COLLOQUIUM MATHEMATICUM

VOL. 97 2003 NO. 1

NEW EXAMPLES OF BIHARMONIC MAPS IN SPHERES

BY

C. ONICIUC (Iasi)

Abstract. We give some new methods to construct nonharmonic biharmonic maps
in the unit n-dimensional sphere S™.

1. Introduction. It is known that a map ¢ : (M, g) — (N, h) between
two Riemannian manifolds is harmonic if it is a critical point of the energy
E(¢) = 11,, |dé|*vy, and ¢ is harmonic if and only if its tension field 7(¢) =
trace Vd¢ vanishes (see [9, 7, 15]). In the same way, as suggested by J. Eells
and J. H. Sampson in [9], a map ¢ is biharmonic if it is a critical point of
the bienergy Ea(¢) = 5 §,, |7(¢)|?vy. G. Y. Jiang obtained in [11, 12] the
first and second variation formula for the bienergy showing that the map ¢
is biharmonic if and only if

(1.1) 72(¢) = =J(7(¢)) =0,

where J = A? + trace RN (d¢-, )d¢- is the Jacobi operator of ¢. The equa-
tion 72(¢) = 0 is called the biharmonic equation. Of course, any harmonic
map is biharmonic, so we are interested in nonharmonic biharmonic maps.
In Jiang’s papers the following example was given: the generalized Clifford
torus S™(1/4/2) x S™2(1//2), where nq # ny, is a nonharmonic (nonmini-
mal) biharmonic submanifold of §™1m2+1,

B. Y. Chen and S. Ishikawa proved in [6] that there are no nonminimal
biharmonic submanifolds of R3. Similarly, in [2], it was proved that there are
no such submanifolds in N3(—1), where N3(—1) is a 3-dimensional manifold
with negative constant sectional curvature —1.

In [1] a classification of nonminimal biharmonic submanifolds of S* was
given. They are: circles, spherical helices and parallel spheres. Then, in [2],
two methods were presented to construct examples of nonminimal bihar-
monic submanifolds of the unit n-dimensional sphere S™ for n > 3. In this
case the family of such submanifolds is much larger.

Biharmonic submanifolds of the Heisenberg group Hs were studied in [4].
Examples of biharmonic helices and biharmonic integral curves were given.
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We note that Hs has nonconstant sectional curvature, as in the previous
cases.

Biharmonic Riemannian submersions were studied in [14], and bihar-
monic curves on surfaces in [3].

The aim of this paper is to construct some new examples of nonhar-
monic biharmonic maps in the sphere S”. First, using harmonic Rieman-
nian submersions, we give two classes of nonharmonic biharmonic maps in
S™ (Theorems 2.1 and 2.3). These maps have constant rank, i.e. they are
subimmersions. Finally, using a particular conformal change of the canoni-
cal metric on S", we get a new class of examples of biharmonic maps in S™
endowed with the new metric (Theorem 3.7).

NOTATION. We work in the C'*° category, i.e. manifolds, metrics, con-
nections, maps will be assumed to be smooth. (M™, g) will stand for a
connected manifold of dimension m, without boundary, endowed with a
Riemannian metric g. We denote by V the Levi-Civita connection of (M, g).
For the Riemann curvature operator we use the sign convention R(X,Y) =
[Vx,Vy] = Vixy). For amap ¢ : (M,g) — (N,h) we denote by V¢ the
connection in the pull-back bundle ¢~ 'TN.

2. Biharmonic subimmersions in S”. Let
S™(a) = S"(a) x {b}
={p=(z. ., 2" ) | () +.. .+ ("2 =da? a € (0,1), a®> +b* =1}

be a parallel hypersphere of S**1. We consider on S™*! the canonical metric
(, ). The set of all sections of the tangent bundle of S"(a) is given by

C(TS"(a)) = {X = (X',..., X" 0) | 2! X1 + .. 42" X" =0},
Let n =c (2!, ..., 2" —a?/b), where ¢ > 0 and ¢? = a® + a*/b?. Then 7

satisfies
<77’p> =0, <777X> =0, |77| =1,

i.e. 17 is a unit section in the normal bundle of S"(a) in S"*1. By a direct
computation we obtain

1 1

where A is the shape operator, B is the second fundamental form of S"(a)
and V= is the normal connection in the normal bundle of S"(a) in S"*1. Tt
was proved in [1] that S"(a) is a biharmonic submanifold of S"*! i.e. the
inclusion map of S”(a) in S**! is biharmonic, if and only if @ = 1/v/2 and
b=+1/V2.

Now, we consider a Riemannian submersion ¢ : (M,g) — S"(a), the
canonical inclusion i : S"(a) — S"™! and ¢ =iop : (M,g) — S*L. The
rank of ¢ is constant, equal to n.
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THEOREM 2.1. Assume that ¢ : (M,g) — S™(a) is a harmonic Rie-
mannian submersion. Then ¢ : (M, g) — S"" is not harmonic, and it is
biharmonic if and only if a = 1/v/2 and b = +1/+/2.

Proof. Let p € M. We have T,M = TIYM@T;{M, where TI}/M =
ker dy, and Tf M is the orthogonal complement of TpVM in T,M with
respect to the metric g. Let W be an open subset of S”(a) such that ¢(p) €
W and let {Y,}"_; be an orthonormal frame field of W. Set U = ¢~ 1(W)
{Xa} = {YF}, and consider an orthonormal frame field { X}, ., on TV U.
The tension field of ¢ is given by

(2.2) (== D dep(Vx,X

s=n+1
(see [8]). Computing the tension field of ¢ we obtain

T(¢) = di(7(p)) + trace Vdi(dyp-, de-) ZB Ya,Y,) = _%7]7

i.e. ¢ is not harmonic.
To simplify the notation, we denote the Levi-Civita connection V5" (@) of
S™(a) by V¥. Computing A¢T(¢>) we get

(2.3) —A%7( Z{v V& (6 v‘@xkxkr@)}
=S VE V() - Ve x.T(®)}
a=1

+ > AVE VAT - Ve, < T(d))
s=n+1
But n » n
V?(QT(@ = % VS,} n= 2 Yo

and using (2.1) we obtain

n+1 n ].
(24) VL VLT =—5 VS Yo=-> <v{¥aYa - n)
on
2 Vi Ya +5 3
Further, we have
n+1 n
(2.5) v%xa 1. 7(0) = VSVN v1="3 VY Ya,

(2.6) V4 V5. m(6) =0,
n+1 n
(27) Vo, x7(0) = —= Visey,xn =~ de(Vx.Xo).
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Inserting (2.4)—(2.7) in (2.3), and using (2.2), we obtain
2

n
(2.8) — A%7(¢) = 3
A direct computation shows
2
(2.9) trace RS (do-, 7(¢))dop- = ”? .
Thus, (2.8), (2.9) and (1.1) give us
2
n
m(0) = (1= A,

so ¢ is biharmonic if and only if ¢ = 1, i.e. a = 1/v/2 and b = £1//2. =
Since the radial projection
S" - S"(a), xw— azx,

is homothetic, a harmonic Riemannian submersion ¢ : (M,g) — S" be-
comes a harmonic Riemannian submersion ¢ : (M, a%g) — S™(a), and us-
ing the above theorem, we obtain a nonharmonic biharmonic subimmersion
¢ : M — S"1. For example, the Hopf map induces a nonharmonic bihar-
monic map ¢ : S3(v2) = {(2},22) € C? | (21)% + (2%)? = 2} — S? given by

1 —
qb(zlsz) = (221227|21|2_ |Z2|251)'

C2V2

We now give a converse of Theorem 2.1.

PROPOSITION 2.2. Assume that ¢ : (M, g) — S"(1/v/2) is a Rieman-
nian submersion with basic tension field, i.e. T(¢)(p) = 7(p)(q) whenever
©(p) = ¢©(q). Then the map ¢ is biharmonic if and only if ¢ is harmonic.

Proof. From the composition law we have
7(¢) = 7(p) — nn.
As 7(p) is basic we can think of it as a vector field on S™(1/+/2). Denoting
vS"(1/v2) by V¥, we obtain
V&7(9) = VI, 7(9) = (Ve 7)) — Y,
V. V5. 7(0) = VI, VI, 7(9) — 2(Ya, T 7))
— (V3 Ya, 7(0))1 = (Ya, () Ya
— nV%Ya + nn,
Ve xaT(#) = Yy 3 7(0) = (VI Yo, 7(0))n = nV, Yo,
V4 V5. m(6) =0,
Ve xT(8) = Vi vy x)T(0) = (de(Vx, X), ()
—ndp(Vx, Xs),
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and
trace Rsnﬂ(dgb-, 7(¢))do- = (1 —n)7 () +n’n.
It follows that the normal part of 72(¢) to S"(1/v/2) is

(2.10) — (2div7(p) + [7(9)[*)n-
If ¢ is biharmonic, then (2.10) implies

. 1
divr(p) = =5 7@,
and using the Stokes theorem, we get 7(¢) = 0, i.e. ¢ is harmonic.
The converse is immediate. =

Let n1,n9 be two positive integers such that n = ni +mn9 and let 71,79 be
two positive real numbers such that r +r3 = 1. Let o1 : (M1, 1) — S™(r1)
and @2 : (Ma,g2) — S™(r2) be harmonic Riemannian submersions, and
¢ = io (p1 X ¢2), where i : S™(r) x S"2(ry) — S"*! is the canonical
inclusion.

THEOREM 2.3. The map ¢ is a nonharmonic btharmonic subimmersion
if and only if ri =9 = 1/v/2 and ny # na.

Proof. We set
T2 ™
f(p) = <_p17 __p2>7
™ 2

where p = (p1,p2) € S™ (1) x S™2(r3). Then £ is a unit section in the normal
bundle of S (r1) x S"2(rg) in S*+1.
By a straightforward computation we obtain

7’%712 — 7’%711

7(¢) va
2 2 2 2 2 2 2
r2 —r? (r?ng — ring rZ—p

ra(g) = 2 1(1 2 )szgwn%.
172 172 r17re

Thus 7(¢) # 0 and 79(¢) = 0 if and only if 11 = ro = 1/v/2 and n1 # no. =

3. Biharmonic submanifolds of (S",e%¢(, )). We start with the well
known results about the conformal changes of the metrics.
Let (N, h) be a Riemannian manifold and let ¢ € C*°(N) be a smooth

real map. Set h :~e29h and denote by V¥ the Levi-Civita connection of the
metric h and by V¥ the Levi-Civita connection of h. We have

VY = VY + P(X,Y),
where the tensor field P is given by
P(X,Y)=(Xo)Y + (Yo)X — h(X,Y)grad o.
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For the corresponding curvature tensor fields we have
(31) RY(X,Y)Z=RN(X,Y)Z+ (VXP)(Y,Z) - (V¥ P)(X, Z)
+P(X,P(Y,Z))— P(Y,P(X, 2)).

Suppose that (IV,h) = S™ with the canonical metric (, ) and o(z) =
(u,x), for x € S™, where u is a constant vector in R"*! and u # 0. Then

V_S; gradp = —pX and gradp = u — or, where r = xle; + ... + 2" le,
is the radial vector field and {ey,...,e,+1} denotes the canonical frame of
R™*L. For this choice of N formula (3.1) becomes

(3.2) R"(X,Y)Z = (Z,Y)X — (Z,X)Y

+20{(Z,Y)X — (Z,X)Y}
+ (Yo)(Zo)X — (Xo)(Zo)Y
+{{Y, 2)(X0) — (X, Z)(Yo)} grad ¢
+ |grad o*{(Z, X)Y — (Z,Y)X}.
Now, we consider S*~! = §"~! x {0} and let
s (S"L(0)) = (8™ (,) and i2: (S"TN(,)) — (8" €*(,))
be the canonical inclusions. We have i = 1 o iy, where 1 : (S",(,)) —
(S™,e2¢(,)) is the identity map. Of course, i; is totally geodesic, so it is
harmonic and biharmonic.

Assume that o(z) = 2"
iy we obtain

1 = (41, 7). Concerning the biharmonicity of

PROPOSITION 3.1. The inclusion map iz : (S"1,(,)) — (S",e2¢(,)) is
nonharmonic biharmonic.

Proof. From the composition law we get

(3.3) 7(i2) = d1(7(i1)) + trace Vd1(di;-, diy-) = trace Vd1(di;-, di;-)

n—1
=Y (V" - V) (Xk Xp) = Y P(X, Xp)
k=1 k

= {2(Xk0)X) — grad o} = —(n — 1) grad g
k

=—(n—1)ept1,
where {X;}7! is a local orthonormal frame field on S"~!. Thus iy is not
harmonic.
To compute —A®27(iz), let p € M and let {X;}7_] be a geodesic frame
at p € S* 1. At p we have
—Ab7(iy) =Y VR VR, T(i2) = —(n—1) Y VX, VX ent1-
k k



BIHARMONIC MAPS IN SPHERES 137

As

V% ent1 = VX eni1 + (Xpo)ent1 + (ens10)Xg — (Xk, ent1) grad o

= V%enﬂ + X = V]%Henﬂ + (Xp, eni1)r + X = Xg,
it follows that
(3.4) — APr(iy) = —(n—1) Y V%, X = —(n— D)r(i2)
k
= (n—1)2%epy1.

Using (3.2) we get
(3.5) trace RS (dig-, 7(i2) )diz- = (n — 1)%ep41.

Inserting (3.4) and (3.5) in the biharmonic equation we deduce that iy is
biharmonic. =

To generalize the above result we consider a minimal submanifold
(Mv<’ >) of(S”_1’<’ >) Let i: M_’Sn_lajl = iloi : (Mv<’ >) - (Sn7<v >)
and jo = 1ojy : (M, (,)) — (S",e%(,)) be the canonical inclusions. Again
o is given by o(x) = 2"t

The map j; is harmonic, and following the same steps as in the proof of
Proposition 3.1, we get

o 7(ia) = —meni1,

o —A27(jo) = m2enq1,

o trace R%" (dja-, 7(j2))djo- = m2eni1.
Thus we get

THEOREM 3.2. The inclusion map jo : (M, (,)) — (S™,e2¢(,)) is non-
harmonic biharmonic.

REMARK 3.3. We note that:

(1) (S™,e%¢(,)) has nonconstant sectional curvature;

(2) jo: (M, {,)) — (S™,e%(,)) is a Riemannian immersion;

(3) M is a pseudo-umbilical submanifold of (S, €2¢(,)) and its mean
curvature vector field is parallel and of norm 1. This result is similar to
Theorem 3.4 in [2].

Theorem 3.2 allows us to construct new examples of nonminimal (non-
harmonic) biharmonic submanifolds in spaces of nonconstant sectional cur-
vature. For example, using a well known result of H. B. Lawson (see [13]),
we get

THEOREM 3.4. There exist closed orientable embedded nonminimal bi-
harmonic surfaces of arbitrary genus in (S*,e2¢(,)).
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PROPOSITION 3.5. Let M be a submanifold of S"~!. Then js is not har-
monic, and it is biharmonic if and only if i is harmonic, i.e. (M,(,)) is
minimal in (S*71, ().

Proof. We have

7(J2) = 7(1 0 j1) = 7(j1) + trace Vd1(dji-, dji)
7(1) + trace Vd1(dji-, dji-) = 7(1) — mgrad o
-

(1) — Menp+1,

S0 jo is not harmonic. The biharmonic equation can be written as
ma(j2) = — A7 () — trace B (djar, 7(j2) )dja -
= —A127(i) — A2 (—mep11)

— trace B (djo-, 7(i))djo - — trace R" (dja-, —men1)djs - -

By a straightforward computation we obtain
—A27(i) = — Alr(i) + |7(1)Pens1,

—A2(—me, 1) = —mr(jo) = —mr(i) + m2ens,

and
trace B> (djy-, 7(1))dj2- = 0,  trace R>" (djo-, —meni1)dja- = m2eny1.

Thus we get 13(j2) = —Al7(i) —m7 (i) + |7(i)|?ens 1, which proves the propo-
sition. =

More generally, we consider S™ = §" x {0}, 0 € R"™™ m; <n —1,
and let

i: (™, () = (8"(,) and i»:(S™,(,)) — (S",€%(,))
be the canonical inclusions. Assume that
(3.6)  o(z) = (u,x) = u™T2gm T2 4 Tt Yy e ST
where u = (0,...,0,u™*2 . ") € R"! and u # 0.

PROPOSITION 3.6. The inclusion map iz : (S™,(,)) — (S",e%(,)) is
not harmonic, and it is biharmonic if and only if |u| = 1.

Proof. In a similar way we obtain

o 7(i2) = —myu # 0,

o —AL7(iy) = m2|ul?u,

e trace R°" (dig-, 7(i2))diz- = m?u.
Consequently, 72(i2) = m3(|u|> — 1)u, i.e. the map iy is biharmonic if and
only if [u| =1. =
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Next, let (M, (, )) be a minimal submanifold of (S™,(,)) andi: M —
S™1 the canonical inclusion. We denote by

Ji=1oi: <M7<7 >) - (Sn7<7 >) and jo = 10j : (M7<a )) - (Sn762g<7 >>

the canonical inclusions, where g is given by (3.6). Then the map j; is
harmonic, and concerning jo we obtain

THEOREM 3.7. The inclusion map jo : (M, {,)) — (S*,e¢(,)) is not
harmonic, and it is biharmonic if and only if |u| = 1.
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