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STRUCTURE OF FLAT COVERS OF INJECTIVE MODULES

BY

Sh. PAYROVI and M. AKHAVIZADEGAN (Qazvin)

Abstract. The aim of this paper is to discuss the flat covers of injective modules
over a Noetherian ring. Let R be a commutative Noetherian ring and let E be an injective
R-module. We prove that the flat cover of E is isomorphic to

∏
p∈AttR(E) Tp. As a conse-

quence, we give an answer to Xu’s question [10, 4.4.9]: for a prime ideal p, when does Tp
appear in the flat cover of E(R/m)?

1. Introduction. The notion of flat covers of modules was introduced
by Enochs in [6], but existence of flat covers was an open question. This
question has been studied by several authors; see for example [1, 2, 12].
Recently, Bican, El Bashir and Enochs have proved that all modules have
flat covers (see [3]).

The purpose of the present paper is to obtain information about the
flat covers and minimal flat resolutions of injective modules over a Noethe-
rian ring. Let R be a commutative Noetherian ring and let E be an injective
R-module. Using [5] we see that the flat cover of E is of the form∏
q∈Spec(R) Tq. Here q is a prime ideal of R and Tq is the completion of

a free Rq-module with respect to the qRq-adic topology. We show, in 3.2,
that if Tp appears in the flat cover of E, then p is an attached prime ideal
of E. Now the answer to the question mentioned in the abstract is a conse-
quence of 3.2. More precisely, we will prove that Tp appears in the flat cover
of E(R/m) exactly when p ∈ AssR(R). In the remainder of the paper, we
focus on the minimal flat resolution of the injective R-module E. Firstly,
we construct a minimal flat resolution for 0 :E x from a given minimal flat
resolution of E, when x is a non-unit and non-zero divisor of R. Secondly, we
give a characterization of Cohen–Macaulay rings in terms of the vanishing
property of the dual Bass numbers of E.

2. Preliminaries. In this section we recall some definitions and facts
about the flat covers and minimal flat resolutions of modules. Throughout
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this paper R is a commutative ring with non-zero identity and M is an
R-module.

Definition 2.1. Let F be a flat R-module. A homomorphism φ :
F →M is called a flat cover of M if (1) for any homomorphism φ′ : G→M
with G flat, there is a homomorphism f : G→ F such that φ′ = φf and (2)
if φ = φf for some endomorphism of F , then f is an automorphism of F .

As mentioned in the introduction, it was proved in [3, 6] that M has a
flat cover and it is unique up to isomorphism.

Definition 2.2. An R-module C is said to be cotorsion if Ext1
R(F,C)

= 0 for all flat modules F .

Note that if R is Noetherian and if F is a flat and cotorsion R-module,
then it was proved in [5, p. 183] that F is uniquely a product F =

∏
Tp,

where Tp is the completion of a free Rp-module with respect to the pRp-adic
topology. Also note that a flat cover of a cotorsion R-module is flat and
cotorsion, and the kernel of a flat cover F →M is cotorsion [5, Lemma 2.2].
Therefore, we have the following definitions.

Definition 2.3. A minimal flat resolution of M is an exact sequence

. . .→ Fi
di→ Fi−1 → . . .→ F1

d1→ F0
d0→M → 0(1)

such that for each i ≥ 0, Fi is a flat cover of Im(di).

By using the above remark, for each i ≥ 1, Fi is flat and cotorsion, and
thus it is a product of such Tp. For i = 0, F0 is not cotorsion in general.
But its pure injective envelope (or equivalently cotorsion envelope) PE(F0)
is flat and cotorsion [4, p. 352]. Hence PE(F0) is a product of Tp.

Definition 2.4. Let R be a commutative Noetherian ring, and let M
admit a minimal flat resolution (1). For i ≥ 1 and for a prime ideal p,
πi(p,M) is defined to be the cardinality of the base of a free Rp-module
whose completion is Tp in the product Fi =

∏
Tq. For i = 0, π0(p,M) is

defined similarly by using the pure injective envelope PE(F0) instead of F0
itself.

We note that the πi(p,M) are homologically independent and well de-
fined. We call the πi(p,M) the dual Bass numbers.

3. The main results. Throughout this section, R will denote a com-
mutative Noetherian ring. Let us recall the definition of the coassociated
prime ideals of M . We say that an R-module L is cocyclic if L is a submod-
ule of E(R/m), where E(R/m) is the injective envelope of R/m and m is a
maximal ideal of R. A prime ideal p of R is called a coassociated prime of M
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if there exists a cocyclic homomorphic image L of M such that p = Ann(L).
The set of coassociated prime ideals of M is denoted by CoassR(M).

Let A be a representable R-module. The set of attached prime ideals of
A is denoted by AttR(A). The reader is referred to [8] for details.

In order to prove our main result we need the following useful lemma.

Lemma 3.1. Let a be an ideal of R and let M have only finitely many
coassociated prime ideals. Then M = aM if and only if there exists x ∈ a
such that M = xM .

Proof. The “if” part is clear. Hence we shall prove the “only if” half.
Assume M 6= xM for all x ∈ a. Then, in view of [14, Theorem 1.13],
a ⊆ ⋃p∈CoassR(M) p. Thus there is a prime ideal p in CoassR(M) such that
a ⊆ p, since CoassR(M) is a finite set. Hence, by using the definition, M
has a proper submodule N such that p = AnnR(M/N). Thus aM ⊆ pM ⊆
N (M contrary to assumption.

We now come to the main theorem of this paper.

Theorem 3.2. If E is an injective R-module, then
∏
p∈AttR(E) Tp is a

flat cover of E.

Proof. Note that E is cotorsion and so the flat cover of E, say F , is
flat and cotorsion. Hence, as mentioned in the introduction, F =

∏
Tq.

Here Tq is the completion of a free Rq-module with respect to the qRq-adic
topology. First we show that CoassRp(HomR(Rp, E)) is a finite set for all
p ∈ Spec(R). Note that since the zero submodule of Rp has a primary
decomposition as an Rp-submodule, it has a primary decomposition as an
R-submodule. Therefore, by using [13, Theorem 3.6], we see that

CoassR(HomR(Rp, E)) = {q ∈ AssR(Rp) : q ⊆ q′ for some q′ ∈ AssR(E)}.
Thus CoassR(HomR(Rp, E)) is a finite set. Let f : R → Rp be the natural
homomorphism and let f ∗ : Spec(Rp)→ Spec(R) be the induced map. It is
straightforward to see that

f∗CoassRp(HomR(Rp, E)) ⊆ CoassR(HomR(Rp, E)).

Hence CoassRp(HomR(Rp, E) is finite. Now assume that for a prime ideal p
of R, Tp appears in the product of F . It follows from [7, Theorem 2.2] that

HomR(Rp, E) 6= pRpHomR(Rp, E).

Thus, in view of 3.1 and [14, Theorem 1.13], we have

pRp ⊆
⋃

Q∈CoassRp (HomR(Rp,E))

Q, so pRp ∈ CoassRp(HomR(Rp, E)).

Hence p ∈ CoassR(HomR(Rp, E)). Therefore, we can deduce that p ∈
AssR(Rp) and p ⊆ q for some q ∈ AssR(E). The claim now follows from
[14, Lemma 1.17 and Theorem 1.14], that is, p ∈ AttR(E).
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Let (R,m) be a local ring. In [10, Remark 4.4.9], it was proved that if
p is a minimal prime ideal of R, then Tp appears in the product of the flat
cover of E(R/m) (which is of the form

∏
Tq). So a natural problem is to

determine the set of prime ideals q for which Tq appears in the flat cover of
E(R/m). In the following consequence of 3.2 we answer this question.

Theorem 3.3. Let (R,m) be a local ring and let F =
∏
Tq be a flat

cover of E(R/m). Then, for a prime ideal p of R, Tp appears in the product
of F if and only if p ∈ AttR(E(R/m)).

Proof. By the previous theorem it is enough to show that if p ∈
AttR(E(R/m)), then Tp appears in the product of F . Let p ∈ AttR(E(R/m))
so that p ∈ AssR(R). In view of [9, Theorem 9.51] and using the fact that
E(R/m) is an injective cogenerator we have

0 6= HomR(Ext0
Rp(k(p), Rp), E(R/m)) ∼= TorRp0 (k(p),HomR(Rp, E(R/m)))

where k(p) denotes the residue field of Rp. Hence by using [7, Theorem 2.2]
it follows that π0(p,E(R/m)) 6= 0. Thus Tp appears in the product of F .

The following theorem is essential in the rest of the paper and we quote
it for the convenience of the reader.

Theorem 3.4 ([9, Theorem 9.37]). If (R,m) is a local ring and x is a
non-unit and non-zero divisor of R, then for all i ≥ 0,

ExtiR/xR(R/m,R/xR) ∼= Exti+1
R (R/m,R).

Proof. The exact sequence 0→ R
x→ R→ R/xR→ 0 induces the exact

sequence

0→ HomR(R/m,R) x→ HomR(R/m,R)→ HomR(R/m,R/xR)

→ Ext1
R(R/m,R) x→ Ext1

R(R/m,R)→ . . .

But HomR(1R/m, 1R) is the identity mapping of HomR(R/m,R) onto itself,
and xHomR(1R/m, 1R) = HomR(x1R/m, 1R); since x ∈ m, it follows that
x1R/m = 0 and xHomR(1R/m, 1R) is zero. Thus the induced homomorphisms

ExtiR(R/m,R) x→ ExtiR(R/m,R)

are zero for all i ≥ 0. It follows that HomR(R/m,R) = 0 and

HomR(R/m,R/xR) ∼= Ext1
R(R/m,R).

But R/m and R/xR both have natural structures as R/xR-modules, and a
mapping γ : R/m → R/xR is an R-homomorphism if and only if it is an
R/xR-homomorphism, thus

HomR(R/m,R/xR) = HomR/xR(R/m,R/xR).

Therefore,
HomR/xR(R/m,R/xR) ∼= Ext1

R(R/m,R).
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Let
0→ R

α→ E0 d0→ E1 → . . .→ Ei
di→ Ei+1 → . . .

be a minimal injective resolution for R. For each i ≥ 0, define 0 :Ei x =
{y ∈ Ei : xy = 0}. Then

0→ R/xR
⊂→ 0 :E1 x

e1→ 0 :E2 x→ . . .→ 0 :Ei x
ei→ . . .

is a minimal injective resolution for R/xR as an R/xR-module, where ei is
the restriction of di. There is a homomorphism of complexes of R-modules
and R-homomorphisms:

. . . 0 :Ei x 0 :Ei+1 x 0 :Ei+2 x . . .

. . . Ei Ei+1 Ei+2 . . .

// //

fi
��

//

fi+1

��

//

fi+2

��
// // // //

in which fi is the inclusion map for all i ≥ 1. Using the functor
HomR(R/m,−) we obtain the following homomorphism of complexes of
R-modules and R-homomorphisms:

HomR/xR(R/m, 0 :Ei x) HomR/xR(R/m, 0 :Ei+1 x) HomR/xR(R/m, 0 :Ei+2 x)

HomR(R/m,Ei) HomR(R/m,Ei+1) HomR(R/m,Ei+2)

//

fi
��

//

fi+1

��
fi+2

��
// //

Now it is straightforward to see that f i = HomR(1R/m, fi) is an R- and
R/xR-isomorphism for all i ≥ 1. Hence

ExtiR/xR(R/m,R/xR) ∼= Exti+1
R (R/m,R)

for all i ≥ 0. This completes the proof of the theorem.

Theorem 3.5. Let E be an injective R-module and let x be a non-unit
and non-zero divisor of R. If p ∈ Spec(R) and x ∈ p, then for all i ≥ 0,

πi(p/(x), 0 :E x) = πi+1(p,E).

Proof. Assume p is a prime ideal of R and x ∈ p. We let R = R/xR,
p = p/(x) and k(p) = Rp/pRp (∼= k(p)). Now

HomR(Rp, 0 :E x) ∼= HomR(Rp,HomR(R,E)) ∼= HomR(Rp ⊗R R,E)
∼= HomR(Rp, E).

Moreover, for all i ≥ 0,

TorRpi (k(p),HomR(Rp, 0 :E x)) ∼= TorRpi (k(p),HomR(Rp, E))
∼= HomR(Exti

Rp
(k(p),Rp), E)
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(see [9, Theorem 9.51]). On the other hand, in view of 3.4, we have

HomR(Exti
Rp

(k(p), Rp), E) ∼= HomR(Exti+1
Rp

(k(p), Rp), E)

∼= TorRpi+1(k(p),HomR(Rp, E)).

Thus by using [7, Theorem 2.2] the result follows:

πi(p, 0 :E x) = dimk(p) TorRpi (k(p),HomR(Rp, 0 :E x))

= dimk(p) TorRpi+1(k(p),HomR(Rp, E)) = πi+1(p,E).

Theorem 3.6. Let E be an injective R-module and let x be a non-unit
and non-zero divisor of R. Let

. . .→ Fi
di→ Fi−1 → . . .→ F1

d1→ F0
d0→ E → 0

be a minimal flat resolution for E. Let K = ker d0. Then R/xR ⊗R K
∼= 0 :E x as R- and R/xR-modules, and the induced complex of R/xR-
modules and R/xR-homomorphisms

. . .→ Fi ⊗R R/xR→ . . .→ F1 ⊗R R/xR→ K ⊗R R/xR→ 0(2)

is a flat resolution for the R/xR-module K ⊗R R/xR. Also, if

. . .→ Gi → Gi−1 → . . .→ G1 → G0 → 0 :E x→ 0

is a minimal flat resolution of 0 :E x as an R/xR-module, then Gi ∼=
Fi+1 ⊗R R/xR for all i ≥ 0.

Proof. The commutative diagram

0 K F0 E 0

0 K F0 E 0

// //

x

��

//

x

��

//

x

��
// // // //

with exact rows induces an exact sequence

0 :K x→ 0 :F0 x→ 0 :E x→ K/xK → F0/xF0 → E/xE.

Note that x is a non-zero divisor of R and F0 is a flat R-module, hence
0 :F0 x = 0. We show F0 = xF0. In view of 3.2, F0 =

∏
p∈AttR(E) Tp, so that

F0 ⊗R R/xR =
( ∏

p∈AttR(E)

Tp

)
⊗R R/xR ∼=

∏

p∈AttR(E)

(Tp ⊗R R/xR)

∼=
∏

x6∈p
Tp/xTp = 0.

Thus F0/xF0 = 0. Hence 0 :E x ∼= K/xK as R- and R/xR-modules. The
exact sequence F2 → F1 → K → 0 shows that (2) is exact at K ⊗R R/xR
and at F1 ⊗R R/xR. If n > 1, the homology module of the complex

Fi+1 ⊗R R/xR→ Fi ⊗R R/xR→ Fi−1 ⊗R R/xR
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is isomorphic to TorRi (E,R/xR), which is zero since the R-module R/xR
has projective dimension ≤ 1. Thus (2) is exact. Also, Fi ⊗R R/xR is a flat
R/xR-module for all i ≥ 1. Hence, (2) is a flat resolution for K ⊗R R/xR.
The only thing left to do is to show that Gi

∼= Fi+1 ⊗R R/xR. For this
let i ≥ 0 and let Fi+1 =

∏
Tp. By 3.5, Gi =

∏
x∈p Up/(x), where Up/(x) is

the completion of a free (R/xR)p/(x)-module with a base having the same
cardinality of the base of the free Rp-module whose completion is Tp. On
the other hand, Fi+1 ⊗R R/xR =

∏
x∈p Tp/xTp and it is easy to see that

Tp/xTp and Up/(x) have the same properties. Now we can deduce that Gi

and Fi+1 ⊗R R/xR are isomorphic.

The next easy corollary is in fact an important “change of rings” result
on flat dimension (which we write as f.dim).

Corollary 3.7. If E is an injective R-module and x is a non-unit and
non-zero divisor of R, then f.dimRE ≥ f.dimR/xR(0 :E x) + 1.

For n ∈ N, we say that R satisfies (Sn) if depthRp ≥ min{ht p, n} for
every prime ideal p of R.

Theorem 3.8. If R is a Noetherian ring , then the following statements
are equivalent :

(1) R satisfies (Sn);
(2) if E is an injective R-module, then πi(p,E) 6= 0 implies that

min{ht p, n} ≤ i for all prime ideals p and all i ≥ 0;
(3) if πi(p,E(R/p)) 6= 0, then min{ht p, n} ≤ i for all prime ideals p

and all i ≥ 0.

Proof. (1)⇒(2). Let E be an injective R-module. Consider the minimal
flat resolution of E:

. . .→ Fi → Fi−1 → . . .→ F1 → F0 → E → 0.

As mentioned before, for each i ≥ 0, Fi is flat and cotorsion, so it is uniquely
a product

∏
Tq. We have to show that for a prime ideal p, if πi(p,E) 6= 0

then min{ht p, n} ≤ i. We use induction on i. If π0(p,E) 6= 0 then Tp is
a direct summand of F0. Hence, in view of 3.2, p ∈ AttR(E). So there is
q ∈ AssR(R) such that p ⊆ q. Now we have qRq ∈ AssRq(Rq) and

min{ht p, n} ≤ min{ht q, n} ≤ depthRq = 0.

Assume inductively that k ≥ 0 and the result has been proved (for all choices
of R and E satisfying the hypothesis) when i = k; let πk+1(p,E) 6= 0. We
may assume that p 6⊆ Z(R). Suppose that x ∈ p− Z(R). It is easy to
see that R/xR satisfies (Sn−1), and 0 :E x is an injective R/xR-module. By
using 3.5, we have πk(p/(x), 0 :E x) 6= 0. Hence, by the inductive hypothesis,
min{ht p/(x), n− 1} ≤ k. Thus min{ht p, n} ≤ k + 1. The result follows by
induction.
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(2)⇒(3). This is trivial.
(3)⇒(1). Assume that p ∈ Spec(R) and depthRp = i. In view of

[9, Theorem 9.51], and using the fact that E(R/p) is an injective cogen-
erator Rp-module, we have

0 6= HomR(ExtiRp(k(p), Rp), E(R/p)) ∼= TorRpi (k(p),HomR(Rp, E(R/p))).

Hence, by using [7, Theorem 2.2], it follows that πi(p,E(R/p)) 6= 0 so that
min{ht p, n} ≤ i = depthRp.

The next corollary is analogous to [11, Theorem 3.2] and provides an
explicit description of the minimal flat resolution of an injective module
over a Cohen–Macaulay ring.

Corollary 3.9. If R is a Noetherian ring , then the following state-
ments are equivalent :

(1) R is Cohen–Macaulay ;
(2) if E is an injective R-module, then πi(p,E) 6= 0 implies that ht p ≤ i

for all prime ideals p and all i ≥ 0;
(3) if πi(p,E(R/p)) 6= 0, then ht p ≤ i for all prime ideals p and all

i ≥ 0.

Proof. The proof is similar to that of 3.8.
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