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Abstract. We study H1-Lp boundedness of certain multiplier transforms associated
to the special Hermite operator.

1. Introduction and main results. Consider on Cn the 2n linear
differential operators

Zj =
∂

∂zj
+

1
2
zj , Zj =

∂

∂zj
− 1

2
zj, j = 1, . . . , n.

They generate a nilpotent Lie algebra isomorphic to the Heisenberg Lie
algebra of dimension 2n+ 1. This algebra plays for the twisted convolution
(see definition below) on Cn a role analogous to that of the Lie algebra of
left invariant vector fields on a Lie group.

Consider the operator L defined by

L = −1
2

n∑

j=1

(ZjZj + ZjZj).

An easy calculation shows that L can be written in the form

L = −∆z +
1
4
|z|2 − i

n∑

j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
.

The above operator L is called the special Hermite operator . We remark that
this operator is closely related to the sub-Laplacian on the Heisenberg group,
Hn = Cn × R. If L denotes the sub-Laplacian on Hn, then L(eitf(z)) =
eitLf(z). For this reason L is also called the twisted Laplacian.

The aim of this paper is to prove certain multiplier theorems for L on Cn.
Eigenfunction expansion associated to L is given by the so-called special
Hermite expansion which has received considerable attention in the recent
years. Let Lαk (t) be the Laguerre polynomials of the type α > −1, defined
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by

e−ttαLαk (t) = (−1)k
1
k!

dk

dtk
(e−ttk+α), t > 0.

Then for a function f in L2(Cn), its special Hermite expansion is given by

f(z) = (2π)−n
∞∑

k=0

f × ϕk(z)

where ϕk(z) are the Laguerre functions defined by Ln−1
k

(1
2 |z|2

)
e−

1
4 |z|2 and

the twisted convolution of two functions f and g on Cn is defined by

f × g(z) =
�

Cn
f(z − w)g(w)e

i
2 Imz.w dw.

The spectral projections of L are given by the operators f 7→ f ×ϕk and we
have L(f × ϕk) = (2k + n)(f × ϕk). The above series converges in L2 and
the following holds:

‖f‖22 = (2π)−n
∞∑

k=0

‖f × ϕk‖22.

We also mention that the twisted convolution satisfies the interesting prop-
erty

‖f × g‖2 ≤ ‖f‖2‖g‖2.
For other properties of the twisted convolution and its relation to the convo-
lution on the Heisenberg group we refer the reader to the monographs [10]
and [11].

Given a bounded function m on the set N of natural numbers one can
define an operator m(L) by

m(L)f(z) = (2π)−n
∞∑

k=0

m(2k + n)f × ϕk(z).

Such operators are always bounded on L2. However some smoothness as-
sumptions on m are needed to ensure the boundedness of m(L) on Lp

for p 6= 2. Using Littlewood–Paley–Stein theory the following theorem was
proved by Thangavelu (see [10]). For a function m on N let ∆+m(k) =
m(k + 1)−m(k) and define higher powers of ∆+ inductively.

Theorem 1.1. Let m be a bounded function on N which satisfies

|∆l
+m(k)| ≤ C(1 + k)−l

for l = 0, 1, . . . , n + 1 or n + 2, when n is odd or even respectively. Then
m(L) is bounded on Lp(Cn) for 1 < p <∞.
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Note that the conditions on the multiplier m are similar to Hörmander’s
condition for the Fourier multipliers. See also [2] and [14]. For other prop-
erties of the special Hermite expansions we refer to the monograph [10].

We are interested in the boundedness of certain multiplier operators
from the twisted Hardy space H1(Cn) to Lp(Cn). The space H1(Cn) was
introduced and studied in [3]. Let ψ be a C∞-function on Cn with compact
support such that ψ = 1 in a neighborhood of zero. Define

Rj(z) =
zj

|z|2n+1 ψ(z), Rj(z) =
zj

|z|2n+1 ψ(z)

for j = 1, . . . , n. Then H1 is defined as the set of all f ∈ L1 for which Rj×f
and Rj × f are in L1 for all j. The norm on H1 is given by

‖f‖H1 = ‖f‖1 +
n∑

j=1

‖Rj × f‖1 +
n∑

j=1

‖Rj × f‖1.

Basic properties such as atomic decomposition and boundedness of singular
integral operators etc. were studied in [3]. The space H1 can also be defined
as the subspace of L1(Cn) containing all functions f for which the maximal
function

f∗(z) = sup
t>0
|e−tLf(z)|

is in L1(Cn). Atomic decomposition can be stated as follows. Any f in H1

can be written as

f(z) =
∞∑

k=1

λkfk(z)

with C1‖f‖H1 ≤ ∑∞
k=1 |λk| ≤ C2‖f‖H1 , where the atoms fk satisfy the

following:

(i) fk is supported in a cube Q(zk, rk) centered at zk with half-side
rk ≤ 2

√
π,

(ii) ‖fk‖∞ ≤ (2rk)−2n,
(iii) � fk(w)e−

i
2 Imzk.w dw = 0.

We shall make use of this atomic decomposition in the proofs.
We start with a Hardy–Littlewood–Sobolev result for L. In [12] it was

established that L−α is bounded from Lp(Cn) to Lq(Cn) provided 1
p− 1

q = α
n ,

0 < α < n and 1 < p, q <∞. We are interested in the end point result. We
have the following theorem.

Theorem 1.2. The operator L−α is bounded from H1(Cn) to Lq(Cn),
1 ≤ q ≤ ∞ provided 1− 1

q = α
n .

To prove Theorem 1.2, we shall first prove that L−n is bounded from
H1 to L∞, and Liβ , for β real, is bounded from H1 to itself. Then we
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apply Stein’s analytic interpolation [8] to the family L−z. The proof of the
interpolation theorem for the usual Hardy space H1, by Fefferman and Stein
[1], can be modified to deal with the present situation. The sharp maximal
function has to be replaced by the twisted sharp maximal function

f∗τ (z) = sup
1
|Q|

�

Q

|f(w)− f̃Qe
i
2 Imz.w| dw

where f̃Q = 1
|Q| � Q f(w)e−

i
2 Imz.w dw. Here Q is a cube centered at z. In order

to complete the proof of the analytic interpolation theorem we need the fact
that

C1‖f‖p ≤ ‖f∗τ ‖p ≤ C2‖f‖p.
This has already been proved in Phong–Stein [5]. Theorem 1.2 will be proved
in the second section.

In the third section we prove an H1-Lp multiplier theorem for L. This
result is analogous to that of Nilsson [4] on Rn for Fourier multipliers. In [4]
Nilsson establishes the following. Let Sj = {2j−1 ≤ |ξ| ≤ 2j+1}.

Theorem 1.3. Assume that m ∈ Ck(Rn − {0}) and
�

Sj

∑

|α|≤k
|2j|α|Dαm(ξ)|2 dξ ≤ 2

nj(2−q)
q , j ∈ Z,

where k is the least integer > n
∣∣1
q − 1

2

∣∣ and 1 ≤ q ≤ 2. Then the convolution
by K = m̂ maps H1(Rn) to Lq(Rn).

Before we state our result we note that the above theorem easily extends
to q > 2 as well. This can be seen as follows. Assume that m satisfies the

above for some q > 2. Then the function m̃(ξ) = m(ξ)|ξ|2n( 1
q′−

1
2 )
, where q′ is

the conjugate exponent of q, satisfies the multiplier conditions in Theorem
1.3 with q replaced by q′. Hence the operator with multiplier m̃ is bounded

from H1 to Lq
′
. As m(ξ) = m̃(ξ)|ξ|−2n( 1

q′−
1
2 ) the result follows from the

above theorem and the Hardy–Littlewood–Sobolev theorem.
Our result for the operator L is the following. Let ∆+ stand for the

difference operator defined above and ∆l
+ = ∆l−1

+ ∆+.

Theorem 1.4. Let m be a bounded function defined on N which satisfies

|∆l
+m(k)| ≤ C(1 + k)−

n
2 +n( 1

q
− 1

2 )−l

for l = 0, 1, . . . ,M, where M is the least even integer > 2n
∣∣1
q − 1

2

∣∣. Then
m(L) is bounded from H1(Cn) to Lq(Cn).

As in Theorem 1.3, in view of the Hardy–Littlewood–Sobolev theorem
for L it is enough to prove Theorem 1.4 for q ≤ 2. We also remark that for
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q = 2 the assumptions on the derivatives of m are not needed (see Theorem
3.4 in [12]).

To motivate our next theorem consider the following Hardy–Littlewood
inequalities for the Fourier transform (see [6] for a proof):

(i) � Rn |f̂(x)|p|x|n(p−2) dx ≤ � Rn |f(x)|p dx for 1 < p ≤ 2,
(ii) � Rn |f̂(x)|p ≤ C � Rn |f(x)|p|x|n(p−2) dx for p ≥ 2,
(iii) � Rn |f̂(x)‖x|−n dx ≤ C‖f‖H1 .

We can rewrite the above inequalities in the following way. Consider the
fractional powers of the Laplacian defined as follows:

((−∆)−αf)∧(x) = |x|−2αf̂(x).

If we let T (α)f = (−∆)−αf, then the above inequalities take the following
form with α = n

∣∣1
p − 1

2

∣∣:
‖{T (α)f}∧‖p ≤ C‖f‖p for 1 < p ≤ 2,

‖f‖p ≤ C‖{T (α)f}∧‖p for p ≥ 2,

‖{T (α)f}∧‖1 ≤ C‖f‖H1 .

Such inequalities have been proved in [13] when −∆ is replaced by the
Hermite operator. We can ask the same questions for the special Hermite
operator. Let us define the operators Tt(α) given by

Tt(α)f(z) = (2π)−n
∞∑

k=0

(2k + n)−αeit(2k+n)f × ϕk(z).

Note that when t = π/2, we have Tαt f = inFsL
−αf where Fs is the

symplectic Fourier transform defined by

Fsf(z) = 2−n
�

Cn
f(w)e−

i
2 Imz.w dw.

To see this, observe that Fsf(z) = 2−nf × 1(z) where 1 is the constant
function 1. Since Fs commutes with L and Fsϕk = (−1)kϕk (see [11]) we
have

FsL
−αf(z) = ei

nπ
2

∞∑

k=0

(2k + n)−αei(2k+n)π2 f × ϕk(z).

For the operators Tt(α) we prove the following.

Theorem 1.5. When α = 2n
∣∣1
p− 1

2

∣∣, 1 < p <∞, the operators Tt(α) are
bounded on Lp(Cn). When p = 1 and α = n the operator Tt(α) is bounded
from H1 into L1.

We note that the above theorem gives the Hardy–Littlewood inequalities
for the operator L. Theorem 1.5 has another application to the solutions of
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the Schrödinger equation. Let u(z, t) denote the solution to the initial value
problem

i∂tu(z, t) = Lu(z, t), u(z, 0) = f(z).

The solution to this problem has the expansion

u(z, t) =
∞∑

k=0

ei(2k+n)tf × ϕk(z).

As in the Euclidean case it is not possible to have an inequality of the form

‖u(·, t)‖p ≤ C(t)‖f‖p for p 6= 2.

Indeed, u(z, t) is nothing but a fractional power of the symplectic Fourier
transform defined earlier and we know that no fractional power of the Fourier
transform is bounded on Lp, for p 6= 2. Therefore, following Sjöstrand [7] we
define the Riesz means for the solution

Gτ (α)f(z) = ατ

τ�

0

(τ − t)α−1u(z, t) dt.

Using the Hardy–Littlewood inequalities for L we can prove the following

Corollary 1.6. If α ≥ 2n
∣∣1
p− 1

2

∣∣, then the operators Gτ (α) are bounded
on Lp(Cn). When p = 1 and α = n, Gτ (α) is bounded from H1 into L1.

2. Hardy–Littlewood–Sobolev theorem for L. In this section we
prove Theorem 1.2. We start with a simple lemma.

Lemma 2.1. Let K be a kernel such that both K(z) and |z|K(z) are in
L1(Cn). Then the map f 7→ K × f is bounded from H1 to itself.

Proof. Let Kf = K × f. Let Rj and Rj stand for the operators f 7→
Rj×f and f 7→ Rj×f respectively, which were defined in the introduction.
Since K maps L1(Cn) to L1(Cn) it is enough to show that the commutators
[K,Rj] and [K,Rj ] map L1 to L1 (see [3]). Now the estimate

|Rj ×K(z)−K ×Rj(z)| ≤
�
|Rj(z − w)| |K(w)| |e i2 Imz.w − e− i2 Imz.w| dw

≤
�
|Rj(z − w)| |K(w)| |1− eiImz.w| dw

≤
�
|Rj(z − w)| |z − w| |K(w)| |w| dw

shows that [K,Rj] is twisted convolution with an L1 kernel and hence
bounded on L1(Cn). A similar estimate holds for [K,Rj ]. This finishes the
proof.

Next we proceed to prove that Liβ is bounded on H1. We shall make use
of the following result proved in [3].
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Theorem 2.2. Let K be a function with compact support such that
�

|z|>2|w|
|K(z − w)−K(z)| dz ≤ A,

and assume either ‖K × f‖2 ≤ B‖f‖2 or |K̂(ξ)| ≤ B. Then Kf = K × f is
a bounded operator from H1 into itself.

We mention that the above two results hold for the operators f 7→ f×K
as well.

Theorem 2.3. The operator Liβ for β ∈ R is bounded from H1 to itself.

Note that Liβ = m(L) where m(t) = tiβ. Let φ be a C∞ function on R
such that suppφ ⊂

(1
2 , 2
)

and
∑∞

j=0 φ(2jt) = 1 for every t ≥ 1. Let mj(t) =
φ(2−jt)m(t). Then we have m(L) =

∑∞
j=0mj(L). Let kj(z) be the kernel of

mj(L). Then

kj(z) = (2π)−n
∞∑

k=0

mj(2k + n)ϕk(z).

We first obtain estimates for the kernels kj away from the origin. We need the
following proposition. Let ∆− denote the backward finite difference operator
defined by

∆−ψ(k) = ψ(k)− ψ(k − 1)

and let D stand for the operator Dψ(k) = −(k∆−∆+ψ(k) + n∆−ψ(k)).

Proposition 2.4. If Mψ(z) =
∑∞

k=0 ψ(k)ϕk(z) then

1
2
|z|2Mψ(z) =

∞∑

k=0

Dψ(k)ϕk(z) = MDψ(z).

Proof. See Lemma 2.4.2 in [10].

Proposition 2.5. Let α(z) be a C∞c function such that α = 1 in a
neighborhood of the origin. Then there exists a δ > 0 such that

�

Cn
|(1− α(z))kj(z)| dz ≤ C2−δj ,

�

Cn

∣∣|z|(1− α(z))kj(z)
∣∣ dz ≤ C2−δj

with C independent of j.

Proof. A repeated application of Proposition 2.4 gives

(1
2 |z|2

)N
kj(z) =

∞∑

k=0

DNmj(2k + n)ϕk(z).

Hence

|kj(z)| ≤ C|z|−2N
∣∣∣
∞∑

k=0

DNmj(2k + n)ϕk(z)
∣∣∣.
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Note that the function m(t) = tiβ satisfies the estimates |m(j)(t)| ≤ C|t|−j
for every j. So |DNmj(2k + n)| ≤ CN (2k + n)−N where CN depends only
on N. Hence using the Cauchy–Schwarz inequality and the orthogonality of
ϕk (see [10]) we have

�

Cn
|(1− α(z))kj(z)| dz ≤ CN

( ∑

2j−1≤2k+n≤2j+1

(2k + n)−2N‖ϕk‖22
) 1

2

where CN depends only on N. Since ‖ϕk‖22 ≤ Ckn−1 (see [10]), choosing
N large enough we prove the first estimate in the proposition. The other
estimate can also be proved similarly.

This takes care of the part at infinity. To deal with the local part we look
at the operators L−ε+iβ for 0 < ε < 1. Let pt and Kε stand for the kernels
of the operators e−tL and L−ε+iβ respectively. Then

pt(z) = (2π)−n
∞∑

k=0

e−t(2k+n)ϕk(z) = (4π)−n(sinh t)−ne−
1
4 |z|2 coth t.(2.1)

Using the the identity

L−ε+iβ =
1

Γ (ε− iβ)

∞�

0

tε−1−iβe−tL dt

we have

Kε(z) = C
1

Γ (ε− iβ)

∞�

0

tε−1−iβe−
1
4 |z|2 coth t(sinh t)−n dt.

An easy computation shows that

|α(z)Kε(z)| ≤ C|z|−2n, |∇(αKε)(z)| ≤ C|z|−2n−1

with C independent of 0 < ε < 1. These estimates imply that
�

|z|>2|w|
|(αKε)(z − w)− (αKε)(z)| dz ≤ A,

with A independent of ε.
Now we can complete the proof of Theorem 2.3. Let K(z) stand for

the kernel of the operator Liβ . From Proposition 2.5 it follows that both
(1−α(z))K(z) and |z|(1−α(z))K(z) are in L1 and so the operator f 7→ f×
(1−α)K is bounded from H1 to H1 by Lemma 2.1. Note that the operators
f 7→ f ×Kε are all bounded on L2(Cn), uniformly in ε ≥ 0. Proceeding as
in Proposition 2.5 we can easily show that the kernels (1− α(z))Kε(z) are
in L1(Cn) with norms uniformly bounded in 0 < ε ≤ 1. Hence it follows
that the operators f 7→ f × αKε are all bounded on L2(Cn) uniformly in
0 < ε ≤ 1. Now using the above observations and Theorem 2.2 we see that
the operators f 7→ f × αKε are all bounded from H1 to itself uniformly
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in 0 < ε < 1. Letting ε → 0 we have the boundedness of the operator
f 7→ f × αK. Putting together we get Theorem 2.3.

Lemma 2.6. The operator L−n is bounded from H1(Cn) into L∞(Cn).

Proof. The operator L−n is given by twisted convolution with the kernel
K(z) = (2π)−n

∑∞
k=0(2k + n)−nϕk(z) so that

L−nf(z) = f ×K(z).

We shall show that all the atoms are mapped into a fixed ball in L∞. Since
this operator commutes with twisted translations we can assume that atoms
are supported in a cube centered at the origin. So let f be such an atom.
Then we have:

(i) supp f ⊂ Q(0, r) with r ≤ 2
√
π,

(ii) ‖f‖∞ ≤ (2r)−2n,
(iii) � f = 0.

We need to show that |∑(2k + n)−nf × ϕk(z)| ≤ C. We consider two
cases. First assume that |z| ≤ 2r. Now∣∣∣

∑

2k+n≥r−2

(2k + n)−nf × ϕk(z)
∣∣∣ ≤ ‖f‖2

∥∥∥
∑

2k+n≥r−2

(2k + n)−nϕk
∥∥∥

2
.(2.2)

Using the fact that ϕk’s are orthogonal, ‖ϕk‖22 ≤ C(2k+ n)n−1 and ‖f‖2 ≤
Cr−n, we see that the sum in (2.2) is bounded by a constant. Now, as the
mean value of f is 0, we can write

f × ϕk(z) =
�

Cn
f(w)[ϕk(z − w)− ϕk(z)]e−

i
2 Imz.w dw(2.3)

+ ϕk(z)
�

Cn
f(w)[e−

i
2 Imz.w − 1] dw.

Writing g(t) = ϕk(z − tw) we see that

|ϕk(z − w)− ϕk(z)| = |g(1)− g(0)| = |g′(t)| for some 0 < t < 1

≤ |w|
n∑

j=0

∣∣∣∣
∂ϕk
∂zj

(z − tw)

∣∣∣∣.

Using the formula (see [9])
d

dt
Ln−1
k (t) = −Lnk−1(t)

and the estimate
sup
t>0
|Lnk(t)e−

1
2 t| ≤ C(2k + n)n

we see that

|ϕk(z − w)− ϕk(z)| ≤ C(2k + n)n|z − tw| |w| for some 0 < t < 1

≤ Cr2(2k + n)n as |z| ≤ 2r.
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So the first term in (2.3) is bounded by Cr2(2k+n)n. Since |e− i2 Imz.w−1| ≤
|z| |w| ≤ Cr2 and |ϕk(z)| ≤ C(2k+ n)n−1, we get the same estimate for the
second term. Hence for |z| ≤ 2r we have |f × ϕk(z)| ≤ Cr2(2k+ n)n, which
shows that

∑
2k+n≤r−2(2k + n)−nf × ϕk(z) is bounded by a constant. This

finishes the case when |z| ≤ 2r.
When |z| ≥ 2r we use the formula

L−n =
1

Γ (n)

∞�

0

tn−1e−tL dt.

Hence the kernel K of L−n can be written as

K(z) =
1

Γ (n)

∞�

0

tn−1
∞∑

k=0

e−(2k+n)tϕk(z) dt

= Cn

∞�

0

tn−1(sinh t)−ne−
1
4 |z|2 coth t dt.

Since sinh t ∼ et and coth t ∼ 1 for t large, it is easy to see that the integral
from 1 to ∞ defines a bounded function. So it is enough to consider the
twisted convolution of f with K1(z) = � 1

0 t
n−1(sinh t)−ne−

1
4 |z|2 coth t dt. Since

the mean value of f is 0 we have

|f ×K1(z)| ≤
�
|f(w)[K1(z − w)−K1(z)]| dw

+ |K1(z)|
�
|f(w)[e−

i
2 Imz.w − 1]| dw.

Hence it is enough to show that K1(z−w)−K1(z) and K1(z)[e−
i
2 Imz.w− 1]

are both bounded for |z| ≥ 2r. Now

|K1(z − w)−K1(z)| =
∣∣∣

1�

0

tn−1(sinh t)−n(e−
1
4 |z−w|2 coth t − e− 1

4 |z|2 coth t) dt
∣∣∣,

which is bounded by

C

1�

0

|z − sw| |w|
( 1�

0

tn−1(sinh t)−ne−
1
4 |z−sw|2 coth t coth t dt

)
ds.

Since sinh t ∼ t and coth t ∼ t−1 for t near 0 we have

|K1(z − w)−K1(z)| ≤
1�

0

|z − sw| |w|
( 1�

0

t−2e−
1
4
|z−sw|2

t dt
)
ds

≤ C
1�

0

|z − sw| |w|
|z − sw|2 ds

≤ C (as |z| ≥ 2r and |w| ≤ r).



MULTIPLIERS FOR THE TWISTED LAPLACIAN 199

As for the other term,

|K1(z)[e−
i
2 Imz.w − 1]| ≤

1�

0

t−1e−
1
4
|z|2
t |z| |w| dt

=
1�

0

t−
1
2

( |z|√
t
e−

1
4
|z|2
t

)
|w| dt ≤ Cr ≤ 2C

√
π.

Note that the functions of the form
∑N

j=0 cjaj , where aj are atoms, form
a dense subset of H1. Since these functions are in L2 the operator L−n

is well defined on them and they are mapped boundedly into L∞ by the
above estimates. Hence it follows that this operator has a unique bounded
extension to the whole of H1. This finishes the proof of Lemma 2.6.

Now the proof of Theorem 1.2 is easy to complete. We consider the
analytic family of operators defined by Tαf(z) = L−αf(z) for −n ≤ Reα ≤
0. It can be checked that they form an admissible family of analytic operators
in the sense of Stein [8]. When Reα = 0 we see that Tα : H1 → H1 is
bounded, by Theorem 2.3. When Reα = −n we see that L−α is bounded
from H1 to L∞, by Theorem 2.3 and Lemma 2.6. Applying Stein’s analytic
interpolation theorem we finish the proof.

3. H1-Lp multipliers for L. In this section we prove Theorem 1.4. The
proof of the case q = 2 is contained in [12].

Assume that m satisfies the estimate |m(k)| ≤ C(1 + k)−
n
2 . We need to

show that m(L) is bounded from H1 to L2. Let f be an atom supported in
a cube centered at the origin; we need to prove that

∞∑

k=0

(2k + n)−n‖f × ϕk‖22 ≤ C.

This has been established in [12] (see Theorem 3.4). This inequality also
follows from Theorem 1.2, for q = 2 and α = n

2 . The case q = 1 has been
considered in [14].

So we assume that 1 < q < 2. We closely follow the method in [4]. As
in the previous section it is enough to prove that atoms are mapped into a
ball. Let a be an atom in H1 supported in Q(0, r). Let K be the kernel of
m(L). We decompose m using the partition of unity used in Theorem 2.3 so
that m =

∑∞
j=0mj with mj supported in [2j−1, 2j+1]. Let Kj be the kernel

of the operator mj(L) so that

Kj(z) = (2π)−n
∑

mj(2k + n)ϕk(z).

Note that
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‖Kj‖22 =
∑
|mj(2k + n)|2‖ϕk‖22

≤ C
∑

2j−1≤2k+n≤2j+1

(1 + k)−n+2n( 1
q
− 1

2 )
kn−1 ≤ C22nj( 1

q
− 1

2 )
.

Using Proposition 2.4, proceeding as in the proof of Theorem 2.3 and using
the assumption on m we have

�

Cn
|(1 + 2j |z|2)lKj(z)|2dz ≤ C22jl

∑

2k+n∼2j

(1 + k)−n−2l+2n( 1
q
− 1

2 )
kn−1

≤ C22nj( 1
q
− 1

2 )

if 2l ≤M where M is the least even integer > 2n
(1
q− 1

2

)
. The above estimate

implies
( �

Cn
|Kj(z)|q dz

) 1
q

≤
( �

Cn
|Kj(z)|2(1 + 2j |z|2)M dz

) 1
2
( �

Cn
(1 + 2j |z|2)−

Mq
2−q dz

) 2−q
2q ≤ C.

In the same way we have
( �

|z|≥2r

|Kj(z)|q dz
) 1
q ≤ 2nj(

1
q
− 1

2 )
( �

|z|≥2r

(1 + 2j |z|2)−
Mq
2−q dz

) 2−q
2q

≤ C(2
j
2 r)

2n(2−q)
2q −M

,

which shows that if |w| ≤ r then
( �

|z|≥2r

|Kj(z − w)e−
i
2 Imz.w −Kj(z)|q dz

) 1
q ≤ C(2

j
2 r)

2n(2−q)
2q −M

.(3.1)

We need another estimate on the kernel. Write

(3.2) Kj(z − w)e−
i
2 Imz.w −Kj(z)

= (Kj(z − w)−Kj(z))e−
i
2 Imz.w +Kj(z)(e−

i
2 Imz.w − 1).

Therefore

(3.3)
( �

|z|≥2r

|Kj(z − w)e−
i
2 Imz.w −Kj(z)|q dz

) 1
q

≤ |w|
(∥∥∥∥

n∑

i=1

∣∣∣∣
∂Kj

∂zj

∣∣∣∣
∥∥∥∥
q

+ ‖|z|Kj‖q
)
.

As d
dtL

n−1
k (t) = −Lnk−1(t) we see that it is enough to estimate the Lq norms
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of B1(z) and B2(z) (we suppress the dependence on j) where

B1(z) = |w| |z| |Kj(z)|, B2(z) = |w| |z|
∣∣∣
∑

mj(2k + n)ϕnk−1(z)
∣∣∣.

Here ϕnk(z) = Lnk
(1

2 |z|2
)
e−

1
4 |z|2 .

First we take care of B2. Note that
�

Cn
|B2(z)|2 dz = |w|2

�

Cn
|z|2
∣∣∣
∑

mj(2k + n)ϕnk−1(z)
∣∣∣
2
dz

= C|w|2
∞�

0

∣∣∣
∑

mj(2k + n)ϕnk−1(s)
∣∣∣
2
s2n+1 ds

≤ C|w|2
∑
|mj(2k + n)|2kn

(as ϕnk are orthogonal w.r.t. s2n+1ds and ‖ϕnk‖22 ≤ Ckn; see [10])

≤ C|w|2
∑

k∼2j

k
−n+2n( 1

q
− 1

2 )
kn

≤ C(2jr2)22nj( 1
q
− 1

2 )
.

Hence ‖B2‖2 ≤ C(2
j
2 r)2nj(

1
q
− 1

2 )
. Now we can repeat the method used to

estimate the kernels Kj above, as Proposition 2.4 is true with ϕk replaced
by ϕnk . We only have to replace n by n+ 1 in the definition of the operator
D there (see [10]). Thus we have

( �

Cn
|B2(z)|q dz

) 1
q ≤ C2

j
2 r.

To estimate B1 we will use Weyl transform. Let us recall some basic facts
about the Weyl transform.

Let π(z) be the unitary operator defined on L2(Rn) as follows:

π(z)φ(ξ) = ei(x.ξ+
1
2x.y)ϕ(ξ + y), z = x+ iy.

Then the Weyl transform is defined as the integrated representation of π(z).
That is, if f is in L1(Cn) the Weyl transform W (f) of f is defined to be the
operator

W (f) =
�

Cn
f(z)π(z) dz.

Note that W (f) is a bounded operator on L2(Rn) and ‖W (f)‖ ≤ ‖f‖1. We
also have the Plancherel theorem which states that if f is in L2(Cn), then
W (f) is a Hilbert–Schmidt operator and

‖W (f)‖HS = cn‖f‖2.
We refer the reader to [10] for details.
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We proceed with the estimation of B1. Note that it is enough to estimate
the Lq norm of |w|zl|Kj(z)| for l = 1, . . . , n. As in the other case we will
start with the L2 norm. If Aj = ∂

∂xj
+ xj and A∗j = − ∂

∂xj
+ xj then for a

function f on Cn we have (see [10])

W (zlf) = W (f)A∗l − A∗lW (f).

Hence by the Plancherel theorem for the Weyl transform

|w|2
�
|zlKj(z)|2 dz = |w|2‖W (Kj)A∗l − A∗lW (Kj)‖2HS.(3.4)

To compute the Hilbert–Schmidt norm we use the Hermite basis. Let {Φα(x) :
α ∈ Nn} be the orthonormal basis of normalized Hermite functions for
L2(Rn). Let Pk be the projection defined on L2(Rn) as follows:

Pkg =
∑

|α|=k
(g, Φα)Φα for g ∈ L2(Rn).

Here |α| = α1 + . . .+ αn. Then it is well known that

(2π)−nW (ϕk) = Pk.

We also have the relations

AlΦα = (2αl)
1
2Φα−el , A∗l Φα = {2(αl + 1)} 1

2Φα+el .

We refer the reader to the monograph [10] for details. Using the above it is
easy to see that (3.4) is bounded by |w|2∑ k|mj(2k + n)|2kn−1, which in

turn, by the assumption on m, is bounded by (2jr2)22nj( 1
q
− 1

2 )
. Proceeding

as in the previous case we conclude that ‖B1‖q ≤ C2
j
2 r. Putting together

all the estimates we have

(3.5)
( �

|z|≥2r

|K(z − w)e−
i
2 Imz.w −K(z)|q

) 1
q

≤ C
∑

min(2
j
2 r, (2

j
2 r)2n( 1

q
− 1

2 )−M) ≤ C.
We just need one more inequality to complete the proof. If a is an atom

in H1 supported in Q(0, r) we need to prove that
∑

(2k + n)−n+2n( 1
q
− 1

2 )‖a× ϕk‖22 ≤ Cr−2n( 1
q
− 1

2 )(3.6)

for 1 ≤ q ≤ 2 with C independent of a. We start with the case q = 1. We
get ∑

‖a× ϕk‖22 = ‖a‖22 ≤ Cr−2n,

which is the required estimate. When q = 2 we need to show that
∑

(2k + n)−n‖a× ϕk‖22 ≤ C,
which has already been proved. Hence we obtain (3.6) from interpolation.
Now we can finish the proof of Theorem 1.4 as in [4]. We omit the details.
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Note that an application of Theorem 1.4 to the multiplier m(k) = k−a

gives a different proof of Theorem 1.2 for q < ∞, though the q = ∞ case
and Theorem 2.3 do not follow from this.

4. Hardy–Littlewood inequalities. In this section we prove Theo-
rem 1.5. Consider the operator Tt(α) which is defined by

Tt(α)f(z) =
∞∑

k=0

(2k + n)−αei(2k+n)itf × ϕk(z).

The operator Tt(α) has the following kernel:

Kt(z) =
∑

(2k + n)−αe(2k+n)itϕk(z),

which can be written as

Kt(z) =
1

Γ (α)

∞�

0

λα−1K∗t (z, λ) dλ

where we have set

K∗t (z, λ) =
∑

e−(2k+n)(λ−it)ϕk(z).

In view of (2.1), a simple calculation shows that

K∗t (z, λ) = c(sinh(λ− it))−ne−At(z,λ)eiBt(z,λ)

where

At(z, λ) =
1
4

sinh 2λ
cosh 2λ− cos 2t

|z|2, Bt(z, λ) =
1
4

sin 2t
cosh 2λ− cos 2t

|z|2.
We also note that

|sinh(λ− it)|2 = c(sinh2 λ+ sin2 t) = cosh 2λ− cos 2t.

Observe that, in view of Stein’s analytic interpolation theorem, it is
enough to prove Theorem 1.5 for α = n. So we choose α = n. It is easy to
check that the integral

∞�

1

λn−1K∗t (z, λ) dλ

defines an L1 kernel. Assuming t ≤ 1 consider the integral
1�

t

λn−1K∗t (z, λ) dλ.

Note that sinh2 λ+ sin2 t ∼ λ2, because t ≤ λ. So the modulus of the above
integral is bounded by a constant times

1�

0

λn−1λ−ne−δ
|z|2
λ dλ
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for some δ > 0, which is easily seen to be integrable on Cn. So we can very
well assume that Tt(α) is given by the kernel

t�

0

λn−1K∗t (z, λ) dλ.

A simple calculation shows that the above is not integrable unless sin t = 0.
We shall denote Tt(n) by Tt. To prove that Tt is bounded from H1 to L1 we
only need to show the following.

Proposition 4.1. There exists a constant C such that � |Ttf(z)| dz ≤ C
whenever f is an atom.

In proving this we closely follow [5] and [13]. We will make use of the
following estimates on the kernel. Let Kt(z, λ) = {sinh(λ− it)}−ne−At(z,λ).

Lemma 4.2. There exists a constant C such that
∣∣∣
t�

0

λn−1Kt(z, λ)eiBt(z,λ) dλ
∣∣∣ ≤ C|z|−2n,

∣∣∣
t�

0

λn−1 ∂

∂zj
Kt(z, λ)eiBt(z,λ) dλ

∣∣∣ ≤ C|z|−2n−1,

∣∣∣
t�

0

λn−1Kt(z, λ)
∂

∂zj
eiBt(z,λ) dλ

∣∣∣ ≤ C|z|−2n+1,

∣∣∣
t�

0

λn−1Kt(z, λ)λ∂λeiBt(z,λ) dλ
∣∣∣ ≤ C|z|−2n−2.

Proof. Recall that we are assuming 0 < t < 1 and λ ≤ t. Then sinh2 λ+
sin2 t ∼ t2. So

∣∣∣
t�

0

λn−1Kt(z, λ)eiBt(z,λ) dλ
∣∣∣ ≤ C

1�

0

λn−1t−ne−
λ

4t2
|z|2 dλ ≤ C|z|−2n,

which proves the first estimate. Now ∂
∂zj
Kt(z, λ) brings in a factor of sinh 2λ,

which accounts for an extra |z|−1. Here we are using the fact that sinh 2λ ∼ λ
for λ near the origin. The other estimates can be proved similarly.

Once the above estimates are established we may follow the method
in [13] to complete the proof of Proposition 4.1 and hence of Theorem 1.5.
As the proof is very similar we omit the details. Corollary 1.6 can be obtained
with the help of Theorem 1.5 in a routine fashion as in [13].
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1998.
[12] —, On regularity of twisted spherical means and special Hermite expansions, Proc.

Indian Acad. Sci. 103 (1993), 303–320.
[13] —, Multipliers for Hermite expansions, Rev. Mat. Iberoamericana 3 (1987), 1–24.
[14] Z. Q. Zhang and W. X. Zheng, Multiplier theorems for special Hermite expansions

on Cn, Sci. China Ser. A 43 (2000), 685–692.

Harish-Chandra Research Institute
Chhatnaag Road, Jhusi
Allahabad, 211019, India
E-mail: naru@mri.ernet.in

Received 18 November 2002;
revised 18 June 2003 (4286)


