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A CONVOLUTION PROPERTY OF THE
CANTOR-LEBESGUE MEASURE, 11

BY

DANIEL M. OBERLIN (Tallahassee, FL)

Abstract. For 1 < p,q < oo, we prove that the convolution operator generated by
the Cantor—Lebesgue measure on the circle T is a contraction whenever it is bounded from
LP(T) to LY(T). We also give a condition on p which is necessary if this operator maps
LP(T) into L*(T).

Let T be the circle group R/Z and, for 1 < p < oo, write L? for the
Lebesgue space formed using normalized Lebesgue measure on T. Let A be
the usual Cantor—Lebesgue measure on T. We are interested in determining
the LP-LY mapping properties of the convolution operator defined by A: we
would like to know the indices p, g € [1, c0] for which there is an inequality

(1) A fllze < Cp, @)1l 2o

for f € LP. Since (1) is trivial if ¢ < p, our interest is in the case p < ¢. The
following results are in [O].

LEMMA 1. Suppose 1 < p < q < 0. If the inequality
) 1 a+b q+ b+c q+ a+c)\? 1/q< a? + bP 4 P 1/p
3 2 2 2 - 3
holds for all a,b,c > 0, then (1) holds with C(p,q) = 1.

LEMMA 2. Inequality (2) holds for ¢ = 2 when p > 2/(1 +371/?) ~
1.2679.

It follows from duality and interpolation that if 1 < p < oo then there
is ¢ satisfying p < ¢ < oo and such that (1) holds with C(p,q) = 1. Similar
results for more general measures are in [BJJ] and [R], while [C] establishes
the “LP-improving” property for a larger class of singular measures using a
quite different method.
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The known cases of (1) are all applications of Lemma 1 and so satisfy
C(p, q) = 1. The main result of this note is that if convolution with A maps
L? into L?, then it does so as a contraction:

THEOREM 3. If (1) holds forp, q € [1,00] then (1) holds with C(p,q) = 1.

A more difficult and interesting problem is to determine exactly the
indices for which (1) holds. Here we focus on the case ¢ = 2. In addition to
the information above, there are the following results.

PRrOPOSITION 4 ([B], [BJJ]). Inequality (2) holds for ¢ = 2 ezxactly when
p > log4/log3 ~ 1.2619.

PROPOSITION 5. If (1) holds then

To(r-te2) (1) oy
D log 3 q

Proposition 5 is checked by testing (1) on the indicator functions of
small intervals. It shows in particular that if (1) holds with ¢ = 2 then
p > 2(1 + log2/log3)~! ~ 1.2263, providing a necessary condition to pair
with the sufficient condition provided by Lemma 1 and Proposition 4. The
second result of this note narrows the gap between these two conditions.

PROPOSITION 6. Suppose (1) holds with ¢ = 2. Then the following in-
equality holds whenever 0 < a <b<1 and 2b <1+ a:

9a 1/2 2b 1/p
(3) <(—= ) .
607 (b — )26~ (1 + a — 25)(0+a-2) 305(1— )0

Numerical calculations indicate that (3) fails when p = 1.244, b = .0770,
and a = .0105. This rules out the possibility that the condition provided by
Proposition 5 is sufficient as well as necessary (but leaves open the interesting
possibility that the sufficient condition supplied by Beckner’s Proposition 4
is necessary). In the remainder of this note we give the proofs of Theorem 3
and Proposition 6.

Proof of Theorem 3. We will show that if (1) holds for C(p, q) € [1, 00)
then (1) also holds when C(p, q) is replaced by /C(p,q). It is convenient
to replace A with its translate by 1/2. We will need the facts that then the
Fourier transform of A is given by

X(n) = H cos(2m37n)
3=0

and that when f is 1-periodic and continuous on R we have, for integral M,
2

M —o0

(4) lim | £(0)f(20)do = (g 7(0) d@)
0
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Fix a trigonometric polynomial

L
(5) t0)= > tn)e*n’.
n=—1L

Then, for positive integers NV,

Axt(0)A (3N 0)

o0
= Z H(COS(2W3*jn1)cos(27r3*jn2))tA(n1)%\(ng)eQ”i(”lJrsN”Z)e.
ni,n2 j=0

Also, H(0)t(3N0) =, .., (n1)t(ng)e2mi(m+3"n2)0 anq g0

Ae(t(EEN)0) = D Hcos(27r3*j(nl+3Nn2))f(n1)f(n2)e2m<n1+3%2)9_

ni,n2 j=0

Now

] cos(2w377(n1 + 3%ny))
j=0

',:12

s(2m377ny) H cos(2m[37ny + 3N "Iny))

7=0 j=N+1
N
H s(2737Iny)
X H [cos(2m37Iny) cos(23N “Iny) — sin(273 7 ny ) sin(273Y “Iny)).
j=N+1
For M > N +1,

M
H [cos(273 ;) cos(2m3Y “Iny) — sin(273 I ny ) sin(273N "I ny)]
j=N+1
M
H cos(2m37Iny) cos(2m3N "Iny) 4 e
j=N+1

where the error term e = e(n1,ng, N, M) satisfies

M
el < J] [0+ Isin(2x3 7ny)] -1 =0(3""L)
j=N+1
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since |ni| < L. Then
‘ H cos(2377 (ny + 3% ny)) H cos(2m37ny) cos(273 I ny))| = O3V L)
=0 =0
and it follows that
Nk t(D)N+t(3NV0) — X (t()t(3V))(0)] < C(t) - 37,

where C(t) is a positive constant depending on the trigonometric polyno-
mial ¢.
Thus

A% (0) Axt(3Y0)[La — [|A* (E()t(3N))(0)]|Le]| — 0
as N — o00. Since
A ()X * t(3Y0)|[ Lo — [IX* t[1 74
by (4), and also
A% (BN ))(O)lLa < Clp, )1t 0)|[Lr — Clp, @) |IE]1 75,

it follows that
[A*t]ze </ C(p,q) |It|lLr

as desired. Thus the proof of Theorem 3 is complete.

Proof of Proposition 6. If (1) holds it is easy to see that convolution with
A yields a bounded operator from LP(R) to LZ(R). If ¢ = 2 it follows that

(6) (Ax X X * x-5) < C()|E['?
for Borel E C R. To discretize (6) define

N-—-1
Cy = { S e3ije {0,2}}.
=0

With “x” now representing the usual convolution on the group of integers
and “|-|” standing for cardinality, (6) implies that

7) ¥

whenever F' C Z. We will establish (3) by applying (7) to certain sets Fy .
Fix a positive integer N. For J C {0,1,..., N — 1} put

Fy= {Zsjy‘ e {—2,2}}

jeJ

F
(XCn * X—Cn»> XF *X-F) < C(p) (g—N|>

so that
XF, j J( 2-3 2:3 )
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For 1 <k < N — 1 define
Fyie=|J{Fs:7C{0,1,...,N -1}, |J| = k}.
Note that if J; and .J> are disjoint then
XFy *XFyy, = XFy 0750
and that, in general,
XFj, * XFj, = jeJTmJ2(574'3j + 200 + 04.30) ¥ XF(s, bapn oy
It follows that
JinJ.
XFJ1 * XFJ2 Z 2| o 2lXF(J1UJz)\(JlﬁJz) :
Thus, since Fy, and F)j, are disjoint if J; # Ja,
<XCN *X—CnsXFn i * XFN,k>

= > {XCn *X—CnsXFy, * XFy)

|J1]=]J2|=k
JiNJ.
Z Z 2‘ ' 2‘<XCN *X_CN’XF(JlUJz)\(J1ﬁ12)>'
|J1]|=|J2|=k
Now
(XCN * X*CN?XFJ> = Z ’f + CN N CN‘ = 2‘J|2N_‘J| = 2N
feF;
SO

(XOn * X—Cn>XFni * XFyp) = 2N Z 2l 10|
[J1|=|J2|=k

()50

Thus (7) implies that for [ = 0,..., k there is the inequality

o w0 (B

By continuity, it is enough to establish (3) when a and b are rational.
With such a and b fixed, N will now stand for a positive integer such that
both aN and bN are integers. Take k = bN and [ = aN in (8), estimate the
binomial coefficients using Stirling’s formula, take Nth roots of both sides
of the resulting inequality, and then let N — oo. This gives

2a 2b 2/p
<
6a“(b _ a)Q(b*a)(l +a— 2b)(1+a72b) — (3 . bb(l _ b)(lb)) ’

the conclusion of Proposition 6.
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