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Abstract. Previously we obtained stochastic and pointwise ergodic theorems for a
continuous d-parameter additive process F in L1 ((§2, X, u); X), where X is a reflexive Ba-
nach space, under the condition that F' is bounded. In this paper we improve the previous
results by considering the weaker condition that the function W (-) = esssup{||F(I)(")] :
I c [0,1)%} is integrable on £2.

1. Introduction and result. Let X be a reflexive Banach space, and
(2, ¥, 1) be a o-finite measure space. For 1 < p < oo, let L,(£2;X) =
L,((£2,X,11); X) denote the usual Banach space of all X-valued strongly
measurable functions f on {2 with the norm

1/p
1l = (1@ duw) " <00 if1<p<o,
| flloo := esssup{||f(w)| :w € N} <0 if p=oc0.

Ifd > 1isauninteger,Welet]R;L ={u=(u1,...,uq) :u; >0, 1 <i<d}
and Py = {u = (u1,...,uq) : u; >0, 1 <i < d}. Further, Z; is the class of
all bounded intervals I in R;r of the form

I = [alabl) X ... X [ad,bd);

where 0 < a; < b; < o0, 1 < i < d (we note that Z; is somewhat dif-
ferent from that of [12], but this does not matter), and A\q denotes the
d-dimensional Lebesgue measure. In this paper, we consider a strongly mea-
surable d-parameter semigroup 7' = {T'(u) : u € R} } of linear contractions
on Li(£2; X). Thus, T is strongly continuous on P, (cf. Lemma VIIL.7.9
in [5]). A linear operator S defined on L;(§2; X) is said to have a majorant
P defined on L (£2;R) if P is a positive linear operator on L; (£2;R) with the
property that ||.Sf(w)|| < P||f(-)||(w) holds for almost all w € £2, for every
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f € L1(£2; X). As in [12], we will assume below that each T'(u), u € R}, has
a contraction majorant P(u) defined on L;(§2;R).

By a (continuous d-parameter) process F in Li(£2; X) we mean a set
function F' : Zy — L1(§2; X). It is called bounded if
(1) K(F) :=sup{||F(D)||1/a(I) : I € T4} < o0,
and an additive process (with respect to T') if it satisfies the following con-
ditions:

(i) T(w)F(I) = F(u+1I) for all u € R} and I € Iy,

(ii) if Iy,..., I € Ty are pairwise disjoint and I = (JI_, I; € Zy, then
P(I) = Y F(L).

For example, if F/(I) = {, T'(u) f du for all I € Z , where f is a fixed func-
tion in Lq(§2; X), then F(I) defines a bounded additive process in L1 (£2; X).
There are many bounded additive processes in L (£2; X)) which cannot have
this integral form (cf. [3]).

It is immediate that if F' is a bounded additive process in L;({2; X), then
the mapping Py 3 u = (u1,...,uq) — F([0,u1) X ... X [0,uq)) € L1(£2; X)
becomes continuous, the function
(2) W () := esssup{||[F(I)(-)|| : I < [0,1)"}
belongs to LT (£2;R) and we have |[W|; < K(F). In fact, we can take a
sequence {I,, : n > 1} of intervals with I,, C [0,1)¢ for each n > 1 satisfying

W(w) =sup |[|[F(I,)(w)| for almost all w € (2.
n>1

Then take a sequence {D,, : n > 1} of finite decompositions of the interval
[0,1)¢ such that each D,, consists of intervals {J7,...,J Kyt in Zg and

I, = Ui(znl) JJ* for some [(n), with 1 <I(n) < k(n), and D, is a refinement
of D,, for every n > 1. It follows that
I(n) k(n)

[E (L) (W) < Z IE(T) @) < Z 1E () (w)

for almost all w € 2. Putting V,,(w) = Zk(n) |F(JM)(w)| for w € 2, we
then get 0 <V, (w) < V,11(w) on £2, and
k(n)
Vol < ZK Ma(J7) = K(F).

Hence, the function V(w) = lim,,_,o V,,(w) satisfies 0 < W(w) < V(w) on 2,
and
Wi <[Vl = lim [[Va]li < K(F) < oc.
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On the other hand, as shown by examples in §4, there are many un-
bounded additive processes F' in L;(£2; X) for which the functions W de-
fined by (2) are integrable on {2. Since we considered in [12] bounded additive
processes, the theorems there cannot be applied to such unbounded additive
processes F.

Here we recall that the condition W € L (£2;R) was originally intro-
duced by Kingman in [8] to obtain his pointwise ergodic theorem for a con-
tinuous 1-parameter additive or subadditive separable process, because his
theorem fails to hold in the general case. (See also Akcoglu and Krengel [4].)
In view of these facts, the author thinks that obtaining our ergodic theorems
under the condition W € L]L(Q; R) is preferable. This is the starting point
for the study in this paper.

In the following, ¢-lim,_, and ¢g-limsup,,_, ., will mean that these limits
are taken as « tends to infinity along a countable dense subset () of the
positive real numbers. We may assume that () includes the positive rational
numbers. A net (f,) of strongly measurable X-valued functions on (2 is said
to converge stochastically to a strongly measurable X-valued function f
on {2 if for every ¢ > 0 and A € X with u(A) < co we have

lim (AN {2 [|faw) — fo(@)] > 2}) = 0.

The purpose of this paper is to prove the following ergodic theorem,
which improves Theorem 1 of [12].

THEOREM 3. Let X be a reflexive Banach space and T = {T(u) :
U € Rz{} be a semigroup of linear contractions on L1 (£2; X), strongly contin-
uous on P4, such that each T(u), u € R}, has a contraction majorant P(u)
defined on L1(£2;R). Let F be a (continuous d-parameter) additive process
in L1(£2; X) with respect to T.

(I) If F is measurable in the sense that the vector-valued function
u=(ut,...,uq) — F([0,u1)x...x[0,uq)) from Py to L1(£2; X) is strongly
measurable, then the averages a~9F([0,a)?) converge stochastically to a
function Fuo in L1(£2; X), invariant under T, as « tends to infinity.

(IT) If the function W defined by (2) is integrable on §2, and the operators
P; = P(e'), with € the ith unit vector in R&L, satisfy the additional hypothesis

(3) |Pill, <1  for some p > 1,
then there exists a function Fu in L1(£2; X), invariant under T, such that
(4) Fo(w) =g-lim o F([0,a)Y)(w) for almost all w € .

In Theorem 1 of [12], we saw the stochastic convergence for a bounded

additive process F' in Lq(f2; X). But, as shown by examples in §4, there
are measurable additive processes F' in L ({2; X) which are not bounded.
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Therefore, Theorem 3 generalizes Theorem 1 of [12]. Furthermore, the hy-
pothesis (3) is strictly weaker than the hypothesis || P;||oo < 1 for 1 < i < d;
and the latter hypothesis was assumed in the second part of Theorem 1 of
[12]. Thus, in this sense, Theorem 3 generalizes Theorem 1 of [12] as well.

2. Lemmas. To prove Theorem 3 we need the following two lemmas.

LEMMA 1. Let h be a real-valued function on Ly such that

(i) h(u+I) < h(I) for all w € R} and I € I,

(ii) h(1) < Zle h(1;) whenever I, ..., I € Iy are pairwise disjoint and
satisfy I = Ule I, €1,.

If the function h on P4 defined by h(u) = h([0,u1) x ... x[0,uq)) for u =

(u1,...,uq) € Pq is Lebesque measurable, then it is bounded above in any
compact subset I* = [, B1] X ... X [ag, Ba] of Pya.

Proof. This is an adaptation of the argument of Theorem 7.4.1 of [6].
Let a = (a1,...,aq4) € Py, and let ¢ be a real number such that ¢ < E(a).
We denote by (0,a) the open interval (0,a1) X ... x (0,a4) in Pg4. Let x =
(x1,...,24) € (0,a). Then, since [0,a;) = [0,2;) U [z;,a;) for 1 < i < d, we
see that there are pairwise disjoint intervals Jy, ... J2d in Zg4 such that

[0,a) =1[0,a1) X ... x [0,aq) U Jj,

where J; has the form
Jj = [a(4),8()) = [a(j)1, B()1) % ... x [a(f)a, B(])a)

B
for some a(j) = (a(j)1,.--,a(j)a) € Ry and ﬁ( ) = (B0, B8()a)
€ Pg, and we have [«(j), 5(j)i) = [0, 2;) or [x;,a;) for 1 <i < d. Condition
(ii) implies that

¢ < h(a) = h([0,a)) <> h(J;)
j=1

Since each J; can be written as J; = u(j) + [0,v(j)) with u(j) € R} and
v(j) € (0,a), it follows from condltlon (i) that

2
¢ < h(a Z

whence there exists 7, 1 < j < 29, such that ¢/2¢ < h(v(j)). If we write

E(C) :={y : y € (0,a), h(y) > ¢/2%}, then v(j) € E(¢) follows for this j.
And, by the definition of v(j), we see that for each ¢ with 1 < i < d, it
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follows that
v(j)i=x; or v(j)i=a; — ;.

That is, x; = v(j); or x; = a; — v(j);; consequently,

(0,0) = {E(K): K c {1,...,d}},

where F'(K') denotes the subset of (0, a) corresponding to K as follows: E(K)
is the set consisting of the elements (z1,...,24) € (0,a) such that there
exists y = (y1,...,yq) € E(C) satisfying z; = y; when i € K, and z; = a;—y;
when ¢ € K. Since \;(E(K)) = M\i(E(¢)) for every K C {1,...,d}, it follows

that
d

[T ai = Ma((0,a)) < 2 \a(E(Q)).

i=1

If the conclusion of the lemma were not true, i.e., if A were not bounded
above in I*, then there would exist a(n) € I*,n > 1, such that h(a(n)) >n
for every n > 1. Then, since a; < a(n); < 3; for 1 <14 < d, it follows from
the above fact that the set

F(n):={z:z€(0,8) % ...x(0,Bq), h(z) >n/2%}

must satisfy Aq(F(n)) > 279 H?Zl a; > 0, whence h would be equal to co
on a set of positive Lebesgue measure. This is a contradiction, and hence
the proof is complete.

LEMMA 2. Let X be a reflexive Banach space and Ty, ..., Ty be commut-
ing linear contractions on Ly (£2; X). Suppose Py, ..., Py are (not necessarily
commuting) positive linear contractions on Lq(£2;R) such that ||T;f(w)|| <
P|lf()|[(w) for almost all w € §2, for every f € L1(2;X) and 1 <i <d. If
there exists p > 1 such that ||P;||, <1 for every 1 <i < d, then the ergodic
averages

An<T1, e ,Td)f = An(Tl) e An(Td)f,

where
1 n—1
An(ﬂ) = E kz_otrz‘kv

converge a.e. on §2 for all f € L1(£2; X) as n tends to infinity.

Proof. As in the proof of Theorem 1 of [12], let U denote the Brunel
operator corresponding to Py, ..., Py (see Theorem 6.3.4 of [9]). Thus there
exists a constant Cy > 0, depending only on d, and a nondecreasing sequence
d(n),n=1,2,..., of positive integers, with lim,,_,~, d(n) = oo, such that if
f € L1(£2; X) then
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(5) [An (T, .. Ta) f (W) < Cadai) (U)]f()] (@)

for almost all w € 2. Since ||F;||, < 1 by hypothesis, U is a positive linear
contraction on Lq(£2;R) such that |U|, < 1. We may assume here that
1 < p < o0, by the Riesz convexity theorem. Then the ergodic theorem of
Akcoglu and Chacon [2] implies that the limit

n—1

1
lim — g
Jim 2 U
exists a.e. on {2 for all g € L1(f2;R), whence by (5) the maximal function
(6) fiw) = Sup |4 (T, - Ta) (W)

satisfies f#(w) < oo for almost all w € 2, for all f € Li(2; X). Thus,
by Banach’s convergence principle, it suffices to show that the limit
lim, 00 An(Th, ..., Ty)f exists a.e. on {2 for a function f in a dense subset
M of Ly(£2; X).

To prove this we notice that Akcoglu’s dominated ergodic theorem [1] to-
gether with an induction argument (cf. e.g. [10]) implies that if g € L, (£2;R),

then the averages
Ap, (Pr) ... An,(Pa)g

converge a.e. on {2 and in L,-norm as ni,...,nq tend to infinity indepen-
dently; and the maximal function
g (w):= sup Ay, ...Anl9l(w)
MNYyeeny ndZI

satisfies ||g*]|, < (p/(p — 1)) Since the reflexivity of X implies that
L,($2; X) is a reflexive Banach space, an easy modification of the argument
of Theorem 3 of [10] shows that if f € L,(£2; X), then the averages

Ap, (Ty) ... Ay (Ta) f

converge a.e. on {2 and in L,-norm as ni,...,ng tend to infinity indepen-
dently. (Incidentally, the function f* defined by (6) belongs to L} (£2;R)
when f € L,(£2; X), because f*(w) < [|f(-)||*(w) a.e. on 2 and ||f(-)| €
LE(f;R).)

Consequently, if f € Ly ($2; X)NL,(£2; X), then the limit A, (T4,...,Ty)f
exists a.e. on 2. This completes the proof, since M := L1 (§2; X)N L, ((2; X)
is a dense subset of Lq(£2; X).

3. Proof of Theorem 3

Proof of (I). Since each P;,1 < i < d, is a contraction majorant of the
operator T; = T(e?), it follows from the proof of Theorem 1 of [12] that the
averages n~2F([0,n)9), where n € {1,2,...}, converge stochastically to a
function F in L1(§2; X) as n tends to infinity. The invariance of Fi, under
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the semigroup T' = {T'(u)} follows, as in Theorem 1 of [12], when we see
that a=¢F(]0, a)?) converges stochastically to F,, as a — co. Thus we only
prove its stochastic convergence below.
For a > 0, let n = n(a) denote the greatest integer not exceeding «. If
a > 2, then, since n — 1 = n(a) — 1 > 1, it follows that
aF([0,n—1)") = Foo =[((n—1)/a)! = 1](n—1)"*F([0,n—1)7)
+[(n—1)"F([0,n—1)") = Fy ] =: I(a) + 1I(a),
and for every e > 0 and A € ¥ with p(A4) < oo we have
(7) lim (AN {w: [(@)@)] > €}) = 0.
Thus we can choose a constant I' > 0 and an integer N > 2 so that if
n =n(a) > N, then
AN {w: [l(n =)~ F(0,n = 1)) ()| > I'}) <e.
By this and the fact that lim,_.oo((n — 1)/a)% = 1, we find
limsup u(AN{w: |[I(a)(w)| > e}) <e.

This proves the stochastic convergence of a~¢F([0,n—1)%) to F, as a — o0.
Therefore, it suffices to show that the functions
() ;= a F([0,a)%) — a @F([0,n — 1)%), with n = n(a),

converge stochastically to 0 as o — oo.
To see this, we use Lemma 1 as follows. First, since T' = {T'(u)} is a
contraction semigroup on Li(§2; X') by hypothesis, the real-valued function

h on Zy defined by
h(I)=||F(I)|s for €Iy

satisfies conditions (i) and (ii) of Lemma 1. By the measurability of F', the
function h of Lemma 1 becomes Lebesgue measurable. Thus we can apply
Lemma 1 to infer that there exists a constant C' > 0 such that 0 < h(u) < C
forallu € I* :=[271,2] x ... x [271,2] C Py. It is elementary that if o > 2,
then since n—1 = n(a)—1 > 1, the set [0, a)?\[0,n—1)? has a decomposition
{J; :1<j<n?—(n—1)7% into intervals in Z, such that each J; has the
form
Jj = u(j) +0,v(j))
for some u(j) € R} and v(j) € I*. Therefore we deduce that

(@) = o= Yo{F () 1< <n = (n = 1)}

<a 'Yy {h@() 1< <n’—(n-1)%)
<A-(1-n-C—0

as a — 00, whence the desired conclusion follows.
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Proof of (II). Here we assume that W € LT (£2;R) and that the oper-
ators P, = P(e'), 1 < i < d, satisfy (3). We may assume as before that
1 < p < 00. Since

n F([0,n)%) = Ap(T1, ..., To)F([0,1)%),
Lemma 2 implies that there exists a function F, in L1 (£2; X) such that
(8) Fo(w) = lim n~?F([0,n)%)(w) for almost all w € £2.

Since F, is invariant under 77,...,7T,;, we obtain the invariance of Fi,
under the semigroup T = {T'(u)} as soon as we show that F(w) =
g-limg 0o a~4F([0,a)?)(w) for almost all w € 2. To prove this conver-
gence result, we now introduce a new set function F! : T, — L] (£2;R) as
follows.

For I € Z7; we define

(9) FYI)(-) = esssup{||F(J)()I| - J C I}.
Since W = F1([0,1)%) € LT (£2;R) by hypothesis, it follows that

(i) F1(I) € Ly (2 R),

(ii) I C J implies F*(I)(w) < FY(J)(w) for almost all w € £2,

(iii) F*(u+1I)(w) < P(u)F(I)(w) for almost all w € £2, for every u € R}
and [ € 7,

(iv) if Iy,..., Iy € I, are pairwise disjoint and I = |Ji_, I; € Z, then
FY(I)(w) < 8 FY(I)(w) for almost all w € £2.

As in (I), we let n = n(a) for a > 0. Then for almost all w € {2 we have
la™F([0,0)*)(w) = n~F([0,n)) (w)]]
< aF([0,0)")(w) = F([0,n)) ()] + (0~ = a”)||F([0,n)")(w)]
<Y {F u+[0,1)(w) rue{0,1,...,n}*\{0,1,...,n — 1}%}
+ (1= (n/a))n~Y|F([0,n) ) (w)[| = IV(a)(w) + V(a)(),
and (8) implies that
(10) q—ali_{go V(a)(w)=0 for almost all w € (2.
Therefore the proof will be completed if we show that g-lim, . IV(a)(w)

= 0 for almost all w € 2.

To see this, let € be a positive real number. Take a function g € L] (£2;R)
N L} (2;R) so that

(11) g<W=FY0,1)% and W —g|:<e.
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Using this g, we define a function Fy(I) in L,(§2; X) for I € Z,, with
Iclo,1)7, by

RNE) = {

where sgnz = z/||z| if 0 # z € X, and sgn0 = 0. Thus we have
[Eg (D)l < g(w) and  [[F(I)(w) = Fy(D)(w)]| < W(w) = g(w) on £,

where the last inequality comes from the fact that ||F(I)(w)| < W(w) on £2.
If

(12) w=(ni,...,ng) €{0,1,...}¢ and u# (0,...,0),

then let k = 27:1 n; (> 1) and denote by S(u) the set of all elements
(i(1),...,i(k)) € {1,...,d}* such that n; = card{m : i(m) =1, 1 <m < k}
for each 1 <1 < d (card A is the number of elements of A). Since

FlutI)=TM . THF(I) =T/ .. THE,(I)+TM ... T(F(I)— Fy(I)),

and T, ...,T; commute with each other, it follows that if (i(1),...,i(k)) €
S(u), then

[F(u+ D)l < P ... Pitg(w) + Py - - - Pigy (W — g)(w
for almost all w € §2. Therefore if we put, for u = (n1,...,nq) € {0,1,...}9\
{(0,...,0)},
(13) (W =giu)(w)
=min{ Py ... Pigy(W — g)(w) : (i(1),...,i(k)) € S(u)},
then, by the definition of F'(u + [0,1)%) (cf. (9)), we find
(14) Flu+[0,1)")(w) < P ... Py*g(w) + (W — g;u)(w)

for almost all w € £2. Thus, by putting (W —g;(0,...,0))(w) = (W — g)(w)
if u=(0,...,0) € R;, it follows that for almost all w € {2,

V(@) (@) < [(1+1/n) Aps1 (P, ..., Pa)g(w) = An(Pr, ..., Pa)g(w)]
+n Y {(W - giu)(w) :ue{0,1,...,n}"
—T(a) (@) + Tl(a) (@),
and since limy, o0 An (P, ..., Pa)g(w) exists for almost all w € 2 (cf. the

F(I)(w) it [F(I) ()] < g(w),

g(w) -sgn F(I)(w) otherwise,

~—

proof of Lemma 2), we have ¢-lim, o I[(@)(w) = 0 for almost all w € (2.
It remains to estimate the function

(15) (W = g)~(w) := ¢-limsup II(a) (w).
a—0o0
To do this, we use again the Brunel operator U corresponding to P, ..., P,.

By (13) and the property of the Brunel operator U (cf. e.g. the proof of
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Theorem 6.3.4 of [9]), it follows that
(W = ¢)~(w) = limsupn~? Z{(W —gu)(w) :uef{0,1,...,n}%
< Cy tim AL U)W — g)(w)

for almost all w € (2, where we used the facts that ||[U|; < 1 and that
U], < 1 to deduce the almost everywhere convergence of the averages
A, (U)(W — g)(w) as n — oo. Thus, Fatou’s lemma implies that

J(W —9)™(w) du(w) < Caliminf | A, (U)(W — g)(w) du(w)
9} 2

< Cal|W =gl < Cue.
It follows that if we set
IVH(w) := ¢-limsup [[IV(a)(w)| (v e 2),
then N
IV (w) < ¢-limsup () (@) = (W — )™ (w)

a— 00

for almost all w € {2, and so

[ IVE (@) duw) < [ (W = 9)™ (@) dn(w) < Cee.
2 (9}

Since € > 0 was arbitrary, this implies that IVﬁ(w) = 0 for almost all w € £2,
and hence the proof is complete.

We easily see from the above proof that Theorem 2 of [12] can be im-
proved as follows when the set-valued function F'' : Ty, — L7 defined by (9)
is used in its proof. We omit the details.

THEOREM 4. Let X, T = {T(u) : u € R}}, and F be the same as
in Theorem 3. Assume that the positive operators P; = P(e?), 1 < i < d,
commute.

(I) If F is measurable in the sense of Theorem 3, then the averages

d
F([0,010) X ... % [O,Qd))/Hai

converge stochastically to a function Fy in L1($2; X), invariant under T =
{T(u) : w € R}, as o, tends to infinity independently for each i with
1< <d.
(IT) If the function W defined by (2) belongs to LT (§2;R), and if the
averages
Au(Py,. . Pa)f
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converge a.e. for all f € L1(£2;R) as n tends to infinity, then there exists a
function Fuo in L1(£2; X), invariant under T, such that (4) holds.

4. Examples. In this section we give three examples of additive pro-
cesses F' to show that (a) the measurability hypothesis on F' cannot be
omitted for the stochastic convergence of the averages a~¢F ([0, a)?), (b) the
hypothesis W € LT (£2;R) is necessary for the a.e. convergence of the aver-
ages, and (c) there are many F, with W € LT (£2;R), for which K(F) = co.
For simplicity we restrict ourselves to the case d = 2 below.

ExXAMPLE 1. Let 2 = {wo} with p({wo}) = 1, and T = {T(u) :
u € R} be the semigroup consisting of the identity operator on L;({2;R)
alone. Take an additive real-valued function f on R (i.e., f(s+t) = f(s)+f(t)
for all s,t € R) such that

(16) sup{|f(t)]: 0 <t <1} = 0.

The existence of such an f is well known (see e.g. Lemma 1.14 of [13]). We
recall that (16) is a necessary and sufficient condition for f to be nonmeasur-
able with respect to the Lebesgue measure on R (see e.g. Theorem 1 of [7]).
Thus, our f is not measurable. Using this f, let

F(I) := (f(az) = f(a1)) - (f(b2) — f(b1))

for I = [a1,a2) X [b1,b2) € Zy; then F(I) defines an additive process in
L1(f2;Ry) which is not measurable in the sense of Theorem 3, by Fu-
bini’s theorem. From (16) we can choose real numbers t; and t, with
0 < t1,t2 < 1,0 that f(t1)/t1 # f(t2)/ta. Then, if we put Q = {rit; +rats :
71,79 are positive rationals}, a2 F ([0, a)?) = f?(«)/a? fails to converge as
« tends to infinity along the set Q.

EXAMPLE 2. Let 2 = [0,1)?, with the Lebesgue measure Ay, and T =
{T(u) : u € RI} be the semigroup of operators on L;([0,1)%;R) defined by

T(u)f(z):= f(u+xz) forxel0,1)?

where u + x denotes the element of [0,1)? equivalent to u + z mod Zs.
Take an increasing nonnegative continuous function ¢(¢) on the interval
[0,1) € R such that g(0) =0, lim;_.;_¢g(t) = oo, and also such that
the function f(s,t) := sg(t) for (s,t) € [0,1)? is integrable on [0,1)? (e.g.
g(t) = (1—t)~Y2—1). Then define, for I = [ay,as) x [by,bs) € Iy, a function
F(I)(x) on [0,1)? by

F(I)(z) == f((a1,b1) + )+ f((az, b2) + ) — f((a1,b2) + ) — f((az, b1) + ).

Thus, F(I) defines a real-valued additive process in L;([0,1)?) which is
measurable in the sense of Theorem 3. By the definition of F(I) we observe
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that
either ¢-liminf o 2F([0,)?)(z) = —oo,

(17) or ¢-limsupa 2F([0,a)?)(z) = oo,

a— 00

for all z = (x1,72) € [0,1)? with 25 # 0. Hence it follows from Theorem 3
(or directly) that W ¢ L ([0,1)2).

ExXAMPLE 3. Let 2 = Ry, with the Lebesgue measure o, and T =
{T(u) : u € R} be the semigroup of translation operators T'(u) on L (Ry).
Thus, T(u)f(x) = f(u+ x) for x € Ry. Take a real-valued continuous
bounded function f on Ry such that {z : |f(z)| # 0} C [0,1)2. Then define,
for I = [a1,az2) x [by,bs) € Iy, a function F(I)(x) on Ry by

F(I)(z) == f((a1,b1) +2)+ f((az,b2) +2) — f((a1,b2) + x) — f((az, b1) + ).

It follows that F'(I) defines a real-valued additive process in L;(R3), mea-
surable in the sense of Theorem 3, such that W (z) € L;(Rz). But, as is
easily seen, it is possible to choose a function f so that

sup{z |F(I; | : {I1,..., I} is a decomposition of [0, 1)2} —

for all z € [0,1)2. To find a concrete such function f, let e.g.

o0 3 n "
g(t) = 7;(4) p(4"t) for t € R,
where ¢ is a nonnegative periodic function on R with period 2 such that
p(t) =tif 0 <t <1land ¢(t) =2—-tif 1 <t <2 Then g is a positive
continuous function on R which is nowhere differentiable (see e.g. Theorem
7.18 of [11]). Thus, g is not of bounded variation on any bounded closed
interval in R. Using this g, let

tg(t) if0<t<1/2,
h(t)=¢ (1—1t)g(t) if1/2<t<1,
0 otherwise,
tlsint 1 if0<t<1/2,
e(t)=q (1 —t)sint | if1/2<t<1,
0 otherwise.
Lastly, define f(s,t) := h(s)e(t) for (s,t) € Ro. It is now routine to check
that f is a real-valued continuous function on Ry, with {x : f(z) # 0} C

[0,1)2, such that (18) holds for all x € [0,1)2. Thus, in this case, we must
have K(F) = oo.
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