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MULTIPLICATIVE DEPENDENCE OF
SHIFTED ALGEBRAIC NUMBERS
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Abstract. We show that the set obtained by adding all sufficiently large integers
to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set
obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions
for algebraic numbers of higher degrees are also raised. These are related to the Prouhet–
Tarry–Escott type problems and can be applied to the zero-distribution and universality
of some zeta-functions.

1. Introduction. Throughout we denote by Z and Q the sets of integers
and of rational numbers respectively. Given a set M ⊂ Q, we say that
a complex number α is M -dependent if there are two distinct collections
x1, . . . , xn ∈M and y1, . . . , ym ∈M such that

(1) (α+ x1) . . . (α+ xn) = (α+ y1) . . . (α+ ym).

Here, for m = 0, the right-hand side is assumed to be equal to 1. Assume
that α is M -dependent. We define the length of multiplicative dependence of
α (and denote it by `(α,M)) to be the smallest n + m for which there are
x1, . . . , xn, y1, . . . , ym ∈M satisfying (1).

Of course, if α is transcendental, then it is M -independent for any
M ⊂ Q. We denote by Zt the set of integers greater than or equal to t.
The question whether or not an algebraic α is Z0-dependent is of impor-
tance in the theory of the Hurwitz zeta-function ζ(α, s) =

∑∞
j=0(j + α)−s.

(See, e.g., the paper of Cassels [2], where he proves that at least half of the
numbers α + x, x ∈ Z0, do not belong to the multiplicative group gener-
ated by α, α+ 1, . . . , α+ x− 1.) The zero-distribution and the universality
property of the Lerch zeta-function

L(λ, α, s) =
∞∑

j=0

exp{2πλj
√
−1}

(j + α)s
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also rely on Z0-independence of α. (See, e.g., [6], [7] for more references
concerning limit theorems and universality of Lerch and other zeta-functions
which rely on Z0-independence of α.) The following question is therefore of
importance in the theory of zeta-functions.

Question. Is every algebraic number Z0-dependent?

Not only this, but also similar questions, like: is every algebraic (over Q)
number Z-dependent or is it Q-dependent, apparently cannot be answered
by using the methods of this note. However in some particular cases the
above question can be easily answered. For instance, if α is a root of unity,
then αn = 1 for some positive integer n, so that α is Z0-dependent and
`(α,Z0) ≤ n. Similarly, the equality α(α + x) = α + y shows that every
quadratic algebraic integer is Z-dependent and `(α,Z) ≤ 3. The second
named author [3] showed that all rational numbers and quadratic algebraic
integers are Zt-dependent for every t ∈ Z. Furthermore, we have `(α,Zt) ≤ 4
for every rational α and `(α,Zt) ≤ 5 for every quadratic algebraic integer α.
Note that, for α being an algebraic number but not an algebraic integer,
`(α,Z) must be even, because (1) can hold only if n = m.

In this note we prove the following.

Theorem 1. Let α be a quadratic algebraic number , and t ∈ Z. Then
α is Zt-dependent and `(α,Zt) ≤ 8.

Theorem 2. Let α be a cubic algebraic number. Then α is Q-dependent
and `(α,Q) ≤ 8.

The proofs, given in Section 3, are based on Dirichlet’s theorem about
prime numbers lying in an arithmetic progression and on certain elementary
identities. These are simple to check, but not easy to find! The last section
of the paper contains some identities for quartic algebraic numbers. In Sec-
tion 2 we show that some particular cases of this problem involving length
of multiplicative dependence are related to the Prouhet–Tarry–Escott and
Erdős–Straus problems.

2. Connection with other problems. The Prouhet–Tarry–Escott
problem is equivalent to the question whether there are two distinct vec-
tors x = (x1, . . . , xd) ∈ Zd and y = (y1, . . . , yd) ∈ Zd such that

(σ1(x)− σ1(y) : σ2(x)− σ2(y) : . . . : σd(x)− σd(y)) = (0 : 0 : . . . : 0 : 1)

in the projective space Pd−1. Here, σ1(x) = x1 + . . . + xd, σ2(x) = x1x2 +
x1x3 + . . . + xd−1xd, . . . , σd(x) = x1x2 . . . xd and the respective σj(y), j =
1, . . . , d, are the elementary symmetric functions. This question was an-
swered in the affirmative for all d ≤ 10, but remains unsettled for every
d > 10. See, for instance, the review of Borwein and Ingalls [1] for more
equivalent formulations and the references on this problem.
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Assume that α is an algebraic number of degree d − 1 which is not an
algebraic integer, i.e. aαd−1 + bαd−2 + . . .+ eα+ f = 0 with integer a ≥ 2,
f 6= 0, b, . . . , e. Then (1) with integer x1, . . . , xn, y1, . . . , ym can only be true
if n = m ≥ d. Thus `(α,Z) ≥ 2d with equality if and only if there exist two
distinct vectors x ∈ Zd and y ∈ Zd such that

(σ1(x)− σ1(y) : σ2(x)− σ2(y) : . . . : σd(x)− σd(y)) = (a : b : . . . : e : f).

One can easily see that this question is more general than that of Prouhet–
Tarry–Escott. For instance, by taking d=3, x=(1,1,16) and y=(0,−3,−11),
we see that

(σ1(x)− σ1(y) : σ2(x)− σ2(y) : σ3(x)− σ3(y)) = (32 : 0 : 16) = (2 : 0 : 1).

So, for both roots of the equation 2α2 + 1 = 0, we have the identity

(α+ 1)2(α+ 16) = α(α− 3)(α− 11).

This implies that `(α,Z) = 6 for α =
√
−1/2. Similarly, for α satisfying

aα2 + c = 0 with integer a ≥ 2, c 6= 0, its Z-dependence follows from the
identity

(α+ 2c)(α+ 1− 2c)(α+ 2c(2c− 1))

= α2(α+ 4ac(2c− 1)2 + 2c(2c− 1) + 1),

giving `(α,Z) = 6 for α =
√
−c/a.

A little computation with Maple shows however that

(σ1(x)− σ1(y) : σ2(x)− σ2(y) : σ3(x)− σ3(y)) 6= (2 : 0 : 3)

for all x,y ∈ {1, . . . , 1000}3. This suggests that the inequality `(α,Z1) ≤ 8
of Theorem 1 is sharp in general.

Recall that the Erdős–Straus conjecture is equivalent to the follow-
ing statement: for every prime number p there are three positive integers
x1, x2, x3 such that

1/x1 + 1/x2 + 1/x3 = 4/p.

(See [5, Problem D11] for many references on this and related problems
about Egyptian fractions.) Let α be a root of α2 + 4α + p = 0. One can
easily see that the question whether there are positive integers x1, x2, x3 and
y1 ∈ Z such that

(α+ x1)(α+ x2)(α+ x3) = α2(α+ y1)

is equivalent to that of Erdős–Straus.
As already noticed in [3], by taking the norm of both sides of (1) over Q,

we can ask similar questions about multiplicative dependence of Q(z), where
Q is the minimal polynomial of −α and where z runs over the values of M .
For quadratic polynomials such questions were considered in [3]. Elliott [4,
Chapter 17] considered a similar, but apparently unrelated question about
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representation of integers by products of polynomials Q(z) at integer points
for Q having all roots at negative integers. Note that Theorem 2 implies that
the values of a cubic (irreducible in Q[z]) polynomial Q(z) = z3 + bz2 + cz+
e ∈ Q[z] at rational numbers are multiplicatively dependent. More precisely,
there are at most eight rational numbers r1, . . . , r8 giving the non-trivial
equality Q(r1)±1 . . .Q(r8)±1 = 1. (We do not claim that these eight are
distinct nor that eight is the minimal possible number! It was shown in [3]
that for quadratic polynomials the minimal possible number is four.)

3. Proofs

Proof of Theorem 1. Write aα2 + bα + c = 0, where a, b, c are integers
satisfying a > 0, c 6= 0 and D = b2 − 4ac 6= 0. We will show first that there
is a positive integer k such that b2k2 + 2ck is a quadratic residue modulo
2ak + 1.

For h ∈ Z and an odd integer P > 1, let
(
h
P

)
be the Jacobi symbol. The

identity

4a2(b2k2 + 2ck) = b2(2ak + 1)2 − 2(b2 − 2ac)(2ak + 1) +D

implies that (
b2k2 + 2ck

2ak + 1

)
=
(

D

2ak + 1

)
.

Set k = 2Dk′ with k′ ∈ Z such that Dk′ > 0 and, by Dirichlet’s theorem,
the number p = 2ak + 1 = 4aDk′ + 1 being prime. It suffices to show that

(2)
(
D

p

)
= 1,

where the Jacobi symbol becomes the Legendre symbol. Write D = 2sD′ε,
where s ∈ Z0, D′ > 0 is odd, and ε = ±1. Then

(3)
(
D

p

)
=
(

2s

p

)(
D′

p

)(
ε

p

)
.

Since p ≡ 1 (mod 4) and p ≡ 1 (modD′), we get
(
D′

p

)
=
(
p

D′

)
= 1

and
(
ε
p

)
= 1. Moreover, (

2s

p

)
= 1,

which is clear for even s, whereas for odd s it follows from
(

2
p

)
= 1, because

then p ≡ 1 (mod 8). Hence the Legendre symbols on the right-hand side of
(3) are all three equal to 1. This implies (2), thus b2k2 + 2ck is a quadratic
residue modulo 2ak + 1 provided that k = 2Dk′ with k′ as above.
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Our next step is to show that the equation

(4) (2ak + 1)(α+ x1)(α+ x2) = (α+ y1)(α+ y2)

has infinitely many integer solutions x1, x2, y1, y2 > t. Since aα2 = −bα− c,
(4) is true provided that y1 + y2 = (2ak + 1)(x1 + x2) − 2bk and y1y2 =
(2ak + 1)x1x2 − 2ck. Set y2 = x2 − 1, y1 = (2ak + 1)x1 + 2akx2 − 2bk + 1.
Then the sum of y1 and y2 is as required. As for the product, it suffices to
show that the equation

((2ak + 1)x1 + 2akx2 − 2bk + 1)(x2 − 1) = (2ak + 1)x1x2 − 2ck

has solutions in sufficiently large x1, x2 ∈ Z. Let us write the last equation
in the form

(5) x1(2ak + 1) = (2ak + 1)x2(x2 − 1)− (x2 − 1 + bk)2 + b2k2 + 2ck.

By the above, there is an x0 ∈ Z such that x2
0 − b2k2 − 2ck is divisible by

2ak + 1. Accordingly, there is a sufficiently large x2 ∈ Z such that (x2 − 1
+ bk)2 − b2k2 − 2ck is divisible by 2ak + 1. It is clear that with this x2 and
with

x1 = x2(x2 − 1)− ((x2 − 1 + bk)2 − b2k2 − 2ck)/(2ak + 1) ∈ Z,
(5) holds. Evidently, x1 is sufficiently large if x2 is.

Let us take two integer solutions of (4), say x1, x2, y1, y2 > t and
y3, y4, x3, x4 > max{x1, x2, y1, y2}. Consider a quotient of

(2ak + 1)(α+ x1)(α+ x2) = (α+ y1)(α+ y2)

and
(2ak + 1)(α+ y3)(α+ y4) = (α+ x3)(α+ x4).

It follows that

(α+ x1)(α+ x2)(α+ x3)(α+ x4) = (α+ y1)(α+ y2)(α+ y3)(α+ y4),

where y3 6= x1, x2. Furthermore, y3 6= x3, for otherwise we obtain the equal-
ity (2ak + 1)(α + y4) = α + x4, which is impossible as α /∈ Q. Similarly,
y3 6= x4. Therefore x1, x2, x3, x4 is not a permutation of y1, y2, y3, y4, which
is the desired conclusion.

Proof of Theorem 2. By adding to α a rational number, we can, without
loss of generality, assume that α is a root of the equation z3 + pz + q = 0,
where p, q ∈ Q, q 6= 0. If p = 0, then α3 = −q, and the identity

(α+ 1)2(α− 1)2α2 = (α+ q)2

shows that `(α,Q) ≤ 6 + 2 = 8. If p 6= 0, then, by employing α3 = −pα− q,
we have the identity

(α+ 2q/p)3(α− 2q/p) = α3(α+ 4q(4q2 + p3)/p4),

which completes the proof.
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4. Identities for quartic algebraic numbers. The direct method
used in the proof of Theorem 2 suggests that perhaps there are some more
complicated identities which imply that every quartic algebraic number is
Q-dependent. For this, one needs to find a solution of (1) in rational numbers
using the equation α4 + pα2 + qα+ r = 0, where p, q, r ∈ Q, r 6= 0. We now
give such identities in some particular cases.

Let throughout ε = ±1. The simplest case of quartics for which (1) has
a non-trivial solution is p = 0, q = ε. Then α8 = (α+ εr)2. We were unable
to find such an identity for p = q = 0, but for p = −3/2, q = 0 we have

(α− 1/2)3(α+ 3/2) = α− r − 3/16.

More generally, for p = −6t2, q = ε− 8t3, where t ∈ Q, we found

(α+ t)6(α− 3t)2 = (α+ ε(3t4 + r))2.

Similarly, for p = −(1 + u + u2)t2, q = ε − (u + u2)t3, where u, t ∈ Q, we
have

α2(α+ t)2(α+ ut)2(α− (1 + u)t)2 = (α+ εr)2.

Finally, for p = −t2, q = 0, r = ε + 4t4(u3 − u)2/(u2 + 1)4 (u, t ∈ Q), the
required identity is

(α+ vt)2(α− vt)2(α+ wt)2(α− wt)2 = 1,

where v = (u2 − 1)/(u2 + 1), w = 2u/(u2 + 1). Note that for all quartic α
as above we have `(α,Q) ≤ 10.
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