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CONVERGENCE OF SEQUENCES OF ITERATES
OF RANDOM-VALUED VECTOR FUNCTIONS
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Abstract. Given a probability space (Ω,A, P ) and a closed subset X of a Banach
lattice, we consider functions f : X × Ω → X and their iterates fn : X × ΩN → X
defined by f1(x, ω) = f(x, ω1), fn+1(x, ω) = f(fn(x, ω), ωn+1), and obtain theorems on
the convergence (a.s. and in L1) of the sequence (fn(x, ·)).

It is well known that iteration processes play an important role in math-
ematics and they are especially important in solving equations. However,
it may happen that instead of the exact value of a function at a point we
know only some parameters of this value. In [1] iterates of such functions
were defined and simple results on the behaviour of the iterates were ob-
tained for scalar-valued functions. It is the aim of the present paper to
consider such functions with values in Banach lattices. The basic theorem
on the convergence of iterates is obtained in [1] (see also [10; Chapter 12])
by using a submartingale convergence theorem. It is well known (see e.g. [5])
that for martingales with values in a Banach space the convergence theorem
holds only if the space has the Radon–Nikodym property. Hence beside a
direct use of submartingale convergence theorems we also apply some other
martingale methods to get the convergence of the sequence of iterates for
an arbitrary AL-space. Basic notions and facts connected with lattices and
used in this paper may be found in [4] and [14].

Fix a probability space (Ω,A, P ), a separable Banach lattice E and its
closed subset X. Let B denote the σ-algebra of all Borel subsets of X. We say
that f : X ×Ω → X is a random-valued vector function if it is measurable
with respect to the product σ-algebra B⊗A. The iterates of f are defined by

f1(x, ω1, ω2, . . .) = f(x, ω1),

fn+1(x, ω1, ω2, . . .) = f(fn(x, ω1, ω2, . . .), ωn+1),

for x ∈ X and (ω1, ω2, . . .) ∈ Ω∞ := ΩN. Note that fn : X × Ω∞ → X is
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a random-valued function on the product probability space (Ω∞,A∞, P∞).
More exactly, the nth iterate fn is B ⊗ An-measurable, where An denotes
the σ-algebra of all sets of the form

{(ω1, ω2, . . .) ∈ Ω∞ : (ω1, ω2, . . . , ωn) ∈ A}
with A in the product σ-algebra An.

In what follows, f :X×Ω→X is a fixed random-valued function such that

(1) E‖fn(x, ·)‖ <∞ for x ∈ X and n ∈ N.
We also assume that the mean m : X → E defined by

m(x) = Ef(x, ·)
is continuous. Moreover we assume that x0 ∈ X is fixed and the sequence
(fn(x0, ·)) is L1-bounded. Concerning this assumption consult the Remark,
Proposition 1, and Example below. It is easy to check that then

(2) E(fn+1(x, ·) | An) = m ◦ fn(x, ·)
for x ∈ X and n ∈ N.

Our first theorem shows that the limit of (fn(x0, ·)) is a fixed point of m.

Theorem 1. Assume that E does not contain isomorphic copies of c0

and either

(3) m(x) ≥ x for x ∈ X
or

(4) m(x) ≤ x for x ∈ X.
If the sequence (fn(x0, ·)) converges in measure to an integrable ξ :Ω∞→E,
then m ◦ ξ = ξ.

Proof. Applying Fatou’s lemma to a subsequence of (‖m(fn(x0, ω))‖)
we get integrability of m ◦ ξ. Assume (3) and put g = m ◦ ξ − ξ, gn =
m◦fn(x0, ·)−fn(x0, ·) and (pointwise) hn = inf{gn, g} for n ∈ N. Then the
sequence (hn) converges to g in measure, hn ≤ gn and hn ≤ g for n ∈ N.
Moreover, the sequence

(
Efn(x0, ·)

)
is bounded and (in view of (2) and (3))

increasing, whence, according to the theorem of Tzafriri ([18], see also [12;
Theorem 1.c.4]), convergent. Consequently,

0 ≤ Eg = lim
n→∞

Ehn ≤ lim
n→∞

Egn = lim
n→∞

E
(
fn+1(x0, ·)− fn(x0, ·)

)
= 0.

In the next theorem, which is our main result, we assume additionally
that the Banach lattice considered is an AL-space, i.e. ‖x+ y‖ = ‖x‖+ ‖y‖
for all x, y ≥ 0 in E (cf. [14], [16]).

Theorem 2. Let E be an AL-space. Assume that either (3) or (4) holds.
If m is a contraction, then the sequence

(
fn(x0, ·)

)
converges, both a.s. and

in L1, to the unique fixed point of m.
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Proof. Assume (3) and put Xn = fn(x0, ·) for n ∈ N. Since (Xn,An) is
an L1-bounded submartingale with values in an AL-space, we have

N∑

n=1

E‖E(Xn+1 | An)−Xn‖ =
∥∥∥

N∑

n=1

E(E(Xn+1 | An)−Xn)
∥∥∥

= ‖E(XN+1 −X1)‖ ≤ 2 sup
n∈N

E‖Xn‖

for every N ∈ N. Hence

(5)
∞∑

n=1

E‖E(Xn+1 | An)−Xn‖ ≤ 2 sup
n∈N

E‖Xn‖ <∞,

which jointly with (2) shows that

(6) lim
n→∞

E‖m ◦Xn −Xn‖ = 0.

On the other hand, if L denotes the Lipschitz constant of m, then

E‖Xp −Xq‖ ≤
1

1− L (E‖m ◦Xp −Xp‖+ E‖m ◦Xq −Xq‖)

for all positive integers p, q. From this and (6) we infer that (Xn) converges
in L1 to a ξ : Ω∞ → E. According to Theorem 1 (see also [14; Example 7,
p. 92]) we have m ◦ ξ = ξ. In particular, m has a fixed point, and being a
contraction, it has at most one fixed point. Consequently, (Xn) converges
in L1 to the unique fixed point of m. Hence, applying (5) and [11; Theorem
1.3] (cf. also [2]), we obtain the a.s. convergence of (Xn) as well.

The following shows a possible realization of the assumptions of The-
orems 1 and 2 in the simplest non-deterministic (vector) case, viz. Ω =
{ω1, ω2}.

Example. Let p1, p2 be positive reals with p1 + p2 = 1 and h1, h2 :
[0,∞)→ [0,∞) be continuous functions such that

p1h1(t) + p2h2(t) ≤ t for every t ≥ 0.

Given a finite separable measure µ put E = L1(µ), consider the subset X
of E of all positive elements of E and define f : X × {ω1, ω2} → X by

f(x, ωi) = hi ◦ x.
Then

m(x) = p1h1 ◦ x+ p2h2 ◦ x ≤ x and E‖fn(x, ·)‖ ≤ ‖x‖
for x ∈ X and n ∈ N. Moreover, m is continuous. Hence all the assumptions
of Theorem 1 are satisfied. If additionally p1h1 + p2h2 is a contraction,
then so is m (with zero as its only fixed point) and all the assumptions of
Theorem 2 hold.



4 R. KAPICA

Of course, the convergence in L1 implies the uniform integrability of
the sequence. Concerning the uniform integrability of

(
fn(x0, ·)

)
note the

following simple fact.

Proposition 1. If there exists an integrable Φ : Ω → [0,∞) such that

‖f(x, ω)‖ ≤ Φ(ω) for x ∈ X and ω ∈ Ω,
then the sequence

(
fn(x, ·)

)
is L1-bounded and uniformly integrable for every

x ∈ X.

Proof. Clearly ‖fn(x, ω)‖ ≤ Φ(ωn) for x ∈ X and ω ∈ Ω∞. In particular
(fn(x, ·)) is L1-bounded for x ∈ X. Moreover, if x ∈ X and n ∈ N are fixed,
then for every A ∈ A∞ with P∞(A) < N−1

�
{Φ>N} ΦdP we have

�

A

‖fn(x, ω)‖ dP∞(ω) ≤
�

A

Φ(ωn) dP∞(ω)

≤
�

{ω∈Ω∞ :Φ(ωn)>N}
Φ(ωn) dP∞(ω) +NP∞(A)

≤ 2
�

{Φ>N}
ΦdP.

In the case where the function f considered has the form

(7) f(x, ω) = xΦ(ω) for x ∈ X and ω ∈ Ω,
we have the following observation.

Proposition 2. If f has the form (7) with Φ : Ω → R integrable,
(fn(x0, ·)) is uniformly integrable and x0 6= 0, then either E|Φ| < 1 or
|Φ| = 1 a.s.

Proof. Clearly

fn(x0, ω) = x0

n∏

k=1

Φ(ωk)

on Ω∞, whence
E‖fn(x0, ·)‖ = ‖x0‖(E|Φ|)n

for every n ∈ N. Consequently, E|Φ| ≤ 1. Assume E|Φ| = 1 and define a
probability measure µ on A by

µ(A) =
�

A

|Φ| dP

and a sequence (µn) of probability measures on A∞ by

µn(A) =
�

A

∣∣∣
n∏

k=1

Φ(ωk)
∣∣∣ dP∞(ω).
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If N ∈ N, A ∈ AN and n ≥ N , then µn(A) = µ∞(A). Hence the sequence
(µn) is pointwise convergent on

⋃∞
n=1An to µ∞. Applying the uniform in-

tegrability of (fn(x0, ·)) we get

lim
P∞(A)→0

sup
n∈N

µn(A) = 0.

This allows us to check that the union of every increasing sequence of sets
of the family

(8) {A ∈ A∞ : lim
n→∞

µn(A) = µ∞(A)}

belongs to this family. According to the Dynkin lemma ([8], see also [3;
Theorem 1.3.2]), the family (8) coincides with A∞. In particular, µ∞ is ab-
solutely continuous with respect to P∞. Hence, by the theorem of Kakutani
[13; Proposition III.2.6], E

√
|Φ| ≥ 1. But E

√
|Φ| ≤

√
E|Φ| ≤ 1, and so

E
√
|Φ| = 1 = E|Φ|. Consequently, |Φ| = 1 a.s.

Now we proceed to the case where E has the Radon–Nikodym property.
Since such a lattice does not contain isomorphic copies of c0 (see [6]), our
Theorem 1 and the theorem of Heinich [9] (cf. also [7] and [15]) imply what
follows.

Theorem 3. Assume that E has the Radon–Nikodym property. If either
f is lattice bounded from below and (3) holds, or f is lattice bounded from
above and (4) holds, then the sequence (fn(x0, ·)) converges a.s. to an inte-
grable ξ : Ω∞ → E and m ◦ ξ = ξ.

Note that [16; Proposition 3 and Theorem 1] and [14; Example 7, p. 92]
imply the following.

Remark. Assume that E is an AL-space and f satisfies (1). If either f
is lattice bounded from above and (3) holds, or f is lattice bounded from
below and (4) holds, then the sequence (fn(x0, ·)) is L1-bounded for any
x0 ∈ X.

We finish with some special cases of E.

Theorem 4. Assume that E = l1 or E is finite-dimensional. If (3) or
(4) holds, then the sequence (fn(x0, ·)) converges a.s. to an integrable ξ :
Ω∞ → E and m ◦ ξ = ξ.

Proof. Assume (2) and let

fn(x0, ·) = Mn + An, n ∈ N,
be the Doob decomposition [17]. Since

(
fn(x0, ·)

)
is L1-bounded, it is easy

to check that supn∈NE‖M−n ‖ <∞. Applying the theorem of J. Szulga and
W. A. Woyczyński [17; Theorem 4.1] we obtain the desired limit.



6 R. KAPICA

Acknowledgments. The research was supported by the Silesian Uni-
versity Mathematics Department (Iterative Functional Equations and Real
Analysis program).

REFERENCES

[1] K. Baron and M. Kuczma, Iteration on random-valued functions of the unit interval ,
Colloq. Math. 37 (1977), 263–269.

[2] A. Bellow, Uniform amarts: a class of asymptotic martingales for which strong
almost sure convergence obtains, Z. Wahrsch. Verw. Gebiete 41 (1978), 177–191.

[3] P. Billingsley, Probability and Measure, Wiley, New York, 1985.
[4] G. Birkhoff, Lattice Theory , Amer. Math. Soc., Providence, RI, 1973.
[5] S. D. Chatterji, Martingale convergence and the Radon–Nikodym theorem in Banach

spaces, Math. Scand. 22 (1968), 21–41.
[6] W. J. Davis, The Radon–Nikodym property , Sém. Maurey–Schwartz 1973–1974,

Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Ecole
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