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AN EXISTENCE RESULT FOR BALANCE LAWS
WITH MULTIFUNCTIONS: A MODEL FROM THE THEORY

OF GRANULAR MEDIA

BY

PIOTR GWIAZDA (Warszawa)

Abstract. We study an example of the balance law with a multifunction source term,
coming from the theory of granular media. We prove the existence of “weak entropy solu-
tions” to this system, using the vanishing viscosity method and compensated compactness.
Because of the occurrence of a multifunction we give a new definition of the weak entropy
solutions.

1. Introduction. We consider an avalanche running down a slope.
Mathematically, our problem can be written in the following form: find the
height h : R+×R→ R, density % : R+×R→ R, and velocity v : R+×R→ R
of the avalanche satisfying the following system including a differential in-
clusion:

∂

∂t
(%h) +

∂

∂x
(%hv) = 0,

∂

∂t
(%hv) +

∂

∂x

(
%hv2 +

1
2
β%h2

)
∈ %hg,

(SH)

where β := β(x) is a given function and g := g(x, v) is a given multifunction.
The first equation in (SH) describes the conservation of mass whereas the
differential inclusion describes the balance of linear momentum.

A physical motivation for the use of a differential inclusion in (SH) in-
stead of a differential equation can be found in [9]. In experiments one can
observe a rich family of different static states. The main idea is to include
related static solutions using differential inclusions. This phenomenon is typ-
ical only for granular matter.

Obviously, these two balance laws do not determine the evolution of
the three variables (%, h, v) uniquely. We need an additional constitutive
relation. One possible approach is to assume that % is a function of h and v.
In this case we obtain a system of two differential inclusions for the two
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independent variables (h, v). In particular, constitutive relations of the form
% = %(h) were investigated by R. Balean [1], [2], and by the author [9] (1).

The paper has two basic purposes. First, we want to present the main
ideas of the general theory. Second, we want to avoid technical problems as
much as possible. For this reason we set the following constitutive relation:
% = h−1/2, which turns out to be the simplest case in calculations. Par-
ticularly, we can avoid using difficult results of [13] and [12]. Moreover, we
assume that the constant β and the multifunction g(v) are defined by

β = k cos(γ),

g(v) =

{
sin(γ) + [− cos(γ),+ cos(γ)] for v = 0,

sin(γ)− v
|v| cos(γ) for v 6= 0,

where −π/2 < γ < π/2 is the angle between the gravitational force and
a constant slope ground and k is a positive constant. The general Savage–
Hutter model for the one-dimensional snow avalanche [15] includes the case
where γ = γ(x), i.e. the case of a curved slope ground (2). Next, we introduce
H = %h. Our system (SH) takes the form

∂

∂t
(H) +

∂

∂x
(Hv) = 0,

∂

∂t
(Hv) +

∂

∂x

(
Hv2 +

1
2
βH3

)
∈ Hg(v).

It turns out that the above system for the evolution of (H, vH) is difficult to
handle (3). In order to simplify our investigations we consider a new system
whose classical solutions with H > 0 coincide with those of (SH). However,
it is well known that under nonlinear transformations weak solutions can
change considerably (for example the speed of shock waves can change: look
at the Rankine–Hugoniot jump condition). The new system is

∂

∂t
H +

∂

∂x
(Hv) = 0,

∂

∂t
v +

∂

∂x

(
1
2
v2 +

3β
4
H2
)
∈ g(v).

Next, we introduce u = (u1, u2) =
( √2√

3βH, v
)
, restating our system in the

(1) More precisely, the constitutive relations in the cited references were % = %0 and
% = hα, α ≥ 0, respectively.

(2) See [1] and [9].
(3) Actually, the problem is to obtain some additional technical estimates for the

viscous regularized problem (see [9]).
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following way:

(CL)
∂

∂t
u+

∂

∂x
F (u) ∈ G̃(u),

where

F (u) =
(

u1u2

u2
2/2 + u2

1/2

)
, G̃(u) =

(
0

g(u2)

)
.

We will define a proper class of solutions that we are looking for. This class
contains the “weak entropy solutions” defined below.

Notation. Let Ω be a subset of a Euclidean space, ω a positive func-
tion on Ω, and X a subset of a Banach space. We denote by C0

ω(Ω;X) the
set of continuous functions u : Ω → X with ‖u‖C0

ω
= supx∈Ω ‖ω(x)u(x)‖

< ∞. Similarly by Cb, C0, Cc we denote respectively the sets of: continuous
bounded functions, continuous functions vanishing at infinity and continu-
ous functions with compact support. By Crb(Ω;X) we denote the Banach
space of r-times differentiable functions with the standard norm. By M we
denote the set of bounded Radon measures.

Definition 1.1. Suppose that η = η(u1, u2), q = q(u1, u2) are scalar
C1-functions satisfying

∇(u1,u2)η(u1, u2) · ∇(u1,u2)F (u1, u2) = ∇(u1,u2)q(u1, u2).

Such functions (η, q) are called entropy-flux pairs. If η is convex, then (η, q)
is called a convex entropy-flux pair.

Definition 1.2. We call u ∈ L∞([0, T ) × R;R+ × R) a weak entropy
solution to the system (CL) with the initial data u0 ∈ C0

b(R;R+×R) if there
exists G ∈ L∞([0, T )× R;R2) with the following properties:

(i) G(t, x) ∈ G̃(u(t, x)) for a.a. (t, x) ∈ [0, T )× R.
(ii) u is a weak solution, i.e.

�

[0,T )×R

[
u(t, x) · ∂

∂t
ψ(t, x) + F (u(t, x)) · ∂

∂x
ψ(t, x)

+G(t, x) · ψ(t, x)
]
dt dx = −

�

R
u0(x) · ψ(0, x) dx

for all test functions ψ ∈ C1
c ([0, T )× R;R2).

(iii) The entropy inequality
�

[0,T )×R

[
η(u(t, x))

∂

∂t
φ(t, x) + q(u(t, x))

∂

∂x
φ(t, x)

+∇uη(u(t, x)) ·G(t, x)φ(t, x)
]
dt dx ≥ −

�

R
η(u0(x))φ(0, x) dx
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holds for all nonnegative test functions φ ∈ C1
c ([0, T )×R;R) and all convex

entropy-flux pairs (η, q).

Remark. The above definition is nonstandard because of the differential
inclusion that occurs in (i).

Let us present the main result:

Theorem 1.1. Assume that the initial data satisfies

u0 = (u0
1, u

0
2) ∈ C3

b(R;R2), inf
x∈R

u0
1(x) ≥ 0, (u0

1 − u, u0
2) ∈ C0

ω(R;R2)

with ω(x) = 1 + |x| for some positive constant u. Then the problem (CL)
has a weak entropy solution in the sense of Definition 1.2 for all positive T ,
with infx∈R u1(t, x) ≥ 0 for a.a. t ∈ [0, T ).

Remark. The strong assumption on the initial data appears only for
technical reasons.

2. Existence of solutions and a priori estimates for the viscous
perturbed problem. We define the viscous system by adding a second or-
der term and replacing G̃ by a smooth bounded function Gε. More precisely,
we consider the problem

(VP)
∂

∂t
u+

∂

∂x
F (u) = Gε(u) + ε

∂2

∂x2u,

with initial data
u0 = (u0

1, u
0
2).

Here Gε(u) is constructed with the help of Friedrichs mollifiers ϕε (suppϕε =
[−ε, ε]) and given by the formula

[Gε(u)]T =
(

0, sin(γ)− u2

|u2|
∗ ϕε(u2) cos(γ)

)
.

The function u2/|u2| is well defined for a.a. u2 in R.

Theorem 2.1. Assume that the initial data satisfies

u0 = (u0
1, u

0
2) ∈ C3

b(R;R2), (u0
1 − u, u0

2) ∈ C0
ω(R;R2),

where ω(x) = 1 + |x|, for some positive constant u. Then the problem (VP)
has a classical , global-in-time solution, i.e. u ∈ C0([0, T ); C2

b(R;R2)), ∂
∂tu ∈

C0
b([0, T )× R;R2), where T is arbitrary. Moreover :

(i) if infx∈R u0
1(x) ≥ 0, then infx∈R u1(t, x) ≥ 0;

(ii) ‖u(t)‖L∞(R) ≤ (|sin(γ)|+ |cos(γ)|)t+
√

2 ‖u0‖L∞(R) for all t ∈ [0, T ).

Proof. Step 1 (proof of local-in-time existence). Using the Gaussian
kernel

Θ(t, x) =
1√

4πεt
exp
(−x2

4εt

)
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of the heat equation we restate (VP) in the integral form

u(t, x) =
�

R
Θ(t, x−y)u0(y) dy+

�

R

t�

0

∂

∂x
Θ(t− τ, x−y)F (u(τ, y)) dτ dy(2.1)

+
�

R

t�

0

Θ(t− τ, x− y)Gε(u(τ, y)) dτ dy.

Note that ∣∣∣∣
∂

∂x
Θ(t, x)

∣∣∣∣ ≤
c

εt
exp
(−x2

2εt

)
,

�

R

t�

0

∣∣∣∣
∂

∂x
Θ(t− τ, x− y)

∣∣∣∣ dτ dy ≤ c
√
t

ε
.

Define the bounded set

U = conv{u0(x) | x ∈ R},
and the compact set

V = {y ∈ R2 | dist(y,U) ≤ 1}.
Note that Gε is globally Lipschitz, with Lipschitz constant depending on ε,
but F is only locally Lipschitz.

To solve (2.1) we define the sequence u(1), u(2), . . . by

u(1)(t, x) =
�

R
Θ(t, x− y)u0(y) dy,

u(n+1)(t, x) =
�

R
Θ(t, x− y)u0(y) dy

+
�

R

t�

0

∂

∂x
Θ(t− τ, x− y)F (u(n)(τ, y)) dτ dy

+
�

R

t�

0

Θ(t− τ, x− y)Gε(u(n)(τ, y)) dτ dy.

Obviously u(1)(t, x) ∈ U for all (t, x) ∈ R+ × R. It is also easy to observe
that there exists a sufficiently small time bound Tloc, which depends only
on the L∞-norm u0, such that

∞∑

n=1

‖u(n+1) − u(n)‖C0([0,Tloc)×R) ≤ 1.

Then limn→∞ u(n)(t, x) = u(t, x) for all (t, x) ∈ [0, Tloc)×R, where u(t, x) is
a solution to (2.1), and thus a “mild solution” to (VP). Moreover u(t, x) ∈ V
for all (t, x) ∈ [0, Tloc)× R.
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Note that F,Gε ∈ C3
b(V;R2). Then regularity of the solution (i.e. u ∈

C0((0, Tloc); C2
b(R;R2))) will be obtained by examining difference quotients

of first and second order; see also [11]).

Step 2 (L∞-bound of solutions). Let us observe that system (VP) is
equivalent to the system of two equations

∂

∂t
(u1 − u2)− 1

2
∂

∂x
(u1 − u2)2 = ε

∂2

∂x2 (u1 − u2)− gε(u2),

∂

∂t
(u1 + u2) +

1
2
∂

∂x
(u1 + u2)2 = ε

∂2

∂x2 (u1 + u2) + gε(u2),

where gε(u2) = sin(γ)− u2
|u2|∗ϕε(u2) cos(γ). Note that ‖gε(u2)‖L∞ ≤ |sin(γ)|+

|cos(γ)|. From the maximum principle for a scalar parabolic equation we
obtain

‖u(t)‖L∞(R) ≤ (|sin(γ)|+ |cos(γ)|)t+
√

2 ‖u0‖L∞(R)

for all t ∈ [0, Tloc).

Step 3 (global-in-time existence). Direct application of results obtained
in Steps 1 and 2 yields the global-in-time existence.

Step 4 (minimum estimate for u1). Simple calculation as in Step 1
shows that (u1(t)−u, u2(t)) is bounded in the space C0

ω(R;R2) (with ω(x) =
1 + |x|) for all t ∈ [0, Tloc) (see the estimation of the x-derivative of the heat
kernel).

Claim. If u2 ∈ C1
b([0, T )×R), u1 ∈ C0([0, T ); C2

b(R)), ∂
∂tu1 ∈ C0

b([0, T )×
R), u0

1 ≥ 0, u1(t)− u is bounded in the space C0
ω(R) (ω(x) = 1 + |x|) for all

t ∈ [0, T ), and u1(t, x) is a classical solution to the equation

∂

∂t
u1 +

∂

∂x
(u1u2) = ε

∂2

∂x2u1

then u1(t, x) ≥ 0.

Proof of Claim. Our proof follows in part the idea of [8, Proposition
4.1]. First, we multiply the equation by φ = min{0, u1} and integrate over
(−r, r)× (0, t) to get

r�

−r

1
2
φ2(x, t) dx+ ε

t�

0

r�

−r
|φx(x, s)|2 dx ds+ ε

t�

0

[φx(x, s)φ(x, s)]r−r ds

=
t�

0

r�

−r
u2(x, s)φ(x, s)φx(x, s) dx ds+

t�

0

[u2(x, s)φ2(x, s)]r−r ds,

Observe that the third term of the left hand side and the second term of the
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right hand side tend to zero as r tends to infinity. Moreover
t�

0

r�

−r
u2(x, s)φ(x, s)φx(x, s) dx ds ≤ ε

t�

0

r�

−r
|φx(x, s)|2 dx ds

+
‖u2‖∞

4ε

t�

0

r�

−r
φ2(x, s) dx ds.

Hence
∞�

−∞
φ2(x, t) dx ≤ ‖u2‖∞

4ε

t�

0

∞�

−∞
φ2(x, s) dx ds

and it follows from Gronwall’s inequality that φ(x, t) = 0.

In order to pass to the limit ε→ 0+ we need the following estimate.

Lemma 2.2. Assume that u(t, x) is a classical solution to the equation

∂

∂t
u+

∂

∂x
F (u) = Gε(u) + ε

∂2

∂x2u.

Moreover , assume that u, F (u), Gε(u) ∈ L∞([0, T ) × R;R2). Then
√
ε ∂
∂xu

is bounded independently of ε, 0 < ε < 1, in the space L2(Ω) for any open
bounded Ω ⊂ [0, T )× R.

Proof. Let (η, q) be a convex entropy-flux pair with η strictly convex.
Then we have D2η

(
∂
∂xu,

∂
∂xu
)
> K

∣∣ ∂
∂xu
∣∣2 for some K > 0. Multiplying

(VP) by ∇η we obtain

∂

∂t
η +

∂

∂x
q = ε

(
∂2

∂x2 η −D
2η

(
∂

∂x
u,

∂

∂x
u

))
+∇ηGε.

Next we multiply the above equation by a nonnegative test function θ ∈
C∞0 ([0, T )× R) with θ|Ω = 1, and integrate over [0, T )× R. This yields

εK
�

[0,T )×R
θ

∣∣∣∣
∂

∂x
u

∣∣∣∣
2

dt dx

≤
�

R
θ η dx+

�

[0,T )×R

{∣∣∣∣
∂2

∂x2 θη

∣∣∣∣+
∂

∂x
θq +

∂

∂t
θη + θ∇ηGε

}
dt dx,

where the right hand side and consequently the left hand side are bounded
uniformly w.r.t. ε.

3. Existence of weak entropy solutions to the original problem.
In this section we pass to the limit ε→ 0+ in the viscous perturbed problem
(VP) and also in the regularization Gε of our multifunction G̃. First, we
recall two basic theorems.
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Theorem (Convergence in the sense of Young measures). Let {uk} be
a sequence in L∞(Ω;K), where Ω ⊂ [0, T ) × R and K is a compact set in
R2. Then there exists a subsequence {ukj} ⊂ {uk} and for a.a. (t, x) ∈ Ω a
Borel probability measure µ(t,x) on K such that for each F ∈ C(K;R2) we
have

lim
kj→∞

�

Ω

F (ukj (t, x))ϕ(t, x) dt dx =
�

Ω

F (t, x)ϕ(t, x) dt dx ∀ϕ ∈ L1(Ω;R2),

where
F (t, x) =

�

K

F (y) dµ(t,x)(y) for a.a. (t, x) ∈ Ω.

For a proof see [7] or [3].

Theorem (Div-Curl lemma). Let (η1
k, q

1
k) and (−q2

k, η
2
k) be bounded se-

quences in L2(Ω;R2) such that ∂
∂tη

i
k + ∂

∂xq
i
k (for i = 1, 2) lies in a com-

pact subset of W−1,2(Ω;R). Suppose further that (η1
k, q

1
k) ⇀ (η1, q1) and

(−q2
k, η

2
k) ⇀ (−q2, η2) in L2(Ω;R2). Then

�

Ω

(q2
kη

1
k − η2

kq
1
k)ϕdt dx→

�

Ω

(q2η1 − η2q1)ϕdt dx ∀ϕ ∈ C∞c (Ω;R).

Proof. Observe that

curl(t,x)(−q2
k, η

2
k) =

∂

∂t
η2
k +

∂

∂x
q2
k, div(t,x)(η

1
k, q

1
k) =

∂

∂t
η1
k +

∂

∂x
q1
k.

Thus the above statement follows from [7, Theorem 4, p. 53] or [14, Lemma
3.3, p. 158].

Proof of the existence of a weak entropy solution. 1. First we write the
viscous perturbed problem in the weak form

�

[0,T )×R
[uεψt+F (uε)ψx+Gε(uε)ψ] dt dx = ε

�

[0,T )×R
uεxψx dt dx+

�

R
u0ψ(0, x) dx,

for any test function ψ ∈ C1
c ([0, T )×R;R2). The functions ψt, ψx, ψ are ele-

ments of the space C0
c ([0, T )×R;R2). Hence, for the sequence of approximate

problems (for example setting ε = 1/k, k ∈ N) we can pass to the limit in
the sense of Young measures. Using the fact that k−1ux → 0 strongly in
L2

loc([0, T ) × R;R2) we deduce that the first term on the right hand side
tends to zero as k →∞. This yields

�

[0,T )×R
[u(t, x)ψt(t, x)+F (t, x)ψx(t, x)+G(t, x)ψ(t, x)] dt dx =

�

R
u0ψ(0, x) dx,

where

u(t, x) =
�

K

(y1, y2) dµ(t,x)(y1, y2), F (t, x) =
�

K

F (y1, y2) dµ(t,x)(y1, y2)
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for a.a. (t, x) ∈ [0, T ) × R and Gε(uε) ⇀ G in Lploc([0, T ) × R;R2). In
the last equation µ(t,x) denotes the Young measure generated by a sub-
sequence {(u1, u2)kj}. From now on we restrict our considerations to the
subsequence kj . To simplify the notation we denote it by k.

If the Young measures µ(t,x) are the Dirac measures (i.e. µ(t,x) = δu(t,x))
for a.e. (t, x) in [0, T )× R then

F (u(t, x)) =
�

K

F (y1, y2) dδu(t,x)(y1, y2) = F (t, x)

a.e. in [0, T )×R. It turns out that G cannot be determined by means of the
standard “Young measure characterization” because of the differential in-
clusion in the original problem. This raises the question about the properties
of G.

2. In order to prove that µ(t,x) is a Dirac measure we apply the Div-Curl
lemma to a family consisting of only two entropy-flux pairs. More precisely,
we choose

(η1, q1) = (2(u1 + u2), (u1 + u2)2),

(η2, q2) = (3(u1 + u2)2, 2(u1 + u2)3).

Next, we multiply the equation (VP) by ∇vηi(u) (i = 1, 2), which yields

∂

∂t
uk∇uηi(uk) +

∂

∂x
F (uk)∇uηi(uk) = Gk(uk)∇uηi(uk) +

1
k

∂2

∂x2u
k∇uηi(uk),

and by a simple calculation

(3.1)
∂

∂t
ηi(uk) +

∂

∂x
qi(uk)

= Gk(uk)∇uηi(uk) +
1
k

(
∂2

∂x2 η
i(uk) + (uk)Tx∇2

uη
i(uk)ukx

)
.

We want to prove that the right hand side and thus the left hand side of
(3.1) lies in a compact subset of the spaceW−1,2(Ω;R2) for all open bounded
sets Ω ⊂ [0, T )× R. A simple computation yields ‖∇uηi(uk)‖L∞(Ω;R2) ≤ C,

‖Gk(uk)‖L∞(Ω;R2) ≤ C, and ‖∇2
uη

i(uk)‖L∞(Ω;R2) ≤ C, where C is indepen-
dent of k and Ω. This yields

(i) {Gk(uk)∇uηi(uk)} is bounded in L∞(Ω;R2) and thus precompact
in W−1,2(Ω;R2),

(ii) {k−1(ukx)T∇2
uη

1(uk)ukx} = 0 (since η1 is a linear function),
(iii) {k−1(ukx)T∇2

uη
2(uk)ukx} is bounded in L1(Ω;R2) and hence in

M(Ω;R2),
(iv) k−1 ∂

∂xη
i(uk) = k−1/2∇uηi(uk)k−1/2ukx → 0 in L2(Ω;R2); conse-

quently, {k−1 ∂2

∂x2 η
i(uk)} lies in a compact subset of W−1,2(Ω;R2),
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(v) the left hand side of (3.1) is bounded in W−1,∞(Ω;R2) and therefore
in W−1,p(Ω;R2) for all 1 < p <∞.

We will need the following

Theorem (Murat’s lemma). Let fk be a bounded sequence in W−1,p(Ω)
for some p > 2. Suppose that fk = gk + hk, where the sequence gk is pre-
compact in W−1,2(Ω) and the sequence hk is bounded in M(Ω). Then the
sequence fk is precompact in W−1,2(Ω).

For a proof see [7, Corollary 1, pp. 7–8].
Hence, by Murat’s lemma and (i)–(v) the left hand side of (3.1) lies in a

compact subset of W−1,2(Ω;R2).

3. Next we apply the Div-Curl lemma to the sequence (ηi(uk), qi(uk))
for i = 1, 2 and use the equality

η1(y1 + y2)q2(y1 + y2)− q1(y1 + y2)η2(y1 + y2) = (y1 + y2)4.

By the Young measure characterization of the weak limit we have
�

[0,T )×R

[
4

�

K

(y1 + y2) dµ(t,x)(y1, y2)
�

K

(y1 + y2)3 dµ(t,x)(y1, y2)

− 3
�

K

(y1 + y2)2 dµ(t,x)(y1, y2)
�

K

(y1 + y2)2 dµ(t,x)(y1, y2)
]
ϕdt dx

=
�

[0,T )×R

�

K

(y1 + y2)4 dµ(t,x)(y1, y2)ϕdt dx

for all ϕ ∈ C∞0 (Ω;R). We recall the following algebraic inequality:

a4 − 4a3b+ 6a2b2 − 4ab3 + b4 = (a− b)4 ≥ 0.

We set a = y1 + y2 and b = � K(y1 + y2) dµ(t,x)(y1, y2), and integrate the
above inequality with respect to the measure dµ(t,x)(y1, y2). This yields

�

K

(y1 + y2)4 dµ(t,x)(y1, y2)

− 4
�

K

(y1 + y2)3 dµ(t,x)(y1, y2)
�

K

(y1 + y2) dµ(t,x)(y1, y2)

+ 6
�

K

(y1 + y2)2 dµ(t,x)(y1, y2)
[ �

K

(y1 + y2) dµ(t,x)(y1, y2)
]2

− 3
[ �

K

(y1 + y2) dµ(t,x)(y1, y2)
]4
≥ 0.

Combining the above results we deduce that
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�

[0,T )×R

[ �

K

(y1 + y2)2 dµ(t,x)(y1, y2)

−
( �

K

(y1 + y2) dµ(t,x)(y1, y2)
)2]2

ϕdt dx ≤ 0

for all ϕ ∈ C∞0 (Ω;R) such that ϕ ≥ 0. This implies
�

K

(y1 + y2)2 dµ(t,x)(y1, y2) =
( �

K

(y1 + y2) dµ(t,x)(y1, y2)
)2
.

Let us now consider another two entropy-flux pairs:

(η3, q3) = (2(u1 − u2), (u1 − u2)2),

(η4, q4) = (3(u1 − u2)2, 2(u1 − u2)3).

As before, we can prove that
�

K

(y1 − y2)2 dµ(t,x)(y1, y2) =
( �

K

(y1 − y2) dµ(t,x)(y1, y2)
)2

and�

K

[(y1 + y2)2 + (y1 − y2)2] dµ(t,x)(y1, y2)

=
( �

K

(y1 + y2) dµ(t,x)(y1, y2)
)2

+
( �

K

(y1 − y2) dµ(t,x)(y1, y2)
)2
.

We apply Lemma 2.27 (generalized Jensen inequality) from [14, pp. 155–156]
to the strictly convex function (y1 + y2)2 + (y1 − y2)2 to obtain

µ(t,x)(y1, y2) = δu(t,x) for a.a. (t, x) ∈ [0, T )× R.
4. In order to prove that u(t, x) = � K(y1 + y2)dδu(t,x)(y1, y2) is a weak

entropy solution to the original problem we have to show that the limit
function G(t, x) satisfies

G(t, x) ∈ G̃(u(t, x)) for a.a. (t, x) ∈ [0, T )× R.
First, we prove that uk → u in the strong topology of Lp(Ω;R2) for 1 ≤
p <∞ and an arbitrary open bounded Ω ⊂ [0, T )×R. By the Radon–Riesz
theorem the following implication holds: [f k ⇀ f weakly in Lp and ‖fk‖Lp →
‖f‖Lp ] ⇒ fk → f strongly in Lp (for any p ∈ (1,∞)). Consequently, it
suffices to prove that ‖uk‖Lp → ‖u‖Lp . However, by the convergence in the
sense of Young measures, and by the fact that the limit measure is the Dirac
delta, we have

�

Ω

|uk|p dt dx→
�

Ω

�

K

|u|p dδ(t,x) dt dx =
�

Ω

|u|p dt dx.

Note that the characteristic function of Ω belongs to L1(R+ × R).
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Define

sign(u) =





−1 for u < 0,

[−1, 1] for u = 0,

1 for u > 0.
Next, we prove the following lemma.

Lemma 3.1. Assume that uk2 → u2 in the strong topology of Lp(Ω;R)
for some p ∈ (1,∞), Let signk = sign ∗ ϕ1/k. Then there exist a function
S ∈ Lp(Ω;R) and a subsequence kj such that

(i) signkj (u
kj
2 ) ⇀ S in the weak topology of Lp(Ω;R),

(ii) S ∈ sign(u2) a.e. in Ω.

Proof. By assumption |signk| ≤ 1. Consequently, signkj (u
kj
2 ) ⇀ S and

|S(t, x)| ≤ 1 a.e. in Ω. It remains to show that S ∈ sign(u2) a.e. in Ω.
Therefore, we divide Ω into three sets

Ω− = {(t, x) ∈ Ω | u2(t, x) < 0},
Ω0 = {(t, x) ∈ Ω | u2(t, x) = 0},
Ω+ = {(t, x) ∈ Ω | u2(t, x) > 0}.

It is obvious that S ∈ sign(u2) a.e. in Ω0. Without loss of generality, we can
assume that ukj2 → u2 a.e. in Ω. Thus signkj (u

kj
2 ) → 1 for a.a. (t, x) ∈ Ω+

and signkj (u
kj
2 ) → −1 for a.a. (t, x) ∈ Ω−. This completes the proof of the

lemma.

By applying Lemma 3.1 we end the proof of the existence of a weak
entropy solution in the sense of Definition 1.2 to our system (CL). Items
(i) and (ii) of Definition 1.2 are obviously satisfied. Note that [Gk(uk)]T =
(0, sin(γ)− signk(u

k
2) cos(γ)).

Item (iii) follows from the fact that Gk(uk) ⇀ G in Lploc([0, T )× R;R2)
and ∇uη(uk) → ∇uη(u) in Lploc([0, T ) × R;R2). Then Gk(uk) · ∇uη(uk) ⇀
G · ∇uη(u) in Lploc([0, T )× R;R) for all p ∈ [1,∞).
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