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PRODUCTS OF FACTORIALS MODULO p

BY

FLORIAN LUCA (Morelia) and PANTELIMON STĂNICĂ (Montgomery, AL)

Abstract. We show that if p 6= 5 is a prime, then the numbers
{

1
p

(
p

m1, . . . ,mt

) ∣∣∣∣ t ≥ 1, mi ≥ 0 for i = 1, . . . , t and
t∑

i=1

mi = p

}

cover all the nonzero residue classes modulo p.

1. Introduction. Let p be a fixed odd prime and let s and t be fixed
positive integers which depend on p. Consider the following subset of Z∗p:

(1) Ps,t(p) =
{
x1! . . . xt! (modp)

∣∣∣ xi ≥ 1 for i= 1, . . . , t and
t∑

i=1

xi = s
}
.

The problem that we investigate in this note is the following: given p, find
sufficient conditions on s and t to ensure that Ps,t(p) contains the entire Z∗p.

Let ε > 0 be any small number. Throughout this paper, we denote by
c1, c2, . . . computable positive constants which are either absolute or depend
on ε. From the way we have formulated the above problem, we see that its
answer is easily decidable if either both s and t are very small or very large
with respect to p. For example, if s < c1(log p)2 with a suitable constant c1,
then it is clear that Ps,t(p), or even the union of all Ps,t(p) for all allowable
values of t, cannot possibly contain the entire Z∗p when p is large. Indeed, the
reason is that the cardinality of that union is at most p(s) = O(exp(c2

√
s)),

and this is much smaller than p when p is large if c1 is chosen such that
c1 > c2

2. Here, we have denoted by p(s) the number of unrestricted parti-
tions of s, and the constant c2 can be chosen to be π

√
2/3. It is also obvious

that Ps,t(p) does not generate the entire Z∗p (for any s) when t = 2. More-
over, there exist infinitely many prime numbers p for which the smallest
nonquadratic residue modulo p is at least c3 log p, and so if one wants to
generate the entire Z∗p from Ps,t(p), then one should allow in (1) partitions
of s where max(xi)ti=1 is at least c3 log p. In particular, s and t cannot be too
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close to each other. Indeed, if p is such a prime and the maximum xi allowed
in (1) is at most c3 log p, then all the numbers in Ps,t(p) will be quadratic
residues modulo p, and in particular Ps,t(p) cannot contain the entire Z∗p.
On the other hand, when s is very large, for example when s > p5/4+ε, then
an immediate argument based on the known upper bounds for the size of
the smallest primitive root modulo p shows that the union of Ps,t(p) over
all the allowable values of t does cover the entire Z∗p when p is large. Thus,
the question becomes interesting when we search for small values of both s
and t for which Ps,t(p) does cover the entire Z∗p.

This question was inspired by the paper [9] of the second author. In
that paper, the problem investigated was to find the exponent at which a
prime p divides some generalized Catalan numbers. However, the question
of whether a certain subset of Catalan numbers, namely the numbers of the
form

1
p

(
p

m1, . . . ,mt

)
,(2)

covers the entire Z∗p was not investigated in [9]. Here, the numbers appearing
in (2) are all the nontrivial multinomial coefficients. In our notation, this
question reduces to whether

⋃

t≥2

Pp,t(p)(3)

is the entire Z∗p. Allowing also t = 1 in (3) we deduce that even 0 ∈ Zp
belongs to this set, and s = p is the smallest value of s for which this can
happen. As a byproduct of our results, we show that the set (3) is indeed
the entire Z∗p for p 6= 5.

Our main results are the following:

Theorem 1. Let ε > 0 be arbitrary. There exists a computable positive
constant p0(ε) such that whenever p > p0(ε), then Ps,t(p) = Z∗p for all t and
s such that t > pε and s− t > p1/2+ε.

The above result is certainly very far from best possible. We believe that
the exponent 1/2 can be replaced by a much smaller number, or even maybe
that the conclusion remains true when s − t > p2ε. However, we have not
been able to prove that.

Theorem 2. If p 6= 5 is a prime, then the set (3) is the entire Z∗p.

The trick in proving Theorem 2 is to detect a small value of p0 such that
the assertion of Theorem 2 holds for p > p0, and then to test the claim for
all primes p from 2 up to p0.

Theorem 1 above shows, in particular, that the set (3) (even a very small
subset of it) is the entire Z∗p when p is large. As an example for Theorem 1,
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we can easily prove that if 2 is a primitive root modulo p, then A∪B, where

A =
{

2u
(
p− 1

2

)
!
∣∣∣∣ 1≤ u≤ p− 1

2

}
,

B =
{

2v
(
p− 3

2

)
!
∣∣∣∣ 0≤ v≤ p− 3

2

}
,

covers the entire Z∗p. We see first that A and B each contain (p−1)/2 distinct
residues modulo p. The intersection A ∩ B is empty when 2 is a primitive
root modulo p. We omit the details. What is interesting is that, in general,
we can cover easily all the even residues, and the odd residues from the first
half of Z∗p, since

1
p

(
p

2, 2k − 1, p− 2k − 1

)
≡ k (modp),

1
p

(
p

1, 1, 2k − 1, p− 2k − 1

)
≡ 2k (mod p),

for any 1 ≤ k ≤ (p− 1)/2.
Related to our work, we recall that the behavior of the sequence n!

(modp) was recently investigated in [2].

2. The proofs of the theorems. The main idea behind the proofs
of both Theorems 1 and 2 is to find a suitable list x1, . . . , xt of many small
numbers, each repeated a suitable number of times, such that we can modify
(in a sense to be made precise below) a fixed element given by formula (1)
for those x1, . . . , xt in sufficiently many ways (without, of course, getting
outside Ps,t(p)) so as to obtain, in the end, all the congruence classes in Z∗p.

Here is the basic operation by which we can modify a fixed element, call
it

F :=
t∏

i=1

xi!,

to obtain, hopefully, new elements in Ps,t(p):

(M) Assume that i1 < . . . < ij and l1 < . . . < lj are two disjoint subsets
of indices in {1, . . . , t}. Then

( j∏

s=1

(xls + 1)
)( j∏

s=1

xis

)−1
· F = x1! . . . (xl1 + 1)! . . . (xi1 − 1)! . . . xt!(4)

= F ′ ∈ Ps,t(p).
We shall always apply (4) with xl1 = . . . = xlj = 1. With this conven-

tion, we may eliminate the initial number F , take inverses in (4), and then
reformulate the question as follows:
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Question. Is it true that for suitable integers t and s (satisfying , for
example, the hypothesis of Theorem 1) we can find some positive integers
x1, . . . , xt summing to s such that every nonzero residue class modulo p can
be represented by a number of the form

j∏

r=1

xir
2

(5)

where {i1, . . . , ij} ⊂ {1, . . . , t} can be any subset such that there exists an-
other subset of j indices {l1, . . . , lj} disjoint from {i1, . . . , ij} for which
xlr = 1 for all r = 1, . . . , j?

Proof of Theorem 1. All we have to show is that if the parameters s
and t satisfy the hypothesis of Theorem 1, then we can construct x1, . . . , xt
for which the answer to the above question is affirmative. Fix ε > 0 and a
positive integer k with 1/k < ε < 2/k. From now on, all positive constants
c1, c2, . . . which will appear will be computable and will depend only on k.
We shall show that if p is large enough with respect to k, then we can
construct a good sublist of x1, . . . , xt in the following manner:

(a) We first take and repeat exactly two times each of the prime numbers
up to p1/k.

(b) We then adjoin at most c1 log log p even numbers (counted with mul-
tiplicities), each smaller than p1/2+1/k.

(c) The numbers of the form (5), where the xi’s are from the lists (a)
and (b) and the maximum length j of a product in (5) is not more than
2k + 2c1 log log p, cover the entire Z∗p.

It is clear that if we can prove the existence of a list satisfying (a)–(c),
then we are done. Indeed, we may first adjoin to the sublist resulting from
(a) and (b) a number of 1’s, about 2k + 2c1 log log p. The list obtained has
no more than

c2
p1/k

log p
+ 2k + 4c1 log log p < pε − 1 < t− 1(6)

numbers while its sum is at most

(7) c3
p2/k

log p
+ 2k + 2c1 log log p+ 2c1p

1/2+1/k log log p

< p1/2+ε − 1 < s− t− 1,

for large p. At this step, we complete the list with some more 1’s until we
get a list with precisely t− 1 numbers, which is possible by (6), and set the
last number of the list to be

xt := s−
t−1∑

i=1

xi,

which is still positive by (7).
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To show the existence of a sublist with properties (a)–(c) above, we start
with the set

A := {n | n < p1/k and n is prime}.
The numbers from A will form the sublist (a) but, so far, we take each of
them exactly once. Let

B1 :=
{
n1

2
. . .

nk
2

∣∣∣∣ ni ∈ A, ni 6= nj for 1 ≤ i 6= j ≤ k
}
.

We now show that b1 := #B1 is large. Indeed, the set B1 will certainly
contain all the numbers of the form

p1

2
. . .

pk
2

= 2−kp1 . . . pk,(8)

where pi is an arbitrary prime subject to the condition

pi ∈
(
p1/k

2i
,
p1/k

2i−1

)
for i = 1, . . . , k.(9)

Moreover, notice that the residue classes modulo p of the elements of the
form (8), where the primes pi satisfy (9), are all distinct. Indeed, if two
numbers of the form (8) coincided modulo p, then, after cancelling the factor
of 2−k, we would get two integers which coincide modulo p. Since they are
both smaller than p, they must be, in fact, equal. But the elements (8) are
all distinct since their prime divisors pi satisfy (9).

Applying the Prime Number Theorem to estimate from below the number
of primes in each one of the intervals in (9), we get

b1 > c4
p

(log p)k
>

p

(log p)k+1 ,(10)

whenever p > c5. We construct recursively a (finite) increasing sequence of
subsets Bm for m ≥ 1 in the following way:

Assume that Bm has been constructed and set bm := #Bm. Assume that
bm < p − 1 (that is, Bm is not the entire Z∗p already). We then have the
following trichotomy:

(i) If bm ≥ p/2, then we set Bm+1 := Bm · Bm and notice that Bm+1
= Z∗p, so we can stop.

(ii) If bm < p/2 and there exists an even number a < p1/2+1/k such
that a/2 6∈ Bm · B−1

m , then we set am := a, add a to the list of the xi’s (on
sublist (b)), and let

Bm+1 := Bm ∪
am
2
·Bm.

Notice that
bm+1 ≥ 2bm.(11)

(iii) If bm < p/2 and all even numbers a < p1/2+1/k have the property
that a/2 is already in Bm ·B−1

m , we choose the even number a smaller than



196 F. LUCA AND P. STĂNICĂ

p1/2+1/k for which the number of representations of a/2 of the form x · y−1

with x, y ∈ Bm is minimal. We then set am := a, add a to the list of the xi’s
(on sublist (b)), set

Bm+1 := Bm ∪
am
2
·Bm,

and notice that

bm+1 ≥ 4bm/3.(12)

In (i)–(iii) above, if U and V are two subsets of Z∗p, we have denoted by
U · V the set of all elements of Z∗p of the form u · v with u ∈ U and v ∈ V ,
and by U−1 the set of all elements u−1 for u ∈ U .

We have to justify that (i)–(iii) do indeed hold. Notice that (i) and (ii)
are obvious. The only detail we have to prove is that inequality (12) holds in
situation (iii). For this, we use the following result due to Sárkőzy (see [7]):

Lemma 1. Let p be a prime number , u, v, S, T be integers with 1 ≤
u, v ≤ p− 1, 1 ≤ T ≤ p, and C1, . . . , Cu and D1, . . . ,Dv be integers with

Ci 6≡ Cj (mod p) for 1 ≤ i < j ≤ u,
Di 6≡ Dj (modp) for 1 ≤ i < j ≤ v.

For any integer n, let f(n) denote the number of solutions of

Cx ·Dy ≡ n (modp), 1 ≤ x ≤ u, 1 ≤ y ≤ v.
Then ∣∣∣∣

S+T∑

n=S+1

f(n)− uvT

p

∣∣∣∣ < 2(puv)1/2 log p.(13)

We apply Lemma 1 with u = v = bm, C1, . . . , Cu all the residue classes
in Bm, and D1, . . . ,Du all the residue classes in B−1

m . We also set S = 0 and
T to be the largest integer smaller than p1/2+1/k/2. Clearly, T > p1/2+1/k/3.
Since we are discussing situation (iii) above, we certainly have f(n) ≥ 1 for
all positive integers n ≤ T . Let M := min{f(n) | 1 ≤ n ≤ T}, and then
am := 2c, where f(c) = M . Denote bm by b. We apply inequality (13) to get

M <
b2

p
+

2b
√
p log p
T

.(14)

We first show that
2b
√
p log p
T

<
b2

3p
.(15)

Indeed, since T > p1/2+1/k/3 and b = bm ≥ b1 > p/(log p)k+1 (by (10)), it
follows that in order for (15) to hold, it suffices that

54(log p)k+2 < p1/k,
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which is certainly satisfied when p > c6. Thus, inequalities (14) and (15)
show that

M <
4b2

3p
<

2b
3
,(16)

where the last inequality follows from b < p/2. In particular,

bm+1 = #(Bm ∪ c ·Bm) ≥ bm + (bm −M) ≥ 2b− 2b
3

=
4b
3
,(17)

which proves (12).
The combination of (10), (11) and (12) shows that

bm+1 >

(
4
3

)m
b1 >

(
4
3

)m p

(log p)k+1(18)

if bm < p/2. Now notice that
(

4
3

)m
>

(log p)k+1

2

provided that m > c7 log log p, where one can take c7 := (k + 1)/log(4/3),
for example, and for such large m inequality (18) shows that bm+1 > p/2. In
particular, situations (ii) or (iii) will not occur for more than c7 log log p steps
after which we arrive at a point where we apply situation (i) to construct
Bm+1 and we are done. Clearly, (i)–(iii) and the above arguments prove the
existence of a sublist of the xi’s satisfying conditions (a)–(c), which finishes
the proof of Theorem 1.

Proof of Theorem 2. We follow the method outlined in the proof of
Theorem 1. Thus, it suffices to find a list of positive integers, say A :=
{x1, . . . , xs}, with

U :=
s∑

i=1

xi < p,

and such that for every m ∈ Z∗p there exists a subset I ⊆ {1, . . . , s} for which

m ≡
∏

i∈I
xi! (mod p).

It is clear that once we show the existence of such an A, we can formally
multiply the right hand side of the above congruence by an appropriate
number of 1!’s so that the sum of the xi for i ∈ I and the 1’s is precisely p.

Step 1. We start with a set A1 of distinct positive integers such that

U1 :=
∑

x∈A1

x
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is not too large, and set

B1 :=
{
n1

2
· n2

2

∣∣∣∣ n1 < n2 in A1

}
(modp).

For m ≥ 2, we construct inductively the sets Am and Bm by the method
explained in the proof of Theorem 1. We set bm := #Bm, sm := bm/p, and
we choose

T := 2bλ√p log pc+ 1,

where λ > 2 is some parameter, to be specified later, and bxc is the largest
integer ≤ x. From the way the sets Am and Bm are constructed for m ≥ 1,
it follows that as long as sm < 1/2, Am+1 is obtained from Am by adjoining
to it just one element am of size no larger than T , and then Bm+1 is taken
to be Bm ∪ am ·Bm (modp). Thus,

Um+1 :=
∑

x∈Am+1

x ≤ T +
∑

x∈Am
x = T + Um for m ≥ 1,

and therefore
Um+1 ≤ mT + U1(19)

for all m ≥ 1 as long as sm < 1/2. However, by (14) and our choice of T ,
it follows that when constructing Am+1 from Am, we choose the parameter
M in such a way that

M <
b2m
p

+
2bm
√
p log p
T

< bm

(
sm +

1
λ

)
,

therefore inequality (17) now shows that

bm+1 ≥ 2bm −M > bm

((
2− 1

λ

)
− sm

)
.

Hence,
sm+1 > (β − sm)sm,(20)

where

β := β(λ) := 2− 1
λ

=
2λ− 1
λ

.

Of course, the above construction will be repeated only as long as sm < 1/2.
If we denote by n the largest positive integer such that sn < 1/2, then
sn+1 ≥ 1/2, therefore the last set Bn+2, which is the entire Z∗p, is taken to
be Bn+1 · Bn+1 (modp), i.e., An+2 is taken to be the list of all elements of
An+1, but now each is repeated twice. Thus,

Un+2 ≤ 2Un+1 ≤ 2(nT + U1).

From these arguments it follows that in order to ensure that Un+2 is not
larger than p− 1, it suffices to check that

2(nT + U1) < p.(21)
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The number U1 can be easily computed in terms of A1, therefore all we need
in order to check that (21) holds is a good upper bound on n in terms of A1.
We recall that n is the largest positive integer with sn < 1/2, where the se-
quence (sm)m≥1 has initial term s1 := b1/p and satisfies the recurrence (20).

Step 2. We give an upper bound on n. Since λ > 2, it follows that
β > 3/2, therefore (20) shows that sm+1 > sm as long as sm < 1/2. By (20),
we also have

sk+1 > βsk

(
1− sk

β

)
for k = 1, . . . , n,

therefore

sn+1 > βns1

n∏

k=1

(
1− sk

β

)
.

Since sk < 1/2 for k = 1, . . . , n, it follows that

sk
β
<

1
2β

=
λ

2(2λ− 1)
.

The inequality
1− x > e−µx(22)

holds for all x ∈ (0, λ/(2(2λ− 1))) with some value µ := µ(λ), and the best
value of µ is precisely

µ := − log(1− x)
x

∣∣∣∣
x:= 1

2β

=
2(2λ− 1)

λ
log
(

4λ− 2
3λ− 2

)
,(23)

because the function x → − log(1 − x)/x is decreasing in the interval
(0, 1/(2β)]. Thus,

log sn+1 > n log β + log s1 +
n∑

k=1

log
(

1− sk
β

)
(24)

> n log β + log s1 −
µ

β

n∑

k=1

sk.

We now find an upper bound on
∑n

k=1 sk. Notice that since λ > 1/2, it
follows that whenever sm < 1/2, one also has

sm+1 > (β − sm)sm > (1 + %)sm,

where the best % := %(λ) is given by

β − 1
2

= 1 + %,

or, equivalently,

% := β − 3
2

=
1
2
− 1
λ

=
λ− 2

2λ
,
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and

1 + % =
3λ− 2

2λ
.

In particular,

sn−1 <
1

1 + %
sn,

and if k is any positive integer less than n, then

sn−k <
(

1
1 + %

)k
sn.

Thus,
n∑

k=1

sk < sn
∑

k≥0

(
1

1 + %

)k
<

1
2
%+ 1
%

=
3λ− 2

2(λ− 2)
.

The above calculations show that

log sn+1 > n log β + log s1 − µ
(3λ− 2)λ

2(2λ− 1)(λ− 2)
= n log β + log s1 − γ,

where

γ := γ(λ) := µ
(3λ− 2)λ

2(2λ− 1)(λ− 2)
=

3λ− 2
λ− 2

log
(

4λ− 2)
3λ− 2

)
.

Thus, if we choose n such that

n log β + log s1 − γ ≥ log(1/2),(25)

then we are sure that sn+1 > 1/2. Inequality (25) is equivalent to

n log β > − log(2s1) + γ,

hence to

n >
1

log β
(− log(2s1) + γ).

Therefore, we may write

n0 := 1 +
⌊

1
log β

(− log(2s1) + γ)
⌋
,(26)

and conclude that n ≤ n0. Thus, inequality (21) will be satisfied provided
that

n0T + U1 < p/2,(27)

where n0 is given by (26).

Step 3. Here, we show that we can do the above construction for
p > 9 · 106. From now on, we write x := p and y :=

√
x/2, and we as-

sume that x > 2 · 106. In particular, y > 103. We choose

A1 := {q | q is prime and q ≤ y},
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and therefore

B1 :=
{
q1

2
· q2

2

∣∣∣ q1 < q2 and q1, q2 ∈ A
}
.

It is clear that the elements of B1 are in distinct congruence classes in Z∗p,
therefore we may consider B1 as a subset of Z∗p and its cardinality is precisely

b1 :=
(
π(y)

2

)
=
π(y)(π(y)− 1)

2
,

where π(y) is the number of primes ≤ y. Thus,

1
2s1

=
x

π(y)(π(y)− 1)
.(28)

We next give an upper bound on U1. We claim that

(29) U1 <
1
2
π(y)(π(y) + 1)

(
log π(y) + log log π(y)− 1 + 1.8

log log π(y)
log π(y)

)
.

This follows almost immediately from inequality (v) in Théorème A of [4],
which states that

(30) pm < m

(
logm+ log logm− 1 +

1.8 log logm
logm

)
for all m ≥ 13.

Here pm denotes the mth prime number. The function

t 7→ log t+ log log t− 1 + 1.8
log log t

log t
(31)

is increasing for t > 13. Moreover, since y > 103, it follows that N := π(y)
≥ 168,

(32) logN + log logN − 1 + 1.8
log logN

logN

≥ log 168 + log log 168− 1 + 1.8
log log 168

log 168
≈ 6.33 > 6,

and

pm < 6m for m = 1, . . . , 13.(33)

The combination of (30)–(33) shows that

U1 =
∑

p≤y
p <

(
log π(y) + log log π(y)− 1 + 1.8

log log π(y)
log π(y)

) N∑

k=1

k

=
1
2
N(N + 1)

(
log π(y) + log log π(y)− 1 + 1.8

log log π(y)
log π(y)

)
,

which is precisely (29).
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Having expressed s1 in terms of π(y) and having found an upper bound
for U1 in terms of π(y), we now use the inequalities

t

log t− 0.5
< π(t) <

t

log t− 1.5
for all t > 67(34)

(see Theorem 2 of [6]). The lower bound of (34) together with (28) and (26)
yields an upper bound for n0 in terms of x; the upper bound of (34) gives
an upper bound for U1 in terms of x. Inserting both into (27), we get an
inequality which is satisfied for all x > 11 · 106 at λ = 3. We have used
Mathematica (1) to check that this inequality is true for all x > 10.3 · 106

(but it fails at x = 10.2 · 106). Finally, we have checked, using Mathematica
again, that (27) is true at λ = 3 for any prime x := p in the interval
(9 · 106, 11 · 106). In fact, the largest prime x := p for which (27) does not
hold at λ = 3 is p = 8269189.

Step 4. It suffices to check that for all primes 5 < p < 9 · 106, the set

{ t∏

i=1

mi!
∣∣∣

t∑

i=1

mi = p− 1
}

(35)

covers the entire Z∗p. Here is a trick that works for p large enough.

Lemma 2. Assume that a > 1 is a primitive root modulo p, and v and b
are positive integers in the interval (1, p− 1) such that b ≡ av (mod p) and

v2a < p(v − b).(36)

Then the set given by (35) covers Z∗p.

Proof. Take w := b(p−1)/vc, t := (v−1)+w, mi := a for i = 1, . . . , v−1,
and mi := b for i = v, v + 1, . . . , t. Notice first that

t∑

i=1

mi = (v − 1)a+ wb < va+
p

v
b < p,

where the last inequality follows from (36). Thus, we may complete the t-
tuple (m1, . . . ,mt) with 1’s to get a longer vector summing to p− 1. Notice
also that for each pair (λ, µ) of nonnegative integers with λ ≤ v − 1 and
µ ≤ w we have

(a!)v−1(b!)w = aλbµ((a− 1)!λ(b− 1)!µa!rb!s),

where r = v − 1 − λ and s = w − µ. Thus, it suffices to show that every
congruence class in Z∗p can be represented in the form aλbµ for some non-
negative λ and µ with λ ≤ v − 1 and µ ≤ w. But clearly, every such class is
of the form at for some t ∈ [1, p− 1] because a is a primitive root modulo p.

(1) A trademark of Wolfram Research.
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We may now apply division with remainder to write

t = µv + λ,

where λ ≤ v − 1 and µ := bt/vc. Thus, µ ≤ w and

at = aµv+λ = aλ(av)µ = aλbµ,

and the lemma is proved.

Before proceeding, one may ask whether for every sufficiently large
prime p there exist positive integers a, b, and v satisfying the hypothe-
sis of Lemma 2. We have been unable to find an unconditional proof of that,
but it can be shown that this is indeed so under the Extended Riemann
Hypothesis.

Lemma 3. Assuming the Extended Riemann Hypothesis, there exists a
constant p0 so that if p > p0 is a prime then there exist integers a, b, v ∈
(1, p− 1) with a being a primitive root modulo p, b ≡ av (modp) and

v2a < p(v − b).(37)

Proof. The following proof is due to Igor Shparlinski. Let p be a suffi-
ciently large prime and let H,K,M,N be positive numbers smaller than p.
Let a be an arbitrary primitive root modulo p. It is then known that the
number of numbers v ∈ [H,H+K] such that av (mod p) ∈ [M+1,M+N ] is
KN/p+O(p1/2 log2 p), where the implied constant is absolute (see [5]). We
take H := 2p3/4 log5/4 p, K := 2p3/4 log5/4 p, M := 1 and N := p3/4 log5/4 p.
Thus, if a is any primitive root modulo p, then the number of numbers
v ∈ [2p3/4 log5/4 p, 4p3/4 log5/4 p] for which av (modp) ∈ [1, p3/4 log5/4 p] is

KN

p
+O(p1/2 log2 p) = p1/2 log5/2 p+O(p1/2 log2 p) > 0

for p sufficiently large. Thus, if p is large and a is fixed, then there exists
an integer v ∈ [2p3/4 log5/4 p, 4p3/4 log5/4 p] so that if b ≡ av (mod p), then
b ∈ [1, p3/4 log5/4 p]. This is so for an arbitrary primitive root a modulo p.
Under the Extended Riemann Hypothesis, it is known (see [8] and [10])
that the smallest primitive root modulo p, call it g(p), satisfies g(p) =
O(ω(p − 1)6 log2 p), where ω(p − 1) is the number of distinct prime divi-
sors of p− 1. Since ω(p− 1) = o(log p), it follows that if p is large, then the
interval [1, log8 p] contains a primitive root modulo p. In fact, for our argu-
ment it suffices that [1, p1/4/log2 p] contains a primitive root a modulo p.
With these choices of a := g(p) and v, we have

av2 ≤ p1/4

log2 p
(4p3/4 log5/4 p)2 = 16p7/4 log1/2 p,(38)

while

p(v − b) ≥ pv

2
≥ p7/4 log5/4 p,(39)
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and now the combination of (38) and (39) obviously shows that (37) holds
with these choices of a and v when p is large.

It could be that Hildebrand’s [3] improvements on Burgess’s [1] character
sum estimates could lead to the conclusion that for large p the inequality
g(p) ≤ p1/4/log2 p does indeed hold, and if this were so then our Lemma 3
would be true unconditionally. We have been unable to decide this question.

Step 5. We now return to the proof of Theorem 2 and explain how
we did the computations for the remaining primes p < 9 · 106. We first
showed computationally that for every prime p ∈ [7.6 · 103, 9 · 106] there
exist integers a, b, and v satisfying the hypothesis of Lemma 2. For this, we
took the first 25 odd primes and checked them against being primitive roots
modulo p. It is clear that at least one of these primes will be a primitive root
modulo p for most p in our range. We collected all those primes which are
primitive roots modulo p in a set called A(p). Then we tried to find a value
for v. We could have looped over all possible values of v, but this would have
resulted in a cycle of length p − 1 for each p, and the computation would
have taken too long. Instead, let v0 be an initial value of v and set b ≡ av0

(modp). If v0 is good, we are done. If not, we set the next v to be

v := v0 + 1 +
⌊

log p/b
log a

⌋
.

In a sense, this is the smallest v > v0 for which there is a chance for av =
av0av−v0 = bav−v0 to be small modulo p. We kept on doing this for about
3
√
p times for each a ∈ A. If no good values of a and v were found, then

we had the program put p in a list of “bad” primes. The computation was
done with v0 := blog p/log ac, but a different choice of v0 might have given
better results.

Now, π(9 · 106) = 602489 < 6.1 · 105. After the first run of the algorithm
between the 100th and 610000th prime, we obtained a list of 1799 “bad”
primes, the largest being 9112771.

In the second iteration, we increased the range for v to 40
√
p and the

range of odd primes which may be primitive roots modulo p to 80, and we
sieved the previous list. The list shortened to 27 “bad” primes, the first
being 541 and the largest 7591. These primes were handled by a different
method: we wrote a Mathematica program which showed that the union of
the sets

Ap(s) =
{

2u
(
p− 2s− 1

2

)
!

∣∣∣∣ 0 ≤ u ≤
⌊
p+ 2s+ 1

4

⌋}
,(40)

where 0 ≤ s ≤ (p − 3)/2, covers the entire Z∗p, for any p in the remaining
set of “bad” primes. In fact, the above sets were shown to cover Z∗p for all
the primes < 1000 as well, except for p = 5. We conjecture that the union
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of (40) for all the possible values of s covers Z∗p for any prime p 6= 5, but we
have no idea of how to attack this question.
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