COLLOQUIUM MATHEMATICUM

CONVERGENCE OF SEQUENCES OF ITERATES
 of RANDOM-VALUED VECTOR FUNCTIONS

BY

RAFAも KAPICA (Katowice)

Abstract

Given a probability space (Ω, \mathcal{A}, P) and a closed subset X of a Banach lattice, we consider functions $f: X \times \Omega \rightarrow X$ and their iterates $f^{n}: X \times \Omega^{\mathbb{N}} \rightarrow X$ defined by $f^{1}(x, \omega)=f\left(x, \omega_{1}\right), f^{n+1}(x, \omega)=f\left(f^{n}(x, \omega), \omega_{n+1}\right)$, and obtain theorems on the convergence (a.s. and in L^{1}) of the sequence $\left(f^{n}(x, \cdot)\right)$.

It is well known that iteration processes play an important role in mathematics and they are especially important in solving equations. However, it may happen that instead of the exact value of a function at a point we know only some parameters of this value. In [1] iterates of such functions were defined and simple results on the behaviour of the iterates were obtained for scalar-valued functions. It is the aim of the present paper to consider such functions with values in Banach lattices. The basic theorem on the convergence of iterates is obtained in [1] (see also [10; Chapter 12]) by using a submartingale convergence theorem. It is well known (see e.g. [5]) that for martingales with values in a Banach space the convergence theorem holds only if the space has the Radon-Nikodym property. Hence beside a direct use of submartingale convergence theorems we also apply some other martingale methods to get the convergence of the sequence of iterates for an arbitrary $A L$-space. Basic notions and facts connected with lattices and used in this paper may be found in [4] and [14].

Fix a probability space (Ω, \mathcal{A}, P), a separable Banach lattice E and its closed subset X. Let \mathcal{B} denote the σ-algebra of all Borel subsets of X. We say that $f: X \times \Omega \rightarrow X$ is a random-valued vector function if it is measurable with respect to the product σ-algebra $\mathcal{B} \otimes \mathcal{A}$. The iterates of f are defined by

$$
\begin{aligned}
f^{1}\left(x, \omega_{1}, \omega_{2}, \ldots\right) & =f\left(x, \omega_{1}\right) \\
f^{n+1}\left(x, \omega_{1}, \omega_{2}, \ldots\right) & =f\left(f^{n}\left(x, \omega_{1}, \omega_{2}, \ldots\right), \omega_{n+1}\right)
\end{aligned}
$$

for $x \in X$ and $\left(\omega_{1}, \omega_{2}, \ldots\right) \in \Omega^{\infty}:=\Omega^{\mathbb{N}}$. Note that $f^{n}: X \times \Omega^{\infty} \rightarrow X$ is

[^0]a random-valued function on the product probability space $\left(\Omega^{\infty}, \mathcal{A}^{\infty}, P^{\infty}\right)$. More exactly, the nth iterate f^{n} is $\mathcal{B} \otimes \mathcal{A}_{n}$-measurable, where \mathcal{A}_{n} denotes the σ-algebra of all sets of the form
$$
\left\{\left(\omega_{1}, \omega_{2}, \ldots\right) \in \Omega^{\infty}:\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right) \in A\right\}
$$
with A in the product σ-algebra \mathcal{A}^{n}.
In what follows, $f: X \times \Omega \rightarrow X$ is a fixed random-valued function such that
\[

$$
\begin{equation*}
E\left\|f^{n}(x, \cdot)\right\|<\infty \quad \text { for } x \in X \text { and } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

\]

We also assume that the mean $m: X \rightarrow E$ defined by

$$
m(x)=E f(x, \cdot)
$$

is continuous. Moreover we assume that $x_{0} \in X$ is fixed and the sequence $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ is L^{1}-bounded. Concerning this assumption consult the Remark, Proposition 1, and Example below. It is easy to check that then

$$
\begin{equation*}
E\left(f^{n+1}(x, \cdot) \mid \mathcal{A}_{n}\right)=m \circ f^{n}(x, \cdot) \tag{2}
\end{equation*}
$$

for $x \in X$ and $n \in \mathbb{N}$.
Our first theorem shows that the limit of $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ is a fixed point of m.
Theorem 1. Assume that E does not contain isomorphic copies of c_{0} and either

$$
\begin{equation*}
m(x) \geq x \quad \text { for } x \in X \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
m(x) \leq x \quad \text { for } x \in X \tag{4}
\end{equation*}
$$

If the sequence $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ converges in measure to an integrable $\xi: \Omega^{\infty} \rightarrow E$, then $m \circ \xi=\xi$.

Proof. Applying Fatou's lemma to a subsequence of $\left(\left\|m\left(f^{n}\left(x_{0}, \omega\right)\right)\right\|\right)$ we get integrability of $m \circ \xi$. Assume (3) and put $g=m \circ \xi-\xi, g_{n}=$ $m \circ f^{n}\left(x_{0}, \cdot\right)-f^{n}\left(x_{0}, \cdot\right)$ and (pointwise) $h_{n}=\inf \left\{g_{n}, g\right\}$ for $n \in \mathbb{N}$. Then the sequence $\left(h_{n}\right)$ converges to g in measure, $h_{n} \leq g_{n}$ and $h_{n} \leq g$ for $n \in \mathbb{N}$. Moreover, the sequence $\left(E f^{n}\left(x_{0}, \cdot\right)\right)$ is bounded and (in view of (2) and (3)) increasing, whence, according to the theorem of Tzafriri ([18], see also [12; Theorem 1.c.4]), convergent. Consequently,

$$
0 \leq E g=\lim _{n \rightarrow \infty} E h_{n} \leq \lim _{n \rightarrow \infty} E g_{n}=\lim _{n \rightarrow \infty} E\left(f^{n+1}\left(x_{0}, \cdot\right)-f^{n}\left(x_{0}, \cdot\right)\right)=0
$$

In the next theorem, which is our main result, we assume additionally that the Banach lattice considered is an $A L$-space, i.e. $\|x+y\|=\|x\|+\|y\|$ for all $x, y \geq 0$ in E (cf. [14], [16]).

Theorem 2. Let E be an AL-space. Assume that either (3) or (4) holds. If m is a contraction, then the sequence $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ converges, both a.s. and in L^{1}, to the unique fixed point of m.

Proof. Assume (3) and put $X_{n}=f^{n}\left(x_{0}, \cdot\right)$ for $n \in \mathbb{N}$. Since $\left(X_{n}, \mathcal{A}_{n}\right)$ is an L^{1}-bounded submartingale with values in an $A L$-space, we have

$$
\begin{aligned}
\sum_{n=1}^{N} E\left\|E\left(X_{n+1} \mid \mathcal{A}_{n}\right)-X_{n}\right\| & =\left\|\sum_{n=1}^{N} E\left(E\left(X_{n+1} \mid \mathcal{A}_{n}\right)-X_{n}\right)\right\| \\
& =\left\|E\left(X_{N+1}-X_{1}\right)\right\| \leq 2 \sup _{n \in \mathbb{N}} E\left\|X_{n}\right\|
\end{aligned}
$$

for every $N \in \mathbb{N}$. Hence

$$
\begin{equation*}
\sum_{n=1}^{\infty} E\left\|E\left(X_{n+1} \mid \mathcal{A}_{n}\right)-X_{n}\right\| \leq 2 \sup _{n \in \mathbb{N}} E\left\|X_{n}\right\|<\infty \tag{5}
\end{equation*}
$$

which jointly with (2) shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left\|m \circ X_{n}-X_{n}\right\|=0 \tag{6}
\end{equation*}
$$

On the other hand, if L denotes the Lipschitz constant of m, then

$$
E\left\|X_{p}-X_{q}\right\| \leq \frac{1}{1-L}\left(E\left\|m \circ X_{p}-X_{p}\right\|+E\left\|m \circ X_{q}-X_{q}\right\|\right)
$$

for all positive integers p, q. From this and (6) we infer that $\left(X_{n}\right)$ converges in L^{1} to a $\xi: \Omega^{\infty} \rightarrow E$. According to Theorem 1 (see also [14; Example 7, p. 92]) we have $m \circ \xi=\xi$. In particular, m has a fixed point, and being a contraction, it has at most one fixed point. Consequently, $\left(X_{n}\right)$ converges in L^{1} to the unique fixed point of m. Hence, applying (5) and [11; Theorem 1.3] (cf. also [2]), we obtain the a.s. convergence of $\left(X_{n}\right)$ as well.

The following shows a possible realization of the assumptions of Theorems 1 and 2 in the simplest non-deterministic (vector) case, viz. $\Omega=$ $\left\{\omega_{1}, \omega_{2}\right\}$.

Example. Let p_{1}, p_{2} be positive reals with $p_{1}+p_{2}=1$ and h_{1}, h_{2} : $[0, \infty) \rightarrow[0, \infty)$ be continuous functions such that

$$
p_{1} h_{1}(t)+p_{2} h_{2}(t) \leq t \quad \text { for every } t \geq 0
$$

Given a finite separable measure μ put $E=L^{1}(\mu)$, consider the subset X of E of all positive elements of E and define $f: X \times\left\{\omega_{1}, \omega_{2}\right\} \rightarrow X$ by

$$
f\left(x, \omega_{i}\right)=h_{i} \circ x
$$

Then

$$
m(x)=p_{1} h_{1} \circ x+p_{2} h_{2} \circ x \leq x \quad \text { and } \quad E\left\|f^{n}(x, \cdot)\right\| \leq\|x\|
$$

for $x \in X$ and $n \in \mathbb{N}$. Moreover, m is continuous. Hence all the assumptions of Theorem 1 are satisfied. If additionally $p_{1} h_{1}+p_{2} h_{2}$ is a contraction, then so is m (with zero as its only fixed point) and all the assumptions of Theorem 2 hold.

Of course, the convergence in L^{1} implies the uniform integrability of the sequence. Concerning the uniform integrability of $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ note the following simple fact.

Proposition 1. If there exists an integrable $\Phi: \Omega \rightarrow[0, \infty)$ such that

$$
\|f(x, \omega)\| \leq \Phi(\omega) \quad \text { for } x \in X \text { and } \omega \in \Omega
$$

then the sequence $\left(f^{n}(x, \cdot)\right)$ is L^{1}-bounded and uniformly integrable for every $x \in X$.

Proof. Clearly $\left\|f^{n}(x, \omega)\right\| \leq \Phi\left(\omega_{n}\right)$ for $x \in X$ and $\omega \in \Omega^{\infty}$. In particular $\left(f^{n}(x, \cdot)\right)$ is L^{1}-bounded for $x \in X$. Moreover, if $x \in X$ and $n \in \mathbb{N}$ are fixed, then for every $A \in \mathcal{A}^{\infty}$ with $P^{\infty}(A)<N^{-1} \int_{\{\Phi>N\}} \Phi d P$ we have

$$
\begin{aligned}
\int_{A}\left\|f^{n}(x, \omega)\right\| d P^{\infty}(\omega) & \leq \int_{A} \Phi\left(\omega_{n}\right) d P^{\infty}(\omega) \\
& \leq \int_{\left\{\omega \in \Omega^{\infty}: \Phi\left(\omega_{n}\right)>N\right\}} \Phi\left(\omega_{n}\right) d P^{\infty}(\omega)+N P^{\infty}(A) \\
& \leq 2 \int_{\{\Phi>N\}} \Phi d P .
\end{aligned}
$$

In the case where the function f considered has the form

$$
\begin{equation*}
f(x, \omega)=x \Phi(\omega) \quad \text { for } x \in X \text { and } \omega \in \Omega \tag{7}
\end{equation*}
$$

we have the following observation.
Proposition 2. If f has the form (7) with $\Phi: \Omega \rightarrow \mathbb{R}$ integrable, $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ is uniformly integrable and $x_{0} \neq 0$, then either $E|\Phi|<1$ or $|\Phi|=1$ a.s.

Proof. Clearly

$$
f^{n}\left(x_{0}, \omega\right)=x_{0} \prod_{k=1}^{n} \Phi\left(\omega_{k}\right)
$$

on Ω^{∞}, whence

$$
E\left\|f^{n}\left(x_{0}, \cdot\right)\right\|=\left\|x_{0}\right\|(E|\Phi|)^{n}
$$

for every $n \in \mathbb{N}$. Consequently, $E|\Phi| \leq 1$. Assume $E|\Phi|=1$ and define a probability measure μ on \mathcal{A} by

$$
\mu(A)=\int_{A}|\Phi| d P
$$

and a sequence $\left(\mu_{n}\right)$ of probability measures on \mathcal{A}^{∞} by

$$
\mu_{n}(A)=\int_{A}\left|\prod_{k=1}^{n} \Phi\left(\omega_{k}\right)\right| d P^{\infty}(\omega)
$$

If $N \in \mathbb{N}, A \in \mathcal{A}_{N}$ and $n \geq N$, then $\mu_{n}(A)=\mu^{\infty}(A)$. Hence the sequence $\left(\mu_{n}\right)$ is pointwise convergent on $\bigcup_{n=1}^{\infty} \mathcal{A}_{n}$ to μ^{∞}. Applying the uniform integrability of $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ we get

$$
\lim _{P^{\infty}(A) \rightarrow 0} \sup _{n \in \mathbb{N}} \mu_{n}(A)=0
$$

This allows us to check that the union of every increasing sequence of sets of the family

$$
\begin{equation*}
\left\{A \in \mathcal{A}^{\infty}: \lim _{n \rightarrow \infty} \mu_{n}(A)=\mu^{\infty}(A)\right\} \tag{8}
\end{equation*}
$$

belongs to this family. According to the Dynkin lemma ([8], see also [3; Theorem 1.3.2]), the family (8) coincides with \mathcal{A}^{∞}. In particular, μ^{∞} is absolutely continuous with respect to P^{∞}. Hence, by the theorem of Kakutani [13; Proposition III.2.6], $E \sqrt{|\Phi|} \geq 1$. But $E \sqrt{|\Phi|} \leq \sqrt{E|\Phi|} \leq 1$, and so $E \sqrt{|\Phi|}=1=E|\Phi|$. Consequently, $|\Phi|=1$ a.s.

Now we proceed to the case where E has the Radon-Nikodym property. Since such a lattice does not contain isomorphic copies of c_{0} (see [6]), our Theorem 1 and the theorem of Heinich [9] (cf. also [7] and [15]) imply what follows.

Theorem 3. Assume that E has the Radon-Nikodym property. If either f is lattice bounded from below and (3) holds, or f is lattice bounded from above and (4) holds, then the sequence $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ converges a.s. to an integrable $\xi: \Omega^{\infty} \rightarrow E$ and $m \circ \xi=\xi$.

Note that [16; Proposition 3 and Theorem 1] and [14; Example 7, p. 92] imply the following.

Remark. Assume that E is an $A L$-space and f satisfies (1). If either f is lattice bounded from above and (3) holds, or f is lattice bounded from below and (4) holds, then the sequence $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ is L_{1}-bounded for any $x_{0} \in X$.

We finish with some special cases of E.
Theorem 4. Assume that $E=l_{1}$ or E is finite-dimensional. If (3) or (4) holds, then the sequence $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ converges a.s. to an integrable ξ : $\Omega^{\infty} \rightarrow E$ and $m \circ \xi=\xi$.

Proof. Assume (2) and let

$$
f^{n}\left(x_{0}, \cdot\right)=M_{n}+A_{n}, \quad n \in \mathbb{N}
$$

be the Doob decomposition [17]. Since $\left(f^{n}\left(x_{0}, \cdot\right)\right)$ is L_{1}-bounded, it is easy to check that $\sup _{n \in \mathbb{N}} E\left\|M_{n}^{-}\right\|<\infty$. Applying the theorem of J. Szulga and W. A. Woyczyński [17; Theorem 4.1] we obtain the desired limit.

Acknowledgments. The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

REFERENCES

[1] K. Baron and M. Kuczma, Iteration on random-valued functions of the unit interval, Colloq. Math. 37 (1977), 263-269.
[2] A. Bellow, Uniform amarts: a class of asymptotic martingales for which strong almost sure convergence obtains, Z. Wahrsch. Verw. Gebiete 41 (1978), 177-191.
[3] P. Billingsley, Probability and Measure, Wiley, New York, 1985.
[4] G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence, RI, 1973.
[5] S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21-41.
[6] W. J. Davis, The Radon-Nikodym property, Sém. Maurey-Schwartz 1973-1974, Espaces L^{p}, applications radonifiantes et géométrie des espaces de Banach, Ecole Polytechnique, Paris, 1974, 12 pp.
[7] W. J. Davis, N. Ghoussoub and J. Lindenstrauss, A lattice renorming theorem and applications to vector-valued processes, Trans. Amer. Math. Soc. 263 (1981), 531540.
[8] E. B. Dynkin, Foundations of the Theory of Markov Processes, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (in Russian).
[9] H. Heinich, Convergence de sous-martingales positives dans un Banach réticulé, C. R. Acad. Sci. Paris 286 (1978), 279-280.
[10] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Cambridge Univ. Press, Cambridge, 1990.
[11] K. Kunen and H. Rosenthal, Martingale proofs of some geometrical results in Banach space theory, Pacific J. Math. 100 (1982), 154-175.
[12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin, 1979.
[13] J. Neveu, Discrete-Parameter Martingales, North-Holland, Amsterdam, 1975.
[14] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974.
[15] M. Słaby, Strong convergence of vector-valued pramarts and subpramarts, Probab. Math. Statist. 5 (1985), 187-196.
[16] J. Szulga, Regularity of Banach lattice valued martingales, Colloq. Math. 41 (1979), 303-312.
[17] J. Szulga and W. A. Woyczyński, Convergence of submartingales in Banach lattices, Ann. Probab. 4 (1976), 464-469.
[18] L. Tzafriri, Reflexivity in Banach lattices and their subspaces, J. Funct. Anal. 10 (1972), 1-18.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice, Poland
E-mail: rkapica@ux2.math.us.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 39B12; Secondary 37H99, 60F15, 60F25.

 Key words and phrases: iteration theory, limit theorems.

