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GLOBAL PINCHING THEOREMS FOR
MINIMAL SUBMANIFOLDS IN SPHERES

BY

KAIREN CAI (Hangzhou)

Abstract. Let M be a compact submanifold with parallel mean curvature vector
embedded in the unit sphere Sn+p(1). By using the Sobolev inequalities of P. Li to get Lp
estimates for the norms of certain tensors related to the second fundamental form of M ,
we prove some rigidity theorems. Denote by H and ‖σ‖p the mean curvature and the Lp
norm of the square length of the second fundamental form of M . We show that there is
a constant C such that if ‖σ‖n/2 < C, then M is a minimal submanifold in the sphere

Sn+p−1(1 +H2) with sectional curvature 1 +H2.

1. Introduction and results. Inspired by the well-known results
about minimal submanifolds in a sphere due to J. Simons [7], the inves-
tigation of submanifolds with parallel mean curvature vector in a sphere
has made big progress [5, 6, 8, 9]. However, most of these works estimate
some kind of curvature of a manifold in order to obtain some pinching condi-
tion in a pointwise manner. Recently C. L. Shen [6] has obtained some global
pinching theorems for minimal hypersurfaces in a sphere. He has proven that
if M is a compact minimal hypersurface with nonnegative Ricci curvature
embedded in the unit sphere Sn+1(1), then there exists a constant A such
that if ‖σ‖n/2 < A, then M must be totally geodesic, where σ is the square
length of the second fundamental form of M and ‖σ‖n/2 is the Ln/2 norm
of σ.

The purpose of the paper is to extend Shen’s result to submanifolds in a
sphere with constant mean curvature vector. Also we notice that H. Alencar
and M. do Carmo [1] study hypersurfaces with constant mean curvature H
by introducing a tensor φ, related to H and to the second fundamental form.
By obtaining an Lp estimate of φ and σ, we will prove the following.

Theorem 1. Let M be an n-dimensional compact submanifold embed-
ded in the unit sphere Sn+p(1) (n ≥ 3, p > 1). Suppose that M has parallel
mean curvature vector. Denote by σ the square length of the second funda-
mental form of M. Then there is a constant C (see (3.18) below) such that
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if (
�
M
σn/2)2/n < C, then M must be quasiumbilical. Furthermore M is a

minimal submanifold in the sphere Sn+p−1(1+H2) with sectional curvature
1 +H2.

In the case of surfaces in the sphere Sp+2(1) (p > 1) we have the following
result where the constant depends only on the mean curvature and the lower
bound on the Gauss curvature.

Theorem 2. Let M be a compact surface with parallel mean curvature
vector and zero genus embedded in the sphere Sp+2(1) (p > 1). Suppose that
the Gauss curvature of M has a positive lower bound k. If

�

M

σ2 <
4k7

π11(1 +H2)6 ,

where H is the mean curvature and σ the square length of the second fun-
damental form of M , then M is a quasiumbilical surface in the unit sphere
Sp+2(1). Furthermore M is a minimal surface in the sphere Sp+1(1 + H2)
with sectional curvature 1 +H2.

2. Preliminaries. The Sobolev inequality obtained by P. Li [4, 6]
states: Suppose that M is a compact oriented connected Riemannian man-
ifold. For every f ∈ H1,2(Mn), n = dimM > 2, we have

(2.1)
�

M

|∇f |2 ≥
(

n− 2
2(n− 1)

)2

× C2/n
0 {2−(n+2)/n‖f‖22n/(n−2) − (volM)−2/n2E(n)‖f‖22},

where

‖f‖p =
( �

M

|f |p
)1/p

,(2.2)

E(n) =
{

(n− 4)(n− 2)/2 if n > 3,

1 if n = 3
(2.3)

and the best Sobolev constant C0 satisfies

(2.4) C1 ≤ C0 ≤ 2C1.

In (2.4), the isoperimetric constant of Mn is defined by

(2.5) C1 = inf
(area(S))n

(min(volM1, volM2))n−1

where S ranges over all hypersurfaces of M , S divides M into two parts
M1,M2, and area(S) is the (n− 1)-dimensional volume of S. Let
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(2.6)
k1 = 2−3−2/n

(
n− 2
n− 1

)2

C
2/n
1 ,

k2 = 2E(n)+2/n−2
(
n− 2
n− 1

)2

C
2/n
1 (volM)−2/n.

Then we have

(2.7)
�

M

|∇f |2 ≥ k1‖f‖22n/(n−2) − k2‖f‖22.

Let Sn+p be an (n + p)-dimensional standard sphere in the Euclidean
space Rn+p+1 and M a compact submanifold isometrically embedded in
Sn+p(1). We choose a local orthonormal frame field {eA}, 1 ≤ A ≤ n+ p,
in Sn+p such that when restricted to M , the vectors {ei}, 1 ≤ i ≤ n, are
tangent to M . We denote the second fundamental form of M by

(2.8) B =
∑

i,j,α

hαijωi ⊗ ωj ⊗ eα,

where {ωi} is the dual frame of {ei}, 1 ≤ i, j ≤ n, n + 1 ≤ α ≤ n + p.
The Weingarten transformation Hα corresponding to the normal vector eα
is defined by

(2.9) 〈Hα(X), Y 〉 = 〈B(X,Y ), eα〉,
where X,Y are tangent vectors to M . Denote the mean curvature vector of
M by

(2.10) ξ =
1
n

∑

α

(trHα)eα,

where trHα is the trace of the transformation Hα. Then the mean curvature
H and the square length σ of the second fundamental form of M can be
expressed as

(2.11) H = |ξ| = 1
n

√∑

α

(trHα)2, σ =
∑

α

tr(H2
α).

If we choose en+1 such that Hen+1 = ξ, then

(2.12) trHn+1 = nH, trHβ = 0, n+ 2 ≤ β ≤ n+ p.

Furthermore, M is quasiumbilical if and only if Hn+1 = HI, where I is
the identical mapping. M is called a manifold with parallel mean curvature
vector if ξ is parallel in the normal bundle of M , i.e., ∇⊥Xξ = 0 for any
tangent vector X to M where ∇⊥ is the connection of the normal bundle.
From ∇X〈ξ, ξ〉 = 0 it is easy to check that then the mean curvature of M
is a constant. The Gauss equation of M in the sphere Sn+p(1) is given by
(see [9, I, pp. 348–349])
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(2.13) Rijkl = δikδjl − δilδjk +
∑

α

(hαikh
α
jl − hαilhαjk).

From the Ricci identity we get

(2.14) hαijkl − hαijlk =
∑

m

hαimRmjkl +
∑

m

hαmjRmikl −
∑

β

hβijRαβkl.

It is known from [9, II, p. 78] that if en+1 is the normalized mean curvature
normal vector, then

(2.15) HβHn+1 = Hn+1Hβ

and

(2.16) Rn+1βkl = 0.

Since M has constant mean curvature we have

(2.17) ∆hn+1
ij =

∑

k

hn+1
ijkk =

∑

m,k

(hn+1
km Rmijk + hn+1

im Rmkjk).

Here we denote the components of the Riemannian curvature tensor of M
immersed in Sn+p(1) by Rijkl and Rαβkl. Thus

(2.18)
1
2
∆
∑

i,j

(hn+1
ij )2

=
∑

i,j,k

(hn+1
ijk )2 +

∑

i,j,k,m

hn+1
ij (hn+1

km Rmijk + hn+1
im Rmkjk).

It follows from the Gauss equation (2.13) and (2.15) that
∑

i,j,k,m

hn+1
ij hn+1

km Rmijk =
∑

i,j

(hn+1
ij )2 − n2H2 + tr(H4

n+1)

− (tr(H2
n+1))2 +

∑

β 6=n+1

tr((Hn+1Hβ)2)−
∑

β 6=n+1

(tr(Hn+1Hβ))2,

(2.19) ∑

i,j,k,m

hn+1
ij hn+1

im Rmkjk = (n− 1)
∑

i,j

(hn+1
ij )2

+ nH tr(H3
n+1)− tr(H4

n+1)−
∑

β 6=n+1

tr((Hn+1Hβ)2).

From (2.18) and (2.19) the Laplacian of the function tr(H2
n+1) can be ex-

pressed as

(2.20)
1
2
∆
∑

i,j

(hn+1
ij )2 =

∑

i,j,k

(hn+1
ijk )2 + n tr(H2

n+1)− n2H2

+ nH tr(H3
n+1)− (tr(H2

n+1))2 −
∑

β 6=n+1

(tr(Hn+1Hβ))2.
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3. Proof of Theorem 1. We choose a local orthonormal frame field
{eA}, 1 ≤ A ≤ n+ p, in Sn+p(1) such that when restricted to M , the vectors
{ei}, 1 ≤ i ≤ n, are tangent to M . Furthermore Hen+1 = ξ, where ξ is the
mean curvature vector of M . Now we define two tensors φ and ψ of type
(1, 2) by

φ =
∑

i,j

(hn+1
ij −Hδi,j)ωi ⊗ ωj ⊗ en+1,(3.1)

ψ =
∑

i,j,β

hβijωi ⊗ ωj ⊗ eβ ,(3.2)

where {ωi} is the dual frame to {ei}, 1 ≤ i, j ≤ n, n+2 ≤ β ≤ n+p. Denote
by σH the square length of the second fundamental form in the direction of
the normal vector ξ. It is easily checked that trφ = 0 and |φ|2 = σH −nH2,
where trφ is the trace of φ. Then M is a quasiumbilical submanifold if and
only if |φ|2 = 0. The square norm of ψ is given by

(3.3) |ψ|2 =
∑

β 6=n+1

tr(H2
β).

We have

σ = |φ|2 + |ψ|2 + nH2,(3.4)

σ2
H = (trH2

n+1)2 = |φ|4 − 2nH2|φ|2 + n2H4,(3.5)
∑

β 6=n+1

(tr(Hn+1Hβ))2 =
∑

β 6=n+1

(tr((Hn+1 −HI)Hβ))2 ≤ |φ|2|ψ|2.(3.6)

Since trφ = 0, we can use Lemma (2.6) of [1] to obtain

|trφ3| ≤ n− 2√
n(n− 1)

|φ|3.

A direct calculation shows that

tr(H3
n+1) = nH3 + 3H|φ|2 − trφ3(3.7)

≥ nH3 + 3H|φ|2 − n− 2√
n(n− 1)

|φ|3.

Substituting (3.5)–(3.7) in (2.20), we get

(3.8)
1
2
∆
∑

i,j

(hn+1
ij )2

≥
∑

i,j,k

(hn+1
ijk )2 + |φ|2

(
n+ nH2 − n− 2√

n− 1

√
nH2 |φ| − |φ|2 − |ψ|2

)
.
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Since H is constant, we have
∑
i,j,k(hn+1

ijk )2 = |∇φ|2. This yields

(3.9)
1
2
∆|φ|2 ≥ |∇φ|2 + |φ|2

(
n+ nH2 − n− 2√

n− 1

√
nH2 |φ| − |φ|2 − |ψ|2

)
.

Let us consider a quadratic form F with eigenvalues ± n
2
√
n−1

:

(3.10) F (x, y) = x2 − n− 2√
n− 1

xy − y2.

Then there exists an orthogonal transformation ψ : R2 → R2, ψ(x, y) =
(u, v), such that

(3.11) F (x, y) =
n

2
√
n− 1

(u2 − v2).

If x =
√
nH2, y = |φ|, from

(3.12) u2 + v2 = nH2 + |φ|2 = σ − |ψ|2

it follows that

(3.13) F (
√
nH2, |φ|) ≥ − n

2
√
n− 1

(u2 + v2) = − n

2
√
n− 1

(σ − |ψ|2).

Since
∣∣∇|φ|

∣∣2 ≤ |∇φ|2, from (3.9) we have

1
2
∆|φ|2 ≥

∣∣∇|φ|
∣∣2 + |φ|2

(
n− n

2
√
n− 1

σ +
(

n

2
√
n− 1

− 1
)
|ψ|2

)
(3.14)

≥
∣∣∇|φ|

∣∣2 + n|φ|2 − n

2
√
n− 1

σ|φ|2.

It follows from (2.7) that

(3.15)
�

M

∣∣∇|φ|
∣∣2 ≥ k1‖φ‖22n/(n−2) − k2‖φ‖22,

where k1, k2 have been defined by (2.6). Integrating both sides of (3.14) and
applying (3.15) and the inequality

(3.16) ‖σ|φ|2‖1 ≤ ‖σ‖n/2‖φ‖22n/(n−2),

we get

0 ≥ (n− k2)‖φ‖22 + k1‖φ‖22n/(n−2) −
n

2
√
n− 1

‖σ|φ|2‖1(3.17)

≥ (n− k2)‖φ‖22 +
(
k1 −

n

2
√
n− 1

‖σ‖n/2
)
‖φ‖22n/(n−2).

Let

(3.18) ‖σ‖n/2 < min
{

2
√
n− 1
n

k1, 2
√
n− 1

k1

k2

}
.
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From (3.14), (3.16) and (3.18) we can easily obtain

0 ≥ n‖φ‖22 −
n

2
√
n− 1

‖σ|φ|2‖1(3.19)

≥ n‖φ‖22 −
n

2
√
n− 1

‖φ‖22n/(n−2)‖σ‖n/2

≥ n‖φ‖22 − n
k1

k2
‖φ‖22n/(n−2).

If |φ|2 6= 0, it follows from (3.17)–(3.19) that

0 ≥ (n− k2)‖φ‖22 +
(
k1 −

n

2
√
n− 1

‖σ‖n/2
)
k2

k1
‖φ‖22(3.20)

≥
(
n− n

2
√
n− 1

k2

k1
‖σ‖n/2

)
‖φ‖22 > 0,

a contradiction. Hence |φ|2 = 0, i.e., M is quasiumbilical in Sn+p(1). From
(3.1) we have hn+1

ij = Hδij . The mean curvature vector ξ can be treated
as a subbundle of the normal bundle T⊥M with base M embedded in the
sphere Sn+p(1) with fiber dimension 1. Now M is umbilical with respect to ξ,
and ξ is parallel in T⊥M . According to a theorem of Yau ([9, I, p. 351]),
we derive that M lies in an n + p − 1-dimensional umbilical hypersurface
with ξ perpendicular to the umbilical hypersurface. Furthermore, the Gauss
equation of M becomes

(3.21) Rijkl = (1 +H2)(δikδjl − δilδjk) +
∑

β

(hβikh
β
jl − h

β
ilh

β
jk),

so the hypersurface must be Sn+p−1(1 + H2). Since we know from (2.12)
that trHβ = 0 for every normal vector eβ of M in Sn+p−1(1 +H2), n+ 2 ≤
β ≤ n+ p, we derive that M is a minimal submanifold in Sn+p−1(1 +H2).
Thus we conclude that Theorem 1 holds.

4. Proof of Theorem 2. When n = 2, it follows from (3.4) and (3.9)
that

(4.1)
1
2
∆|φ|2 ≥

∣∣∇|φ|
∣∣2 + 2(1 + 2H2)|φ|2 − σ|φ|2.

Furthermore, P. Li [4] obtained another Sobolev inequality for dimM = 2:
For every f ∈ H1,2(M2), we have

�

M

|∇f |2 ≥ C0

4

{
(volM)−1/2

( �

M

f4
)1/2

− (volM)−1
�

M

f2
}

≥ k̃1‖f‖24 − k̃2‖f‖22,
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where

(4.2) k̃1 =
C1

4
(volM)−1/2, k̃2 =

C1

2
(volM)−1,

and C0 is the best Sobolev constant, C1 the isoperimetric constant of M ,
C1 ≤ C0 ≤ 2C1. Since H is constant and

∣∣∇|φ|
∣∣2 ≤ |∇φ|2, integrating both

sides of (4.1) and applying (4.2) we get

0 ≥ k̃1‖φ‖24 − k̃2‖φ‖22 + 2(1 + 2H2)‖φ‖22 − ‖σ|φ|2‖1(4.3)

≥ {2(1 + 2H2)− k̃2)}‖φ‖22 + (k̃1 − ‖σ‖2)‖φ‖24.
Suppose that

(4.4) ‖σ‖2 < min
{
k̃1, 2(1 + 2H2)

k̃1

k̃2

}
.

It follows from (4.1) and (4.4) that

2(1 + 2H2)‖φ‖22 ≤ ‖σ|φ|2‖1 ≤ ‖σ‖2‖φ‖24 ≤ 2(1 + 2H2)
k̃1

k̃2

‖φ‖24.(4.5)

Hence

(4.6)
k̃2

k̃1

‖φ‖22 ≤ ‖φ‖24.

If |φ|2 6= 0, from (4.3) and (4.6) we derive

(4.7) 0 ≥
{

2(1 + 2H2)− k̃2

k̃1

‖σ‖2
}
‖φ‖22 > 0.

This is a contradiction. Hence |φ|2 = 0, i.e., M is quasiumbilical. By the
same reason as in Theorem 1, we conclude that M is a minimal surface in
the sphere Sp+1(1 +H2).

Let us find a lower bound of the isoperimetric constant C1 and an up-
per bound of the volume of M to obtain a lower bound of the quantity
min{k̃1, 2(1 + 2H2)k̃1/k̃2} which depends only on H and k. We will make
use of Wang’s argument [8].

From a result of B. Y. Chen [2] we know that for any p-dimensional
compact submanifold M in the Euclidean space Rm we have

(4.8)
�

M

|H|p ≥ ωp,

where H is the mean curvature of M in Rm and ωp is the volume of the
unit sphere Sp(1). In our case that M is an embedded surface in Sp+1(1),



PINCHING THEOREMS 233

we have H2 = 1 + H2, where H is the constant mean curvature of M in
Sp+1(1). Therefore, we obtain

(4.9) volM ≥ ω2

1 +H2 =
4π

1 +H2 .

For any n-dimensional manifold M with positive Ricci curvature, a result
due to C. B. Croke [3] shows that

C1(M) ≥ (volM)n+1

4ωn−1ω
n−1
n

(
1

� d
0(
√

1/k sin
√
kr)n−1 dr

)n+1

(4.10)

≥ nn+1(volM)n+1

4dn(n+1)ωn−1ω
n−1
n

for n ≥ 2, where (n − 1)k is the lower bound of the Ricci curvature, d is
the diameter of M and ωn is the volume of the unit sphere Sn(1). It follows
from the Myers theorem that d ≤ π/

√
k for a compact manifold whose Ricci

curvature has positive lower bound (n− 1)k. Then we have

(4.11) C1(M) >
nn+1kn(n+1)/2

4πn(n+1)

(volM)n+1

ωn−1ω
n−1
n

.

When n = 2, this becomes

(4.12) C1(M) ≥ 16k3

π5(1 +H2)3 .

According to the Gauss–Bonnet formula we have

(4.13) k volM ≤
�

M

K dV = 2πχ(M) = 4π,

where k is the positive lower bound of the Gauss curvature K of M and
χ(M) is the Euler characteristic of the surface M with genus zero. Thus
both k̃1 and k̃1/k̃2 have positive lower bounds depending only on H and k.
It follows from (4.9) and (4.13) that k ≤ 1 + H2. By a direct calculation
from (4.2), (4.9), (4.12) and (4.13) we get

(4.14)
2k7/2

π11/2(1 +H2)3
≤ min

{
k̃1, 2(1 + 2H2)

k̃1

k̃2

}
.

This completes the proof of Theorem 2.
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