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LOCAL DERIVATIONS FOR QUOTIENT AND FACTOR
ALGEBRAS OF POLYNOMIALS

BY

ANDRZEJ NOWICKI and ILONA NOWOSAD (Toruń)

Abstract. We describe all Kadison algebras of the form S−1k[t], where k is an alge-
braically closed field and S is a multiplicative subset of k[t]. We also describe all Kadison
algebras of the form k[t]/I, where k is a field of characteristic zero.

1. Introduction. Let k be a field and A a k-algebra with unity. A k-
linear mapping d : A→ A is called a derivation of A if d(ab) = ad(b)+bd(a)
for all a, b ∈ A. A k-linear mapping γ : A → A is called a local derivation
of A if for each a ∈ A there exists a derivation da of A such that γ(a) = da(a).

Every derivation of A is of course a local derivation of A. We say (as
in [6]) that a k-algebra A is a Kadison algebra if every local derivation of A
is a derivation.

R. Kadison [1], in 1990, proved that polynomial rings over C are Kadison
algebras. It was proved in [6] that any polynomial ring over k is a Kadison
algebra if and only if k is infinite. J. Zieliński, in [10], gave a description of the
local derivations of the polynomial ring in one variable in characteristic two.
Moreover, he described all local derivations in the formal power series ring
in one variable in any characteristic. Some observations on local derivations
of commutative algebras are also given in [9].

There are several papers on local derivations for noncommutative al-
gebras. Larson and Sourour [4], who introduced local derivations indepen-
dently, proved that the algebra B(X ) of all bounded operators on a Banach
space X is a Kadison algebra. Shul’man [7] showed that any C∗-algebra is a
Kadison algebra. Recently Wiehl [8] proved that the Weyl algebra with one
pair of generators is a Kadison algebra.

In the present paper we investigate local derivations on some commu-
tative k-algebras connected with k[t], the polynomial ring in one variable
over k. We describe (Theorem 2.8) all Kadison algebras of the form S−1k[t],
where S is a multiplicative subset of k[t] and the field k is algebraically
closed. We also describe (Section 3) all Kadison algebras of the form k[t]/I,
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where I is an ideal of k[t] and char(k) = 0. Moreover, we present some new
examples of nontrivial local derivations.

2. Algebras of quotients. Let A = S−1k[X] be the algebra of quo-
tients ot the polynomial algebra k[X] = k[x1, . . . , xn] with respect to a
multiplicative subset S ⊂ k[X], where k is a field. We assume that 0 6∈ S
and we denote by MS the subset of kn defined as

MS = {λ ∈ kn ; ∃f∈S f(λ) = 0}.
In this section we study local derivations of A. We try to determine when

A is a Kadison algebra. We already know the following two partial results
concerning this problem.

Theorem 2.1 ([6]). Let A = S−1k[X], where S is a multiplicative subset
of k[X]. If k is infinite and the set knrMS is dense in the Zariski topology
of kn, then A is a Kadison algebra.

Theorem 2.2 ([6]). Let P be a prime ideal of k[X] and let A = S−1k[X],
where S = k[X]r P . Then A is not a Kadison algebra.

If the multiplicative subset S is arbitrary and we cannot use the above
theorems, then it is not easy to check when A = S−1k[X] is a Kadison
algebra. This problem is not easy even for n = 1.

Assume now that n = 1. Let p1, . . . , ps ∈ k[t] r k be pairwise different
irreducible monic polynomials, and let S be the multiplicative subset k[t]r
((p1) ∪ . . . ∪ (ps)), where each (pi) is the principal ideal of k[t] generated
by pi. Consider the quotient ring

W = S−1k[t].

It is clear that this ring is a unique factorization domain and that p1
1 , . . .

ps
1

are all (up to association) the prime elements of W . Every derivation of W
is of the form w ∂

∂t , where w ∈ W . If ϕ ∈ W and n ∈ N, then we denote by
ϕ(n) the nth derivative of ϕ.

Proposition 2.3. For any n ∈ N the mapping αn : W →W given by

αn(ϕ) = (p1 . . . ps)nϕ(n+1) for ϕ ∈W
is a local derivation of W . If n ≥ 1 and char(k) = 0 or char(k) > n + 1,
then αn is not a derivation of W .

Proof. Let ϕ ∈W . If αn(ϕ) = 0, then αn(ϕ) = d(ϕ), where d is the zero
derivation. If ϕ(1) is invertible in W , then αn(ϕ) = d(ϕ), where d : W →W
is the unique derivation such that d(t) = (ϕ(1))−1αn(ϕ).

Assume now that αn(ϕ) 6= 0 and ϕ(1) = pr11 . . . prss w, where w is an
invertible element of W and r1 + . . .+ rs ≥ 1. Put p := p1 . . . ps.
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Case 1. Assume that r1 ≤ n, . . . , rs ≤ n. In this case consider the
derivation d of W such that

d(t) = pn−r11 . . . pn−rss w−1ϕ(n+1).

Then d(ϕ) = ϕ(1)d(t) = pr11 . . . prss wp
n−r1
1 . . . pn−rss w−1ϕ(n+1) = pnϕ(n+1) =

αn(ϕ).

Case 2. Assume that there exists m < s such that r1 > n, . . . , rm > n
and rm+1 ≤ n, . . . , rs ≤ n. Then we have ϕ(n+1) = pr1−n1 . . . prm−nm w0 for
some w0 ∈W . Consider the derivation d : W →W such that

d(t) = p
n−rm+1
m+1 . . . pn−rss w0w

−1.

Then d(ϕ) = ϕ(1)d(t) = pr11 . . . prmm p
rm+1
m+1 . . . p

rs
s w · pn−rm+1

m+1 . . . pn−rss w0w
−1 =

pn1 . . . p
n
s · (pr1−n1 . . . prm−nm w0) = pnϕ(n+1) = αn(ϕ).

Case 3. Let r1 > n, . . . , rs > n. Then ϕ(n+1) = pr1−n1 . . . prs−ns w0 for
some w0 ∈ W . Put d(t) := w0w

−1. Then we have d(ϕ) = ϕ(1)d(t) =
pr11 . . . prss w · w0w

−1 = pn1 . . . p
n
s · (pr1−n1 . . . prs−ns w0) = pnϕ(n+1) = αn(ϕ).

Therefore, αn is a local derivation of W . Obviously α0 is a derivation,
because α0 = ∂

∂t . Observe that if n ≥ 1, then αn(t) = 0 and αn(tn+1) =
pn(n+ 1)!.

Let n ≥ 1 and suppose that αn is a derivation of W . Then, since
char(k) = 0 or char(k) > n + 1, we have a contradiction: 0 6= pn(n + 1)! =
αn(tn) = ntn−1αn(t) = ntn−10 = 0. Hence, if n ≥ 1, then αn is not a
derivation.

Corollary 2.4. If char(k) 6= 2, then W is not a Kadison algebra.

Proposition 2.3 can be generalized in the following way.

Proposition 2.5. Let n ≥ 1 and let d1, . . . , dn+1 : W → W be nonzero
derivations. Let β : W →W be the mapping defined as

β(ϕ) = pnd1 . . . dn+1(ϕ) for ϕ ∈W,
where p = p1 . . . ps. Then β is a local derivation of W . If char(k) = 0 or
char(k) > n+ 1, then β is not a derivation of W .

In the proof of this proposition we will use the following standard and
easy lemma.

Lemma 2.6. Let d1, . . . , dm be derivations of W . Then there exist ele-
ments w1, . . . , wm ∈W such that

d1 . . . dm(ϕ) = w1ϕ
(1) + w2ϕ

(2) + . . .+ wmϕ
(m)

for all ϕ ∈W .

Proof of Proposition 2.5. By Lemma 2.6 there exist w1, . . . , wn+1 ∈ W
such that
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β(ϕ) = pnw1ϕ
(1) + pnw2ϕ

(2) + . . .+ pnwn+1ϕ
(n+1)

for every ϕ ∈ W . Hence β = β1 + . . . + βn+1, where βi(ϕ) = pnwiϕ
(i)

for ϕ ∈ W and i = 1, . . . , n + 1. Observe that if i ∈ {1, . . . , n + 1}, then
βi = pn−i−1wiαi−1, where αi−1(ϕ) = piϕ(i+1). We know, by Proposition 2.3,
that each αi−1 is a local derivation of W . This implies that each βi is also
a local derivation of W . Therefore, β is a local derivation of W as a sum of
local derivations.

Suppose that β is a derivation of W . Then the composition d1 . . . dn+1 is
a derivation of W . But it is well known ([3], [5]) that then di = 0 for some
i ∈ {1, . . . , n+ 1}. Hence, we have a contradiction, because the derivations
d1, . . . , dn+1 are nonzero.

If the number s of irreducible prime elements in A = S−1k[t] is infinite,
then the following example shows that Corollary 2.4 is not true in general.

Example 2.7. Let char(k) = 0 and let S be a multiplicative subset of
k[t] of the form S = k[t] r

⋃
n∈N(t − n). Then A = S−1k[t] is a Kadison

algebra.

Proof. Observe that, in this case, krMS = {0, 1, . . .}. Since every closed
subset in the Zariski topology of k1 is k1 or finite, the set k rMS is dense
in k1. Hence, by Theorem 2.1, A is a Kadison algebra.

Theorem 2.8. Assume that k is algebraically closed and char(k) 6= 2.
Let S be a multiplicative subset of k[t] such that 0 6∈ S. Then A = S−1k[t]
is not a Kadison algebra if and only if the set k rMS is finite.

Proof. The implication⇒ is a consequence of Theorem 2.1. Assume that
the set k rMS is finite.

Let S denote the multiplicative subset of k[t] generated by the set of all
prime elements which appear as factors of elements from S. Then it is clear
that S−1k[t] = S−1k[t] and MS = MS . Therefore, we may assume that
S = S.

Observe that (since k is algebraically closed)MS = {a ∈ k ; t− a ∈ S}.
In particular, MS = k ⇔ S−1k[t] = k(t). Hence, if the set k rMS is
empty, then A = k(t) and, by Theorem 2.2, A is not a Kadison algebra.

Assume now that k rMS = {a1, . . . , as} and let p1 = t − a1, . . . , ps =
t− as. Then S = k[t]r ((p1) ∪ . . . ∪ (ps)) so, by Proposition 2.3, A is not a
Kadison algebra.

We will show, in Example 2.12, that the assumption “k is algebraically
closed” in the above theorem is important. To this end we first prove the
following proposition.
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Proposition 2.9. Let S be a multiplicative subset of k[t] such that A =
S−1k[t] 6= k(t). If α : A→ A is a local derivation such that α(k[t]) = 0, then
α = 0.

Proof. The assumption A 6= k(t) implies that there exists at least one
irreducible polynomial p ∈ k[t] such that (p) ∩ S = ∅.

Let ϕ = f
g ∈ A, where f, g∈k[t] and g ∈ S. Then g 6∈ (p). So gcd(g, p) = 1

and moreover, gcd(g, pn) = 1 for any natural n. Let n ≥ 1. There exist
polynomials un, vn ∈ k[t] such that 1 = −ung+vnpn. Then f+fung = fvnp

n

and

α

(
f

g

)
= α

(
f

g

)
+ 0 = α

(
f

g
+ fun

)

= α

(
f + fung

g

)
= α

(
f

gvn
pn
)

= α(rnpn),

where rn = fvn
g ∈ A. Let d : A → A be a derivation such that d(rnpn) =

α(rnpn). Then α
(f
g

)
= d(rnpn) = d(rn)pn+npn−1rnd(p) = pn−1wn for some

wn ∈ A. Since A is a unique factorization domain and p is irreducible, the
element pn−1 divides in A the element α

(f
g

)
. Therefore, α

(f
g

)
is divisible by

pn−1 for all n ≥ 1. This implies that α
(f
g

)
= 0, so α = 0.

Corollary 2.10. Let S be a multiplicative subset of k[t] such that A =
S−1k[t] 6= k(t). If α : A→ A is a local derivation such that α|k[t] : k[t]→ A
is a derivation, then α is a derivation.

Proof. Put d := α|k[t]. The mapping d : k[t]→ A is a derivation. Let us
extend it, in a natural way, to a derivation d : A→ A. Let β = α− d. Then
β : A → A is a local derivation such that β(k[t]) = 0. By Proposition 2.9,
β = 0, so α = d is a derivation.

Now let F be a field such that Q ⊆ F ⊆ R (where Q, R are the fields of
rational and real numbers, respectively). Consider the multiplicative subset
of F [t] defined by

S0 = F [t]r
( ⋃

n∈N∗
(t2 + n) ∪

⋃

n∈N∗
(t2 + t+ n)

)
,

where N∗ = N r {0}.
Theorem 2.11. Let S be a multiplicative subset of F [t] such that S ⊆ S0,

and let A = S−1F [t]. Then A is a Kadison algebra.

Proof. The algebra A is a unique factorization domain ([2]) and every
polynomial of the form t2 + n or t2 + t + n, where n ∈ N∗, is a prime
element of A. Let α : A→ A be a local derivation. There exists a derivation
d : A → A such that α(t) = d(t). Put γ = α − d. The mapping γ is a local
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derivation of A and γ(t) = 0. We will show that γ = 0. The proof of this
fact is divided in several steps.

(i) Let m ∈ N∗. We show that if γ(tm) = 0, then γ(tm+2) = 0. Assume
that γ(tm) = 0 and let γ(tm+2) = a

b , where a, b ∈ F [t] with b ∈ S. Let
n ∈ N∗ and consider the polynomial wn = tm+2 + pnt

m, where pn = m+2
m n.

Then γ(wn) = γ(tm+2) = a
b and there exists a derivation dn : A → A such

that dn(wn) = γ(wn). Let dn(t) = un
vn

, where un, vn ∈ F [t], vn ∈ S. Then

a

b
= dn(wn) = ((m+ 2)tm+1 +mpnt

m−1)
un
vn

= (m+ 2)tm−1(t2 + n)
un
vn

and this implies that every prime element of the form t2 +n, for any n ∈ N∗,
divides a

b . Hence, a
b = 0, that is, γ(tm+2) = 0.

(ii) We show that γ(t2) = 0. We already know, by (i), that γ(t3) = 0
(because γ(t) = 0). Assume that γ(t2) = a

b , where a, b∈F [t] with b∈S. Let
n ∈ N∗ and consider the polynomial wn = t2 + 2

3t
3 + 2nt. Then γ(wn) =

γ(t2) = a
b and there exists a derivation dn : A → A such that dn(wn) =

γ(wn). Let dn(t) = un
vn

, where un, vn ∈ F [t], vn ∈ S. Then

a

b
= dn(wn) = (2t+ 2t2 + 2n)

un
vn

= 2(t2 + t+ n)
un
vn

and this implies that every prime element of the form t2 + t + n, for any
n ∈ N∗, divides a

b . Hence, a
b = 0, that is, γ(t2) = 0.

(iii) The assumption γ(t)=0 and steps (i) and (ii) imply that γ(F [t])=0.
Hence, by Proposition 2.9, γ = 0. But γ = α − d. Therefore, α = d is a
derivation.

Example 2.12. Consider the algebra A = S−1k[t], where k = F = Q
and S = S0. Then k rMS = ∅ and, by Theorem 2.11, A is a Kadison
algebra. Thus, Theorem 2.8 is not valid if the field k is not algebraically
closed.

There are simple examples of algebras of the form S−1k[t] such that
we do not know if they are Kadison algebras. For instance, let k = R and
S = k[t]r

⋃
n∈N∗(t

2 + n). In this case k rMS = ∅. Is it true that S−1k[t]
is a Kadison algebra?

Using the same arguments as in the proof of Proposition 2.3 we obtain:

Proposition 2.13. Let A = S−1k[X], where k[X] = k[x1, . . . , xn] and
S = k[X] r

⋃m
i=1(xi). Let ∆ be the partial derivative ∂

∂x1
and let m ∈ N.

Then the mapping αm : A→ A defined by

αm(ϕ) = (x1 . . . xn)m∆m+1(ϕ) for ϕ ∈ A
is a local derivation of A. If m ≥ 1 and char(k) = 0 or char(k) > m + 1,
then αm is not a derivation.
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Note yet the following proposition for the algebra of the form S−1k[X].

Proposition 2.14. Let A=S−1k[X], where k[X]=k[x1, . . . , xn] and S is
a multiplicative subset of k[X]. Denote by M the maximal ideal (x1, . . . , xn)
and assume that M ∩S = ∅. If α : A→ A is a local derivation such that the
mapping α|k[X] : k[X]→ A is a derivation, then α is a derivation of A.

Proof. There exists a unique derivation d : A → A such that d(xi) =
α(xi) for all i = 1, . . . , n. Let α1 = α − d. Then α1 : A → A is a local
derivation such that α1(k[X]) = 0. We will show that α1 = 0.

Let ϕ = u
v ∈ A with u, v ∈ k[X] and v ∈ S. If v ∈ k, then α1(ϕ) = 0

because ϕ ∈ k[X]. Assume that v 6∈ k. Since v ∈ S and S ∩ M = ∅,
the element v is not in M , so a := v(0) is a nonzero element of k, where
0 = (0, . . . , 0). Then w := v − a ∈M , that is, v = w + a, where w ∈M and
a ∈ k r {0}. Therefore

ϕ =
u

v
=

u

w + a
=

a−1u

a−1w + 1
.

Put f := a−1u and h := a−1w. Obviously h 6= 0 since v 6∈ k. Then ϕ = f
h+1 ,

f, h ∈ k[X] and 0 6= h ∈M . So, for any odd number s ≥ 3 we have

ϕ =
f

h+ 1
=
f + fhs − fhs

h+ 1
= f

(
hs + 1
h+ 1

)
− hs f

h+ 1
= w + hsr,

where w ∈ k[X], r ∈ A. This implies that

α1(ϕ) = α1(w + hsr) = α1(w) + α1(hsr) = α1(hsr).

Since α1 is a local derivation, there exists a derivation δ : A → A such
that α1(hsr) = δ(hsr). Hence α1(hsr) = hs−1w1 for some w1 ∈ A, so
α1(ϕ) = hs−1w1. This means that, for any odd number s, the element α1(ϕ)
is divisible by hs−1, where h is a nonzero element belonging to M . But A is
a unique factorization domain, so α1(ϕ) = 0. Hence α1 = α− d = 0, that is,
α = d is a derivation.

Let us end this section with the following question.

Question 2.15. Let S = k[x, y] r (M0 ∪M1), where M0 = (x, y) and
M1 = (x−1, y−1) are the maximal ideals of k[x, y]. Is it true that S−1k[x, y]
is not a Kadison algebra?

3. Factor algebras. It is known ([6]) that the class of Kadison algebras
is not closed with respect to homomorphic images. This fact is a consequence
of the following proposition.

Proposition 3.16. Let A = k[t]/(tn), where k is a field of characteristic
zero. Then A is a Kadison algebra if and only if n ≤ 2.



114 A. NOWICKI AND I. NOWOSAD

In this section we describe all Kadison algebras of the form k[t]/(f),
where k is a field of characteristic zero and (f) is the principal ideal generated
by a polynomial f ∈ k[t]r k. The above proposition is the only fact, known
to the authors, concerning this problem.

Assume that f ∈ k[t]r k and let f = cfn1
1 . . . fnrr be the decomposition

of f into irreducible polynomials. Here 0 6= c ∈ k, f1, . . . , fr are pairwise
different (up to association) prime polynomials from k[t], and n1, . . . , nr are
positive integers. Then, by the Chinese Remainder Theorem, the algebra
k[t]/(f) is isomorphic to the product algebra k[t]/(fn1

1 ) × . . . × k[t]/(fnrr ).
The following lemma is easy to prove.

Lemma 3.17. Let A1, . . . , Ar be k-algebras. Then the product A1×. . .×Ar
is a Kadison algebra if and only if all A1, . . . , Ar are Kadison algebras.

By the above lemma we can restrict our investigations to the case when
the polynomial f is a power of an irreducible polynomial in k[t].

Let n ≥ 1 and let A = k[t]/(fn), where f is an irreducible polynomial
from k[t]. Put m := deg f .

Consider a field extension k ⊂ L = k[ξ], where ξ ∈ Lr k is a root of f .
Every element v ∈ L has a unique representation of the form

v = am−1ξ
m−1 + . . .+ a1ξ + a0

for some a0, . . . , am−1 ∈ k. Let γ : L → k be the mapping defined by
γ(v) = a0 for all v ∈ L. This mapping is of course k-linear.

Lemma 3.18. For any polynomial w ∈ k[t] there exist polynomials h, g ∈
k[t] such that γ(w(ξ))− hw = gfn−1.

Proof. If γ(w(ξ)) = 0, then we put h := fn−1 and g := −w. Assume
now that γ(w(ξ)) 6= 0. Then it is clear that gcd(w, fn−1) = 1. Hence, there
exist polynomials a, b ∈ k[t] such that 1 = aw + bfn−1. Multiplying this
equality by γ(w(ξ)) we obtain γ(w(ξ))− hw = gfn−1, where h = γ(w(ξ))a
and g = γ(w(ξ))b.

Theorem 3.19. Let A = k[t]/(fn), where k is a field of characteristic
zero, n ≥ 1, and f ∈ k[t] is an irreducible polynomial of degree m ≥ 1.
Then:

(1) if n = 1, then A is a Kadison algebra;
(2) if m = 1, then A is a Kadison algebra if and only if n ≤ 2;
(3) if m ≥ 2 and n ≥ 2, then A is not a Kadison algebra.

Proof. If n = 1, then the algebra A is a field and the field extension
k ⊆ A is algebraic. Since char(k) = 0, A has no nonzero derivations and this
implies that the zero mapping is a unique local derivation of A. So, in this
case, A is a Kadison algebra.
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If m = 1, then A is isomorphic to the algebra k[t]/(tn), so (2) is a
consequence of Proposition 3.16.

Assume now that m ≥ 2 and n ≥ 2. Consider the mapping α : A → A
defined by

α(u+ (fn)) = γ(u′(ξ))f + (fn)

for all u ∈ k[t], where u′ denotes the derivative of u.
Note that α is well defined. In fact, if u+(fn) = v+(fn), where u, v ∈ k[t],

then u−v = fnh for some h ∈ k[t] and then u′−v′ = nfn−1f ′h+fnh′ = fh1,
where h1 ∈ k[t]. Hence, u′(ξ) − v′(ξ) = f(ξ)h1(ξ) = 0h1(ξ) = 0, that is,
u′(ξ) = v′(ξ), and this implies that γ(u′(ξ))f + (fn) = γ(v′(ξ))f + (fn).

It is clear that α is k-linear. We will show that α is a local derivation
of A. Let u ∈ k[t]. If α(u+ (fn)) = 0, then α(u+ (fn)) = d(u+ (fn)), where
d is the zero derivation of A. Assume now that α(u + (fn)) 6= 0. Then, by
Lemma 3.18 applied to the polynomial u′,

γ(u′(ξ))− hu′ = gfn−1

for some h, g ∈ k[t]. Multiplying this equality by f we deduce that the
element α(u+ (fn))− hfu′ belongs to (fn).

Let d : k[t] → k[t] be a derivation such that d(t) = hf . Since d((fn)) ⊆
(fn), this derivation induces a derivation d : A→ A such that d(t+ (fn)) =
hf + (fn). Then d(u+ (fn)) = u′hf + (fn) = α(u + (fn)). Therefore, α is
a local derivation.

Suppose that α is a derivation of A. Then

α(t2 + (fn)) = (2t+ (fn))α(t+ (fn)) = (2t+ (fn))(f + (fn))

= 2tf + (fn).

But, by the definition of α, α(t2 + (fn)) = 0 + (fn). So, we have a contra-
diction: 2tf ∈ (fn). Thus, α is not a derivation.
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