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NOTE ON A HYPOTHESIS IMPLYING THE
NON-VANISHING OF DIRICHLET L-SERIES
L(s, χ) FOR s > 0 AND REAL CHARACTERS χ

BY

STÉPHANE R. LOUBOUTIN (Marseille)

Abstract. We prove that if χ is a real non-principal Dirichlet character for which
L(1, χ) ≤ 1− log 2, then Chowla’s hypothesis is not satisfied and we cannot use Chowla’s
method for proving that L(s, χ) > 0 for s > 0.

1. Introduction. Let χ be a real non-principal Dirichlet character (we
do not assume that χ is primitive). Set

S(0)
χ (n) = χ(n) and S(m+1)

χ (n) =
n∑

a=0

S(m)
χ (a) (n ≥ 0 and m ≥ 0),

and
m(χ) := min{m ≥ 1; S(m)

χ (n) ≥ 0 for all n ≥ 0}
if this set is non-empty, and m(χ) =∞ otherwise. Since

Γ (s)L(s, χ) =
∞�

0

(∑

n≥1

S(m)
χ (n)e−nt

)
(1− e−t)mts−1 dt (s > 0 and m ≥ 1),

we see that if m(χ) <∞ then L(s, χ) > 0 for all s > 0 (see [Cho]). S. Chowla
believed that m(χ) <∞ for all real non-principal Dirichlet characters. How-
ever, noticing that

fχ(t) :=
∑

n≥1

χ(n)tn = (1− t)m
∑

n≥1

S(m)
χ (n)tn (0 ≤ t < 1 and m ≥ 0)

we deduce that if fχ(t0) < 0 for some t0 ∈ [0, 1), then m(χ) = ∞. In
that way, H. Heilbronn proved that there are infinitely many (primitive)
quadratic characters χ for which m(χ) = ∞ (see [Hei]). Following Heil-
bronn’s result, it has then been conjectured that for any non-principal real
character ψ there exists some induced character χ for which m(χ) = 1 if ψ
is odd and m(χ) = 2 if ψ is even, which implies L(s, χ) > 0 for s > 0 and
L(s, ψ) > 0 for s > 0 (see [CD], [CDH], [CH] and [Ros]). No counterexample
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to this conjecture is known. Since

L(1, χ) =
∑

n≥1

m!
n(n+ 1) . . . (n+m)

S(m)
χ (n) (m ≥ 0)(1)

and S
(m)
χ (1) = 1, we obtain L(1, χ) ≥ 1/(1 +m(χ)) (see [Cho]). Hence, if

L(1, χ) is small then m(χ) must be large. We improve upon this result:

Theorem 1. If L(1, χ) ≤ 1− log 2 = 0.306852 . . . then m(χ) =∞ (i.e.,
there does not exist any m ≥ 0 such that S(m)

χ (n) ≥ 0 for all n ≥ 1).

It follows that there are infinitely many (primitive) quadratic characters
χ for which m(χ) =∞ (by [CE]), a result proved by H. Heilbronn (see [Hei]).
Even though we do not know the value of the largest constant c ≥ 1− log 2
for which Theorem 1 holds true for all (or for all but finitely many) real
non-principal Dirichlet characters χ, there is not much room for improving
Theorem 1:

Theorem 2. Let χ3 be the Dirichlet character mod 3 defined by χ3(n) =
0, 1 or −1 according as n ≡ 0, 1 or 2 (mod 3). Let p 6= 3 be a prime, and let
χ3p denote the real non-principal Dirichlet character mod 3p induced by χ3.
Then

L(1, χ3p) =
(

1− χ3(p)
p

)
L(1, χ3) =

(
1− χ3(p)

p

)
π

3
√

3
≤ π

2
√

3
= 0.906899 . . .

is asymptotic to π/(3
√

3) = 0.604599 . . . as p→∞ but m(χ3p) <∞, for

m(χ3p) =
{

1 if p ≡ 2 (mod 3).

3 if p ≡ 1 (mod 3).

In particular , for p = 7 we have m(χ) < ∞ and L(1, χ) = 2π/(7
√

3) =
0.518228 . . .

2. Proof of Theorem 1. Theorem 1 follows from the following more
precise result:

Proposition 3. Let χ be a real non-principal Dirichlet character. If
S

(m)
χ (n) ≥ 0 for all n ≥ 1, then

L(1, χ) ≥ 1−
m∑

n=1

1
n+m

=
2m∑

n=2

(−1)n

n
> 1− log 2 = 0.306852 . . .

Proof. Set f(n) = 1 for n = 1 and f(n) = −1 for n > 1. Then χ ≥ f

yields S(m)
χ (n) ≥ S

(m)
f (n) for all n ≥ 1. By induction on m ≥ 0, we easily
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obtain
∑

n≥1

S
(m)
f (n)tn = (1− t)−m

∑

n≥1

f(n)tn

= − 1
(1− t)m+1 + 3

1
(1− t)m − 2

1
(1− t)m−1 .

By looking at the values at t = 0 of the nth derivative of this equality, we
obtain

S
(m)
f (n) =

n(n+ 1) . . . (n+m)
m!

m+ 1− n
(n+m− 1)(n+m)

(m ≥ 1 and n ≥ 1).

Now assume that S(m)
χ (n) ≥ 0 for all n ≥ 1. Using (1), we obtain

L(1, χ) ≥
m∑

n=1

m!
n(n+ 1) . . . (n+m)

S(m)
χ (n)

≥
m∑

n=1

m!
n(n+ 1) . . . (n+m)

S
(m)
f (n)

=
m∑

n=1

(m+ 1− n)
(

1
n+m− 1

− 1
n+m

)
= 1−

m∑

n=1

1
n+m

,

where we have used S
(m)
χ (n) ≥ S(m)

f (n) for 1 ≤ n ≤ m.

3. Proof of Theorem 2

Lemma 4. Let χ be an odd real non-principal Dirichlet character mod f .
Assume that L(0, χ) = 0. Then S

(m)
χ (f) = 0 and n 7→ S

(m)
χ (n) is f -periodic

for 0 ≤ m ≤ 3. Hence, S(3)
χ (n) ≥ 0 for all n ≥ 1 if and only if S

(3)
χ (n) ≥ 0

for 1 ≤ n ≤ f .

Proof. Since χ is non-principal, we have
∑f

n=1 χ(n) = 0 and fL(0, χ) =
−∑f

n=1 nχ(n) (see [Wa, Theorem 4.2]). Hence,
∑f

n=1 nχ(n) = 0 and

f−1∑

n=1

n2χ(n) =
f−1∑

n=1

(f−n)2χ(f−n) = −
f−1∑

n=1

(f2−2fn+n2)χ(n) = −
f−1∑

n=1

n2χ(n)

yields
∑f

n=1 n
2χ(n) = 0. It follows that S(1)

χ (f) = 0,

S(2)
χ (f) =

f∑

a=1

a∑

b=1

χ(b) =
f∑

b=1

(f + 1− b)χ(b) = 0
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and

S(3)
χ (f) =

f∑

a=1

a∑

b=1

b∑

c=1

χ(c) =
f∑

c=1

(f + 1− c)(f + 2− c)
2

χ(c) = 0.

Finally, for the f -periodicity of S(m)
χ for 0 ≤ m ≤ 3, we notice that

S(m+1)
χ (f + n) = S(m+1)

χ (f) +
n∑

m=1

S(m)
χ (f +m) (n ≥ 0 and m ≥ 0).

Hence, if S(m)
χ is f -periodic and S(m+1)

χ (f) = 0 then S(m+1)
χ is f -periodic.

We are now in a position to proceed with the proof of Theorem 2. By
induction on n ≥ 1, we have

S(1)
χ3

(n) =





0 if n ≡ 0 (mod 3),

1 if n ≡ 1 (mod 3),

0 if n ≡ 2 (mod 3),

(2)

S(2)
χ3

(n) =





n/3 if n ≡ 0 (mod 3),

(n+ 2)/3 if n ≡ 1 (mod 3),

(n+ 1)/3 if n ≡ 2 (mod 3),

(3)

S(3)
χ3

(n) =





(n2 + 3n)/6 if n ≡ 0 (mod 3),

(n2 + 3n+ 2)/6 if n ≡ 1 (mod 3),

(n2 + 3n+ 2)/6 if n ≡ 2 (mod 3).

(4)

Let ψ3p be 3p-periodic and defined by ψ3p(n) = 0 if p does not divide n and
ψ3p(n) = χ3(n) if p divides n. Then

S
(1)
ψ3p

(n) = χ3(p) ·





0 if 1 ≤ n ≤ p− 1,

1 if p ≤ n ≤ 2p− 1,

0 if 2p ≤ n ≤ 3p− 1,

(5)

S
(2)
ψ3p

(n) = χ3(p) ·





0 if 1 ≤ n ≤ p− 1,

n+ 1− p if p ≤ n ≤ 2p− 1,

p if 2p ≤ n ≤ 3p− 1,

(6)

S
(3)
ψ3p

(n) = χ3(p) ·





0 if 1 ≤ n ≤ p− 1,

(n+ 1− p)(n+ 2− p)/2 if p ≤ n ≤ 2p− 1,

p(p+ 1)/2 + p(n+ 1− 2p) if 2p ≤ n ≤ 3p− 1,

(7)

χ3p(n) = χ3(n)− ψ3p(n) and

S(m)
χ3p

= S(m)
χ3
− S(m)

ψ3p
.(8)
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By (2), (5) and (8), it follows that S(1)
χ3p

(n) ≥ 0 for all n ≥ 1 if χ3(p) = −1,
i.e. if p ≡ 2 (mod 3). From now on, we assume that χ3(p) = +1, i.e. that
p ≡ 1 (mod 3). Then L(0, χ3p) = (1 − χ3(p))L(0, χ3) = 0 and it suffices to

prove that S(3)
χ3p

(n) ≥ 0 for 1 ≤ n ≤ 3p− 1, by Lemma 4.

1. If 1 ≤ n ≤ p− 1, then S
(3)
χ3p

(n) = S
(3)
χ3

(n) ≥ 0, by (4), (7) and (8).

2. If p ≤ n ≤ 2p− 1, then

S(3)
χ3p

(n) ≥ n2 + 3n
6

− (n+ 1− p)(n+ 2− p)
2

=: f(n)

≥ min(f(p), f(2p− 1))

= min((p2 + 3p− 6)/6, (p2 − p− 2)/6) ≥ 0,

by (4), (7) and (8) (notice that f ′′(x) = −2/3 ≤ 0).

3. If 2p ≤ n ≤ 3p− 1, then

S(3)
χ3p

(n) =
{

(n− (3p− 3))(n− 3p)/6 if n ≡ 0 (mod 3),

(n− (3p− 2))(n− (3p− 1))/6 if n ≡ 1, 2 (mod 3),

by (4), (7) and (8), and S
(3)
χ3p

(n) ≥ 0.

Finally, since (3p+ 1)/2 ≡ 2 (mod 3), we obtain S(1)
χ3p

((3p+ 1)/2) = 0−1
= −1 by (2), (5) and (8), and

S(2)
χ3p

(
3p+ 1

2

)
=
p+ 1

2
−
(

3p+ 1
2

+ 1− p
)

= −1

by (3), (6) and (8).
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