C OLLOQUIUM MATHEMATICUM

A CONVOLUTION PROPERTY OF THE CANTOR-LEBESGUE MEASURE, II

BY
DANIEL M. OBERLIN (Tallahassee, FL)

Abstract

For $1 \leq p, q \leq \infty$, we prove that the convolution operator generated by the Cantor-Lebesgue measure on the circle \mathbb{T} is a contraction whenever it is bounded from $L^{p}(\mathbb{T})$ to $L^{q}(\mathbb{T})$. We also give a condition on p which is necessary if this operator maps $L^{p}(\mathbb{T})$ into $L^{2}(\mathbb{T})$.

Let \mathbb{T} be the circle group \mathbb{R} / \mathbb{Z} and, for $1 \leq p \leq \infty$, write L^{p} for the Lebesgue space formed using normalized Lebesgue measure on \mathbb{T}. Let λ be the usual Cantor-Lebesgue measure on \mathbb{T}. We are interested in determining the $L^{p}-L^{q}$ mapping properties of the convolution operator defined by λ : we would like to know the indices $p, q \in[1, \infty]$ for which there is an inequality

$$
\begin{equation*}
\|\lambda * f\|_{L^{q}} \leq C(p, q)\|f\|_{L^{p}} \tag{1}
\end{equation*}
$$

for $f \in L^{p}$. Since (1) is trivial if $q \leq p$, our interest is in the case $p<q$. The following results are in [O].

Lemma 1. Suppose $1 \leq p<q \leq \infty$. If the inequality

$$
\begin{equation*}
\left(\frac{1}{3}\left[\left(\frac{a+b}{2}\right)^{q}+\left(\frac{b+c}{2}\right)^{q}+\left(\frac{a+c}{2}\right)^{q}\right]\right)^{1 / q} \leq\left(\frac{a^{p}+b^{p}+c^{p}}{3}\right)^{1 / p} \tag{2}
\end{equation*}
$$

holds for all $a, b, c \geq 0$, then (1) holds with $C(p, q)=1$.
Lemma 2. Inequality (2) holds for $q=2$ when $p \geq 2 /\left(1+3^{-1 / 2}\right) \approx$ 1.2679.

It follows from duality and interpolation that if $1<p<\infty$ then there is q satisfying $p<q<\infty$ and such that (1) holds with $C(p, q)=1$. Similar results for more general measures are in [BJJ] and [R], while [C] establishes the " L^{p}-improving" property for a larger class of singular measures using a quite different method.

[^0]The known cases of (1) are all applications of Lemma 1 and so satisfy $C(p, q)=1$. The main result of this note is that if convolution with λ maps L^{p} into L^{q}, then it does so as a contraction:

Theorem 3. If (1) holds for $p, q \in[1, \infty]$ then (1) holds with $C(p, q)=1$.
A more difficult and interesting problem is to determine exactly the indices for which (1) holds. Here we focus on the case $q=2$. In addition to the information above, there are the following results.

Proposition 4 ([B], [BJJ]). Inequality (2) holds for $q=2$ exactly when $p \geq \log 4 / \log 3 \approx 1.2619$.

Proposition 5. If (1) holds then

$$
\frac{1}{p}+\left(1-\frac{\log 2}{\log 3}\right)\left(1-\frac{1}{q}\right) \leq 1
$$

Proposition 5 is checked by testing (1) on the indicator functions of small intervals. It shows in particular that if (1) holds with $q=2$ then $p \geq 2(1+\log 2 / \log 3)^{-1} \approx 1.2263$, providing a necessary condition to pair with the sufficient condition provided by Lemma 1 and Proposition 4. The second result of this note narrows the gap between these two conditions.

Proposition 6. Suppose (1) holds with $q=2$. Then the following inequality holds whenever $0<a<b<1$ and $2 b<1+a$:

$$
\begin{equation*}
\left(\frac{2^{a}}{6 a^{a}(b-a)^{2(b-a)}(1+a-2 b)^{(1+a-2 b)}}\right)^{1 / 2} \leq\left(\frac{2^{b}}{3 b^{b}(1-b)^{(1-b)}}\right)^{1 / p} \tag{3}
\end{equation*}
$$

Numerical calculations indicate that (3) fails when $p=1.244, b=.0770$, and $a=.0105$. This rules out the possibility that the condition provided by Proposition 5 is sufficient as well as necessary (but leaves open the interesting possibility that the sufficient condition supplied by Beckner's Proposition 4 is necessary). In the remainder of this note we give the proofs of Theorem 3 and Proposition 6.

Proof of Theorem 3. We will show that if (1) holds for $C(p, q) \in[1, \infty)$ then (1) also holds when $C(p, q)$ is replaced by $\sqrt{C(p, q)}$. It is convenient to replace λ with its translate by $1 / 2$. We will need the facts that then the Fourier transform of λ is given by

$$
\widehat{\lambda}(n)=\prod_{j=0}^{\infty} \cos \left(2 \pi 3^{-j} n\right)
$$

and that when f is 1-periodic and continuous on \mathbb{R} we have, for integral M,

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \int_{0}^{1} f(\theta) f(M \theta) d \theta=\left(\int_{0}^{1} f(\theta) d \theta\right)^{2} \tag{4}
\end{equation*}
$$

Fix a trigonometric polynomial

$$
\begin{equation*}
t(\theta)=\sum_{n=-L}^{L} \widehat{t}(n) e^{2 \pi i n \theta} \tag{5}
\end{equation*}
$$

Then, for positive integers N,

$$
\begin{array}{rl}
\lambda * t(\theta) \lambda * & t\left(3^{N} \theta\right) \\
& =\sum_{n_{1}, n_{2}} \prod_{j=0}^{\infty}\left(\cos \left(2 \pi 3^{-j} n_{1}\right) \cos \left(2 \pi 3^{-j} n_{2}\right)\right) \widehat{t}\left(n_{1}\right) \widehat{t}\left(n_{2}\right) e^{2 \pi i\left(n_{1}+3^{N} n_{2}\right) \theta} .
\end{array}
$$

Also, $t(\theta) t\left(3^{N} \theta\right)=\sum_{n_{1}, n_{2}} \widehat{t}\left(n_{1}\right) \widehat{t}\left(n_{2}\right) e^{2 \pi i\left(n_{1}+3^{N} n_{2}\right) \theta}$ and so
$\lambda *\left(t(\cdot) t\left(3^{N} \cdot\right)\right)(\theta)=\sum_{n_{1}, n_{2}} \prod_{j=0}^{\infty} \cos \left(2 \pi 3^{-j}\left(n_{1}+3^{N} n_{2}\right) \widehat{t}\left(n_{1}\right) \widehat{t}\left(n_{2}\right) e^{2 \pi i\left(n_{1}+3^{N} n_{2}\right) \theta}\right.$.
Now

$$
\begin{aligned}
& \prod_{j=0}^{\infty} \cos \left(2 \pi 3^{-j}\left(n_{1}+3^{N} n_{2}\right)\right) \\
& =\prod_{j=0}^{N} \cos \left(2 \pi 3^{-j} n_{1}\right) \prod_{j=N+1}^{\infty} \cos \left(2 \pi\left[3^{-j} n_{1}+3^{N-j} n_{2}\right]\right) \\
& =\prod_{j=0}^{N} \cos \left(2 \pi 3^{-j} n_{1}\right) \\
& \quad \times \prod_{j=N+1}^{\infty}\left[\cos \left(2 \pi 3^{-j} n_{1}\right) \cos \left(2 \pi 3^{N-j} n_{2}\right)-\sin \left(2 \pi 3^{-j} n_{1}\right) \sin \left(2 \pi 3^{N-j} n_{2}\right)\right]
\end{aligned}
$$

For $M \geq N+1$,

$$
\begin{array}{r}
\prod_{j=N+1}^{M}\left[\cos \left(2 \pi 3^{-j} n_{1}\right) \cos \left(2 \pi 3^{N-j} n_{2}\right)-\sin \left(2 \pi 3^{-j} n_{1}\right) \sin \left(2 \pi 3^{N-j} n_{2}\right)\right] \\
=\prod_{j=N+1}^{M} \cos \left(2 \pi 3^{-j} n_{1}\right) \cos \left(2 \pi 3^{N-j} n_{2}\right)+e
\end{array}
$$

where the error term $e=e\left(n_{1}, n_{2}, N, M\right)$ satisfies

$$
|e| \leq \prod_{j=N+1}^{M}\left[1+\left|\sin \left(2 \pi 3^{-j} n_{1}\right)\right|\right]-1=O\left(3^{-N} L\right)
$$

since $\left|n_{1}\right| \leq L$. Then

$$
\left|\prod_{j=0}^{\infty} \cos \left(2 \pi 3^{-j}\left(n_{1}+3^{N} n_{2}\right)\right)-\prod_{j=0}^{\infty}\left(\cos \left(2 \pi 3^{-j} n_{1}\right) \cos \left(2 \pi 3^{-j} n_{2}\right)\right)\right|=O\left(3^{-N} L\right)
$$

and it follows that

$$
\left|\lambda * t(\theta) \lambda * t\left(3^{N} \theta\right)-\lambda *\left(t(\cdot) t\left(3^{N} \cdot\right)\right)(\theta)\right| \leq C(t) \cdot 3^{-N}
$$

where $C(t)$ is a positive constant depending on the trigonometric polynomial t.

Thus

$$
\left|\left\|\lambda * t(\theta) \lambda * t\left(3^{N} \theta\right)\right\|_{L^{q}}-\left\|\lambda *\left(t(\cdot) t\left(3^{N} \cdot\right)\right)(\theta)\right\|_{L^{q}}\right| \rightarrow 0
$$

as $N \rightarrow \infty$. Since

$$
\left\|\lambda * t(\theta) \lambda * t\left(3^{N} \theta\right)\right\|_{L^{q}} \rightarrow\|\lambda * t\|_{L^{q}}^{2}
$$

by (4), and also

$$
\left\|\lambda *\left(t(\cdot) t\left(3^{N} \cdot\right)\right)(\theta)\right\|_{L^{q}} \leq C(p, q)\left\|t(\theta) t\left(3^{N} \theta\right)\right\|_{L^{p}} \rightarrow C(p, q)\|t\|_{L^{p}}^{2}
$$

it follows that

$$
\|\lambda * t\|_{L^{q}} \leq \sqrt{C(p, q)}\|t\|_{L^{p}}
$$

as desired. Thus the proof of Theorem 3 is complete.
Proof of Proposition 6. If (1) holds it is easy to see that convolution with λ yields a bounded operator from $L^{p}(\mathbb{R})$ to $L^{q}(\mathbb{R})$. If $q=2$ it follows that

$$
\begin{equation*}
\left\langle\lambda * \widetilde{\lambda}, \chi_{E} * \chi_{-E}\right\rangle \leq C(p)|E|^{2 / p} \tag{6}
\end{equation*}
$$

for Borel $E \subseteq \mathbb{R}$. To discretize (6) define

$$
C_{N}=\left\{\sum_{j=0}^{N-1} \varepsilon_{j} 3^{j}: j \in\{0,2\}\right\}
$$

With "*" now representing the usual convolution on the group of integers and " $|\cdot|$ " standing for cardinality, (6) implies that

$$
\begin{equation*}
\frac{1}{12^{N}}\left\langle\chi_{C_{N}} * \chi_{-C_{N}}, \chi_{F} * \chi_{-F}\right\rangle \leq C(p)\left(\frac{|F|}{3^{N}}\right)^{2 / p} \tag{7}
\end{equation*}
$$

whenever $F \subseteq \mathbb{Z}$. We will establish (3) by applying (7) to certain sets $F_{N, k}$.
Fix a positive integer N. For $J \subseteq\{0,1, \ldots, N-1\}$ put

$$
F_{J}=\left\{\sum_{j \in J} \varepsilon_{j} 3^{j}: j \in\{-2,2\}\right\}
$$

so that

$$
\chi_{F_{J}}=\underset{j \in J}{*}\left(\delta_{-2 \cdot 3^{j}}+\delta_{2 \cdot 3^{j}}\right)
$$

For $1 \leq k \leq N-1$ define

$$
F_{N, k}=\bigcup\left\{F_{J}: J \subseteq\{0,1, \ldots, N-1\},|J|=k\right\}
$$

Note that if J_{1} and J_{2} are disjoint then

$$
\chi_{F_{J_{1}}} * \chi_{F_{J_{2}}}=\chi_{F_{J_{1} \cup J_{2}}}
$$

and that, in general,

$$
\chi_{F_{J_{1}}} * \chi_{F_{J_{2}}}=\underset{j \in J_{1} \cap J_{2}}{*}\left(\delta_{-4 \cdot 3^{j}}+2 \delta_{0}+\delta_{4 \cdot 3^{j}}\right) * \chi_{F_{\left(J_{1} \cup J_{2}\right) \backslash\left(J_{1} \cap J_{2}\right)}}
$$

It follows that

$$
\chi_{F_{J_{1}}} * \chi_{F_{J_{2}}} \geq 2^{\left|J_{1} \cap J_{2}\right|} \chi_{F_{\left(J_{1} \cup J_{2}\right) \backslash\left(J_{1} \cap J_{2}\right)}} .
$$

Thus, since $F_{J_{1}}$ and $F_{J_{2}}$ are disjoint if $J_{1} \neq J_{2}$,

$$
\begin{aligned}
&\left\langle\chi_{C_{N}} * \chi_{-C_{N}}, \chi_{F_{N, k}} * \chi_{F_{N, k}}\right\rangle \\
&=\sum_{\left|J_{1}\right|=\left|J_{2}\right|=k}\left\langle\chi_{C_{N}} * \chi_{-C_{N}}, \chi_{F_{J_{1}}} * \chi_{F_{J_{2}}}\right\rangle \\
& \geq \sum_{\left|J_{1}\right|=\left|J_{2}\right|=k} 2^{\left|J_{1} \cap J_{2}\right|}\left\langle\chi_{C_{N}} * \chi_{-C_{N}}, \chi_{\left.F_{\left(J_{1} \cup J_{2}\right) \backslash\left(J_{1} \cap J_{2}\right)}\right\rangle}\right.
\end{aligned}
$$

Now

$$
\left\langle\chi_{C_{N}} * \chi_{-C_{N}}, \chi_{F_{J}}\right\rangle=\sum_{f \in F_{J}}\left|f+C_{N} \cap C_{N}\right|=2^{|J|} 2^{N-|J|}=2^{N}
$$

so

$$
\begin{aligned}
\left\langle\chi_{C_{N}} * \chi_{-C_{N}}, \chi_{F_{N, k}} * \chi_{F_{N, k}}\right\rangle & \geq 2^{N} \sum_{\left|J_{1}\right|=\left|J_{2}\right|=k} 2^{\left|J_{1} \cap J_{2}\right|} \\
& =2^{N}\binom{N}{k} \sum_{l=0}^{k} 2^{l}\binom{k}{l}\binom{N-k}{k-l} .
\end{aligned}
$$

Thus (7) implies that for $l=0, \ldots, k$ there is the inequality

$$
\begin{equation*}
\frac{2^{l}}{6^{N}}\binom{N}{k}\binom{k}{l}\binom{N-k}{k-l} \leq C(p)\left(\frac{\binom{N}{k} 2^{k}}{3^{N}}\right)^{2 / p} \tag{8}
\end{equation*}
$$

By continuity, it is enough to establish (3) when a and b are rational. With such a and b fixed, N will now stand for a positive integer such that both $a N$ and $b N$ are integers. Take $k=b N$ and $l=a N$ in (8), estimate the binomial coefficients using Stirling's formula, take N th roots of both sides of the resulting inequality, and then let $N \rightarrow \infty$. This gives

$$
\frac{2^{a}}{6 a^{a}(b-a)^{2(b-a)}(1+a-2 b)^{(1+a-2 b)}} \leq\left(\frac{2^{b}}{3 \cdot b^{b}(1-b)^{(1-b)}}\right)^{2 / p}
$$

the conclusion of Proposition 6.

REFERENCES

[B] W. Beckner, private communication.
[BJJ] W. Beckner, S. Janson, and D. Jerison, Convolution inequalities on the circle, in: Conf. on Harmonic Analysis in Honor of Antoni Zygmund, W. Beckner et al. (eds.), Wadsworth, 1983, 32-43.
[C] M. Christ, A convolution inequality concerning Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), 79-83.
[O] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), 113-117.
[R] D. Ritter, Some singular measures on the circle which improve L^{p} spaces, ibid. 52 (1987), 133-144.

Department of Mathematics
Florida State University
Tallahassee, FL 32306-4510, U.S.A.
E-mail: oberlin@math.fsu.edu

[^0]: 2000 Mathematics Subject Classification: Primary 42A45.
 Key words and phrases: convolution, restriction.
 The author was partially supported by the NSF.

