COLLOQUIUM MATHEMATICUM

VECTOR-VALUED ERGODIC THEOREMS FOR MULTIPARAMETER ADDITIVE PROCESSES II

BY
RYOTARO SATO (Okayama)

Abstract

Previously we obtained stochastic and pointwise ergodic theorems for a continuous d-parameter additive process F in $L_{1}((\Omega, \Sigma, \mu) ; X)$, where X is a reflexive Banach space, under the condition that F is bounded. In this paper we improve the previous results by considering the weaker condition that the function $W(\cdot)=\operatorname{ess} \sup \{\|F(I)(\cdot)\|$: $\left.I \subset[0,1)^{d}\right\}$ is integrable on Ω.

1. Introduction and result. Let X be a reflexive Banach space, and (Ω, Σ, μ) be a σ-finite measure space. For $1 \leq p \leq \infty$, let $L_{p}(\Omega ; X)=$ $L_{p}((\Omega, \Sigma, \mu) ; X)$ denote the usual Banach space of all X-valued strongly measurable functions f on Ω with the norm

$$
\begin{array}{rll}
\|f\|_{p} & :=\left(\int\|f(\omega)\|^{p} d \mu(\omega)\right)^{1 / p}<\infty & \text { if } 1 \leq p<\infty \\
\|f\|_{\infty} & :=\operatorname{ess} \sup \{\|f(\omega)\|: \omega \in \Omega\}<\infty & \text { if } p=\infty
\end{array}
$$

If $d \geq 1$ is an integer, we let $\mathbb{R}_{d}^{+}=\left\{u=\left(u_{1}, \ldots, u_{d}\right): u_{i} \geq 0,1 \leq i \leq d\right\}$ and $\mathbf{P}_{d}=\left\{u=\left(u_{1}, \ldots, u_{d}\right): u_{i}>0,1 \leq i \leq d\right\}$. Further, \mathcal{I}_{d} is the class of all bounded intervals I in \mathbb{R}_{d}^{+}of the form

$$
I=\left[a_{1}, b_{1}\right) \times \ldots \times\left[a_{d}, b_{d}\right),
$$

where $0 \leq a_{i}<b_{i}<\infty, 1 \leq i \leq d$ (we note that \mathcal{I}_{d} is somewhat different from that of [12], but this does not matter), and λ_{d} denotes the d-dimensional Lebesgue measure. In this paper, we consider a strongly measurable d-parameter semigroup $T=\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$of linear contractions on $L_{1}(\Omega ; X)$. Thus, T is strongly continuous on \mathbf{P}_{d} (cf. Lemma VIII.7.9 in [5]). A linear operator S defined on $L_{1}(\Omega ; X)$ is said to have a majorant P defined on $L_{1}(\Omega ; \mathbb{R})$ if P is a positive linear operator on $L_{1}(\Omega ; \mathbb{R})$ with the property that $\|S f(\omega)\| \leq P\|f(\cdot)\|(\omega)$ holds for almost all $\omega \in \Omega$, for every

[^0]$f \in L_{1}(\Omega ; X)$. As in [12], we will assume below that each $T(u), u \in \mathbb{R}_{d}^{+}$, has a contraction majorant $P(u)$ defined on $L_{1}(\Omega ; \mathbb{R})$.

By a (continuous d-parameter) process F in $L_{1}(\Omega ; X)$ we mean a set function $F: \mathcal{I}_{d} \rightarrow L_{1}(\Omega ; X)$. It is called bounded if

$$
\begin{equation*}
K(F):=\sup \left\{\|F(I)\|_{1} / \lambda_{d}(I): I \in \mathcal{I}_{d}\right\}<\infty \tag{1}
\end{equation*}
$$

and an additive process (with respect to T) if it satisfies the following conditions:
(i) $T(u) F(I)=F(u+I)$ for all $u \in \mathbb{R}_{d}^{+}$and $I \in \mathcal{I}_{d}$,
(ii) if $I_{1}, \ldots, I_{k} \in \mathcal{I}_{d}$ are pairwise disjoint and $I=\bigcup_{i=1}^{k} I_{i} \in \mathcal{I}_{d}$, then $F(I)=\sum_{i=1}^{k} F\left(I_{i}\right)$.

For example, if $F(I)=\int_{I} T(u) f d u$ for all $I \in \mathcal{I}_{d}$, where f is a fixed function in $L_{1}(\Omega ; X)$, then $F(I)$ defines a bounded additive process in $L_{1}(\Omega ; X)$. There are many bounded additive processes in $L_{1}(\Omega ; X)$ which cannot have this integral form (cf. [3]).

It is immediate that if F is a bounded additive process in $L_{1}(\Omega ; X)$, then the mapping $\mathbf{P}_{d} \ni u=\left(u_{1}, \ldots, u_{d}\right) \mapsto F\left(\left[0, u_{1}\right) \times \ldots \times\left[0, u_{d}\right)\right) \in L_{1}(\Omega ; X)$ becomes continuous, the function

$$
\begin{equation*}
W(\cdot):=\operatorname{ess} \sup \left\{\|F(I)(\cdot)\|: I \subset[0,1)^{d}\right\} \tag{2}
\end{equation*}
$$

belongs to $L_{1}^{+}(\Omega ; \mathbb{R})$ and we have $\|W\|_{1} \leq K(F)$. In fact, we can take a sequence $\left\{I_{n}: n \geq 1\right\}$ of intervals with $I_{n} \subset[0,1)^{d}$ for each $n \geq 1$ satisfying

$$
W(\omega)=\sup _{n \geq 1}\left\|F\left(I_{n}\right)(\omega)\right\| \quad \text { for almost all } \omega \in \Omega
$$

Then take a sequence $\left\{\mathbf{D}_{n}: n \geq 1\right\}$ of finite decompositions of the interval $[0,1)^{d}$ such that each \mathbf{D}_{n} consists of intervals $\left\{J_{1}^{n}, \ldots, J_{k(n)}^{n}\right\}$ in \mathcal{I}_{d} and $I_{n}=\bigcup_{i=1}^{l(n)} J_{i}^{n}$ for some $l(n)$, with $1 \leq l(n) \leq k(n)$, and \mathbf{D}_{n+1} is a refinement of \mathbf{D}_{n} for every $n \geq 1$. It follows that

$$
\left\|F\left(I_{n}\right)(\omega)\right\| \leq \sum_{i=1}^{l(n)}\left\|F\left(J_{i}^{n}\right)(\omega)\right\| \leq \sum_{i=1}^{k(n)}\left\|F\left(J_{i}^{n}\right)(\omega)\right\|
$$

for almost all $\omega \in \Omega$. Putting $V_{n}(\omega)=\sum_{i=1}^{k(n)}\left\|F\left(J_{i}^{n}\right)(\omega)\right\|$ for $\omega \in \Omega$, we then get $0 \leq V_{n}(\omega) \leq V_{n+1}(\omega)$ on Ω, and

$$
\left\|V_{n}\right\|_{1} \leq \sum_{i=1}^{k(n)} K(F) \lambda_{d}\left(J_{i}^{n}\right)=K(F)
$$

Hence, the function $V(\omega)=\lim _{n \rightarrow \infty} V_{n}(\omega)$ satisfies $0 \leq W(\omega) \leq V(\omega)$ on Ω, and

$$
\|W\|_{1} \leq\|V\|_{1}=\lim _{n \rightarrow \infty}\left\|V_{n}\right\|_{1} \leq K(F)<\infty
$$

On the other hand, as shown by examples in $\S 4$, there are many unbounded additive processes F in $L_{1}(\Omega ; X)$ for which the functions W defined by (2) are integrable on Ω. Since we considered in [12] bounded additive processes, the theorems there cannot be applied to such unbounded additive processes F.

Here we recall that the condition $W \in L_{1}^{+}(\Omega ; \mathbb{R})$ was originally introduced by Kingman in [8] to obtain his pointwise ergodic theorem for a continuous 1-parameter additive or subadditive separable process, because his theorem fails to hold in the general case. (See also Akcoglu and Krengel [4].) In view of these facts, the author thinks that obtaining our ergodic theorems under the condition $W \in L_{1}^{+}(\Omega ; \mathbb{R})$ is preferable. This is the starting point for the study in this paper.

In the following, q - $\lim _{\alpha \rightarrow \infty}$ and q-lim $\sup _{\alpha \rightarrow \infty}$ will mean that these limits are taken as α tends to infinity along a countable dense subset Q of the positive real numbers. We may assume that Q includes the positive rational numbers. A net $\left(f_{\alpha}\right)$ of strongly measurable X-valued functions on Ω is said to converge stochastically to a strongly measurable X-valued function f_{∞} on Ω if for every $\varepsilon>0$ and $A \in \Sigma$ with $\mu(A)<\infty$ we have

$$
\lim _{\alpha} \mu\left(A \cap\left\{\omega:\left\|f_{\alpha}(\omega)-f_{\infty}(\omega)\right\|>\varepsilon\right\}\right)=0
$$

The purpose of this paper is to prove the following ergodic theorem, which improves Theorem 1 of [12].

Theorem 3. Let X be a reflexive Banach space and $T=\{T(u)$: $\left.u \in \mathbb{R}_{d}^{+}\right\}$be a semigroup of linear contractions on $L_{1}(\Omega ; X)$, strongly continuous on \mathbf{P}_{d}, such that each $T(u), u \in \mathbb{R}_{d}^{+}$, has a contraction majorant $P(u)$ defined on $L_{1}(\Omega ; \mathbb{R})$. Let F be a (continuous d-parameter) additive process in $L_{1}(\Omega ; X)$ with respect to T.
(I) If F is measurable in the sense that the vector-valued function $u=\left(u_{1}, \ldots, u_{d}\right) \mapsto F\left(\left[0, u_{1}\right) \times \ldots \times\left[0, u_{d}\right)\right)$ from \mathbf{P}_{d} to $L_{1}(\Omega ; X)$ is strongly measurable, then the averages $\alpha^{-d} F\left([0, \alpha)^{d}\right)$ converge stochastically to a function F_{∞} in $L_{1}(\Omega ; X)$, invariant under T, as α tends to infinity.
(II) If the function W defined by (2) is integrable on Ω, and the operators $P_{i}=P\left(e^{i}\right)$, with e^{i} the ith unit vector in \mathbb{R}_{d}^{+}, satisfy the additional hypothesis

$$
\begin{equation*}
\left\|P_{i}\right\|_{p} \leq 1 \quad \text { for some } p>1 \tag{3}
\end{equation*}
$$

then there exists a function F_{∞} in $L_{1}(\Omega ; X)$, invariant under T, such that

$$
\begin{equation*}
F_{\infty}(\omega)=q-\lim _{\alpha \rightarrow \infty} \alpha^{-d} F\left([0, \alpha)^{d}\right)(\omega) \quad \text { for almost all } \omega \in \Omega \tag{4}
\end{equation*}
$$

In Theorem 1 of [12], we saw the stochastic convergence for a bounded additive process F in $L_{1}(\Omega ; X)$. But, as shown by examples in $\S 4$, there are measurable additive processes F in $L_{1}(\Omega ; X)$ which are not bounded.

Therefore, Theorem 3 generalizes Theorem 1 of [12]. Furthermore, the hypothesis (3) is strictly weaker than the hypothesis $\left\|P_{i}\right\|_{\infty} \leq 1$ for $1 \leq i \leq d$; and the latter hypothesis was assumed in the second part of Theorem 1 of [12]. Thus, in this sense, Theorem 3 generalizes Theorem 1 of [12] as well.
2. Lemmas. To prove Theorem 3 we need the following two lemmas.

LEmma 1. Let h be a real-valued function on \mathcal{I}_{d} such that
(i) $h(u+I) \leq h(I)$ for all $u \in \mathbb{R}_{d}^{+}$and $I \in \mathcal{I}_{d}$,
(ii) $h(I) \leq \sum_{i=1}^{k} h\left(I_{i}\right)$ whenever $I_{1}, \ldots, I_{k} \in \mathcal{I}_{d}$ are pairwise disjoint and satisfy $I=\bigcup_{i=1}^{k} I_{i} \in \mathcal{I}_{d}$.

If the function \widetilde{h} on \mathbf{P}_{d} defined by $\widetilde{h}(u)=h\left(\left[0, u_{1}\right) \times \ldots \times\left[0, u_{d}\right)\right)$ for $u=$ $\left(u_{1}, \ldots, u_{d}\right) \in \mathbf{P}_{d}$ is Lebesgue measurable, then it is bounded above in any compact subset $I^{*}=\left[\alpha_{1}, \beta_{1}\right] \times \ldots \times\left[\alpha_{d}, \beta_{d}\right]$ of \mathbf{P}_{d}.

Proof. This is an adaptation of the argument of Theorem 7.4.1 of [6]. Let $a=\left(a_{1}, \ldots, a_{d}\right) \in \mathbf{P}_{d}$, and let ζ be a real number such that $\zeta \leq \widetilde{h}(a)$. We denote by $(0, a)$ the open interval $\left(0, a_{1}\right) \times \ldots \times\left(0, a_{d}\right)$ in \mathbf{P}_{d}. Let $x=$ $\left(x_{1}, \ldots, x_{d}\right) \in(0, a)$. Then, since $\left[0, a_{i}\right)=\left[0, x_{i}\right) \cup\left[x_{i}, a_{i}\right)$ for $1 \leq i \leq d$, we see that there are pairwise disjoint intervals $J_{1}, \ldots, J_{2^{d}}$ in \mathcal{I}_{d} such that

$$
[0, a)=\left[0, a_{1}\right) \times \ldots \times\left[0, a_{d}\right)=\bigcup_{j=1}^{2^{d}} J_{j}
$$

where J_{j} has the form

$$
J_{j}=[\alpha(j), \beta(j))=\left[\alpha(j)_{1}, \beta(j)_{1}\right) \times \ldots \times\left[\alpha(j)_{d}, \beta(j)_{d}\right)
$$

for some $\alpha(j)=\left(\alpha(j)_{1}, \ldots, \alpha(j)_{d}\right) \in \mathbb{R}_{d}^{+}$and $\beta(j)=\left(\beta(j)_{1}, \ldots, \beta(j)_{d}\right)$ $\in \mathbf{P}_{d}$, and we have $\left[\alpha(j)_{i}, \beta(j)_{i}\right)=\left[0, x_{i}\right)$ or $\left[x_{i}, a_{i}\right)$ for $1 \leq i \leq d$. Condition (ii) implies that

$$
\zeta \leq \widetilde{h}(a)=h([0, a)) \leq \sum_{j=1}^{2^{d}} h\left(J_{j}\right)
$$

Since each J_{j} can be written as $J_{j}=u(j)+[0, v(j))$ with $u(j) \in \mathbb{R}_{d}^{+}$and $v(j) \in(0, a)$, it follows from condition (i) that

$$
\zeta \leq \widetilde{h}(a) \leq \sum_{j=1}^{2^{d}} \widetilde{h}(v(j))
$$

whence there exists $j, 1 \leq j \leq 2^{d}$, such that $\zeta / 2^{d} \leq \widetilde{h}(v(j))$. If we write $E(\zeta):=\left\{y: y \in(0, a), \widetilde{h}(y) \geq \zeta / 2^{d}\right\}$, then $v(j) \in E(\zeta)$ follows for this j. And, by the definition of $v(j)$, we see that for each i with $1 \leq i \leq d$, it
follows that

$$
v(j)_{i}=x_{i} \quad \text { or } \quad v(j)_{i}=a_{i}-x_{i} .
$$

That is, $x_{i}=v(j)_{i}$ or $x_{i}=a_{i}-v(j)_{i}$; consequently,

$$
(0, a)=\bigcup\{E(K): K \subset\{1, \ldots, d\}\}
$$

where $E(K)$ denotes the subset of $(0, a)$ corresponding to K as follows: $E(K)$ is the set consisting of the elements $\left(x_{1}, \ldots, x_{d}\right) \in(0, a)$ such that there exists $y=\left(y_{1}, \ldots, y_{d}\right) \in E(\zeta)$ satisfying $x_{i}=y_{i}$ when $i \in K$, and $x_{i}=a_{i}-y_{i}$ when $i \notin K$. Since $\lambda_{d}(E(K))=\lambda_{d}(E(\zeta))$ for every $K \subset\{1, \ldots, d\}$, it follows that

$$
\prod_{i=1}^{d} a_{i}=\lambda_{d}((0, a)) \leq 2^{d} \lambda_{d}(E(\zeta))
$$

If the conclusion of the lemma were not true, i.e., if \widetilde{h} were not bounded above in I^{*}, then there would exist $a(n) \in I^{*}, n \geq 1$, such that $\widetilde{h}(a(n)) \geq n$ for every $n \geq 1$. Then, since $\alpha_{i} \leq a(n)_{i} \leq \beta_{i}$ for $1 \leq i \leq d$, it follows from the above fact that the set

$$
F(n):=\left\{x: x \in\left(0, \beta_{1}\right) \times \ldots \times\left(0, \beta_{d}\right), \widetilde{h}(x) \geq n / 2^{d}\right\}
$$

must satisfy $\lambda_{d}(F(n)) \geq 2^{-d} \prod_{i=1}^{d} \alpha_{i}>0$, whence \widetilde{h} would be equal to ∞ on a set of positive Lebesgue measure. This is a contradiction, and hence the proof is complete.

Lemma 2. Let X be a reflexive Banach space and T_{1}, \ldots, T_{d} be commuting linear contractions on $L_{1}(\Omega ; X)$. Suppose P_{1}, \ldots, P_{d} are (not necessarily commuting) positive linear contractions on $L_{1}(\Omega ; \mathbb{R})$ such that $\left\|T_{i} f(\omega)\right\| \leq$ $P_{i}\|f(\cdot)\|(\omega)$ for almost all $\omega \in \Omega$, for every $f \in L_{1}(\Omega ; X)$ and $1 \leq i \leq d$. If there exists $p>1$ such that $\left\|P_{i}\right\|_{p} \leq 1$ for every $1 \leq i \leq d$, then the ergodic averages

$$
A_{n}\left(T_{1}, \ldots, T_{d}\right) f:=A_{n}\left(T_{1}\right) \ldots A_{n}\left(T_{d}\right) f
$$

where

$$
A_{n}\left(T_{i}\right):=\frac{1}{n} \sum_{k=0}^{n-1} T_{i}^{k}
$$

converge a.e. on Ω for all $f \in L_{1}(\Omega ; X)$ as n tends to infinity.
Proof. As in the proof of Theorem 1 of [12], let U denote the Brunel operator corresponding to P_{1}, \ldots, P_{d} (see Theorem 6.3.4 of [9]). Thus there exists a constant $C_{d}>0$, depending only on d, and a nondecreasing sequence $d(n), n=1,2, \ldots$, of positive integers, with $\lim _{n \rightarrow \infty} d(n)=\infty$, such that if $f \in L_{1}(\Omega ; X)$ then

$$
\begin{equation*}
\left\|A_{n}\left(T_{1}, \ldots, T_{d}\right) f(\omega)\right\| \leq C_{d} A_{d(n)}(U)\|f(\cdot)\|(\omega) \tag{5}
\end{equation*}
$$

for almost all $\omega \in \Omega$. Since $\left\|P_{i}\right\|_{p} \leq 1$ by hypothesis, U is a positive linear contraction on $L_{1}(\Omega ; \mathbb{R})$ such that $\|U\|_{p} \leq 1$. We may assume here that $1<p<\infty$, by the Riesz convexity theorem. Then the ergodic theorem of Akcoglu and Chacon [2] implies that the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} U^{k} g
$$

exists a.e. on Ω for all $g \in L_{1}(\Omega ; \mathbb{R})$, whence by (5) the maximal function

$$
\begin{equation*}
f^{\sharp}(\omega):=\sup _{n \geq 1}\left\|A_{n}\left(T_{1}, \ldots, T_{d}\right) f(\omega)\right\| \tag{6}
\end{equation*}
$$

satisfies $f^{\sharp}(\omega)<\infty$ for almost all $\omega \in \Omega$, for all $f \in L_{1}(\Omega ; X)$. Thus, by Banach's convergence principle, it suffices to show that the limit $\lim _{n \rightarrow \infty} A_{n}\left(T_{1}, \ldots, T_{d}\right) f$ exists a.e. on Ω for a function f in a dense subset M of $L_{1}(\Omega ; X)$.

To prove this we notice that Akcoglu's dominated ergodic theorem [1] together with an induction argument (cf. e.g. [10]) implies that if $g \in L_{p}(\Omega ; \mathbb{R})$, then the averages

$$
A_{n_{1}}\left(P_{1}\right) \ldots A_{n_{d}}\left(P_{d}\right) g
$$

converge a.e. on Ω and in L_{p}-norm as n_{1}, \ldots, n_{d} tend to infinity independently; and the maximal function

$$
g^{*}(\omega):=\sup _{n_{1}, \ldots, n_{d} \geq 1} A_{n_{1}} \ldots A_{n_{d}}|g|(\omega)
$$

satisfies $\left\|g^{*}\right\|_{p} \leq(p /(p-1))^{d}$. Since the reflexivity of X implies that $L_{p}(\Omega ; X)$ is a reflexive Banach space, an easy modification of the argument of Theorem 3 of [10] shows that if $f \in L_{p}(\Omega ; X)$, then the averages

$$
A_{n_{1}}\left(T_{1}\right) \ldots A_{n_{d}}\left(T_{d}\right) f
$$

converge a.e. on Ω and in L_{p}-norm as n_{1}, \ldots, n_{d} tend to infinity independently. (Incidentally, the function f^{\sharp} defined by (6) belongs to $L_{p}^{+}(\Omega ; \mathbb{R})$ when $f \in L_{p}(\Omega ; X)$, because $f^{\sharp}(\omega) \leq\|f(\cdot)\|^{*}(\omega)$ a.e. on Ω and $\|f(\cdot)\| \in$ $\left.L_{p}^{+}(\Omega ; \mathbb{R}).\right)$

Consequently, if $f \in L_{1}(\Omega ; X) \cap L_{p}(\Omega ; X)$, then the limit $A_{n}\left(T_{1}, \ldots, T_{d}\right) f$ exists a.e. on Ω. This completes the proof, since $M:=L_{1}(\Omega ; X) \cap L_{p}(\Omega ; X)$ is a dense subset of $L_{1}(\Omega ; X)$.

3. Proof of Theorem 3

Proof of (I). Since each $P_{i}, 1 \leq i \leq d$, is a contraction majorant of the operator $T_{i}=T\left(e^{i}\right)$, it follows from the proof of Theorem 1 of [12] that the averages $n^{-d} F\left([0, n)^{d}\right)$, where $n \in\{1,2, \ldots\}$, converge stochastically to a function F_{∞} in $L_{1}(\Omega ; X)$ as n tends to infinity. The invariance of F_{∞} under
the semigroup $T=\{T(u)\}$ follows, as in Theorem 1 of [12], when we see that $\alpha^{-d} F\left([0, \alpha)^{d}\right)$ converges stochastically to F_{∞} as $\alpha \rightarrow \infty$. Thus we only prove its stochastic convergence below.

For $\alpha>0$, let $n=n(\alpha)$ denote the greatest integer not exceeding α. If $\alpha>2$, then, since $n-1=n(\alpha)-1 \geq 1$, it follows that

$$
\begin{aligned}
\alpha^{-d} F\left([0, n-1)^{d}\right)-F_{\infty}= & {\left[((n-1) / \alpha)^{d}-1\right](n-1)^{-d} F\left([0, n-1)^{d}\right) } \\
& +\left[(n-1)^{-d} F\left([0, n-1)^{d}\right)-F_{\infty}\right]=: \mathrm{I}(\alpha)+\operatorname{II}(\alpha),
\end{aligned}
$$

and for every $\varepsilon>0$ and $A \in \Sigma$ with $\mu(A)<\infty$ we have

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \mu(A \cap\{\omega:\|\operatorname{II}(\alpha)(\omega)\|>\varepsilon\})=0 \tag{7}
\end{equation*}
$$

Thus we can choose a constant $\Gamma>0$ and an integer $N \geq 2$ so that if $n=n(\alpha) \geq N$, then

$$
\mu\left(A \cap\left\{\omega:\left\|(n-1)^{-d} F\left([0, n-1)^{d}\right)(\omega)\right\|>\Gamma\right\}\right)<\varepsilon .
$$

By this and the fact that $\lim _{\alpha \rightarrow \infty}((n-1) / \alpha)^{d}=1$, we find

$$
\limsup _{\alpha \rightarrow \infty} \mu(A \cap\{\omega:\|\mathrm{I}(\alpha)(\omega)\|>\varepsilon\})<\varepsilon
$$

This proves the stochastic convergence of $\alpha^{-d} F\left([0, n-1)^{d}\right)$ to F_{∞} as $\alpha \rightarrow \infty$. Therefore, it suffices to show that the functions

$$
\operatorname{III}(\alpha):=\alpha^{-d} F\left([0, \alpha)^{d}\right)-\alpha^{-d} F\left([0, n-1)^{d}\right), \quad \text { with } n=n(\alpha)
$$

converge stochastically to 0 as $\alpha \rightarrow \infty$.
To see this, we use Lemma 1 as follows. First, since $T=\{T(u)\}$ is a contraction semigroup on $L_{1}(\Omega ; X)$ by hypothesis, the real-valued function h on \mathcal{I}_{d} defined by

$$
h(I)=\|F(I)\|_{1} \quad \text { for } I \in \mathcal{I}_{d}
$$

satisfies conditions (i) and (ii) of Lemma 1. By the measurability of F, the function \widetilde{h} of Lemma 1 becomes Lebesgue measurable. Thus we can apply Lemma 1 to infer that there exists a constant $C>0$ such that $0 \leq \widetilde{h}(u) \leq C$ for all $u \in I^{*}:=\left[2^{-1}, 2\right] \times \ldots \times\left[2^{-1}, 2\right] \subset \mathbf{P}_{d}$. It is elementary that if $\alpha>2$, then since $n-1=n(\alpha)-1 \geq 1$, the set $[0, \alpha)^{d} \backslash[0, n-1)^{d}$ has a decomposition $\left\{J_{j}: 1 \leq j \leq n^{d}-(n-1)^{d}\right\}$ into intervals in \mathcal{I}_{d} such that each J_{j} has the form

$$
J_{j}=u(j)+[0, v(j))
$$

for some $u(j) \in \mathbb{R}_{d}^{+}$and $v(j) \in I^{*}$. Therefore we deduce that

$$
\begin{aligned}
\|\operatorname{II}(\alpha)\|_{1} & =\left\|\alpha^{-d} \sum\left\{F\left(J_{j}\right): 1 \leq j \leq n^{d}-(n-1)^{d}\right\}\right\|_{1} \\
& \leq \alpha^{-d} \sum\left\{\widetilde{h}(v(j)): 1 \leq j \leq n^{d}-(n-1)^{d}\right\} \\
& \leq\left(1-\left(1-n^{-1}\right)^{d}\right) \cdot C \rightarrow 0
\end{aligned}
$$

as $\alpha \rightarrow \infty$, whence the desired conclusion follows.

Proof of (II). Here we assume that $W \in L_{1}^{+}(\Omega ; \mathbb{R})$ and that the operators $P_{i}=P\left(e^{i}\right), 1 \leq i \leq d$, satisfy (3). We may assume as before that $1<p<\infty$. Since

$$
n^{-d} F\left([0, n)^{d}\right)=A_{n}\left(T_{1}, \ldots, T_{d}\right) F\left([0,1)^{d}\right)
$$

Lemma 2 implies that there exists a function F_{∞} in $L_{1}(\Omega ; X)$ such that

$$
\begin{equation*}
F_{\infty}(\omega)=\lim _{n \rightarrow \infty} n^{-d} F\left([0, n)^{d}\right)(\omega) \quad \text { for almost all } \omega \in \Omega \tag{8}
\end{equation*}
$$

Since F_{∞} is invariant under T_{1}, \ldots, T_{d}, we obtain the invariance of F_{∞} under the semigroup $T=\{T(u)\}$ as soon as we show that $F_{\infty}(\omega)=$ q - $\lim _{\alpha \rightarrow \infty} \alpha^{-d} F\left([0, \alpha)^{d}\right)(\omega)$ for almost all $\omega \in \Omega$. To prove this convergence result, we now introduce a new set function $F^{1}: \mathcal{I}_{d} \rightarrow L_{1}^{+}(\Omega ; \mathbb{R})$ as follows.

For $I \in \mathcal{I}_{d}$ we define

$$
\begin{equation*}
F^{1}(I)(\cdot):=\operatorname{ess} \sup \{\|F(J)(\cdot)\|: J \subset I\} \tag{9}
\end{equation*}
$$

Since $W=F^{1}\left([0,1)^{d}\right) \in L_{1}^{+}(\Omega ; \mathbb{R})$ by hypothesis, it follows that
(i) $F^{1}(I) \in L_{1}^{+}(\Omega ; \mathbb{R})$,
(ii) $I \subset J$ implies $F^{1}(I)(\omega) \leq F^{1}(J)(\omega)$ for almost all $\omega \in \Omega$,
(iii) $F^{1}(u+I)(\omega) \leq P(u) F^{1}(I)(\omega)$ for almost all $\omega \in \Omega$, for every $u \in \mathbb{R}_{d}^{+}$ and $I \in \mathcal{I}_{d}$,
(iv) if $I_{1}, \ldots, I_{k} \in \mathcal{I}_{d}$ are pairwise disjoint and $I=\bigcup_{i=1}^{k} I_{i} \in \mathcal{I}_{d}$, then $F^{1}(I)(\omega) \leq \sum_{i=1}^{k} F^{1}\left(I_{i}\right)(\omega)$ for almost all $\omega \in \Omega$.

As in (I), we let $n=n(\alpha)$ for $\alpha>0$. Then for almost all $\omega \in \Omega$ we have

$$
\begin{array}{rl}
\| \alpha^{-d} & F\left([0, \alpha)^{d}\right)(\omega)-n^{-d} F\left([0, n)^{d}\right)(\omega) \| \\
\leq & \alpha^{-d}\left\|F\left([0, \alpha)^{d}\right)(\omega)-F\left([0, n)^{d}\right)(\omega)\right\|+\left(n^{-d}-\alpha^{-d}\right)\left\|F\left([0, n)^{d}\right)(\omega)\right\| \\
\leq & n^{-d} \sum\left\{F^{1}\left(u+[0,1)^{d}\right)(\omega): u \in\{0,1, \ldots, n\}^{d} \backslash\{0,1, \ldots, n-1\}^{d}\right\} \\
& +\left(1-(n / \alpha)^{d}\right) n^{-d}\left\|F\left([0, n)^{d}\right)(\omega)\right\|=: \operatorname{IV}(\alpha)(\omega)+\mathrm{V}(\alpha)(\omega)
\end{array}
$$

and (8) implies that

$$
\begin{equation*}
q-\lim _{\alpha \rightarrow \infty} V(\alpha)(\omega)=0 \quad \text { for almost all } \omega \in \Omega \tag{10}
\end{equation*}
$$

Therefore the proof will be completed if we show that q - $\lim _{\alpha \rightarrow \infty} \operatorname{IV}(\alpha)(\omega)$ $=0$ for almost all $\omega \in \Omega$.

To see this, let ε be a positive real number. Take a function $g \in L_{1}^{+}(\Omega ; \mathbb{R})$ $\cap L_{p}^{+}(\Omega ; \mathbb{R})$ so that

$$
\begin{equation*}
g \leq W=F^{1}\left([0,1)^{d}\right) \quad \text { and } \quad\|W-g\|_{1}<\varepsilon \tag{11}
\end{equation*}
$$

Using this g, we define a function $F_{g}(I)$ in $L_{1}(\Omega ; X)$ for $I \in \mathcal{I}_{d}$, with $I \subset[0,1)^{d}$, by

$$
F_{g}(I)(\omega):= \begin{cases}F(I)(\omega) & \text { if }\|F(I)(\omega)\| \leq g(\omega), \\ g(\omega) \cdot \operatorname{sgn} F(I)(\omega) & \text { otherwise },\end{cases}
$$

where $\operatorname{sgn} x=x /\|x\|$ if $0 \neq x \in X$, and $\operatorname{sgn} 0=0$. Thus we have

$$
\left\|F_{g}(I)(\omega)\right\| \leq g(\omega) \quad \text { and } \quad\left\|F(I)(\omega)-F_{g}(I)(\omega)\right\| \leq W(\omega)-g(\omega) \quad \text { on } \Omega,
$$ where the last inequality comes from the fact that $\|F(I)(\omega)\| \leq W(\omega)$ on Ω. If

$$
\begin{equation*}
u=\left(n_{1}, \ldots, n_{d}\right) \in\{0,1, \ldots\}^{d} \quad \text { and } \quad u \neq(0, \ldots, 0), \tag{12}
\end{equation*}
$$

then let $k=\sum_{l=1}^{d} n_{l}(\geq 1)$ and denote by $\mathcal{S}(u)$ the set of all elements $(i(1), \ldots, i(k)) \in\{1, \ldots, d\}^{k}$ such that $n_{l}=\operatorname{card}\{m: i(m)=l, 1 \leq m \leq k\}$ for each $1 \leq l \leq d(\operatorname{card} A$ is the number of elements of $A)$. Since
$F(u+I)=T_{1}^{n_{1}} \ldots T_{d}^{n_{d}} F(I)=T_{1}^{n_{1}} \ldots T_{d}^{n_{d}} F_{g}(I)+T_{1}^{n_{1}} \ldots T_{d}^{n_{d}}\left(F(I)-F_{g}(I)\right)$, and T_{1}, \ldots, T_{d} commute with each other, it follows that if $(i(1), \ldots, i(k)) \in$ $\mathcal{S}(u)$, then

$$
\|F(u+I)(\omega)\| \leq P_{1}^{n_{1}} \ldots P_{d}^{n_{d}} g(\omega)+P_{i(1)} \ldots P_{i(k)}(W-g)(\omega)
$$

for almost all $\omega \in \Omega$. Therefore if we put, for $u=\left(n_{1}, \ldots, n_{d}\right) \in\{0,1, \ldots\}^{d} \backslash$ $\{(0, \ldots, 0)\}$,

$$
\begin{align*}
& (W-g ; u)(\omega) \tag{13}\\
& \quad:=\min \left\{P_{i(1)} \ldots P_{i(k)}(W-g)(\omega):(i(1), \ldots, i(k)) \in \mathcal{S}(u)\right\},
\end{align*}
$$

then, by the definition of $F^{1}\left(u+[0,1)^{d}\right)$ (cf. (9)), we find

$$
\begin{equation*}
F^{1}\left(u+[0,1)^{d}\right)(\omega) \leq P_{1}^{n_{1}} \ldots P_{d}^{n_{d}} g(\omega)+(W-g ; u)(\omega) \tag{14}
\end{equation*}
$$

for almost all $\omega \in \Omega$. Thus, by putting $(W-g ;(0, \ldots, 0))(\omega)=(W-g)(\omega)$ if $u=(0, \ldots, 0) \in \mathbb{R}_{d}^{+}$, it follows that for almost all $\omega \in \Omega$,

$$
\begin{aligned}
\|\operatorname{IV}(\alpha)(\omega)\| \leq & {\left[(1+1 / n)^{d} A_{n+1}\left(P_{1}, \ldots, P_{d}\right) g(\omega)-A_{n}\left(P_{1}, \ldots, P_{d}\right) g(\omega)\right] } \\
& +n^{-d} \sum\left\{(W-g ; u)(\omega): u \in\{0,1, \ldots, n\}^{d}\right\} \\
=: & \widetilde{\mathrm{I}}(\alpha)(\omega)+\widetilde{\mathrm{I}}(\alpha)(\omega),
\end{aligned}
$$

and since $\lim _{n \rightarrow \infty} A_{n}\left(P_{1}, \ldots, P_{d}\right) g(\omega)$ exists for almost all $\omega \in \Omega$ (cf. the proof of Lemma 2), we have $q-\lim _{\alpha \rightarrow \infty} \widetilde{\mathrm{I}}(\alpha)(\omega)=0$ for almost all $\omega \in \Omega$.

It remains to estimate the function

$$
\begin{equation*}
(W-g)^{\sim}(\omega):=q-\limsup _{\alpha \rightarrow \infty} \widetilde{\mathrm{I}}(\alpha)(\omega) . \tag{15}
\end{equation*}
$$

To do this, we use again the Brunel operator U corresponding to P_{1}, \ldots, P_{d}. By (13) and the property of the Brunel operator U (cf. e.g. the proof of

Theorem 6.3.4 of [9]), it follows that

$$
\begin{aligned}
(W-g)^{\sim}(\omega) & =\limsup _{n \rightarrow \infty} n^{-d} \sum\left\{(W-g ; u)(\omega): u \in\{0,1, \ldots, n\}^{d}\right\} \\
& \leq C_{d} \lim _{n \rightarrow \infty} A_{n}(U)(W-g)(\omega)
\end{aligned}
$$

for almost all $\omega \in \Omega$, where we used the facts that $\|U\|_{1} \leq 1$ and that $\|U\|_{p} \leq 1$ to deduce the almost everywhere convergence of the averages $A_{n}(U)(W-g)(\omega)$ as $n \rightarrow \infty$. Thus, Fatou's lemma implies that

$$
\begin{aligned}
\int_{\Omega}(W-g)^{\sim}(\omega) d \mu(\omega) & \leq C_{d} \liminf _{n \rightarrow \infty} \int_{\Omega} A_{n}(U)(W-g)(\omega) d \mu(\omega) \\
& \leq C_{d}\|W-g\|_{1}<C_{d} \varepsilon
\end{aligned}
$$

It follows that if we set

$$
\operatorname{IV}^{\sharp}(\omega):=q-\limsup _{\alpha \rightarrow \infty}\|\operatorname{IV}(\alpha)(\omega)\| \quad(\omega \in \Omega),
$$

then

$$
\mathrm{IV}^{\sharp}(\omega) \leq q-\limsup _{\alpha \rightarrow \infty} \widetilde{\mathrm{I}}(\alpha)(\omega)=(W-g)^{\sim}(\omega)
$$

for almost all $\omega \in \Omega$, and so

$$
\int_{\Omega} \operatorname{IV}^{\sharp}(\omega) d \mu(\omega) \leq \int_{\Omega}(W-g)^{\sim}(\omega) d \mu(\omega) \leq C_{d} \varepsilon .
$$

Since $\varepsilon>0$ was arbitrary, this implies that $\operatorname{IV}^{\sharp}(\omega)=0$ for almost all $\omega \in \Omega$, and hence the proof is complete.

We easily see from the above proof that Theorem 2 of [12] can be improved as follows when the set-valued function $F^{1}: \mathcal{I}_{d} \rightarrow L_{1}^{+}$defined by (9) is used in its proof. We omit the details.

Theorem 4. Let $X, T=\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$, and F be the same as in Theorem 3. Assume that the positive operators $P_{i}=P\left(e^{i}\right), 1 \leq i \leq d$, commute.
(I) If F is measurable in the sense of Theorem 3, then the averages

$$
F\left(\left[0, \alpha_{1}\right) \times \ldots \times\left[0, \alpha_{d}\right)\right) / \prod_{i=1}^{d} \alpha_{i}
$$

converge stochastically to a function F_{∞} in $L_{1}(\Omega ; X)$, invariant under $T=$ $\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$, as α_{i} tends to infinity independently for each i with $1 \leq i \leq d$.
(II) If the function W defined by (2) belongs to $L_{1}^{+}(\Omega ; \mathbb{R})$, and if the averages

$$
A_{n}\left(P_{1}, \ldots, P_{d}\right) f
$$

converge a.e. for all $f \in L_{1}(\Omega ; \mathbb{R})$ as n tends to infinity, then there exists a function F_{∞} in $L_{1}(\Omega ; X)$, invariant under T, such that (4) holds.
4. Examples. In this section we give three examples of additive processes F to show that (a) the measurability hypothesis on F cannot be omitted for the stochastic convergence of the averages $\alpha^{-d} F\left([0, \alpha)^{d}\right),(\mathrm{b})$ the hypothesis $W \in L_{1}^{+}(\Omega ; \mathbb{R})$ is necessary for the a.e. convergence of the averages, and (c) there are many F, with $W \in L_{1}^{+}(\Omega ; \mathbb{R})$, for which $K(F)=\infty$. For simplicity we restrict ourselves to the case $d=2$ below.

Example 1. Let $\Omega=\left\{\omega_{0}\right\}$ with $\mu\left(\left\{\omega_{0}\right\}\right)=1$, and $T=\{T(u)$: $\left.u \in \mathbb{R}_{2}^{+}\right\}$be the semigroup consisting of the identity operator on $L_{1}(\Omega ; \mathbb{R})$ alone. Take an additive real-valued function f on \mathbb{R} (i.e., $f(s+t)=f(s)+f(t)$ for all $s, t \in \mathbb{R}$) such that

$$
\begin{equation*}
\sup \{|f(t)|: 0<t<1\}=\infty \tag{16}
\end{equation*}
$$

The existence of such an f is well known (see e.g. Lemma 1.14 of [13]). We recall that (16) is a necessary and sufficient condition for f to be nonmeasurable with respect to the Lebesgue measure on \mathbb{R} (see e.g. Theorem 1 of [7]). Thus, our f is not measurable. Using this f, let

$$
F(I):=\left(f\left(a_{2}\right)-f\left(a_{1}\right)\right) \cdot\left(f\left(b_{2}\right)-f\left(b_{1}\right)\right)
$$

for $I=\left[a_{1}, a_{2}\right) \times\left[b_{1}, b_{2}\right) \in \mathcal{I}_{2}$; then $F(I)$ defines an additive process in $L_{1}\left(\Omega ; \mathbb{R}_{2}\right)$ which is not measurable in the sense of Theorem 3 , by Fubini's theorem. From (16) we can choose real numbers t_{1} and t_{2}, with $0<t_{1}, t_{2}<1$, so that $f\left(t_{1}\right) / t_{1} \neq f\left(t_{2}\right) / t_{2}$. Then, if we put $Q=\left\{r_{1} t_{1}+r_{2} t_{2}\right.$: r_{1}, r_{2} are positive rationals $\}, \alpha^{-2} F\left([0, \alpha)^{2}\right)=f^{2}(\alpha) / \alpha^{2}$ fails to converge as α tends to infinity along the set Q.

Example 2. Let $\Omega=[0,1)^{2}$, with the Lebesgue measure λ_{2}, and $T=$ $\left\{T(u): u \in \mathbb{R}_{2}^{+}\right\}$be the semigroup of operators on $L_{1}\left([0,1)^{2} ; \mathbb{R}\right)$ defined by

$$
T(u) f(x):=f(u \dot{+} x) \quad \text { for } x \in[0,1)^{2}
$$

where $u \dot{+} x$ denotes the element of $[0,1)^{2}$ equivalent to $u+x \bmod \mathbb{Z}_{2}$. Take an increasing nonnegative continuous function $g(t)$ on the interval $[0,1) \subset \mathbb{R}_{1}^{+}$such that $g(0)=0, \lim _{t \rightarrow 1-0} g(t)=\infty$, and also such that the function $f(s, t):=s g(t)$ for $(s, t) \in[0,1)^{2}$ is integrable on $[0,1)^{2}$ (e.g. $\left.g(t)=(1-t)^{-1 / 2}-1\right)$. Then define, for $I=\left[a_{1}, a_{2}\right) \times\left[b_{1}, b_{2}\right) \in \mathcal{I}_{2}$, a function $F(I)(x)$ on $[0,1)^{2}$ by
$F(I)(x):=f\left(\left(a_{1}, b_{1}\right) \dot{+} x\right)+f\left(\left(a_{2}, b_{2}\right) \dot{+} x\right)-f\left(\left(a_{1}, b_{2}\right) \dot{+} x\right)-f\left(\left(a_{2}, b_{1}\right) \dot{+} x\right)$.
Thus, $F(I)$ defines a real-valued additive process in $L_{1}\left([0,1)^{2}\right)$ which is measurable in the sense of Theorem 3. By the definition of $F(I)$ we observe
that

$$
\begin{align*}
\text { either } & q \text { - } \liminf _{\alpha \rightarrow \infty} \alpha^{-2} F\left([0, \alpha)^{2}\right)(x)=-\infty \\
\text { or } & q-\limsup _{\alpha \rightarrow \infty} \alpha^{-2} F\left([0, \alpha)^{2}\right)(x)=\infty \tag{17}
\end{align*}
$$

for all $x=\left(x_{1}, x_{2}\right) \in[0,1)^{2}$ with $x_{2} \neq 0$. Hence it follows from Theorem 3 (or directly) that $W \notin L_{1}^{+}\left([0,1)^{2}\right)$.

Example 3. Let $\Omega=\mathbb{R}_{2}$, with the Lebesgue measure λ_{2}, and $T=$ $\left\{T(u): u \in \mathbb{R}_{2}^{+}\right\}$be the semigroup of translation operators $T(u)$ on $L_{1}\left(\mathbb{R}_{2}\right)$. Thus, $T(u) f(x)=f(u+x)$ for $x \in \mathbb{R}_{2}$. Take a real-valued continuous bounded function f on \mathbb{R}_{2} such that $\{x:|f(x)| \neq 0\} \subset[0,1)^{2}$. Then define, for $I=\left[a_{1}, a_{2}\right) \times\left[b_{1}, b_{2}\right) \in \mathcal{I}_{2}$, a function $F(I)(x)$ on \mathbb{R}_{2} by
$F(I)(x):=f\left(\left(a_{1}, b_{1}\right)+x\right)+f\left(\left(a_{2}, b_{2}\right)+x\right)-f\left(\left(a_{1}, b_{2}\right)+x\right)-f\left(\left(a_{2}, b_{1}\right)+x\right)$.
It follows that $F(I)$ defines a real-valued additive process in $L_{1}\left(\mathbb{R}_{2}\right)$, measurable in the sense of Theorem 3, such that $W(x) \in L_{1}\left(\mathbb{R}_{2}\right)$. But, as is easily seen, it is possible to choose a function f so that

$$
\begin{equation*}
\sup \left\{\sum_{i=1}^{k}\left|F\left(I_{i}\right)(x)\right|:\left\{I_{1}, \ldots, I_{k}\right\} \text { is a decomposition of }[0,1)^{2}\right\}=\infty \tag{18}
\end{equation*}
$$

for all $x \in[0,1)^{2}$. To find a concrete such function f, let e.g.

$$
g(t)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \phi\left(4^{n} t\right) \quad \text { for } t \in \mathbb{R}
$$

where ϕ is a nonnegative periodic function on \mathbb{R} with period 2 such that $\phi(t)=t$ if $0 \leq t \leq 1$ and $\phi(t)=2-t$ if $1 \leq t \leq 2$. Then g is a positive continuous function on \mathbb{R} which is nowhere differentiable (see e.g. Theorem 7.18 of [11]). Thus, g is not of bounded variation on any bounded closed interval in \mathbb{R}. Using this g, let

$$
\begin{aligned}
& h(t)= \begin{cases}t g(t) & \text { if } 0 \leq t \leq 1 / 2 \\
(1-t) g(t) & \text { if } 1 / 2 \leq t \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& e(t)= \begin{cases}t\left|\sin t^{-1}\right| & \text { if } 0<t \leq 1 / 2 \\
(1-t)\left|\sin t^{-1}\right| & \text { if } 1 / 2 \leq t<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Lastly, define $f(s, t):=h(s) e(t)$ for $(s, t) \in \mathbb{R}_{2}$. It is now routine to check that f is a real-valued continuous function on \mathbb{R}_{2}, with $\{x: f(x) \neq 0\} \subset$ $[0,1)^{2}$, such that (18) holds for all $x \in[0,1)^{2}$. Thus, in this case, we must have $K(F)=\infty$.

REFERENCES

[1] M. A. Akcoglu, A pointwise ergodic theorem in L_{p}-spaces, Canad. J. Math. 27 (1975), 1075-1082.
[2] M. A. Akcoglu and R. V. Chacon, A convexity theorem for positive operators, Z. Wahrsch. Verw. Gebiete 3 (1965), 328-332.
[3] M. A. Akcoglu and A. del Junco, Differentiation of n-dimensional additive processes, Canad. J. Math. 33 (1981), 749-768.
[4] M. A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes, J. Reine Angew. Math. 323 (1981), 53-67.
[5] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York, 1958.
[6] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.
[7] H. Kestelman, On the functional equation $f(x+y)=f(x)+f(y)$, Fund. Math. 34 (1947), 144-147.
[8] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (1973), 883-909.
[9] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[10] S. A. McGrath, Some ergodic theorems for commuting L_{1} contractions, Studia Math. 70 (1981), 153-160.
[11] W. Rudin, Principles of Mathematical Analysis, 2nd ed., McGraw-Hill, New York, 1964.
[12] R. Sato, Vector-valued ergodic theorems for multiparameter additive processes, Colloq. Math. 79 (1999), 193-202.
[13] E. Seneta, Regularly Varying Functions, Lecture Notes in Math. 508, Springer, Berlin, 1976.

Department of Mathematics
Okayama University
Okayama, 700-8530 Japan
E-mail: satoryot@math.okayama-u.ac.jp

> Received 6 July 2001;
> revised 17 June 2003

[^0]: 2000 Mathematics Subject Classification: Primary 47A35.
 Key words and phrases: vector-valued additive process, reflexive Banach space, stochastic and pointwise ergodic theorems, d-parameter semigroup of linear contractions, contraction majorant.

