VOL. 97

2003

NO. 1

CONVERGENCE OF SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS

BҮ

RAFAŁ KAPICA (Katowice)

Abstract. Given a probability space (Ω, \mathcal{A}, P) and a closed subset X of a Banach lattice, we consider functions $f: X \times \Omega \to X$ and their iterates $f^n: X \times \Omega^{\mathbb{N}} \to X$ defined by $f^1(x, \omega) = f(x, \omega_1), f^{n+1}(x, \omega) = f(f^n(x, \omega), \omega_{n+1})$, and obtain theorems on the convergence (a.s. and in L^1) of the sequence $(f^n(x, \cdot))$.

It is well known that iteration processes play an important role in mathematics and they are especially important in solving equations. However, it may happen that instead of the exact value of a function at a point we know only some parameters of this value. In [1] iterates of such functions were defined and simple results on the behaviour of the iterates were obtained for scalar-valued functions. It is the aim of the present paper to consider such functions with values in Banach lattices. The basic theorem on the convergence of iterates is obtained in [1] (see also [10; Chapter 12]) by using a submartingale convergence theorem. It is well known (see e.g. [5]) that for martingales with values in a Banach space the convergence theorem holds only if the space has the Radon–Nikodym property. Hence beside a direct use of submartingale convergence theorems we also apply some other martingale methods to get the convergence of the sequence of iterates for an arbitrary AL-space. Basic notions and facts connected with lattices and used in this paper may be found in [4] and [14].

Fix a probability space (Ω, \mathcal{A}, P) , a separable Banach lattice E and its closed subset X. Let \mathcal{B} denote the σ -algebra of all Borel subsets of X. We say that $f: X \times \Omega \to X$ is a random-valued vector function if it is measurable with respect to the product σ -algebra $\mathcal{B} \otimes \mathcal{A}$. The iterates of f are defined by

$$f^{1}(x, \omega_{1}, \omega_{2}, \ldots) = f(x, \omega_{1}),$$

 $f^{n+1}(x, \omega_{1}, \omega_{2}, \ldots) = f(f^{n}(x, \omega_{1}, \omega_{2}, \ldots), \omega_{n+1}),$

for $x \in X$ and $(\omega_1, \omega_2, \ldots) \in \Omega^{\infty} := \Omega^{\mathbb{N}}$. Note that $f^n : X \times \Omega^{\infty} \to X$ is

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B12; Secondary 37H99, 60F15, 60F25.

Key words and phrases: iteration theory, limit theorems.

a random-valued function on the product probability space $(\Omega^{\infty}, \mathcal{A}^{\infty}, P^{\infty})$. More exactly, the *n*th iterate f^n is $\mathcal{B} \otimes \mathcal{A}_n$ -measurable, where \mathcal{A}_n denotes the σ -algebra of all sets of the form

$$\{(\omega_1, \omega_2, \ldots) \in \Omega^\infty : (\omega_1, \omega_2, \ldots, \omega_n) \in A\}$$

with A in the product σ -algebra \mathcal{A}^n .

In what follows, $f: X \times \Omega \to X$ is a fixed random-valued function such that

(1)
$$E \| f^n(x, \cdot) \| < \infty$$
 for $x \in X$ and $n \in \mathbb{N}$.

We also assume that the mean $m: X \to E$ defined by

$$m(x) = Ef(x, \cdot)$$

is continuous. Moreover we assume that $x_0 \in X$ is fixed and the sequence $(f^n(x_0, \cdot))$ is L^1 -bounded. Concerning this assumption consult the Remark, Proposition 1, and Example below. It is easy to check that then

(2)
$$E(f^{n+1}(x,\cdot) \mid \mathcal{A}_n) = m \circ f^n(x,\cdot)$$

for $x \in X$ and $n \in \mathbb{N}$.

Our first theorem shows that the limit of $(f^n(x_0, \cdot))$ is a fixed point of m.

THEOREM 1. Assume that E does not contain isomorphic copies of c_0 and either

(3)
$$m(x) \ge x \quad for \ x \in X$$

or

(4)
$$m(x) \le x \quad for \ x \in X.$$

If the sequence $(f^n(x_0, \cdot))$ converges in measure to an integrable $\xi : \Omega^{\infty} \to E$, then $m \circ \xi = \xi$.

Proof. Applying Fatou's lemma to a subsequence of $(||m(f^n(x_0, \omega))||)$ we get integrability of $m \circ \xi$. Assume (3) and put $g = m \circ \xi - \xi$, $g_n = m \circ f^n(x_0, \cdot) - f^n(x_0, \cdot)$ and (pointwise) $h_n = \inf\{g_n, g\}$ for $n \in \mathbb{N}$. Then the sequence (h_n) converges to g in measure, $h_n \leq g_n$ and $h_n \leq g$ for $n \in \mathbb{N}$. Moreover, the sequence $(Ef^n(x_0, \cdot))$ is bounded and (in view of (2) and (3)) increasing, whence, according to the theorem of Tzafriri ([18], see also [12; Theorem 1.c.4]), convergent. Consequently,

$$0 \le Eg = \lim_{n \to \infty} Eh_n \le \lim_{n \to \infty} Eg_n = \lim_{n \to \infty} E\left(f^{n+1}(x_0, \cdot) - f^n(x_0, \cdot)\right) = 0. \quad \blacksquare$$

In the next theorem, which is our main result, we assume additionally that the Banach lattice considered is an *AL-space*, i.e. ||x + y|| = ||x|| + ||y|| for all $x, y \ge 0$ in E (cf. [14], [16]).

THEOREM 2. Let E be an AL-space. Assume that either (3) or (4) holds. If m is a contraction, then the sequence $(f^n(x_0, \cdot))$ converges, both a.s. and in L^1 , to the unique fixed point of m. *Proof.* Assume (3) and put $X_n = f^n(x_0, \cdot)$ for $n \in \mathbb{N}$. Since (X_n, \mathcal{A}_n) is an L^1 -bounded submartingale with values in an AL-space, we have

$$\sum_{n=1}^{N} E \| E(X_{n+1} | \mathcal{A}_n) - X_n \| = \left\| \sum_{n=1}^{N} E(E(X_{n+1} | \mathcal{A}_n) - X_n) \right\|$$
$$= \| E(X_{N+1} - X_1) \| \le 2 \sup_{n \in \mathbb{N}} E \| X_n \|$$

for every $N \in \mathbb{N}$. Hence

(5)
$$\sum_{n=1}^{\infty} E \| E(X_{n+1} \,|\, \mathcal{A}_n) - X_n \| \le 2 \sup_{n \in \mathbb{N}} E \| X_n \| < \infty,$$

which jointly with (2) shows that

(6)
$$\lim_{n \to \infty} E \| m \circ X_n - X_n \| = 0.$$

On the other hand, if L denotes the Lipschitz constant of m, then

$$E\|X_p - X_q\| \le \frac{1}{1 - L} \left(E\|m \circ X_p - X_p\| + E\|m \circ X_q - X_q\| \right)$$

for all positive integers p, q. From this and (6) we infer that (X_n) converges in L^1 to a $\xi : \Omega^{\infty} \to E$. According to Theorem 1 (see also [14; Example 7, p. 92]) we have $m \circ \xi = \xi$. In particular, m has a fixed point, and being a contraction, it has at most one fixed point. Consequently, (X_n) converges in L^1 to the unique fixed point of m. Hence, applying (5) and [11; Theorem 1.3] (cf. also [2]), we obtain the a.s. convergence of (X_n) as well.

The following shows a possible realization of the assumptions of Theorems 1 and 2 in the simplest non-deterministic (vector) case, viz. $\Omega = \{\omega_1, \omega_2\}$.

EXAMPLE. Let p_1, p_2 be positive reals with $p_1 + p_2 = 1$ and $h_1, h_2 : [0, \infty) \to [0, \infty)$ be continuous functions such that

$$p_1h_1(t) + p_2h_2(t) \le t$$
 for every $t \ge 0$.

Given a finite separable measure μ put $E = L^1(\mu)$, consider the subset X of E of all positive elements of E and define $f : X \times {\omega_1, \omega_2} \to X$ by

$$f(x,\omega_i) = h_i \circ x.$$

Then

$$m(x) = p_1 h_1 \circ x + p_2 h_2 \circ x \le x$$
 and $E \| f^n(x, \cdot) \| \le \| x \|$

for $x \in X$ and $n \in \mathbb{N}$. Moreover, m is continuous. Hence all the assumptions of Theorem 1 are satisfied. If additionally $p_1h_1 + p_2h_2$ is a contraction, then so is m (with zero as its only fixed point) and all the assumptions of Theorem 2 hold.

Of course, the convergence in L^1 implies the uniform integrability of the sequence. Concerning the uniform integrability of $(f^n(x_0, \cdot))$ note the following simple fact.

PROPOSITION 1. If there exists an integrable $\Phi: \Omega \to [0,\infty)$ such that

$$||f(x,\omega)|| \le \Phi(\omega) \quad \text{for } x \in X \text{ and } \omega \in \Omega,$$

then the sequence $(f^n(x, \cdot))$ is L^1 -bounded and uniformly integrable for every $x \in X$.

Proof. Clearly $||f^n(x,\omega)|| \leq \Phi(\omega_n)$ for $x \in X$ and $\omega \in \Omega^\infty$. In particular $(f^n(x,\cdot))$ is L^1 -bounded for $x \in X$. Moreover, if $x \in X$ and $n \in \mathbb{N}$ are fixed, then for every $A \in \mathcal{A}^\infty$ with $P^\infty(A) < N^{-1} \int_{\{\Phi > N\}} \Phi \, dP$ we have

$$\begin{split} \int_{A} \|f^{n}(x,\omega)\| \, dP^{\infty}(\omega) &\leq \int_{A} \Phi(\omega_{n}) \, dP^{\infty}(\omega) \\ &\leq \int_{\{\omega \in \Omega^{\infty} : \Phi(\omega_{n}) > N\}} \Phi(\omega_{n}) \, dP^{\infty}(\omega) + NP^{\infty}(A) \\ &\leq 2 \int_{\{\Phi > N\}} \Phi \, dP. \quad \bullet \end{split}$$

In the case where the function f considered has the form

(7)
$$f(x,\omega) = x\Phi(\omega)$$
 for $x \in X$ and $\omega \in \Omega$,

we have the following observation.

PROPOSITION 2. If f has the form (7) with $\Phi : \Omega \to \mathbb{R}$ integrable, $(f^n(x_0, \cdot))$ is uniformly integrable and $x_0 \neq 0$, then either $E|\Phi| < 1$ or $|\Phi| = 1$ a.s.

Proof. Clearly

$$f^n(x_0,\omega) = x_0 \prod_{k=1}^n \Phi(\omega_k)$$

on Ω^{∞} , whence

$$E||f^{n}(x_{0},\cdot)|| = ||x_{0}||(E|\Phi|)^{n}$$

for every $n \in \mathbb{N}$. Consequently, $E|\Phi| \leq 1$. Assume $E|\Phi| = 1$ and define a probability measure μ on \mathcal{A} by

$$\mu(A) = \int_{A} |\Phi| \, dP$$

and a sequence (μ_n) of probability measures on \mathcal{A}^{∞} by

$$\mu_n(A) = \int_A \left| \prod_{k=1}^n \Phi(\omega_k) \right| dP^{\infty}(\omega).$$

If $N \in \mathbb{N}$, $A \in \mathcal{A}_N$ and $n \geq N$, then $\mu_n(A) = \mu^{\infty}(A)$. Hence the sequence (μ_n) is pointwise convergent on $\bigcup_{n=1}^{\infty} \mathcal{A}_n$ to μ^{∞} . Applying the uniform integrability of $(f^n(x_0, \cdot))$ we get

$$\lim_{P^{\infty}(A)\to 0} \sup_{n\in\mathbb{N}} \mu_n(A) = 0.$$

This allows us to check that the union of every increasing sequence of sets of the family

(8)
$$\{A \in \mathcal{A}^{\infty} : \lim_{n \to \infty} \mu_n(A) = \mu^{\infty}(A)\}$$

belongs to this family. According to the Dynkin lemma ([8], see also [3; Theorem 1.3.2]), the family (8) coincides with \mathcal{A}^{∞} . In particular, μ^{∞} is absolutely continuous with respect to P^{∞} . Hence, by the theorem of Kakutani [13; Proposition III.2.6], $E\sqrt{|\Phi|} \geq 1$. But $E\sqrt{|\Phi|} \leq \sqrt{E|\Phi|} \leq 1$, and so $E\sqrt{|\Phi|} = 1 = E|\Phi|$. Consequently, $|\Phi| = 1$ a.s.

Now we proceed to the case where E has the Radon–Nikodym property. Since such a lattice does not contain isomorphic copies of c_0 (see [6]), our Theorem 1 and the theorem of Heinich [9] (cf. also [7] and [15]) imply what follows.

THEOREM 3. Assume that E has the Radon–Nikodym property. If either f is lattice bounded from below and (3) holds, or f is lattice bounded from above and (4) holds, then the sequence $(f^n(x_0, \cdot))$ converges a.s. to an integrable $\xi : \Omega^{\infty} \to E$ and $m \circ \xi = \xi$.

Note that [16; Proposition 3 and Theorem 1] and [14; Example 7, p. 92] imply the following.

REMARK. Assume that E is an AL-space and f satisfies (1). If either f is lattice bounded from above and (3) holds, or f is lattice bounded from below and (4) holds, then the sequence $(f^n(x_0, \cdot))$ is L_1 -bounded for any $x_0 \in X$.

We finish with some special cases of E.

THEOREM 4. Assume that $E = l_1$ or E is finite-dimensional. If (3) or (4) holds, then the sequence $(f^n(x_0, \cdot))$ converges a.s. to an integrable $\xi : \Omega^{\infty} \to E$ and $m \circ \xi = \xi$.

Proof. Assume (2) and let

$$f^n(x_0, \cdot) = M_n + A_n, \quad n \in \mathbb{N},$$

be the Doob decomposition [17]. Since $(f^n(x_0, \cdot))$ is L_1 -bounded, it is easy to check that $\sup_{n \in \mathbb{N}} E ||M_n^-|| < \infty$. Applying the theorem of J. Szulga and W. A. Woyczyński [17; Theorem 4.1] we obtain the desired limit.

Acknowledgments. The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

REFERENCES

- K. Baron and M. Kuczma, Iteration on random-valued functions of the unit interval, Colloq. Math. 37 (1977), 263–269.
- [2] A. Bellow, Uniform amarts: a class of asymptotic martingales for which strong almost sure convergence obtains, Z. Wahrsch. Verw. Gebiete 41 (1978), 177–191.
- [3] P. Billingsley, *Probability and Measure*, Wiley, New York, 1985.
- [4] G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence, RI, 1973.
- [5] S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21–41.
- [6] W. J. Davis, The Radon-Nikodym property, Sém. Maurey-Schwartz 1973–1974, Espaces L^p, applications radonifiantes et géométrie des espaces de Banach, Ecole Polytechnique, Paris, 1974, 12 pp.
- [7] W. J. Davis, N. Ghoussoub and J. Lindenstrauss, A lattice renorming theorem and applications to vector-valued processes, Trans. Amer. Math. Soc. 263 (1981), 531– 540.
- [8] E. B. Dynkin, Foundations of the Theory of Markov Processes, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (in Russian).
- H. Heinich, Convergence de sous-martingales positives dans un Banach réticulé, C. R. Acad. Sci. Paris 286 (1978), 279–280.
- [10] M. Kuczma, B. Choczewski and R. Ger, *Iterative Functional Equations*, Cambridge Univ. Press, Cambridge, 1990.
- [11] K. Kunen and H. Rosenthal, Martingale proofs of some geometrical results in Banach space theory, Pacific J. Math. 100 (1982), 154–175.
- [12] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces II*, Springer, Berlin, 1979.
- [13] J. Neveu, *Discrete-Parameter Martingales*, North-Holland, Amsterdam, 1975.
- [14] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974.
- M. Słaby, Strong convergence of vector-valued pramarts and subpramarts, Probab. Math. Statist. 5 (1985), 187–196.
- J. Szulga, Regularity of Banach lattice valued martingales, Colloq. Math. 41 (1979), 303–312.
- J. Szulga and W. A. Woyczyński, Convergence of submartingales in Banach lattices, Ann. Probab. 4 (1976), 464–469.
- [18] L. Tzafriri, Reflexivity in Banach lattices and their subspaces, J. Funct. Anal. 10 (1972), 1–18.

Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland E-mail: rkapica@ux2.math.us.edu.pl

> Received 23 February 2001; revised 16 September 2002

(4036)

 $\mathbf{6}$