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A CONVOLUTION PROPERTY OF THE
CANTOR–LEBESGUE MEASURE, II

BY

DANIEL M. OBERLIN (Tallahassee, FL)

Abstract. For 1 ≤ p, q ≤ ∞, we prove that the convolution operator generated by
the Cantor–Lebesgue measure on the circle T is a contraction whenever it is bounded from
Lp(T) to Lq(T). We also give a condition on p which is necessary if this operator maps
Lp(T) into L2(T).

Let T be the circle group R/Z and, for 1 ≤ p ≤ ∞, write Lp for the
Lebesgue space formed using normalized Lebesgue measure on T. Let λ be
the usual Cantor–Lebesgue measure on T. We are interested in determining
the Lp-Lq mapping properties of the convolution operator defined by λ: we
would like to know the indices p, q ∈ [1,∞] for which there is an inequality

(1) ‖λ ∗ f‖Lq ≤ C(p, q)‖f‖Lp
for f ∈ Lp. Since (1) is trivial if q ≤ p, our interest is in the case p < q. The
following results are in [O].

Lemma 1. Suppose 1 ≤ p < q ≤ ∞. If the inequality

(2)
(

1
3

[(
a+ b

2

)q
+
(
b+ c

2

)q
+
(
a+ c

2

)q])1/q

≤
(
ap + bp + cp

3

)1/p

holds for all a, b, c ≥ 0, then (1) holds with C(p, q) = 1.

Lemma 2. Inequality (2) holds for q = 2 when p ≥ 2/(1 + 3−1/2) ≈
1.2679.

It follows from duality and interpolation that if 1 < p < ∞ then there
is q satisfying p < q <∞ and such that (1) holds with C(p, q) = 1. Similar
results for more general measures are in [BJJ] and [R], while [C] establishes
the “Lp-improving” property for a larger class of singular measures using a
quite different method.
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The known cases of (1) are all applications of Lemma 1 and so satisfy
C(p, q) = 1. The main result of this note is that if convolution with λ maps
Lp into Lq, then it does so as a contraction:

Theorem 3. If (1) holds for p, q ∈ [1,∞] then (1) holds with C(p, q) = 1.

A more difficult and interesting problem is to determine exactly the
indices for which (1) holds. Here we focus on the case q = 2. In addition to
the information above, there are the following results.

Proposition 4 ([B], [BJJ]). Inequality (2) holds for q = 2 exactly when
p ≥ log 4/log 3 ≈ 1.2619.

Proposition 5. If (1) holds then

1
p

+
(

1− log 2
log 3

)(
1− 1

q

)
≤ 1.

Proposition 5 is checked by testing (1) on the indicator functions of
small intervals. It shows in particular that if (1) holds with q = 2 then
p ≥ 2(1 + log 2/log 3)−1 ≈ 1.2263, providing a necessary condition to pair
with the sufficient condition provided by Lemma 1 and Proposition 4. The
second result of this note narrows the gap between these two conditions.

Proposition 6. Suppose (1) holds with q = 2. Then the following in-
equality holds whenever 0 < a < b < 1 and 2b < 1 + a:

(3)
(

2a

6aa(b− a)2(b−a)(1 + a− 2b)(1+a−2b)

)1/2

≤
(

2b

3bb(1− b)(1−b)

)1/p

.

Numerical calculations indicate that (3) fails when p = 1.244, b = .0770,
and a = .0105. This rules out the possibility that the condition provided by
Proposition 5 is sufficient as well as necessary (but leaves open the interesting
possibility that the sufficient condition supplied by Beckner’s Proposition 4
is necessary). In the remainder of this note we give the proofs of Theorem 3
and Proposition 6.

Proof of Theorem 3. We will show that if (1) holds for C(p, q) ∈ [1,∞)
then (1) also holds when C(p, q) is replaced by

√
C(p, q). It is convenient

to replace λ with its translate by 1/2. We will need the facts that then the
Fourier transform of λ is given by

λ̂(n) =
∞∏

j=0

cos(2π3−jn)

and that when f is 1-periodic and continuous on R we have, for integral M ,

(4) lim
M→∞

1�

0

f(θ)f(Mθ) dθ =
(1�

0

f(θ) dθ
)2
.



A CONVOLUTION PROPERTY 25

Fix a trigonometric polynomial

(5) t(θ) =
L∑

n=−L
t̂(n)e2πinθ.

Then, for positive integers N ,

λ ∗ t(θ)λ ∗ t(3Nθ)

=
∑

n1,n2

∞∏

j=0

(cos(2π3−jn1) cos(2π3−jn2))t̂(n1)t̂(n2)e2πi(n1+3Nn2)θ.

Also, t(θ)t(3Nθ) =
∑
n1,n2

t̂(n1)t̂(n2)e2πi(n1+3Nn2)θ and so

λ∗(t(·)t(3N ·))(θ) =
∑

n1,n2

∞∏

j=0

cos(2π3−j(n1+3Nn2))t̂(n1)t̂(n2)e2πi(n1+3Nn2)θ.

Now
∞∏

j=0

cos(2π3−j(n1 + 3Nn2))

=
N∏

j=0

cos(2π3−jn1)
∞∏

j=N+1

cos(2π[3−jn1 + 3N−jn2])

=
N∏

j=0

cos(2π3−jn1)

×
∞∏

j=N+1

[cos(2π3−jn1) cos(2π3N−jn2)− sin(2π3−jn1) sin(2π3N−jn2)].

For M ≥ N + 1,

M∏

j=N+1

[cos(2π3−jn1) cos(2π3N−jn2)− sin(2π3−jn1) sin(2π3N−jn2)]

=
M∏

j=N+1

cos(2π3−jn1) cos(2π3N−jn2) + e

where the error term e = e(n1, n2, N,M) satisfies

|e| ≤
M∏

j=N+1

[1 + |sin(2π3−jn1)|]− 1 = O(3−NL)
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since |n1| ≤ L. Then
∣∣∣
∞∏

j=0

cos(2π3−j(n1 + 3Nn2))−
∞∏

j=0

(cos(2π3−jn1) cos(2π3−jn2))
∣∣∣ = O(3−NL)

and it follows that

|λ ∗ t(θ)λ ∗ t(3Nθ)− λ ∗ (t(·)t(3N ·))(θ)| ≤ C(t) · 3−N ,
where C(t) is a positive constant depending on the trigonometric polyno-
mial t.

Thus
∣∣‖λ ∗ t(θ) λ ∗ t(3Nθ)‖Lq − ‖λ ∗

(
t(·)t(3N ·)

)
(θ)‖Lq

∣∣→ 0

as N →∞. Since

‖λ ∗ t(θ)λ ∗ t(3Nθ)‖Lq → ‖λ ∗ t‖2Lq
by (4), and also

‖λ ∗ (t(·)t(3N ·))(θ)‖Lq ≤ C(p, q)‖t(θ)t(3Nθ)‖Lp → C(p, q)‖t‖2Lp ,
it follows that

‖λ ∗ t‖Lq ≤
√
C(p, q) ‖t‖Lp

as desired. Thus the proof of Theorem 3 is complete.

Proof of Proposition 6. If (1) holds it is easy to see that convolution with
λ yields a bounded operator from Lp(R) to Lq(R). If q = 2 it follows that

(6) 〈λ ∗ λ̃, χE ∗ χ−E〉 ≤ C(p)|E|2/p

for Borel E ⊆ R. To discretize (6) define

CN =
{N−1∑

j=0

εj3j : j ∈ {0, 2}
}
.

With “∗” now representing the usual convolution on the group of integers
and “| · |” standing for cardinality, (6) implies that

(7)
1

12N
〈χCN ∗ χ−CN , χF ∗ χ−F 〉 ≤ C(p)

( |F |
3N

)2/p

whenever F ⊆ Z. We will establish (3) by applying (7) to certain sets FN,k.
Fix a positive integer N . For J ⊆ {0, 1, . . . , N − 1} put

FJ =
{∑

j∈J
εj3j : j ∈ {−2, 2}

}

so that
χFJ = ∗

j∈J
(δ−2·3j + δ2·3j ).
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For 1 ≤ k ≤ N − 1 define

FN,k =
⋃
{FJ : J ⊆ {0, 1, . . . , N − 1}, |J | = k}.

Note that if J1 and J2 are disjoint then

χFJ1
∗ χFJ2

= χFJ1∪J2
,

and that, in general,

χFJ1
∗ χFJ2

= ∗
j∈J1∩J2

(δ−4·3j + 2δ0 + δ4·3j ) ∗ χF(J1∪J2)\(J1∩J2) .

It follows that

χFJ1
∗ χFJ2

≥ 2|J1∩J2|χF(J1∪J2)\(J1∩J2) .

Thus, since FJ1 and FJ2 are disjoint if J1 6= J2,

〈χCN ∗ χ−CN , χFN,k ∗ χFN,k〉
=

∑

|J1|=|J2|=k
〈χCN ∗ χ−CN , χFJ1

∗ χFJ2
〉

≥
∑

|J1|=|J2|=k
2|J1∩J2|〈χCN ∗ χ−CN , χF(J1∪J2)\(J1∩J2)〉.

Now

〈χCN ∗ χ−CN , χFJ 〉 =
∑

f∈FJ
|f + CN ∩ CN | = 2|J|2N−|J| = 2N

so
〈χCN ∗ χ−CN , χFN,k ∗ χFN,k〉 ≥ 2N

∑

|J1|=|J2|=k
2|J1∩J2|

= 2N
(
N

k

) k∑

l=0

2l
(
k

l

)(
N − k
k − l

)
.

Thus (7) implies that for l = 0, . . . , k there is the inequality

(8)
2l

6N

(
N

k

)(
k

l

)(
N − k
k − l

)
≤ C(p)

((N
k

)
2k

3N

)2/p

.

By continuity, it is enough to establish (3) when a and b are rational.
With such a and b fixed, N will now stand for a positive integer such that
both aN and bN are integers. Take k = bN and l = aN in (8), estimate the
binomial coefficients using Stirling’s formula, take Nth roots of both sides
of the resulting inequality, and then let N →∞. This gives

2a

6aa(b− a)2(b−a)(1 + a− 2b)(1+a−2b)
≤
(

2b

3 · bb(1− b)(1−b)

)2/p

,

the conclusion of Proposition 6.
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