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SUB-LAPLACIAN WITH DRIFT IN NILPOTENT LIE GROUPS

BY

CAMILLO MELZI (Como)

Abstract. We consider the heat kernel φt corresponding to the left invariant sub-
Laplacian with drift term in the first commutator of the Lie algebra, on a nilpotent Lie
group. We improve the results obtained by G. Alexopoulos in [1], [2] proving the “exact

Gaussian factor” exp
(
− |g|2

4(1+ε)t

)
in the large time upper Gaussian estimate for φt. We

also obtain a large time lower Gaussian estimate for φt.

1. Introduction and statement of the results. Let G be a con-
nected nilpotent Lie group, and let X1, . . . ,Xm be left invariant fields on
G (i.e. (Xf)g = Xfg, fg(x) = f(gx)) which satisfy the Hörmander con-
dition, namely they generate, together with their successive Lie brackets
[Xi1 , [Xi2, [. . . ,Xil ] . . .]], the Lie algebra g of G.

A left invariant distance d on G, called the control distance, is associated
to these vector fields (cf. [10]). We write |g| = d(e, g),where e is the identity
element of G, and denote by V (t) the Haar measure of the ball {g ∈ G :
|g| < t}.

Every connected nilpotent Lie group has polynomial volume growth (cf.
[6]), i.e. there is an integer D ≥ 0 such that

C−1tD ≤ V (t) ≤ CtD, t > 1.

We call D the dimension at infinity of G. Note that D does not depend on
the choice of the Hörmander system.

The fields X1, . . . ,Xm induce on G the sub-Laplacian (with drift term)

L = −
m∑

i=1

X2
i +X0, X0 ∈ g.(1.1)

The operator L generates a diffusion semigroup e−tL (cf. [3], [7]). We denote
by φt the kernel of e−tL with respect to the Haar measure on G, i.e.

Ttf(x) =
�
G

φt(y−1x)f(y) dy, t > 0, x ∈ G, f ∈ C∞0 (G).
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The behavior of φt for small time has been studied by N. Varopoulos in
[14] and [15]. He proved that if the drift is of the special form

X0 =
m∑

i=1

aiXi +
m∑

i,j=1

bi,j [Xi,Xj ](1.2)

then the kernel φt satisfies the following upper and lower estimate: for every
0 < ε < 1 there exists Cε > 0 such that

(1.3) C−1
ε V (

√
t)−1 exp

(
− |g|2

4(1− ε)t

)
≤ φt(g)

≤ CεV (
√
t)−1 exp

(
− |g|2

4(1 + ε)t

)
, g ∈ G, 0 < t < 1.

For large time it is known by Alexopoulos’s work [1], [2] that if X0 ∈
[g, g]+k, where [g, g] is the first commutator of the Lie algebra g and k is the
Lie algebra of the maximal compact subgroup K, contained in the centre
of G, so that G/K is a simply connected nilpotent Lie group (cf. [11, pp.
195–200]), then the kernel φt satisfies the upper Gaussian estimate

φt(g) ≤ CV (
√
t)−1 exp

(
−|g|

2

ct

)
, t > 1, g ∈ G.(1.4)

This result has been proved by Alexopoulos in the more general context of
Lie groups of polynomial volume growth. For an easier proof of (1.4) in the
setting of nilpotent Lie groups, see [9].

When the drift has the special form (1.2) the lower estimate is an easy
consequence of the upper estimate and Harnack inequality (cf. [16, pp. 47–
50]). This method does not work, as far as we can see, if X0 ∈ [g, g] because
the Harnack inequality holds just for large time (cf. Sect. 3).

In this paper we improve the above upper Gaussian estimate, obtaining
the “exact Gaussian factor” c = 4(1 + ε) in exp

(
− |g|2ct

)
, and we prove the

lower Gaussian estimate:

Theorem 1.1. If X0 ∈ [g, g] + k, then there exist C, c > 0 and for every
0 < ε < 1 there exists Cε > 0 such that

(1.5) C−1V (
√
t)−1 exp

(
−|g|

2

ct

)
≤ φt(g)

≤ CεV (
√
t)−1 exp

(
− |g|2

4(1 + ε)t

)
, g ∈ G, t > 1.

For every sub-Laplacian (1.1) there exists a multiplicative character χ :
G→ R+ and a constant a ≥ 0 such that

χ−1L(χ·) = −
m∑

i=1

X2
i + Y + a,
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where Y ∈ [g, g] + k (for the construction of χ see e.g. [2]). Therefore the
study of the behaviour of the kernel corresponding to (1.1) can be reduced
to the case of drift in [g, g] + k. By Theorem 1.1, we have

Theorem 1.2. There exist C, c > 0 and for every 0 < ε < 1 there exists
Cε > 0 such that

C−1V (
√
t)−1e−atχ(g) exp

(
−|g|

2

ct

)
≤ φt(g)

≤ CεV (
√
t)−1e−atχ(g) exp

(
− |g|2

4(1 + ε)t

)
, g ∈ G, t > 1.

Throughout this paper positive constants are denoted by c or C. These
may differ from one line to another.

Acknowledgements. This paper is part of the author’s PhD disserta-
tion [8], written under the direction of Prof. N. Varopoulos. It is a pleasure
to thank him for his invaluable help and constant encouragement.

2. Nilpotent Lie groups and stratified groups. The key observation
in this paper is that any connected nilpotent Lie group is “covered” by a
nilpotent Lie group that admits a dilation structure. The strategy of the
proofs is to obtain all the results first in this special setting, and then to
prove that we can “transfer” them to a general nilpotent group.

In this section we recall the basic properties of stratified groups and the
link between stratified and nilpotent groups.

2.1. Stratified groups and dilation structure. A stratified group is a sim-
ply connected nilpotent group G̃ whose Lie algebra g̃ admits a direct sum
decomposition

g̃ = V1 ⊕ . . .⊕ Vr,
where Vi are vector subspaces of g̃ such that [V1, Vi−1] = Vi, i ≥ 2. We say
that Vi is the ith slice of the stratification of g̃.

A stratified group G̃ admits a one-parameter semigroup (see e.g. [5]) of
homomorphisms (dilations) δt : G̃→ G̃ such that

dδt(X̃) = tiX̃, X̃ ∈ Vi, t > 0, i = 1, . . . , r.

We can fix on G̃ a family X̃ = {X̃1, . . . , X̃m} of left invariant vector
fields satisfying the Hörmander condition and such that X̃ ⊆ V1. Then

|δt(g̃)|G̃ = t|g̃|G̃, t > 0, g̃ ∈ G̃,
where | · |G̃ is the distance on G̃ induced by X̃.

Moreover since the Haar measure m on G̃ is the image of the Lebesgue
measure g̃ under the exponential map exp : g̃→ g̃ (cf. [11, pp. 195–200]) we
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know that for every measurable subset Ω of G,

m(δt(Ω)) = tDm(Ω), t > 0,

where D =
∑r

i=1 idimVi. In particular V (t) = CtD, t > 0.

2.2. Stratified groups and nilpotent groups. Let G be a connected nilpo-
tent Lie group and let X = {X1, . . . ,Xm} be a family of left invariant vector
fields on G satisfying the Hörmander condition. Then (cf. [13], and also [16,
Chapter IV]) there is a stratified group G̃, a family X̃ = {X̃1, . . . , X̃m} ⊆ V1

(the first slice of the stratification) of fields on G̃ satisfying the Hörmander
condition and a surjective homomorphism

π : G̃→ G(2.1)

such that
dπ(X̃i) = Xi, i = 1, . . . ,m.

Denote by |·|G̃, |·|G the distances on G̃ and G induced by the Hörmander
systems X̃ and X, respectively. We have (see e.g. [5])

|x|G = inf
x̃∈π−1(x)

|x̃|G̃, x ∈ G.(2.2)

3. The Harnack inequality. Let us recall the Harnack inequality for
a sub-Laplacian (1.1) with drift in [g, g], which will play a central role in
this article:

Theorem 3.1. Let 0 < a < b < 1 and 0 < δ < 1. Then there exists a
constant C > 0 such that for all g ∈ G and R > 1 and for every positive
solution u of (

∂

∂t
+ L

)
u = 0

in (0, R)×B(g,
√
R), we have

sup
x∈B(g,δ

√
R)
u(aR, x) ≤ C inf

x∈B(g,δ
√
R)
u(bR, x).(3.1)

This is a special case of Alexopoulos’s Harnack inequality [2, Theorem
1.2.1], which holds in the more general context of Lie groups of polynomial
volume growth. In the setting of nilpotent Lie groups the machinery of
Alexopoulos is not needed and the proof is very easy (cf. [9]).

4. Probability estimates. In this section we recall an upper and a
lower probability estimate obtained by Varopoulos in [15, Sect. 5] adapting
the Varadhan–Vencel–Friedlin theory (cf. [12, Sect. 6]) to a family of sub-
elliptic operators.
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These estimates have been used by Varopoulos to prove the “exact Gaus-
sian factor” exp

(
− |g|2

4(1−ε)t
)

in the small time lower estimate (1.3) exploiting
the stratified group dilation structure and the fact that drifts of special
form (1.2) are “good” for local dilation. Note that if the drift is of the form
X0 =

∑m
i,j=1 bi,j [Xi,Xj] then the estimates (1.3) hold for t > 0 (in this way

the Laplacian is “good” for global dilation).
Performing the local dilation procedure of [15, Sect. 6] (cf. also [16, Ch. V,

Sect. 5]), one can show that the estimates (1.3) hold in more general contexts
than that of nilpotent Lie groups.

In this paper we shall use these estimates to prove Theorem 1 using the
fact that drifts in [g, g] are “good” for large dilation.

Consider the family of subelliptic operators

Ls = −
m∑

j=1

X2
j +Xs

0 ,(4.1)

where (Xs
0)s∈S is a family of vector fields which depend on a parameter

s ∈ S ⊂ R, and are bounded in the C∞-topology. This is a special case of
the families considered in [15, Sect. 5.6] (this is all we need). Here, only the
drift depends on s.

We denote by Ps = {D(G), zt, P sx} the diffusions generated by Ls (cf.
[3]). Recall that

P sx [zt ∈ dy] = φst (y
−1x) dy,

where φst are the kernels of the semigroups e−tL
s
. We have the following

probability estimates:

(i) for every 0 < ε < 1 there exist Cε, cε > 0 such that

P se [ sup
0≤u≤t

|zu| ≥ 1] ≤ Cε exp
(
− 1

4(1 + ε)t

)
, 0 < t < cε, s ∈ S,(4.2)

(ii) for 0 < % < 10−10 fixed there exist C, c > 0 such that

P sx [d(zt, y) < %] ≥ C−1 exp
(
− 1
ct

)
, 0 < t < 1, s ∈ S,(4.3)

for all x, y ∈ G with 10−10 ≤ d(x, y) ≤ 1010.

5. Proof of Theorem 1.1

5.1. The upper estimate. Since X0 ∈ [g, g] + k we can write

X0 = X0,1 +X0,2,

where X0,1 ∈ [g, g] and X0,2 ∈ k. Let φ1
t be the kernel of the semigroup e−tL

1

generated by L1 = −∑m
i=1X

2
i + X0,1. Since k is contained in the centre of
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the Lie algebra g, we have e−tL = e−tL
1
e−tX0,2 , and therefore

φt(g) = φ1
t (ge

tX0,2), g ∈ G, t > 0.

Moreover, since K is compact, getX0,2 ∈ B(g, c
√
t) for t > 1 and c large

enough. The Harnack inequality (Theorem 3.1 with a = 1/4c2, b = 1+2ε
1+ε a

and δ = 1/2) applied to the kernel φ1
t on the ball B(g, c

√
t) yields

φ1
t (ge

tX0,2) ≤ Cεφ1
1+2ε
1+ε t

(g), t > 1, g ∈ G,

whence
φt(g) ≤ Cεφ1

1+2ε
1+ε t

(g), t > 1, g ∈ G.

Then it suffices to prove the right hand inequality in (1.5) for the kernel φ1
t .

If |g| < 6
√
t, this reduces to the estimate

φ1
t (g) ≤ CV (

√
t)−1, |g| < 6

√
t, t > 1,

which can be easily obtained by applying the Harnack inequality to the
kernel φ1

t on the ball B(e, 6
√
t) in the following way:

V (6
√
t)φ1

t (g) =
�

B(e,6
√
t)

φ1
t (g) dx ≤ C

�
B(e,6

√
t)

φ1
2t(x) dx

≤ C
�
G

φ1
2t(x) dx = C, t > 1, g ∈ B(e, 6

√
t).

The proof is therefore reduced to proving the estimate

φ1
t (g) ≤ CεV (

√
t)−1 exp

(
− |g|2

4(1 + ε)t

)
, |g| > 6

√
t, t > 1.(5.1)

To prove (5.1) we first suppose that G is stratified and {X1, . . . ,Xm} ⊂ V1,
the first slice of the stratification of G. The second step is to show that,
for a general nilpotent Lie group, the estimate (5.1) “goes through” the
homomorphism (2.1).

The case of stratified groups. Since X0,1 ∈ [g, g], we can write

X0,1 = Y2 + . . .+ Yr

with Yi ∈ Vi (the ith slice of the stratification of G) for i = 2, . . . , r (the
rank of G). Let (Xs

0)s>1 be the family of vector fields

Xs
0 = Y2 +

1√
s
Y3 + . . .+

(
1√
s

)r−2

Yr

and let Ls be the family of sub-Laplacians

Ls = −
m∑

i=1

X2
i +Xs

0 , s > 1.(5.2)

Note that dδ√s(L
s) = sL1.
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We denote by φst the kernels of the semigroups e−tL
s
. We have the dilation

formula

φ1
st(δ√s(x)) = s−D/2φst (x), x ∈ G, t > 0, s > 1,(5.3)

where D is the dimension at infinity of G. Indeed, to see (5.3), it suffices
to verify that the semigroups T st defined by convolution with the kernels
sD/2φ1

st(δ√s(g)) satisfy T st f(x) = Tst(f ◦ δ1/
√
s)(δ√s(x)). Then T st are the

semigroups generated by Ls, i.e. T st = e−tL
s
.

Let P1 = {D(G), zt, P 1
x} and Ps = {D(G), zt, P sx} be the diffusions gen-

erated by L1 and Ls respectively (cf. [3]). Because of the dilation formula
(5.3) we have

P se [zt ∈ dy] = φst (y
−1)dy = sD/2φ1

st(δ√s(y)−1)dy

= φ1
st(δ√s(y)−1)d(δ√s(y)) = P 1

e [zst ∈ d(δ√s(y))].

Therefore
P 1
e [ sup

0≤u≤ts
|zu| ≥

√
s] = P se [ sup

0≤u≤t
|zu| ≥ 1].

Let 0 < ε < 1. By the estimate (4.2) there exist Cε, cε > 0 such that

P 1
e [ sup

0≤u≤ts
|zu| ≥

√
s] ≤ Cε exp

(
− 1

4(1 + ε)t

)
, 0 < t < cε, s > 1,

and changing ts to t we have

P 1
e [ sup

0≤u≤t
|zu| ≥

√
s] ≤ Cε exp

(
− s

4(1 + ε)t

)
, 0 < t < cεs, s > 1.(5.4)

Observe that if t > cεs the above estimate holds for Cε large enough.
Fix g ∈ G with |g| > 6

√
t, and choose

√
s = |g| − ε

√
t. By (5.4) we have

�
B(g,ε

√
t)

φ1
t (x) dx ≤ P 1

e [ sup
0≤u≤t

|zu| ≥
√
s] ≤ Cε exp

(
− s

4(1 + ε)t

)

≤ Cε exp
(
− |g|2

4(1 + ε)t
+

ε

2(1 + ε)
|g|√
t

)

≤ Cε exp
(
− |g|2

4(1 + 2ε)t

)
, t > 1.

Applying the Harnack inequality to the kernel φt on the ball B(g, ε
√
t)

we deduce that

C−1
ε V (

√
t)φ1

1+2ε
1+4ε t

(g) ≤
�

B(g,
√
t)

φ1
t (x) dx ≤ Cε exp

(
− |g|2

4(1 + 2ε)t

)
, t > 1.

General nilpotent Lie groups. Let G̃ be the stratified group, X̃ =
{X̃1, . . . X̃m} ⊆ V1 the family of fields satisfying the Hörmander condition,
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and π : G̃ → G the homomorphism defined in Section 2.2. By the surjec-
tivity of π there exists a vector field X̃0 ∈ [g̃, g̃] ⊂ g̃ = Lie(G̃) such that
dπ(X̃0) = X0,1. Let L̃ be the sub-Laplacian on G̃ given by

L̃ =
m∑

i=1

X̃2
i + X̃0.

Note that dπ(L̃) = L1.

Denote by φ̃t the kernel of the semigroup e−tL̃ and by P̃ = {D(G̃), z̃t, P̃x}
the corresponding diffusion. The kernels φ1

t and φ̃t are related by the formula

φ1
t (g) =

�
H

φ̃t(g̃h) dh, g ∈ G, g̃ ∈ G̃, π(g̃) = g,(5.5)

where H = kerπ. Indeed, to see (5.5), it suffices to verify that the semigroup
Ttf , defined by convolution with the kernel � H φ̃t(g̃h)dh, satisfies Ttf(x) =

e−tL̃(f ◦ π)(x̃), π(x̃) = x. Then Tt is the semigroup generated by L1, i.e.
Tt = e−tL

1
.

Estimate (5.4) gives�
{g̃ : |g̃|≥√s}

φ̃t(g̃) dg̃ ≤ P̃e[ sup
0≤u≤t

|z̃u| ≥
√
s](5.6)

≤ Cε exp
(
− s

4(1 + ε)t

)
, s > 1, t > 0.

Recalling that |g̃|G̃ ≥ |π(g̃)| for all g̃ ∈ G̃ (cf. Section 2.2), using the
Haar measure disintegration formula (cf. [4])�

G̃

f(x̃) dx̃ =
�
G

�
H

f(x̃h) dh dx, π(x̃) = x,(5.7)

and the formula (5.5), we obtain�
{g̃ : |g̃|

G̃
≥√s}

φ̃t(g̃) dg̃ ≥
�

{g̃ : |π(g̃)|≥√s}
φ̃t(g̃) dg̃ ≥

�
{|g|≥√s}

�
H

φ̃t(g̃h) dh dg

≥
�

{g : |g|≥√s}
φ1
t (g) dg.

Then by (5.6) we have the estimate
�

{g : |g|≥√s}
φ1
t (g) dg ≤ Cε exp

(
− s

4(1 + ε)t

)
, s > 1, t > 0,

and applying the Harnack inequality to the kernel φ1
t on the ball B(g, ε

√
t)

as at the end of the proof in the stratified case yields the upper estimate of
(1.5) for |g| > 6

√
t.
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5.2. The lower estimate. Let us first remark that, arguing as in the proof
of the upper estimate, using the Harnack inequality we can reduce the proof
to the case of drift in [g, g].

We prove the lower estimate when the drift is in [g, g] in two steps. We
first suppose that G is stratified and X ⊂ V1. Then, in the case of a general
nilpotent Lie group, we prove that the lower estimate of (1.5) “goes through”
the homomorphism (2.1).

The case of stratified groups. We begin by proving the following lemma
that is an easy consequence of the upper Gaussian estimate (1.4):

Lemma 5.1. There exists c > 0 such that
�

B(e,c
√
t)

φt(g) dg ≥ 1
2
, t > 1.

Proof. First observe that, because of the left invariance of the semigroup
e−tL, the total mass of φt is 1, i.e.�

G

φt(g) dg = 1.

Indeed, by the left invariance of e−tL we have Tt1(e) = Tt1(g) for all g ∈ G,
and therefore

∂

∂t
Tt1 = −L1 = 0.

Since (Tt1)t=0 = 1 we have Tt1 = 1 for all t > 0, and this yields

Tt1(e) =
�
G

φt(g−1) dg =
�
G

φt(g) dg = 1.

Then �
B(e,c

√
t)

φt(g) dg = 1−
�

{|g|≥c
√
t}
φt(g) dg.

and by the upper Gaussian estimate (1.4) and the dilation structure
�

{|g|≥c
√
t}
φt(g) dg ≤ Ct−D/2

�
{|g|≥c

√
t}

exp
(
−|g|

2

at

)
dg

≤ C
�

{|x|≥c}
exp
(
−|x|

2

a

)
dx ≤ 1

2
, t > 1,

for c large enough. Therefore
�

B(e,c
√
t)

φt(g)dg ≥ 1
2
, t > 1.
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If |g| < c
√
t the lower estimate in (1.5) reduces to the estimate

φt(g) ≥ C−1V (
√
t)−1, |g| < c

√
t, t > 1,(5.8)

which we can easily obtain by the previous lemma and the Harnack inequal-
ity (3.1) applied to φt on the ball B(e, c

√
t):

1
2
≤

�
B(e,c

√
t)

φt(x) dx ≤ CV (c
√
t)φ2t(g), |g| < c

√
t.

It suffices to show that

φt(g) ≥ C−1V (
√
t)−1 exp

(
−|g|

2

ct

)
, |g| > c

√
t, t > 1.(5.9)

To this end, we first apply the dilation formula (5.3) with t = 1 to get

φs(g) = φs(δ√s(x)) = s−D/2φs1(x),

where φst is the kernel of the semigroup e−tL
s

generated by the sub-Laplacian
(5.2). Then the lower Gaussian estimate (5.9) is equivalent to the uniform
(with respect to s > 1) lower Gaussian estimates for the kernels φst , at time
t = 1:

φs1(g) ≥ C−1 exp
(
−|g|

2

c

)
, |g| > 1, s > 1.(5.10)

To prove (5.10), fix g ∈ G with |g| > 1, and let N be the integer such
that N ≤ |g| ≤ N + 1. We can find a sequence y0 = e, y1, . . . , yN = g such
that 1 ≤ d(yi, yi+1) ≤ 3. Fix 0 < % < 10−10, and denote by Bi the ball of
radius % centred at yi, and by Ps = {D(G), zt, P sx} the diffusions generated
by the sub-Laplacians Ls, s > 1.

By the Markovian property of Ps and by the estimates (4.3) we have

P se [z1 ∈ B(g, %)] ≥ P se [z1/N ∈ B1]P sx1
[z1/N ∈ B2] . . . P sxN−1

[z1/N ∈ B(g, %)]

≥ C−N exp
(
−N

2

c

)
≥ C−1 exp

(
−2N2

c

)
,

where xi ∈ Bi, i = 1, . . . , N − 1. And since N ≤ |g| ≤ N + 1, we have
�

B(g,%)

φs1(x) dx = P se [z1 ∈ B(g, %)] ≥ C−1 exp
(
−|g|

2

c

)
, s > 1.

The uniform Harnack principle (cf. [16, Theorem III.2.4]) applied to φst on
the ball B(g, %) gives

φs1(g) ≥ C−1 exp
(
−|g|

2

c

)
, s > 1

(the constant C does not depend on g because of the left invariance of L
and of the distance | · |).
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General nilpotent Lie groups. Let G̃ be the stratified group, X̃ =
{X̃1, . . . , X̃m} ⊆ V1 the family of fields satisfying the Hörmander condition,
and π : G̃→ G the homomorphism defined in Section 2.2.

By the surjectivity of π there exists a vector field X̃0 ∈ [g̃, g̃] ⊂ g̃ =
Lie(G̃) such that dπ(X̃0) = X0. Let L̃ be the sub-Laplacian on G̃ given by

L̃ =
m∑

i=1

X̃2
i + X̃0.

We denote by φ̃t the kernel of the semigroup e−tL̃. Recall that the kernels
φt and φ̃t are related by the formula

φt(g) =
�
H

φ̃t(g̃h) dh, g ∈ G, g̃ ∈ G̃, π(g̃) = g,

where H = kerπ.
If g ∈ G and t > 1, we have

φt(g) =
�
H

φ̃t(g̃h) dh

≥
�

{h∈H : |h|
G̃
<
√
t}
φ̃t(g̃h) dh, g ∈ G, g̃ ∈ G̃, π(g̃) = g.

The Harnack inequality (3.1) applied to the kernel φ̃t on the ball BG̃(g̃,
√
t)

gives

(5.11) φt(g) ≥ C−1mH{h ∈ H : |h|G̃ <
√
t}φ̃t/2(g̃),

g ∈ G, g̃ ∈ G̃, π(g̃) = g, t > 1,

where mH is the Haar measure of H.
By the results obtained in the stratified case we have

φ̃t(g̃) ≥ C−1Ṽ (
√
t)−1 exp

(
−
|g̃|2

G̃

ct

)
, g̃ ∈ G̃, t > 1,

where Ṽ (R) denotes the Haar measure of the ball {g̃ ∈ G̃ : |g̃|G̃ < R}.
Therefore by (5.11),

φt(g) ≥ C−1mH{h ∈ H : |h|G̃ <
√
t}Ṽ (

√
t)−1 exp

(
−
|g̃|2

G̃

ct

)
,

g ∈ G, g̃ ∈ G̃, π(g̃) = g, t > 1,

and by (2.2),

φt(g) ≥ C−1mH{h ∈ H : |h|G̃ <
√
t}Ṽ (

√
t)−1 exp

(
−|g|

2

ct

)
,

g ∈ G, t > 1.
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To complete the proof we only need to verify the volume estimate

mH{h ∈ H : |h|G̃ <
√
t}Ṽ (

√
t)−1 ≥ C−1V (

√
t)−1, t > 1.

Let t > 1 be given. For any g̃ ∈ G̃ we can choose g̃0 ∈ π−1(π(g̃)) such
that |g̃0|G̃ < |π(g̃)| +

√
t. We set h0 = g̃−1

0 g̃ ∈ H. If g̃ ∈ BG̃(ẽ,
√
t) then

|g̃0|G̃ < |g̃|G̃ +
√
t < 2

√
t and |h0|N < 3

√
t. Therefore

BG̃(ẽ,
√
t) ⊆

⋃

{g̃0 : |g̃0|G̃<2
√
t}
{g̃0h : h ∈ H, |h|G̃ < 3

√
t}.

The Haar disintegration formula (5.7) gives

VG̃(
√
t) =

�
B
G̃

(ẽ,
√
t)

dg̃ ≤
�

{g : |g|<2
√
t}

�
{h : |h|

G̃
<3
√
t}
dg dh

≤ CV (
√
t)mH{h ∈ H : |h|G̃ <

√
t}.
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sance polynomiale du volume, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 539–
542.

[2] —, Sub-Laplacians with drift on Lie groups of polynomial volume growth, Mem.
Amer. Math. Soc. 739 (2002).
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1963.

[5] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ.
Press, Princeton, 1982.

[6] Y. Guivarc’h, Croissance polynomiale et périodes des fonctions harmoniques, Bull.
Soc. Math. France 101 (1973), 333–379.

[7] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81
(1956), 264–293.

[8] C. Melzi, Sous-Laplacien avec un drift sur les groupes de Lie nilpotents, thèse de
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