic
to A.

Suppose that, on the contrary, L is an ideal of T such that P 2 < L < P .
For any R[a] ∈ H let Pa = P ∩Ta and La = L∩Ta. As Ta is a principal ideal
ring, there is no ideal of Ta properly between Pa and (Pa)2. So La = Pa or
La = P 2 ∩ Ta. The hypothesis implies that there exist R[a], R[b] ∈ H such
that La 6= P 2 ∩ Ta and Lb 6= Pb. Now there exists R[c] ∈ H such that
R[a] ∪R[b] ⊆ R[c]. Then Ta ∪ Tb ⊆ Tc. If Lc = P 2 ∩ Tc, then La = P 2 ∩ Ta;
if Lc = Pc, then Lb = Pb. This is a contradiction. Let C be any ideal of T
such that T/C is artinian. Then for any prime ideal Q of T/C there is no
ideal of T/C properly between Q and Q2. Hence T/C is a principal ideal
ring [7, Theorem 39.2].

(iii) follows from (i).

Theorem 3.2. Let A be a locally separable algebra over a special pri-
mary ring R, and M be an (A,A)-bimodule such that d(AM) is finite.
Then M = ⊕∑n

i=1 Aixi with each Ai a separable A-algebra, and there exist
R-monomorphisms σi : A → Ai such that xia = σi(a)xi for any a ∈ A. In
case A is a normal extension of R, each Ai can be taken to be A and each
σi an R-automorphism of A.

Proof. Let T = A⊗RA. Then M is a left T -module such that (a⊗b)x =
axb for any a, b ∈ A and x ∈ M . Then d(TM) is also finite. So there
exists an ideal C of T such that T/C is artinian and CM = 0. As T/C
is an artinian principal ideal ring, M = ⊕∑n

i=1 Txi, where each Txi is a
non-zero uniserial module [6, Theorem 25.4.2]. Consider any x ∈ M . For
any R[a] ∈ H, (A ⊗R R[a])x = Tax is a left A-submodule of Tx. There
exists an R[c] ∈ H such that Tcx has maximal composition length as left
A-module among all submodules Tax. As T is the union of all the Ta’s it
follows from 2.4(i) that Tx = Tcx. For any u ∈ Tc, T (ux) = u(Tx) = uTcx =
Tc(ux). This shows that any Tc-submodule of Tx is also a T -submodule. In
addition, suppose that Tx is uniserial. Then Tx is also a uniserial Tc-module.
By 3.1, Tc is a direct sum of rings which are separable A-algebras. This gives
a summand A′ of Tc such that A′ is a separable A-algebra, Tx = A′x and
every A′-submodule of A′x is a T -submodule. Hence for 1 ≤ i ≤ n we get
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A-subalgebras Ai of T such that each Ai is a separable A-algebra and Txi =
Aixi. Let J(R) = πR. Then J(A) = πA and J(A′) = πA′. For any x ∈ M ,
xπ = πx. This gives that Di = r.annA(xi) = πkiA and D′i = l.annAi(xi)
= Aiπ

ki . Consider a ∈ A; as xia ∈ Txi = Aixi there exists a′ ∈ Ai such
that xia = a′xi. This gives an R-monomorphism ηi : A/Di → Ai/D

′
i such

that ηi(a+Di) = a′ +D′i. By 2.5, ηi uniquely lifts to an R-monomorphism
σi : A→ Ai. Clearly xia = σi(a)xi for every a ∈ A.

Let A be a normal extension of R. By 3.1(i) each Ai is a copy of A, so
Ai = Aei for some indecomposable idempotent ei in T , and σi(a) = ηi(a)ei
for some R-automorphism ηi of A. Hence M = ⊕∑n

i=1 Ayi with yi = eixi
and yia = ηi(a)yi. This proves the result.

In case A is a normal extension of R, and M is an (A,A)-bimodule as in
the above theorem, it follows from the above theorem that there exist finitely
many distinct R-automorphisms σ1, . . . , σs such that M = N1 ⊕ . . . ⊕ Ns
for some non-zero submodules Ni with the property that for any non-zero
x ∈ Ni, xa = σi(a)x for every a ∈ A.

Corollary 3.3. Let A and T be as in the above theorem and A/J(A)
be a normal field extension of R. Let M be an (A,A)-bimodule such that
d(AM) <∞.

(i) There exist uniquely determined R-automorphisms σ1, . . . , σs of A
such that for 1 ≤ i ≤ s, Ni = {x ∈ M : xa = σi(a)x for every a ∈ A} is a
non-zero submodule of M and M = N1 ⊕ . . .⊕Ns.

(ii) If the module TM is uniserial , then AM is uniserial.

Proof. We have M = N1 ⊕ . . . ⊕ Ns for some non-zero submodules Ni
and distinct R-automorphisms σi of A such that ya = σi(a)y for y ∈ Ni,
a ∈ A. Suppose that for some R-automorphism η of A there exists a non-zero
x ∈ M such that xa = η(a)x for every a ∈ A. Write x =

∑
xi, xi ∈ Ni.

Then xa = η(a)x gives
∑
η(a)xi =

∑
σi(a)xi. For some j, xj 6= 0. Then

(η(a)− σi(a))xj = 0 gives η(a)− σj(a) ∈ J(A) for every a ∈ A. By 2.7(a),
η = σj , and hence x ∈ Nj . This proves (i).

It has been seen in the proof of the above theorem that M is a direct sum
of uniserial T -modules each of which is a uniserial left A-module. Hence, if
M is a uniserial T -module it must be a uniserial left A-module.

Let S be a faithful R-algebra such that S = S/J(S) is a countably
generated separable algebraic field extension ofR. If S is locally finite or is an
artinian duo ring, then S has a coefficient subring T which is unique to within
isomorphisms [1]. In particular any finite local ring S of characteristic pn,
where p is a prime number, can be regarded as an algebra over Z/〈pn〉, so
it has a coefficient subring T ; this T is a Galois ring of order pnr where the
order of S/J(S) is pr.
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Theorem 3.4. Let (R, π) be any special primary ring and S be a left
artinian, faithful R-algebra such that S = S/J(S) is a countably generated ,
separable normal algebraic field extension of R. Let S have a coefficient
subring R0. Then as an (R0, R0)-bimodule, S = R0 ⊕ (⊕∑n

i=1 R0xi) such
that for 1 ≤ i ≤ n, xi ∈ J(S) and there exists a σi ∈ AutR(R0) such
that xia = σi(a)xi for every a ∈ A. These automorphisms are uniquely
determined by S.

Proof. (R0, π) is a special primary ring and d(R0S) = d(SS). We regard
S as an (R0, R0)-bimodule. Consider any unit x ∈ S such that for some
σ ∈ AutR(R0), xa = σ(a)x for every a ∈ R0. But in S, xa = ax, so
(a−σ(a))x = 0. Thus a−σ(a) ∈ J(R0) for every a ∈ R0. By 2.7, σ = I, hence
x ∈ C(R0), the centralizer of R0. By 3.3, there exist uniquely determined
distinct R-automorphisms ηj , 1 ≤ j ≤ m, such that S = ⊕∑m

i=1 Bi where
Bi = {x ∈ S : xa = ηi(a)x for all a ∈ R0} 6= 0. For x ∈ R0 and a ∈ R0, xa =
ax, so 3.3(i) shows that one of the ηi, say η1, equals I. Then B1 = C(R0),
and S = C(R0) ⊕ H, where H =

∑
i>1 Bi. For any i ≥ 2, as seen above,

no Bi can contain any unit of S. Thus H ⊆ J(S). Now R0 is self-injective
(see [6]). By [6, Theorem 25.4.2], C(R0) = R0⊕(⊕∑p

j=1 R0yi). Suppose some
yi, say y1, is a unit. Now y1 = z1+v1 for some z1 ∈ R0 and v1 ∈ J(S)∩C(R0)
with R0 ⊕ R0y1 = R0 + R0v1. By comparing the composition lengths over
R0, it is immediate that R0⊕R0y1 = R0⊕R0v1. Thus we can take every yi
in J(S). As each Bi is also a direct sum of uniserial R0-modules, the result
follows.

4. Chain rings. We start with the following elementary result.

Lemma 4.1. (i) Let σ be an automorphism of a ring R and f(x) ∈
R[x, σ] be such that its leading coefficient is a unit , and deg f(x) =n ≥ 1.
Then for any g(x) ∈ R[x], we have g(x) = f(x)q(x) + r(x) for some
q(x), r(x) ∈ R[x] with deg r(x) < deg f(x). Further , R[x, σ]/f(x)R[x, σ]
as a right R-module is a direct sum of n copies of R.

(ii) Let σ be an automorphism of a division ring D. Then the left skew
polynomial ring D[x, σ] is a right as well as a left principal ideal domain.

Henceforth R is a commutative local ring with maximal ideal J , and
σ an automorphism of R. If J is nilpotent, it is obvious that J [x, σ] is a
nilpotent ideal of R[x.σ].

Lemma 4.2. If J is nil and σ is of finite order , then the ideal J [x, σ] of
R[x, σ] is nil.

Proof. Consider any f(x) ∈ J [x, σ], and let Y be the set consisting of all
coefficients of f(x) and their images under different powers of σ. As σ is of
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finite order, Y is a finite set, so the ideal A of R generated by Y is nilpotent.
Clearly any coefficient of an f(x)k is in Ak. Hence f(x) is nilpotent.

Lemma 4.3. Let f(x) = xk + g(x) be such that g(x) ∈ J [x, σ] and
deg g(x) < k, k a positive integer , and 〈f(x)〉 = f(x)R[x, σ].

(i) 〈J, x〉/〈f(x)〉 is the unique maximal ideal of S = R[x, σ]/〈f(x)〉.
(ii) If J [x, σ] is a nil ideal , then S is a local ring with J(S) equal to

〈J, x〉/〈f(x)〉.
(iii) If R is a special primary ring with J = πR and g(x) = πu(x),

where the constant term of u(x) is a unit , then S is a chain ring with
J(S) = 〈x〉, and the index of nilpotency of J(S) is kn, where n is the index
of nilpotency of π. Also, πn−1 6∈ 〈f(x)〉. Further , for any positive integer
m ≤ kn, T = R[x, σ]/〈f(x), xm〉, and the index of nilpotency of J(T ) is m.

Proof. Set B = 〈J, x〉. As R[x, σ]/B ∼= R/J is a field, clearly L =
B/〈f(x)〉 is a maximal ideal of S. Let h(x) ∈ R[x, σ] be such that h(x) 6∈ B.
Then 〈h(x)〉+B = R[x, σ], hence 〈h(x)〉+Bk = R[x, σ]. But Bk ⊆ 〈J, xk〉 =
〈J, f(x)〉, so 〈h(x)〉 + 〈J, f(x)〉 = R[x, σ]. Thus for T = R[x, σ]/C, where
C = 〈h(x)〉+ 〈f(x)〉, we have TJ = T . It follows from 4.1 that T is finitely
generated as a right R-module. Thus, by [3, Theorem 5], T = 0. Hence
〈h(x)〉 + 〈f(x)〉 = R[x, σ]. This proves that B/〈f(x)〉 is the only maximal
ideal of S.

Let J [x, σ] be nil. Then as Bk ⊆ 〈J, f(x)〉, B/〈f(x)〉 is a nil ideal. Hence
S is a local ring with J(S) = B/〈f(x)〉.

Let R be a special primary ring with J = πR and g(x) = πu(x) with the
constant term of u(x) a unit. As J is nilpotent, so is J [x, σ]. Consequently,
S is a local ring. Since u(x) is a unit modulo f(x), it follows that πS = xkS
and J(S) = xS. So S is a chain ring. It follows from 4.1 that d(SR) = kn.
As R/J and S/J(S) are isomorphic as right R-modules, d(SS) = kn. Hence
the index of nilpotency of J(S) is kn. This also yields πn−1 6∈ 〈f(x)〉. The
last part of (iii) follows from the fact that T is a homomorphic image of S
and J(S) = xS.

Lemma 4.4. Let J be nilpotent and let f(x) = xk+g(x) with k a positive
integer , and g(x) ∈ J [x, σ] be such that 〈f(x)〉 = f(x)R[x, σ]. Then there
exists an h(x) = xk + q(x) ∈ R[x, σ] with q(x) ∈ J [x, σ], deg q(x) < k,
〈f(x)〉 = 〈h(x)〉 = h(x)R[x, σ]. If the constant term of g(x) belongs to J\J2

then h(x) can also be chosen so that the constant term of h(x) is in J\J2.

Proof. Consider A = 〈J, f(x)〉 = 〈J, xk〉 and S = R[x, σ]/〈f(x)〉. Then
SJ = A/〈f(x)〉, so S/SJ ∼= R[x, σ]/〈J, xk〉 as right R-modules. So {xi+SJ :
0 ≤ i ≤ k − 1} generates S/SJ as a right R-module. As J is nilpotent, it
follows that SR itself is generated by the set {xi + 〈f(x)〉 : 0 ≤ i ≤ k − 1}.
So there exists h(x) = xk −∑k−1

i=0 aix
i ∈ 〈f(x)〉 with ai ∈ R. Then h(x) =
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(xk + g(x))v(x) for some v(x) ∈ R[x, σ]. In R[x, σ] = R[x, σ]/J [x, σ], h(x) =
xkv(x). This gives v(x) = 1 and h(x) = xk. It follows that v(x) = 1 + w(x)
with w(x) ∈ J [x, σ] and

∑k−1
i=0 aix

i ∈ J [x, σ]. As v(x) is a unit in R[x, σ], it
is immediate that 〈f(x)〉 = h(x)R[x, σ] = 〈h(x)〉. Finally, let the constant
term of g(x) be b ∈ J\J2. Then b is also the constant term of f(x). If c ∈ J is
the constant term of w(x), then the constant term of h(x) is b(1+c) ∈ J\J2.
This proves the result.

Lemma 4.5. Let J be nilpotent , f(x) = xk + g(x) ∈ R[x, σ] with k a
positive integer , and g(x) ∈ J [x, σ] such that 〈f(x)〉 = f(x)R[x, σ]. Then
R[x, σ]/〈f(x)〉 as a right R-module is isomorphic to a direct sum of k copies
of R.

Proof. Because of 4.4 we can take deg g(x) < k. Now apply 4.1 to com-
plete the proof.

Henceforth R is a special primary ring with J = πR, the index of nilpo-
tency of J is n, and σ is such that σ(π) = π.

Lemma 4.6. Let f(x) ∈ R[x, σ] be such that its constant term or its
leading coefficient is a unit in R. If g(x) ∈ R[x, σ] is such that f(x)g(x) ∈
πsR[x, σ] for some non-negative integer s, then g(x) ∈ πsR[x, σ].

Proposition 4.7. Let f(x) = xk+πg(x) ∈ R[x, σ] be such that 〈f(x)〉 =
f(x)R[x, σ] and the constant term of g(x) is a unit in R. Then S =
R[x, σ]/〈f(x)〉 is a chain ring such that J(S) = 〈x〉, and the index of
nilpotency of J(S) is kn, where n is the index of nilpotency of J . For
1 ≤ m ≤ kn, A = R[x, σ]/〈f(x), xm〉 is a chain ring with m as the index of
nilpotency of J(A).

Proof. Because of 4.4 we can take deg g(x) < k. Then 4.3 completes the
proof of the first part. The second part is an immediate consequence of the
first part.

Proposition 4.8. Let f(x) = xk + πg(x) + r0x
m−1 ∈ R[x, σ] with

m − 1 > k > 0 and with constant term of g(x) a unit in R. Then T =
R[x, σ]/〈f(x), xm〉 is a chain ring with J(T ) = 〈x〉. The index of nilpotency
of J(T ) is at most kn.

Proof. Set A = 〈f(x), xm〉. Then T = R[x, σ]/A and A ⊆ 〈π, x〉. As x
is nilpotent in T , T is a local ring with J(T ) = 〈π, x〉 a nilpotent ideal. As
1 + r0xm−k−1 and g(x) are units in T ,

〈xk〉 = 〈xk + r0xm−1〉 = 〈−π g(x)〉 = 〈π〉.
Thus the index of nilpotency of x is at most kn and J(T ) = 〈x〉.

Lemma 4.9. Let h(x) = xk + πg(x) ∈ Z(R[x, σ]) be such that the con-
stant term of g(x) is a unit and deg g(x) < k. Let m be any positive integer
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such that k ≤ m − 1 ≤ kn − 1, and suppose the order of σ divides m − 1.
Let f(x) = h(x) + r0x

m−1, where r0 is a unit in R. Then:

(i) If m− 1 > k, then 〈f(x), xm〉 6= 〈f(x), xm−1〉.
(ii) If k = m− 1 and 1 + r0 is a unit , then 〈f(x), xm〉 6= 〈f(x), xm−1〉.
Proof. Suppose the contrary. Set A = 〈f(x), xm−1〉 = 〈h(x), xm−1〉 and

B = 〈f(x), xm〉.
Case I: k < m − 1. So xm−1 = (h(x) + r0x

m−1)s(x) + xmv(x) for
some s(x), v(x) ∈ R[x, σ]. This gives xm−1(1−r0s(x)) = h(x)s(x)+xmv(x).
If 1 − r0s(x) is a unit modulo the ideal C = 〈h(x), xm〉, we deduce that
xm−1 ∈ C, and the index of nilpotency of the radical of R[x, σ]/C is less
than m. This contradicts 4.3(iii). Hence the constant term of 1 − r0s(x) is
a non-unit. Thus, if s0 is the constant term of s(x), then s0 must be a unit.
Also the coefficient of xk in h(x)s(x) + xmv(x) is 0. Thus s0 − πb = 0 for
some b ∈ R and s0 ∈ J(R). This is a contradiction, which proves (i).

Case II: k = m−1 and 1+r0 is a unit. In this case πg(x)s(x) ∈ 〈xm−1〉.
By 4.6, πs(x) = xm−1πq(x). So s(x) = xm−1q(x) + πn−1λ(x) for some
λ(x) ∈ R[x, σ]. Thus

xm−1 = (xm−1 + πg(x) + r0x
m−1)(xm−1q(x) + πn−1λ(x)) + xmv(x)

= xm−1(1 + r0)(xm−1q(x) + πn−1λ(x)) + xm−1πg(x)q(x) + xmv(x).

Consequently, 1 = (1+r0)(xm−1q(x)+πn−1λ(x))+πg(x)q(x)+xv(x). This
is not possible, as the constant term on the right hand side is not a unit.
This proves (ii).

Remark. The hypothesis on h(x) in the above theorem implies that
o(σ) divides k and πg(x) ∈ Z(R[x, σ]).

Theorem 4.10. Let (R, π) be a special primary ring and σ be an au-
tomorphism of R of order k′, a positive integer. Let h(x) = xk + πg(x)
∈ Z(R[x, σ]) be such that the constant term of g(x) is a unit in R and
deg g(x) < k. Let m be any positive integer such that k(n − 1) < m ≤ kn,
k ≤ m− 1 and k′ divides m− 1. Let f(x) = h(x) + r0x

m−1 ∈ R[x, σ] with
r0 ∈ R satisfying the following conditions:

(i) Either r0 = 0 or r0 is a unit.
(ii) If k = m− 1, then 1 + r0 is a unit.

Then for A = 〈f(x), xm〉, S = R[x, σ]/A is a chain ring with J(S) having
index of nilpotency m.

Proof. For r0 = 0, the result follows from 4.3(iii). For r0 6= 0, it follows
from 4.8 and 4.9.
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5. A representation theorem. Throughout this section (R, π) is a
special primary ring, A is a local, faithful R-algebra which is a chain ring,
J(R) = R ∩ J(A), and A = A/J(A) is a countably generated normal,
separable algebraic field extension of R. As A is a duo ring, by [1], it has a
coefficient subring R0. Now J(R0) = R0π. Since A is an (R0, R0)-bimodule,
by 3.4, it can be written as

A = R0 ⊕
(
⊕

n∑

i=1

R0xi

)

in such a way that xi ∈ J(A) for 1 ≤ i ≤ n. As J(A) is a principal right
and left ideal, J(A) = Axi = xiA for some xi; write θ for this xi and σ for
the corresponding σi. We call (θ, σ) a distinguishing pair of A with respect
to R0. Then J(A) = θA = Aθ and θa = σ(a)θ for a ∈ R0. As π ∈ θA,
there exists a smallest positive integer k such that θk = πw for some unit
w ∈ A. Let m and n be the indices of nilpotency of θ and π respectively.
Then m = (n− 1)k + t for some 1 ≤ t ≤ k.

As in [4] or in [8], we also have A = R0 ⊕ R0θ ⊕ . . . ⊕ R0θ
k−1 with

R0θ
i ∼= R0 for 1 ≤ i < t, and R0θ

i ∼= R0/R0π for t ≤ i < k as left R0-
modules. Suppose θk = 0; then π = 0, R0 is a field, and A ∼= R0[x, σ]/〈xk〉.
So we are interested only in the case θk 6= 0. Observe that if x ∈ R, then
xθm−1 = rθm−1 for some r ∈ R0.

Lemma 5.1. If θk 6= 0, then σ is of finite order and its order divides k.
Also, θk ∈ Z(A).

Proof. We have π = w−1θk. Then for any a ∈ R0, πa = aπ yields
(aw−1 − w−1σk(a))θk = 0 and waw−1 − σk(a) ∈ J(A). But A/J(A) is
commutative. We get a − σk(a) ∈ J(A) ∩ R0 = J(R0). By 2.7, σk = I.
Hence the order of σ is finite and it divides k. The second part is obvious
from the first.

Henceforth we suppose that θk 6= 0, k′ is the order of σ, and k1 = k/k′.

Lemma 5.2. C(R0) = {∑k1−1
i=0 aiθ

k′i : ai ∈ R0}.
Proof. Let x =

∑k−1
i=0 aiθ

i ∈ C(R0), ai ∈ R0. For any a ∈ R0, ax = xa

yields (a − σi(a))aiθi = 0. If for some i, aiθi 6= 0, then a − σi(a) ∈ J(R0),
by 2.7, σi = I and hence k′ divides i. This proves the result.

Lemma 5.3. Let w ∈ A be a unit.

(i) If for some l, q ≥ 0, a(wπlθq) = (wπlθq)a for every a ∈ A, with
πlθq 6= 0, then k′ divides q.

(ii) If θ(wπlθq) = (wπlθq)θ and πlθq+1 6= 0, then w = s0 + w1θ
u for

some unit s0 ∈ Rσ0 , u ≥ 1 and some unit w1 ∈ A. In addition, if w ∈ R0,
then w = s+ s′ for some s ∈ Rσ0 and s′ ∈ Jm−q−1−kl ∩R0.
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(iii) Let L =
∑k1−1
i=0 Rσ0 θ

ik′ . If k′ does not divide m− 1, then Z(A) = L.
If k′ divides m− 1, then Z(A) = L+ J(A)m−1.

Proof. (i) a(wπlθq) = (wπlθq)a for every a ∈ A with πlθq 6= 0 gives
(aw − wσq(a))πlθq = 0, and as in 5.1, we find that k′ divides q.

(ii) Suppose that θ(wπlθq) = (wπlθq)θ and πlθq+1 6= 0. Now w = r + v
for some r ∈ R0 and v ∈ J . The hypothesis gives (σ(r) − r)πlθq+1 =
vπlθq+1 − θvπlθq+1 ∈ πlθq+1J , so (σ(r) − r) ∈ J ∩ R0. By 2.7(b), r =
s0 + r1π

α for some unit s0 ∈ Rσ0 , α ≥ 1, and some unit r1 ∈ R0. Then
w = s0 + r1π

α + v = s0 + w1θ
u for some unit w1 ∈ A, u ≥ 1.

Suppose w= r ∈R0. Then r= s0 + r1π
α and θ(r1π

α+lθq) = (r1π
α+lθq)θ.

If πα+lθq+1 = 0, then r1π
α ∈ Jm−q−1−kl ∩ R0, and we stop. Otherwise we

continue with r1 in place of r. Then r1 = a1 +r2π
β for some unit a1 ∈ Rσ0 , r2

a unit in R0, and some β ≥ 1. Then r = s1 + r2π
α+β, s1 = s0 + a1π

α ∈ Rσ0 .
Observe that α + β > α. Continue the process with r2 and so on. As π is
nilpotent, we shall finally get r = s+ r′πp for some s ∈ Rσ0 and s′ = r′πp ∈
Jm−q−1−kl ∩R0.

(iii) If k′ = 1, then A = Z(A), and the result holds trivially. Let k′ > 1.
Let x ∈ Z(A). Then x ∈ C(R0), x =

∑k1−1
i=0 riθ

k′i, ri ∈ R0. As θx = xθ and
(k1 − 1)k′ + 1 < k, we get θ(riθi) = (riθi)θ. By (ii), ri = si + ai for some
si ∈ Rσ0 and ai ∈ Jm−k

′i−1. Hence x = s + a with s =
∑
i siθ

k′i ∈ L and
a =

∑
i aiθ

k′i ∈ Jm−1. Now a ∈ Z(A). Suppose a 6= 0. Then a = rθm−1 for
some unit r ∈ R. By (i), k′ divides m− 1. Further, if k′ divides m− 1, then
Jm−1 ⊆ Z(A). This proves (iii).

Lemma 5.4. For θk = πw, the following hold.

(i) If k′ does not divide m − 1, then w can be chosen in the form∑k1−1
i=0 siθ

k′i with si ∈ Rσ0 , and this element is in L ⊆ Z(A).
(ii) If k′ divides m − 1, then w = w0 + r0θ

m−k−1 with w0 ∈ L, and
r0 ∈ R0 is either zero or a unit.

(iii) w chosen in either of the above forms is in C(R0). Further , C(R0)
is a special primary ring with radical 〈θk′〉.

(iv) θk = πh(θ) + rθm−1, where h(x) ∈ Rσ0 [xk
′
], deg h(x) < k, the con-

stant term of h(x) is a unit , r = 0 if k′ does not divide m − 1, and r is
zero or a unit in R0 otherwise. Further , if k = m− 1, then 1− r is a unit.

Proof. We have π = w−1θk ∈ Z(A). If k = m − 1, then w−1θk = s0θ
k

for some unit s0 ∈ R0, so we can take w = s−1
0 = s−1

0 θm−k−1, which is
of type given in (ii). Suppose k < m − 1. By 5.3(ii), w−1 = s0 + w1θ

α for
some unit s0 ∈ Rσ0 , a unit w1 ∈ A, and some α ≥ 1. If θαθk = 0, we stop.
Suppose, θαθk 6= 0. Then 0 6= w1θ

αθk ∈ Z(A). By 5.3(i), k′ divides α. If
w1θ

αθk+1 = 0, then w1θ
α ∈ Jm−k−1. Suppose w1θ

αθk+1 6= 0. By 5.3(ii),
w1 = a1 + w2θ

β for some unit a1 ∈ Rσ0 , a unit w2 ∈ A, and some β ≥ 1.
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Then w−1 = s1 + w2θ
α+β with s1 = s0 + a1θ

α ∈ Z(A). Clearly α+ β > α.
Continue this process with w2 and so on. We get w−1 = s + vθp for some
unit s ∈ Z(A), a unit v ∈ A, and some p ≥ 1 such that vθpθk+1 = 0.
If vθpθk 6= 0, then p = m − k − 1. Suppose vθpθk = 0. Then π = sθk,
and in this case we can take w = s−1 ∈ Z(A). Suppose vθpθk 6= 0. Then
vθpθk = vθm−1 = rθm−1 for some unit r ∈ R0, and k′ divides m− 1. Then
π = (s+ rθm−k−1)θk and θk = π(s−1 − s−2rθm−k−1) = π(s−1 + r′θm−k−1)
for some unit r′ ∈ R0, so we can take w = s−1 + r′θm−k−1. By 5.3(iii),
s−1 = w0 + r1θ

m−1 for some r1 ∈ R0 and w0 ∈ L. Thus w0 = h(θ) for
some h(x) ∈ Rσ0 [xk

′
] with deg h(x) < k. Then θk = π(w0 + r′θm−k−1), and

we can take w = w0 + r′θm−k−1, which is of type given in (ii). All this
proves that w can be chosen of the type given in (i) or (ii), and in any case
this w is in C(R0). Clearly, C(R0) = R0 + 〈θk′〉, C(R0) is commutative, and
J(C(R0)) = πR0 + 〈θk′〉 = 〈θk′〉, as π = w−1θk ∈ 〈θk′〉. Hence C(R0) is a
chain ring.

In case k′ dividesm−1, we have θk = πh(θ)+πr′θm−k−1 = πh(θ)+rθm−1

for some r ∈ R0. Once again consider the case when k = m − 1. As seen
above, θk = πr0 for some unit r0 ∈ R. Then θπ = 0, and this gives θk =
π + (r0 − 1)π = π + rθm−1 = πh(θ) + rθm−1 for some r ∈ R0, h(x) = 1.
Then (1 − r)θk = πh(θ) shows that 1 − r is a unit, as h(θ) is a unit. This
proves (iv).

The following theorem generalizes [8, Theorem 4.15].

Theorem 5.5. Let (R, π) be a special primary ring with π 6= 0, and A
be a local , faithful R-algebra such that J(R) = R ∩ J(A) and A = A/J(A)
is a countably generated separable algebraic field extension of R. Then the
following are equivalent.

(a) A is a chain ring with J(A) having index of nilpotency m.
(b) There exists a commutative local ring R0 which is a faithful unram-

ified R-algebra, an R-automorphism σ of R0 of order a positive integer k′,
a positive integer k ≤ m−1 divisible by k′, a polynomial g(x) = xk−πh(x)
with h(x) ∈ Rσ0 [xk

′
], the constant term of h(x) a unit and deg h(x) < k,

for which the following hold.

(i) If k′ does not divide m− 1, then A ∼= R0[x, σ]/〈g(x), xm〉.
(ii) If k′ divides m − 1 and k < m − 1, then there exists r ∈ R0

which is either zero or a unit such that

A ∼= R0[x, σ]/〈g(x)− rxm−1, xm〉.
(iii) If k = m− 1, then there exists r ∈ R0 such that either r = 0 or

both r and 1 + r are units in R0, and

A ∼= R0[x, σ]/〈g(x)− rxm−1, xm〉.
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Proof. Let A be a chain ring and m be the index of nilpotency of J(A).
Let R0 be a coefficient subring of A, and (θ, σ) be a distinguishing pair of
A with respect to R0. Now, R0 is an unramified R-algebra. There exists a
positive integer k and a unit w ∈ A such that θk = πw. By 5.3, the order
k′ of σ divides k. We can write θk = πh(θ) + rθm−1 where h(x) and r are
as specified in 5.4(iv). Let f(x) = xk − πh(x)− rxm−1. It follows from 4.7
and 4.10 that S = R0[x, σ]/B, where B = 〈f(x), xm〉, is a chain ring with
J(S) having index of nilpotency m. We have an R-epimorphism λ : S → A
such that for any q(x) ∈ R0[x, σ], λ(q(x) + B) = q(θ). As the index of
nilpotency of J(A) is also m, λ is an R-isomorphism. Hence (a) implies (b).
It follows from 4.7 and 4.10 that (b) implies (a).

Example (see [2]). Let F be any field of characteristic 2 and x, y be
two indeterminates. Consider a one-dimensional vector space V over K =
F (x, y). Fix a basis element α of V . Let L be the F -vector space of all
finite formal sums

∑
aijx

iyj , aij ∈ F , where i, j are non-negative integers.
Consider S = L⊕ V . Define

(xnym) ◦ (xrys) = xn+rym+s +mrαxn+r−1ym+s−1.

In particular, y ◦ x = xy + α. For any αu, αv ∈ V and f ∈ L, define
(αu) ◦ (αv) = 0 and f ◦ (αu) = (αu) ◦ f = α(uf). Extend this operation
to S. This makes S a ring, with T = 0 × V an ideal such that T 2 = 0
and ym ◦ x2n = x2nym. For any f ∈ L, f2 ∈ Z(S). It follows that S
satisfies the right as well as left Öre condition. Consequently, S admits a
total right quotient ring A with J(A) = T and A/J(A) ∼= K. Suppose S
admits a coefficient subring T . Then T is a field isomorphic to K. There
exist u = x + αr and v = y + αs in T . As u ◦ v = v ◦ u, it follows that
x ◦ y = y ◦ x. This is a contradiction. Hence this ring does not admit a
coefficient subring.
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