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OF THE HAWAIIAN EARRING

BY

KAZUHIRO KAWAMURA (Tsukuba)

Abstract. We study the (n + 1)st homotopy groups and the shape groups of the
(n — 1)-fold reduced and unreduced suspensions of the Hawaiian earring.

1. Introduction. We study the (n+1)st homotopy group of the (n—1)-
fold reduced and unreduced suspensions of the Hawaiian earring H;. The
Hawaiian earring Hy is the compact subset of the plane defined by

H = J{(@y) | (@ 1/5)% +3° = 1/5%)
j=1

with base point o = o7 = (0,0). The (n — 1)-fold reduced suspension
H, = E’g_lﬁ[l is a compact metric space whose underlying set is the one-
point union of countably many n-dimensional spheres at the base point o,,
and is called the n-dimensional Hawaiian earring. The singular homology of
the space H,, is complicated ([1], [8]), and this paper is an attempt to under-
stand the low dimensional homotopy groups of H,,. The space H,, is (n —1)-
connected and it is shown in [9] that for each n > 2, H,,(H,,) = =, (H,,) = Z*,
the countable product of the integers. So the next step is to understand
Hy+1(H,) and 7,41 (H,,). On the other hand, the singular homology of the
(n — 1)-fold unreduced suspension H, = Xn-1H; is easily seen to be as

follows: Hy(H) if
~s 1idy) 1mqg=n,
Hq(Hn) = {

0 otherwise,

where Hy (H;) has been computed in [8]. The space H, is (n — 1)-connected
and ﬂn(ﬁn) ~H, (ﬁn), and again the next nontrivial homotopy group to be
computed is 7rn+1(ﬁn).

Notice that H,, and Iﬁln have the same shape type but do not have the
same homotopy type by [1] and the above. In the present paper, the count-
able product of the n-dimensional spheres is denoted by S7. . If we fix a base

point * € S™ of the n-sphere, then the space H,, is naturally embedded in
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S% as follows:

o
H,, ~ U{(a:j) | z; = = for each j # i}.
i=1
In this _paper we show the following results. The ¢-dimensional shape
group (or Cech homotopy group) of a space X is denoted by 74(X).

(a) 1 (Hy) = mpp1 (S™)® @ mpy2(Sh, Hy,) for each n > 2,

~

(b) mpy1(Hy) = (Z/27)° ® P.(Z/2Z) for each n > 3,

(¢) 1 (Hy) = ity (Hy) = (Z/2Z)% for n > 3 and Z for n = 2.

Some comments on these results are in order. (a) is an infinite prod-
uct analogue of the well known isomorphism for finite products. We have
not succeeded in an explicit computation of the relative homotopy group
Tn+2(S%, Hy, ), which turns out to be isomorphic to the relative singular ho-
mology group H,12(S%, H,,). The computation in [1] shows that 74(S2,, Ha)
is nonzero. In (b), we have not obtained an explicit structure of 75(Hy). With
the help of [7] and [4] (see also [14]), the group can be represented as the
kernel of a certain homomorphism (see the beginning of Section 4). How-
ever, the representation does not reveal the explicit structure of the group.
Also the group is isomorphic to I'(H;(H; )), where I'(A) denotes the White-
head quadratic group of an abelian group A ([13]). Here we obtain an exact
sequence containing I'(H; (X)) for an arbitrary one-dimensional separable
metric space X. However, the author has not succeeded in making an explicit
computation of 73(Hy). The computation (c¢) depends on the Hilton—Milnor
theorem [12].

2. mpt1(H,) and 7,41(H,). For a countable collection {(X;,x;)} of
pointed compacta, let \71.XZ' = U {(yj) | yj = z; for each j # i} C [[, Xi.
The base point (x;); is denoted by 2. The one-point union \/?:1 X; is
embedded in \7iXi in the obvious way. Under this notation, H, ~ \~/le C

IS = S&. In what follows, H,, is identified with \/,S}". The projection
of Hj X onto the ith factor X; is denoted by p;. The homomorphism ¢ :

7q(I1; Xi) — [1; mq(Xi) defined by ¢(a) = ((pi)z(e)); for o € (I ; Xi) is
an isomorphism. Our first result is stated as follows.

THEOREM 2.1. For each q > 2, there exists a split exact sequence
0— 7rq+1(HXZ', \/X1> 9, 7rq<\/Xi) A Wq(HXZ'> — 0

where iy 1s induced by the inclusion i : \~/iX,- — [[; Xi and 0 is the boundary
homomorphism of the homotopy long exact sequence.
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Proof. First we define X\ : [[, my(X;) — 7rq(\~/in-) under the following
notation and convention.

NOTATION AND CONVENTION. Let a; =1—1/j, j > 1, and notice that

o

™ x fag,az]) = 1971 x [0,1).

j=1
For simplicity, a map f; : (I9,019) — (X, z;) is identified with the map

fio(idx s5) « (17" x [ag,a541]), 017 x [aj, aj1])) — (X5, 25),

where s;(t) = (¢ —a;)/(aj41 —a;),t € [a?,ajﬂ]. Also we assume that
V,;X; has a metric so that diam X; < 1/2' for each ¢, and in particular
diam V5, X; — 0 as 1 — oo,

For each (oy) € [[; m¢(X;) and each i, take a map f; : (19,019) —
(X, z;) which represents the element «;. Define the map [ : I?7 — \/,X; by
UITY x [aj,aj41]) = fj for 5 > 1 and I|[I971 x {1} = z (recall the above
convention). The crucial fact here is that diam f;(/9) — 0 as j — oo, and this
guarantees that [ : /¢ — \/,X; is continuous. Let A((cw)) = [I] € mq(V,;X5).

Cram 1. A((«y)) is well defined, that is, the homotopy class [l] does not
depend on the choice of the maps (f;).

Proof of Claim 1. Suppose that f; ~ g; rel. 9I? and fix a homotopy
H; : I1 x [0,1] — X; such that H;(z,0) = fi(z) and H;(z,1) = g;i(z) for
x € 19 and H;(z,t) = zo for all x € 0I7 and t € [0,1]. Let foo, goo :
(11,019) — (V,;Xi, o) be the maps defined by foo|I97! X [aj,aj41] = f;
(recall the above convention) and fu|I97! x {1} = 2, etc. By the same
reason as above, fo and g are continuous. Again the fact that diam H; (19 x
[0,1]) — 0 as ¢ — oo guarantees that the map Hy, : I? x [0,1] — /. X,
defined by Hoo|(I971 x [aj,a;j+1]) % [0,1] = H; (recall the above convention)
and Hoo| (1771 x {1}) x [0,1] = 7o is a continuous homotopy rel. 914 from
foo t0 goo. This completes the proof.

CLAIM 2. X is a homomorphism.

Proof. Take two sequences {f; : (1¢,019) — (X;,z;)} and {g; : ([%,0I9)
— (X, x;)} of maps. We need to prove the equality

AT+ 1gil)) = AULD) + A(g:])-

The element on the left hand side is represented by a map h : (19,01%) —
(\7iXi,moo) defined as follows. Let b; = (a; + a;+1)/2. Define the map h
by h|I97! x [a;,b] = f; and h|I97! x [b;,a;11] = g; for each i > 1 and
h|I971 x {1} = xo. On the other hand, the element on the right hand
side of the equality is represented by a map k : (19,019) — (\~/iXi,a;oo)
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defined as follows. Let ¢; = a;/2 and d; = (a; + 1)/2. Define the map k
by I{Z|Iq_1 X [Ciaci—H] = fi, k?|Iq_1 X [d’iad’i-‘rl] = ¢g; and k|Iq—1 X {1/2} =
E|197! x {1} = 2o. We need to prove that h and k are homotopic rel. 919,
The following proof is motivated by the proof of the fact that the homotopy
group of dimension at least 2 is abelian.

The map A is homotopic rel. 19 to a map hg illustrated in Fig. 1. Here
I7" and 127" denote the subsets of 17 defined by 17" = 1972 % [0,1/2] and
1571 = 1972  [1/2,1]. Fig. 2 illustrates a map hy which is homotopic rel.
019 to hy via a homotopy Hp : 19 x [0, 1] — \/,X; such that diam Ho({z} x
[0,1]) < diam(\/?:1 X;) <1 for each z € I9. The map h; is homotoped to a
map ho such that
(2.1) h2|fq_1 X ([61,03] U [dl,dg]) = hluq—l X ([01,63] U [dl,d3]),

(2.2)  holI{ " X [e3,ca] = fo, holI§ ™" x [d3, da]) = g,
(2.3)  holIZ % [0,1/2] = ho| I8! % [1/2,1] = 200
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A homotopy Hj rel. 919 from hj to he may be chosen so that Hy(z,t) =
hi(z,t) for each (2,t) € 197! x ([c1, c3] U[d1, d3]) and diam H; ({2} x [0,1]) <
diam(\/?:2 X;) <1/2 for each z € I1.

Continuing this process, we have sequences {h,, : (19,019 —
(V,;Xi;Too) }m>1 of maps and {H,,}m>1 of homotopies rel. 919 from hy,
to Apm+1 (m > 1) such that

(m.1)  diam Hy({z} x [0,1]) < diam(V,s,,X;) < 1/2™! for each z € Y,
(m.2)  Hp(z,t) = hp(z) for all z € h;}(\/;":l X;) and t € [0,1]. In
particular, hunsa [ (VI X5) = bl (VI X,

The above condition (m.1) implies that (h,,) forms a Cauchy sequence
and hoo = limy, 00l exists and is continuous. By (m.2), hoo|h;}(\/;-n:1 X;)
= hum|hy! (VL) X;). Also the limit Hoo = limyy, o0 Hyn % Hp—1% - - - % Hy % Ho
exists and is a homotopy rel. 019 between hgy and he. The map hy is

illustrated in Fig. 3 and is clearly homotopic to k rel. 1. Thus we have the
desired equality.

CrLam 3. poidgo X =id: [[; me(X;) — [, me(X5).

Proof. For each (o = [fi]); € [[; mq(X;), the element (p;)goizoA((y)) is
easily seen to be represented by the map fi: (19,019) — (\V,Xi, T ) defined
by filI97! x [a;, aiv1] = fi and fi|17\ (I97 x [a;,ai11]) = Zoo. Obviously
the map is homotopic to f; rel. 919. This shows that poizoA((ay)) = ((as)),
completing the proof.

As ¢ mo(I]; Xi) — 1, mq(X5) is an isomorphism, Claim 3 implies that
iy is an epimorphism in each dimension and the conclusion of the theo-
rem follows from the long exact sequence of homotopy groups of the pair

(Hz Xi, \7@XZ)
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COROLLARY 2.2.
~ (Z/QZ)"J D 7Tn+2(5goan) Zf n > 3,
ﬂ—n—l—l(Hn) = w 2 .
72 @ m4(S5,, Ha) if n=2.

PROPOSITION 2.3. The homomorphism iy : m,(H,) — 7,(SL) is an
isomorphism.

Proof. Tt suffices to prove that iy is a monomorphism. Suppose that
ig(o) = 0 for o € m,(H,). By [9], « is represented by a map f: (1™, 0I") —
(Hy, 0,) such that f(I"! x [a;,a;+1]) € SP and f(O(I"! x [ai, ai+1])) =
o, for each i > 1. The condition iy(a) = 0 then implies that f|I""! x
[ai,aiﬂ] ~ 0 rel. 8([”71 X [ai,ai+1]). Let H; : (Inil X [ai,aiﬂ],@(I”*l X
[ai,ai+1])) x [0,1] — (H,, 0,) be a homotopy rel. (It x [a;, a;11]) from
fII™' x [as, ai11] to the constant map o,. Again the fact diam St — 0 as
i — oo guarantees the continuity of the homotopy Hy : I™ x [0,1] — H,,
defined by Heo|I" ! X [a;,a;11) = H; (i > 1) and Hoo| ™! x {1} = o,.
Hence f is null-homotopic rel. 0I™ and a = 0.

This completes the proof.

The above proposition and Theorem 2.1 imply that
7rn+1(SgO;Hn) = n+1(Sn ) = 0, 7rn+2(Sgo;Hn) ~ H n+2(S H )

By [11], Hy41(S%) = 0 for each n > 2 and so the connecting homomorphism
0 : Hyyo(S%, H,,) — Hpq1(H,) is an epimorphism for each n > 2. As H3(Hy)
is nonzero ([1]), it follows that H4(S2%,Hy) is nonzero and iy : m3(Hz) —
73(S%,) is not an isomorphism.

REMARK. The element v¢ = » [, Bi] € myn—1)41(Hy,) constructed in
[1] belongs to Ker .

Next we compute the (n + 1)-st shape group 7,41 (H,) via the Hilton—
Milnor Theorem in the following form.

THEOREM 2.4 ([12, pp. 511-534]). Let S = YS7~' (j = 1,....,k) be
the n-spheres (n > 2). There exists an isomorphism

k k
Ok @WHH(S;L) o H 7rn+1(§w(5{”_1, S - 7Tn+1< \/ )
j=1 in

r(w)>2

given by the formula

er((B5)1<j<ks (Yw) r(w)>2) ZZ] Bi + Z “Yws

where r(w) denotes the weight of the basic pmduct w of k generators,
w(S’f_l, e ,S}:_l) is the reduced join of S’f_l, e ,S}:_l and w(it,. .. i)
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is the iterated Whitehead product of the inclusions i’ : S;-L — V§:1 57 asso-
ctated with w.

REMARK. Let w be a basic product with generators zi,...,x;. The

space w(S{l_l, e ,Sg_l) is homeomorphic to S%n_l)a“’(l) A S,(gn_l)aw(k)

where a,,(j) is the number of occurrences of z; in the basic product w. Thus
f’w(S{l_l, el S,’;‘_l) is homeomorphic to =Dy aw(i)  g+(n=1)r(w),
THEOREM 2.5.
(Z)22) if n >3,
Fpa1(H,) 22 { 7% if n=2,
0 if n=1.
Proof. Notice that H,, = hHm(\/f:1 S \/f:ll St — \/le SI'), where
Pk is the canonical retraction such that py(S}, ;) = *. So the n = 1 case

follows directly from the definition. We divide our considerations into two
cases. Let W}, be the set of all basic products of k generators x1, ..., k.

CASE 1: n > 3. As §"(=D+1 g r(n — 1)-connected and 7(n —1) > n+1
for each r > 2,

[T maEusi™ sy =0,
WEW, r(w)>2

and the isomorphism ¢y, of Theorem 2.4 is written as ¢y, : @;?:1 Tn41(57) —

mnr1(Vi_y 1) such that ,((8;)) = Yi_y i - 8 (for k > 2). Clearly, the
diagram

D T (S)) T mar (Vi S))

prOjkl (Pk)ﬁl

k k
@j:l 7Tn+1(5}1) > 7Tn+1(\/j=1 Sjn)
is commutative where proj; is the canonical projection of @fill 7Tn+1(5}"‘)
onto @?21 Tn+1(S7). Hence 71 (Hy) & w1 (S™)” = (Z/2Z)°.
CASE 2: n = 2. As m3(S"*1) = 0 for each r > 3,

[I m(Euwst,....sh) = m(s+®) =0,
weWy, r(w)>3

and the isomorphism ¢j of Theorem 2.4 is of the form

k k
o @Pmshe [ m(Swst....sh) - m( \/ s;)
j=1 J=1

weWy, T(w):2
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with Zw (S, ..., S}) ~ S3 and

k
er((Bi)1<i<ks (Yw)wew,,r(w)=2) = Zij B+ Z w(i, .. i*) .
=1

weWy,r(w)=2
By the bilinearity of the Whitehead product, we see that

(pk)ﬁ o g0k+1((ﬁj)1§j§k+17 (Vw)wEWk+17T(w):2)
k+1

:(pk)ﬁ<2ﬂ-ﬂj+ S wlh )

weEWE 1, r(w):2

k
= > i pi+ > w(i,.. ., ")y,
j=1

Zj+1 does not appear in w

k
=D 7B+ D wlt i)
Jj=1 weWy, r(w)=2
= ok ((B5)1<i<ks (Yw)wewy, rw)=2)-
That means that the diagram

@fi% 7T3(Sj2) ¥ ®w€Wk+1,T(w):2 7T3(S3) S 773(\/?2% sz)

projki (pk)ul

@?:1 773(5]2) ® @weWk,r(w):2 m3(5%) LW3(\/§:1 S?)

is commutative and hence 73(Hy) = (73(S52))« @ (w3(S3))» = Z«.
This completes the proof.

~ ~

3. mpt1(Hy),m > 3. As stated in the introduction, H,(H,) is easily
computed, and the computation of 7,41 (H,) depends on the result and the
following theorem. For an abelian group A, let I,11(A) be A ® Z/27 if

n > 3, and I'(A), the Whitehead quadratic group, if n = 2.
THEOREM 3.1 ([13], cf. [2, p. 36]). Suppose that X is an (n — 1)-con-
nected space with n > 2. There exists a natural exact sequence
] 0
Hy42(X) = o1 (Ha(X)) = Mg (X) = Hpa (X) — 0

where 0 is the Hurewicz homomorphism.

Thus, for each n > 3, w1 (H,) = Hy (H,) @ (Z/27).

~

THEOREM 3.2. For each n > 3, m,1(H,) = (Z/27)* ® D.(Z/2Z).

In the next lemma, we follow the notation of [10].
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LEMMA 3.3. Let J, be the p-adic integers (p a prime) and A, be the
p-adic completion of the direct sum @, Jp (1 > w). Then

Z/pZ) ifq=p,
A A g @7’(
p/q b { 0 otherwise.

Proof. Recall that the p-adic completion of an abelian group B is given
by the projective limit

lim(B/pB — B/p’B — ... — B/p"B «— B/p""'B — ...),

where the bonding maps are the canonical projections.

In what follows, we fix 7 (> w), and the 7-fold direct sum @ is abbre-
viated to @ for simplicity. Multiplication by p, xp : @ J, — € Jp, induces
a homomorphism f, : @ J,/ D p"Jp — P Jp,/ D p"Jp and it is easy to see
that

Ker f, = Qv " Jp/ 0" Iy,
Coker fr, = (@Jp/@pnjp>/(@p°]p/@pn=]p> = @(Jp/pjp)-

Let o0, : @ J,/ @p" I, — @ J,/ @p"J, be the canonical projection.
As Ker fp41 C Kerp,, the projection g, induces an epimorphism p,, :
Im fr,+1 — Im f,,. Consider the commutative diagram

0—=Ker for1 —=@ J/ @ p 1, T iy ——0

Ol in Z’nl
0—Ker f, ®J,) ®p'J—LTm f, 0

Each row above is obviously exact. Taking the projective limits of the vertical
sequences, we see that foo = lim f, : A — lim(Im f,, 9,,) is an isomorphism.

Next we consider the following commutative diagram:

0—=1m fo 1™ J,/ @ p" 1T, —= Coker fri1 —> D Jp/pJp—>0

SR

0 Im f, —" D Jp/p"Jp Coker fni@Jp/pJpHO

where j, and j,+1 are inclusions. Again each row is obviously exact and we
take the projective limits of the vertical sequences to obtain the following
exact sequence (notice that each g,, is an epimorphism, so the first derived
limit h;nl(lm fn) is zero):

lim 7, ~
0 — lim(Im f,,, 2,) in%lp — lim Coker f, — @Jp/pJp — 0.
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It is easy to see that the composition (m]n) 0 foo : Ap — h£1(1m fn) — 4,
coincides with multiplication by p and so

0— 4 = Ap — @(Jp/pjp) —0

is exact. Thus A, /pA, = D(J,/pJp) = @(Z/pZ). This completes the proof
of the first conclusion.

If ¢ is a prime distinct from p, then it is easy to see that xq : J,/p"Jp, —
Jp/p"J, is an isomorphism for each n and hence xq : A, — A, is an
isomorphism. The second conclusion follows. This completes the proof of
the lemma.

Proof of Theorem 3.2. By Theorem 3.1 and the fact that H,,42(H,) = 0,
we obtain, for each n > 3, an isomorphism 7,41 (H,) = H,(H;) ® (Z/2Z) =
H; (Hl)/QHl(Hl) By [8], HI(HI) >27° @CQ D Hp: prime Ap, where Ap is
the p-adic completion of €, Jp. Therefore,

m1(Hn) = (Z/22)° & P Q/2Qe [ 4,/24,

p: prime

> (Z)27)° @ (A2/2A2)
> (z/22)" & P (2/22).

The last two isomorphisms follow from Lemma 3.3.

4. The Whitehead quadratic group of the first singular homol-
ogy groups of one-dimensional spaces. Theorem 3.1 and Hg(Hz) =
H4(H2) =0 1mply that 7T3(H2) = F(HQ(HQ)) = F(Hl(Hl)) The results of
[4] and [7] show that

Wg(ﬁ[z) §Ker<XUZ® XUZ—> XUZ; g®hb—>ghg_1h_1),

where ® denotes the noncommutative tensor product introduced in [4]. How-
ever, the author has not succeeded in determining the explicit structure
of this group. Here we provide an exact sequence including I'(G?") of the
abelianization G2P of a locally free group G when G2 is torsion free. A group
is said to be locally free if every finitely generated subgroup is free. By [5],
the fundamental group of every one-dimensional separable metric space is
locally free, so the first homology groups of such spaces, being torsion free
by [9], are examples of G*" as above.

In order to state the result, we need some notation and facts. Let G
be a group, and let r : G — A = G* and ¢ : [G,G] — [G,G]* be the
projections to the abelianizations of G and of the commutator subgroup
[G, G] respectively. The abelianization A = G2 acts on [G, G]*® by

r(g)-o(z) =o(g 'zg) (9€G, ze[Gq)).
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It is easy to see that this is a well defined action which makes [G,G]* a
ZA-module. For a ZA-module M, let Mg = M/(y-z—x |y € ZA, x € M).

THEOREM 4.1. Let G be a locally free group and let A = G*P. If A is
torsion free, then there exists an exact sequence

A® ([G,G]*™) 4 — H(A;[G,G)**) = I'(A) - A® A — ([G,G]*®)4 — 0.

It follows from [5] that for each one-dimensional separable metric space
X, Hy(X) =0 for each ¢ > 2, and it is clear that the unreduced suspension
Y X satisfies Hy11 (X' X) = Hy(X) (¢ > 1). These together with Theorem 3.1
and the above remark imply that m3(XX) = I'(H;(X)). Thus we have the
following corollary.

COROLLARY 4.2. For each one-dimensional separable metric space X,
we have an exact sequence

1 (X) @ ({17,111}, x) — B () (X); [T, 1) — m5(2X)

— H(X) @ Hi(X) — (11, H]ab)Hl(X) — 0,

where I = m1(X).

ExXAMPLE. Let X be the figure-eight. Then II is the free group of rank
2 and A = H;(X) is the free abelian group of rank 2. Let « and [ be the
generators of Hy(X), represented by the two cycles of X. Let L = {(z,y) €
R? | z or y in Z}. Then [IT, IT] = 7y (L) and hence [IT, IT]** = Hy(L). The
group Hy(L) is generated by {[ymn] | m,n € Z}, where ~,,, denotes the
loop which passes through the four vertices (m,n), (m+1,n),(m+1,n+1),
(m,n + 1) in this order. The action of Hy(X) on H;(L) is given (upon
exchanging o and (3 if necessary) by the formulas

Q- hm,n] = hm-&-l,n]v B [Vm,n] = hm,n—kl]'

Hence, as a ZA-module, Hy (L) is isomorphic to ZA and generated by [y11].
Thus [IT, IT]% is isomorphic to Z. Therefore H,(A; [I1, IT]*P) = H,(A; ZA)
= 0 for each ¢ > 1. Hence the exact sequence of Theorem 4.1 reduces to
(Z@Z)@ZHHI(A;ZA) :OHF(Z@Z) — (Z@Z)@(Z@Z) — 7 — 0.
Thus I'(Z ® Z) is a free abelian group of rank 3. Actually a formula for the
direct sum ([13]) shows that ['(Z®Z) = '(2)®'(Z) S LRIL =L S LS L.

Proof of Theorem 4.1. Let M(A,2) be the Moore space of type (A4, 2).
By [2, p. 36], ['(A) =2 73(M(A,2)) = Hy(K(A,2)). We compute Hy (K (A, 2))
via the path fibration

K(A1l) - E~x— K(A,?2).
We examine the differentials of the Leray—Serre spectral sequence
E5" =H,(K(A,2); Hy(A; Z)) = Hpyqe(E).
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Since H,(E) = 0, it is easy to see that d? 0" : B} 0~ Ej 3 1s an isomorphism.
In order to describe Eo 3, We start with Eo 3 = Hg(A Z). As A is torsion
free, we have H3(K(A 2) A) = H3(K(A,2)) ® Ad Tor(Ha(K(A4,2)),A) =0
and hence Eil = E371 = 0. It follows that E0,3 = Coker d%g = E§’3 = 0.
Thus the sequence

2 d3 5 2 L 4
A®@Hy(AZ) = By — Ejy =H3(A,Z) = Ej3 — 0

is exact. Now consider the sequence

d2 d2
Hy(K(A,2) = B2)—> B2, = A@ A—> B2, = Hy(4; Z)

— Coker d%l = ES’Q = Egy =0.

As Ker d%l/Im dio = E%l = B33 = 0, the above sequence is exact. Com-
bining these two sequences, we have the commutative diagram (with Z as
the coefficients):

A @ Hy(A) —> Hz(A) (K (A,2) 2% A @ A—> Ha(A) —>0

| e

4 4,0= 4 _ 2
E073 - E470 = Ker d470

(7 is the inclusion) with the top row being exact. So the theorem follows
from the above and the following lemma.

LEMMA 4.3. Let G be a locally free group and A = G*. For eachn > 2,
we have an isomorphism H,(A; Z) = H,,_o(A; [G, G]*"), Z being regarded as
a trivial A-module.

Proof. CASE 1: n = 2. Consider the five-term exact sequence of [3,
p. 171]:
Hy(G) — Ha(A) — Hi([G,G)a — Hi(G) = Hi(A) — 0.
All coefficients are Z being regarded as trivial modules. It follows from a
footnote in [6] that Ha(G) = 0 and, by the definition of A, « is an isomor-

phism. So Hy(A) = Hi([G,G))a = [G G]2P = Ho(A; [G, G]?P). This finishes
the proof for the case n = 2.

CASE 2: n > 3. We apply the Lyndon—Hochschild—Serre spectral se-
quence to
1-[G,G]|-G—A—1.
Since [G, G] is locally free, Hy([G, G];Z) = 0 for each ¢ > 2 (the footnote of
[6]) and hence E2, = 0 for each ¢ > 2. The differential d%,o : Ho(AZ) —
EQ_Q’1 = H,,_2(A;[G,G]*®) has the property Ker di,o = Eio = E?z,o =0

n
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2 : 2 2 _ 3 _ oo _
and so d, ; is a monomorphism. Also Ej_,,/Imd; g =FE;, o, =E; 5, =0

since n > 3. Hence d? o is an epimorphism.

[10]
[11]

[12]

[13]
[14]

This completes the proof.
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