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GLOBAL PINCHING THEOREMS FOR
MINIMAL SUBMANIFOLDS IN SPHERES
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KAIREN CAI (Hangzhou)

Abstract. Let M be a compact submanifold with parallel mean curvature vector
embedded in the unit sphere S”er(l), By using the Sobolev inequalities of P. Li to get Ly
estimates for the norms of certain tensors related to the second fundamental form of M,
we prove some rigidity theorems. Denote by H and ||o||p the mean curvature and the Ly
norm of the square length of the second fundamental form of M. We show that there is
a constant C' such that if ||o|,,/o < C, then M is a minimal submanifold in the sphere

SntP=1(1 4+ H?) with sectional curvature 1+ H2.

1. Introduction and results. Inspired by the well-known results
about minimal submanifolds in a sphere due to J. Simons [7], the inves-
tigation of submanifolds with parallel mean curvature vector in a sphere
has made big progress [5, 6, 8, 9]. However, most of these works estimate
some kind of curvature of a manifold in order to obtain some pinching condi-
tion in a pointwise manner. Recently C. L. Shen [6] has obtained some global
pinching theorems for minimal hypersurfaces in a sphere. He has proven that
if M is a compact minimal hypersurface with nonnegative Ricci curvature
embedded in the unit sphere S™*1(1), then there exists a constant A such
that if [|o||,,/2 < A, then M must be totally geodesic, where o is the square
length of the second fundamental form of M and |o||,, /2 is the L, norm
of o.

The purpose of the paper is to extend Shen’s result to submanifolds in a
sphere with constant mean curvature vector. Also we notice that H. Alencar
and M. do Carmo [1] study hypersurfaces with constant mean curvature H
by introducing a tensor ¢, related to H and to the second fundamental form.
By obtaining an L, estimate of ¢ and o, we will prove the following.

THEOREM 1. Let M be an n-dimensional compact submanifold embed-
ded in the unit sphere S"TP(1) (n > 3, p > 1). Suppose that M has parallel
mean curvature vector. Denote by o the square length of the second funda-
mental form of M. Then there is a constant C (see (3.18) below) such that

2000 Mathematics Subject Classification: Primary 53C20, 53C40.
Key words and phrases: Sobolev inequality, mean curvature, minimal submanifold.

[225]



226 K. CAI

if (8, o™/2)2/" < O, then M must be quasiumbilical. Furthermore M is a
minimal submanifold in the sphere S"TP~1(1+ H?) with sectional curvature
1+ H?

In the case of surfaces in the sphere SP72(1) (p > 1) we have the following
result where the constant depends only on the mean curvature and the lower
bound on the Gauss curvature.

THEOREM 2. Let M be a compact surface with parallel mean curvature
vector and zero genus embedded in the sphere SPT2(1) (p > 1). Suppose that
the Gauss curvature of M has a positive lower bound k. If

[ o < AT
N 7T11(1+H2)67

where H is the mean curvature and o the square length of the second fun-
damental form of M, then M is a quasiumbilical surface in the unit sphere
SPT2(1). Furthermore M is a minimal surface in the sphere SPT1(1 + H?)

with sectional curvature 1 + H?2.

2. Preliminaries. The Sobolev inequality obtained by P. Li [4, 6]
states: Suppose that M is a compact oriented connected Riemannian man-
ifold. For every f € Hy o(M"), n =dim M > 2, we have

—92 2
2.1 2> (o
(2.1) A&!Vf —<2(n—1)>
x G/ {2 I 3, gy — (vol M) T2 m2P | |,

where

(2.2) 1l = ( §1717)

1/p
)

n—4)(n—2)/2 ifn> 3,
(2.3) E(n) = { (n—4)(n—2)/

1 ifn=3
and the best Sobolev constant Cy satisfies
(2.4) Cy < Cp < 2Ch.
In (2.4), the isoperimetric constant of M™ is defined by

(area(S))™

(min(vol My, vol My))n—1

where S ranges over all hypersurfaces of M, S divides M into two parts
My, My, and area(S) is the (n — 1)-dimensional volume of S. Let

(2.5) C, = inf
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2
By =282 (22 oo
n—1 Lo

(2.6)

n—1

—\?% ..
k?2 — 2E(n)+2/n—2 <n_> 012/ (VOI M)—Z/n‘

Then we have

(2.7) VIV = kil 13002 — B2 115
M
Let S™*? be an (n + p)-dimensional standard sphere in the Euclidean
space R™""PT! and M a compact submanifold isometrically embedded in
S™*P(1). We choose a local orthonormal frame field {e4},1 < A < n+ p,
in S"*P such that when restricted to M, the vectors {e;}, 1 < i < n, are
tangent to M. We denote the second fundamental form of M by

(2.8) B=> hiw ®w;® ea,
i7j7a
where {w;} is the dual frame of {e;},1 < i,7 <n,n+1 < a < n-+p.

The Weingarten transformation H, corresponding to the normal vector e,
is defined by

(2.9) (Ha(X),Y) = (B(X,Y), €q),

where X, Y are tangent vectors to M. Denote the mean curvature vector of
M by

(2.10) ¢ % S (b Ha e,

(3
where tr H,, is the trace of the transformation H,. Then the mean curvature
H and the square length o of the second fundamental form of M can be
expressed as

(2.11) H =g =

S|

Z(trHa)z, o= Ztr(Hg)

(0%
If we choose e, 11 such that He, 41 = &, then
(2.12) trHy,1=nH, trHz=0, n+2<pG<n+p.

Furthermore, M is quasiumbilical if and only if H,41 = HI, where [ is
the identical mapping. M is called a manifold with parallel mean curvature
vector if ¢ is parallel in the normal bundle of M, i.e., V& = 0 for any
tangent vector X to M where V+ is the connection of the normal bundle.
From Vx(£,&) = 0 it is easy to check that then the mean curvature of M
is a constant. The Gauss equation of M in the sphere S"*?(1) is given by
(see [9, I, pp. 348-349))
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(2.13) Rijri = 6irdj1 — 0udjp + Z khs — R hGy).
From the Ricci identity we get

(2.14) B — B = > he Runjir + > i Reier — Y _ By R
m m Jé]

It is known from [9, II, p. 78] that if e,,11 is the normalized mean curvature
normal vector, then

(215) HﬁHn+1 - Hn+1Hﬁ

and

(2.16) Ry 1181 = 0.

Since M has constant mean curvature we have

(2.17) AR = Z histh = Y (At Rk + Bt R
m,k

Here we denote the components of the Riemannian curvature tensor of M
immersed in S™*P(1) by R;jr and Ragr. Thus

(2.18) —A Z hith)?

= Z W2+ D T R + Bt Rung)-
7]7 7j7k7m
It follows from the Gauss equation (2.13) and (2.15) that

Z thrlthrlRmzjk _ Z(h;ljJrl)Q _ 7,L21{2 + tr(Hi+1)

i,5,k,m i,
—(tr(Hp 1))+ Y te(HpwHp)?) = Y (tr(Hot1Hp))?,
(2 19) B#n+1 B#n+1
> RS RET Ry = (n = 1) > (h5H)?
i,7,k,m %7
+nH tr(Hy ) = te(Hopy) = Y te(Hog1Hp)?).

B#n+1

From (2.18) and (2.19) the Laplacian of the function tr(H2,,) can be ex-
pressed as

(2.20) —AZ W2 = (WD + nte(HY ) — n®H?
)j7k

FnH () — (t(H20))2 = S (te(Hogi Hy))
B#n+1
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3. Proof of Theorem 1. We choose a local orthonormal frame field
{ea}, 1 < A <n+p,inS"P(1) such that when restricted to M, the vectors
{ei},1 < i < mn, are tangent to M. Furthermore He, 11 = £, where ¢ is the
mean curvature vector of M. Now we define two tensors ¢ and v of type
(1,2) by

(3.1) ¢ = Z(h?jH — Hoj j)wi @wj @ enyr,
,J

(3.2) ) = Z hfjwi R w; @ eg,
i7j76

where {w; } is the dual frame to {e;},1 <1i,57 <n,n+2 < < n+p. Denote
by oy the square length of the second fundamental form in the direction of
the normal vector £. It is easily checked that tr¢ = 0 and |¢|? = oy —nH?,
where tr ¢ is the trace of ¢. Then M is a quasiumbilical submanifold if and
only if |¢|? = 0. The square norm of ¥ is given by

(3.3) WP = > tr(Hj).

B#n+1
We have
(3.4) o= |¢|* + [¢|* + nH?,
(3.5) of = (tr Hy1)? = |9|* = 2nH?|9|* + n?H,
(3:6) > (tr(Hop1Hg))? = Y (tr((Hnyr — HI)Hp))* < |60
B#n+1 B#n+1

Since tr¢ = 0, we can use Lemma (2.6) of [1] to obtain

n—2

vn(n—1)

ltr ¢®| < ¢°.

A direct calculation shows that

(3.7) tr(H2, ) =nH? + 3H|¢|* — tr ¢
n—2

vn(n—1)

> nHY + 3H|[ - 6.
Substituting (3.5)—(3.7) in (2.20), we get

(3.8) —AZ (Rt

n n—2
> Z hzyil + |¢2<n+nH2 - \/m - |¢|2 - |7/1|2>

i,k
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Since H is constant, we have Zi,jyk(h?ﬁlf = |V¢|?. This yields

39) 5AI6 2 [Vof + |6 (n-+ nit> = S VAR o] - 167 - 0P,

vn—1
Let us consider a quadratic form F' with eigenvalues iz\/%:
n—2
3.10 F(z,y) = 2% — Ty — y>.
(3.10) (z,y) Y

Then there exists an orthogonal transformation v : R? — R2, ¢(z,y) =
(u,v), such that

(3.11) F(z,y) =

If x = vVnH?, y = |¢|, from
(3.12) u? + 0% =nH? + |¢]* = o — ¢
it follows that

n
313) F(VnHZ,|¢)) > ——
313)  F(VREP. o) > 52—
Since ‘V]quZ < |Vo|?, from (3.9) we have

(2 +0) = — e (o = 0P,

1 2 2 2f n n _ 2
310 S0P = [Tlolf + 10 (n - 5P 0+ (52 1) 0P)

2 2 n 2
> |V - — .
> V16l + nigf — 52 olo
It follows from (2.7) that
2
(3.15) V[V10l]" > Eall@l3,)0na) — k2ll6lI3,

M

where k1, ko have been defined by (2.6). Integrating both sides of (3.14) and
applying (3.15) and the inequality

(3.16) lol@l* 1 < llolln/2llol3m/m—2);

we get

n
(3.17) 0= (n—ka)[I0l5 + k10l /2y — == lol¢|*l1
2vn —1

2 n 2
> (0= ka0l + (b1 = 52 Dol ) olBuy ooy

Let
2vn—1 k
(3.18) 0[]0 /2 <min{”T k1,2\/n—1k—1}.
2
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From (3.14), (3.16) and (3.18) we can easily obtain

n
3.19 0> 2 2
n
> nll¢l3 - 1 10115/ n—2y ol 2

k1
>n|l¢]3 —n . [ sy

If |¢|? # 0, it follows from (3.17)—(3.19) that

k
320 0= (ko + (k- 2 ol

n
ﬁ HUHn/z)

> (1 57mmg 2 Il ) 1ol > 0,
a contradiction. Hence |¢|? = 0, i.e., M is quasiumbilical in S"*?(1). From
(3.1) we have h%“ = HJ;j. The mean curvature vector £ can be treated
as a subbundle of the normal bundle 7+ M with base M embedded in the
sphere S™*?(1) with fiber dimension 1. Now M is umbilical with respect to &,
and ¢ is parallel in T+ M. According to a theorem of Yau ([9, I, p. 351]),
we derive that M lies in an n + p — 1-dimensional umbilical hypersurface
with € perpendicular to the umbilical hypersurface. Furthermore, the Gauss
equation of M becomes

(3.21) Rije = (1+ H?)(0ixdj0 — 0udjn) + > (hly — hhD),
3

so the hypersurface must be S"™~1(1 + H?). Since we know from (2.12)
that tr Hg = 0 for every normal vector eg of M in S""P~1(1+ H?),n+2 <
B < n+ p, we derive that M is a minimal submanifold in S"*P~1(1 + H?).
Thus we conclude that Theorem 1 holds.

4. Proof of Theorem 2. When n = 2, it follows from (3.4) and (3.9)
that

(41) SAI? > |VI|[* + 201+ 25) |67 ~ olol”.

Furthermore, P. Li [4] obtained another Sobolev inequality for dim M = 2:
For every f € Hyp(M?), we have

S IVfI? > %{(VOIM)_UQ(S f4)1/2 ~ (vol M)~} S fz}

M M M
> kil 113 = kall £13,
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where
~ C ~ C
(4.2) ky = Tl (volM)~12 [y = 71 (vol M)~ 1,
and Cy is the best Sobolev constant, C; the isoperimetric constant of M,

C1 < Cy <2C,. Since H is constant and ‘V\d)HQ < |V¢\2, integrating both
sides of (4.1) and applying (4.2) we get

(4.3) 0 > FallgllF — k2l l13 + 2(1 + 2H2)|1 13 — [lo|¢|*
> {21+ 2H?) = k2)}@l3 + (k1 — lloll2) 6113

Suppose that

~ k
(4.4) o |l2 <min{k1,2(1+2H2)E—l}.
2

It follows from (4.1) and (4.4) that

k
(45) 21 +2H%)9l3 < llolel?1 < lloll2lleli < 2(1 +2H?) ?1 l13-
2

Hence

46 @ 2 < 2

(4.6) - 9112 < lloll3-
1

If |¢]? # 0, from (4.3) and (4.6) we derive
p
(4.7) 0> {2(1 +am?) - 2 |o||2}||¢||§ > 0.
1

This is a contradiction. Hence |¢|? = 0, i.e., M is quasiumbilical. By the
same reason as in Theorem 1, we conclude that M is a minimal surface in
the sphere SP1(1 + H?).

Let us find a lower bound of the isoperimetric constant C'; and an up-
per bound of the volume of M to obtain a lower bound of the quantity
min{k1, 2(1 + 2H?)ky /k2} which depends only on H and k. We will make
use of Wang’s argument [8].

From a result of B. Y. Chen [2] we know that for any p-dimensional
compact submanifold M in the Euclidean space R™ we have

(4.8) VIHP > w,,

M
where H is the mean curvature of M in R™ and w), is the volume of the
unit sphere SP(1). In our case that M is an embedded surface in SPT1(1),
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we have H? = 1+ H?, where H is the constant mean curvature of M in
SPF1(1). Therefore, we obtain

wo 47
4.9 1M > = .
(4.9) Vo —14+H2 1+ H?

For any n-dimensional manifold M with positive Ricci curvature, a result
due to C. B. Croke [3] shows that

vol M )"+t 1 "
(4.10) Ci(M) = ( )n1< d : 1 >
dwy, 1w, §o(v/1/ksin VEryn=1dr
nn+1 (VO] M)nJrl

- 4d”(”+1)wn,1wﬁ_1

for n > 2, where (n — 1)k is the lower bound of the Ricci curvature, d is
the diameter of M and w,, is the volume of the unit sphere S™(1). It follows
from the Myers theorem that d < 7/v/k for a compact manifold whose Ricci
curvature has positive lower bound (n — 1)k. Then we have

nn+1kn(n+1)/2 (VOI M)n+1

(4.11) C1(M) > Agn(+l) g qopT
When n = 2, this becomes

16k3
4.12 M)> —————.
(4.12) Ci(M) 2 (1 + H?)3

According to the Gauss—Bonnet formula we have

(4.13) kvolM < | K dV = 2mx(M) = 4r,
M

where k is the positive lower bound of the Gauss curvature K of M and
X(M) is the Euler characteristic of the surface M with genus zero. Thus
both El and El /Eg have positive lower bounds depending only on H and k.
It follows from (4.9) and (4.13) that k < 1 + H?. By a direct calculation
from (4.2), (4.9), (4.12) and (4.13) we get

(4.14) 2772 < min< k %1+2H%%1
. T EEE———— min = /.
/21 + H2)3 = b oo

This completes the proof of Theorem 2.
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