COLLOQUIUM MATHEMATICUM

H^{p} SPACES ASSOCIATED WITH SCHRÖDINGER OPERATORS WITH POTENTIALS FROM REVERSE HÖLDER CLASSES

BY

JACEK DZIUBAŃSKI and JACEK ZIENKIEWICZ (Wrocław)

Abstract

Let $A=-\Delta+V$ be a Schrödinger operator on $\mathbb{R}^{d}, d \geq 3$, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent $q>d / 2$. We say that f is an element of H_{A}^{p} if the maximal function $\sup _{t>0}\left|T_{t} f(x)\right|$ belongs to $L^{p}\left(\mathbb{R}^{d}\right)$, where $\left\{T_{t}\right\}_{t>0}$ is the semigroup generated by $-A$. It is proved that for $d /(d+1)<$ $p \leq 1$ the space H_{A}^{p} admits a special atomic decomposition.

1. Introduction. Let $k_{t}(x, y)$ be the integral kernels of the semigroup of linear operators $\left\{T_{t}\right\}_{t>0}$ generated by a Schrödinger operator $-A=\Delta-V$ on $\mathbb{R}^{d}, d \geq 3$.

Throughout this paper we assume that V is a nonnegative potential on \mathbb{R}^{d} that belongs to the reverse Hölder class $R H^{q}, q>d / 2$, that is, there exists a constant $C>0$ such that

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B} V(y)^{q} d y\right)^{1 / q} \leq \frac{C}{|B|} \int_{B} V(y) d y \quad \text { for every ball } B . \tag{1.1}
\end{equation*}
$$

Since V is nonnegative and belongs to $L_{\text {loc }}^{q}\left(\mathbb{R}^{d}\right)$ the Feynman-Kac formula implies that

$$
\begin{equation*}
0 \leq k_{t}(x, y) \leq(4 \pi t)^{-d / 2} e^{-|x-y|^{2} /(4 t)}=p_{t}(x-y) . \tag{1.2}
\end{equation*}
$$

For $0<p<1$ we define the space H_{A}^{p} as the completion of the space of compactly supported $L^{1}\left(\mathbb{R}^{d}\right)$-functions in the quasi-norm $\|f\|_{H_{A}^{p}}^{p}=\|\mathcal{M} f\|_{L^{p}}^{p}$, where

$$
\begin{equation*}
\mathcal{M} f(x)=\sup _{t>0}\left|T_{t} f(x)\right|=\sup _{t>0}\left|\int k_{t}(x, y) f(y) d y\right| . \tag{1.3}
\end{equation*}
$$

[^0]H_{A}^{p} spaces associated with Schrödinger operators with potentials from reverse Hölder classes were studied in [DZ2] and [DZ4]. It was proved there that for $d /(d+\min (1,2-d / q))<p \leq 1$ the space H_{A}^{p} admits an atomic decomposition. The main purpose of the present paper is to prove that if $d / 2<q<d$, then also for
$$
\frac{d}{d+1}<p \leq \frac{d}{d+\min (1,2-d / q)}=\frac{d}{d+2-d / q}
$$
the elements of H_{A}^{p} can be decomposed into special atoms, but for this range of p 's different type cancellation conditions for the atoms may occur.

The auxiliary function

$$
\begin{equation*}
m(x, V)=\left(\sup \left\{r>0: \frac{1}{r^{d-2}} \int_{B(x, r)} V(y) d y \leq 1\right\}\right)^{-1} \tag{1.4}
\end{equation*}
$$

will play a crucial role in the paper. The function $m(x, V)$ is well defined, and $0<m(x, V)<\infty(c f .[S h])$. We set

$$
\begin{equation*}
R(x)=R(x, V)=m(x, V)^{-1} \tag{1.5}
\end{equation*}
$$

For a positive ε (small) we define

$$
G_{\varepsilon}(x)=\left(\left(\operatorname{Id}+A_{\varepsilon}^{*}\right)^{-1} \mathbf{1}\right)(x)
$$

where $\mathbf{1}(x)=1$ for $x \in \mathbb{R}^{d}$,

$$
A_{\varepsilon} f(x)=V(x) \int_{0}^{(\varepsilon R(x))^{2}} p_{s} * f(x) d s
$$

and $\left(\operatorname{Id}+A_{\varepsilon}^{*}\right)^{-1}$ is the inverse operator to $\operatorname{Id}+A_{\varepsilon}^{*}$.
We have
LEmma 1.6.

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\|G_{\varepsilon}-\mathbf{1}\right\|_{\infty}=0
$$

Let $\delta=2-d / q$ and $\delta_{0}=\min (1, \delta)$.
Lemma 1.7. For every $\delta^{\prime}<\delta_{0}$ there exists a constant $C>0$ such that

$$
\left|G_{\varepsilon}(x)-G_{\varepsilon}(y)\right| \leq C((m(x, V)+m(y, V))|x-y|)^{\delta^{\prime}} .
$$

The constant C is independent of ε provided $\varepsilon<\varepsilon_{0}$, with $\varepsilon_{0}>0$ sufficiently small.

REMARK. For $\delta_{0}=\delta<1$ the conclusion of Lemma 1.7 holds with $\delta^{\prime}=\delta$.
The proofs of Lemmas 1.6 and 1.7 are provided in Section 4.
We are now in a position to define a notion of H_{A}^{p}-atom. Fix a small real number $\varepsilon>0$. A function b is an $H_{A^{-}}^{p}$ atom associated with a ball $B\left(x_{0}, r\right)$ if

$$
\begin{equation*}
\operatorname{supp} b \subset B\left(x_{0}, r\right) \tag{1.8}
\end{equation*}
$$

$$
\begin{gather*}
\|b\|_{\infty} \leq\left|B\left(x_{0}, r\right)\right|^{-1 / p} \tag{1.9}\\
r \leq R\left(x_{0}\right) \tag{1.10}\\
\text { if } r \leq \frac{1}{4} R\left(x_{0}\right) \quad \text { then } \int b(x) G_{\varepsilon}(x) d x=0 \tag{1.11}
\end{gather*}
$$

The atomic quasi-norm of an element $f \in H_{A}^{p}$ is given by

$$
\begin{equation*}
\|f\|_{H_{A}^{p} \text {-atom }}^{p}=\inf \left\{\sum_{j}\left|\lambda_{j}\right|^{p}\right\} \tag{1.12}
\end{equation*}
$$

where the infimum is taken over all decompositions $f=\sum_{j} \lambda_{j} b_{j}$, where λ_{j} are scalars and b_{j} are H_{A}^{p}-atoms. The main result of the paper is the following theorem:

Theorem 1.13. Let $d /(d+1)<p \leq 1$. There exists a constant C such that for every compactly supported function $f \in L^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
C^{-1}\|f\|_{H_{A}^{p}} \leq\|f\|_{H_{A}^{p} \text {-atom }} \leq C\|f\|_{H_{A}^{p}} . \tag{1.14}
\end{equation*}
$$

Remark. We point out that the notion of H_{A}^{p}-atom, and, in consequence, the norm $\|f\|_{H_{A}^{p} \text {-atom }}$ depend on ε (see (1.11)). However, we shall prove that (1.14) holds for any fixed $\varepsilon>0$ provided ε is small enough.

It follows from Lemma 1.7 that for $p \in\left(p_{0}, 1\right]$, where $p_{0}=d /\left(d+\delta_{0}\right)$, the condition (1.11) in the definition of H_{A}^{p}-atoms can be replaced by

$$
\begin{equation*}
\text { if } \quad r \leq \frac{1}{4} R\left(x_{0}\right) \quad \text { then } \quad \int b(x) d x=0 \tag{1.15}
\end{equation*}
$$

In this case the atoms are appropriately scaled local atoms in the sense of Goldberg (cf. [G]).

For $p=1$ the above result was obtained in [DZ2]. Therefore we shall restrict our attention to the case where $p \in(d /(d+1), 1)$.
2. Auxiliary definitions. A function a is said to be an $\left(h_{\varepsilon}^{p}(m), \infty\right)$ atom associated with a ball $B\left(x_{0}, r\right)$ if

$$
\begin{gather*}
r \leq \varepsilon R\left(x_{0}\right), \tag{2.1}\\
\operatorname{supp} a \subset B\left(x_{0}, r\right), \tag{2.2}\\
\|a\|_{\infty} \leq\left|B\left(x_{0}, r\right)\right|^{-1 / p} \tag{2.3}\\
\text { if } r \leq \frac{1}{4} \varepsilon R\left(x_{0}\right), \quad \text { then } \int a(x) d x=0 \tag{2.4}
\end{gather*}
$$

We say that a function b is an $\left(H_{A}^{p}, \infty, \varepsilon\right)$-atom associated with a ball $B\left(x_{0}, r\right)$ if (2.1)-(2.3) hold for b instead of a, and the condition (2.4) is replaced by if $\quad r \leq \frac{1}{4} \varepsilon R\left(x_{0}\right)$, then $\int b(x) G_{\varepsilon}(x) d x=0$.

Let $M \geq 0$ and $d /(d+1)<p<1$. A function a is called a generalized $\left(\mathbf{h}_{\varepsilon}^{p}(m), 1, M\right)$-atom associated with a ball $B\left(x_{0}, r\right)$ if

$$
\begin{gather*}
r \leq \varepsilon R\left(x_{0}\right) \tag{2.5}\\
\int|a(x)|\left(1+\frac{\left|x-x_{0}\right|}{r}\right)\left(1+\frac{\left|x-x_{0}\right|}{\varepsilon R\left(x_{0}\right)}\right)^{M} d x \leq\left|B\left(x_{0}, r\right)\right|^{1-1 / p}, \tag{2.6}\\
\text { if } r \leq \frac{1}{4} \varepsilon R\left(x_{0}\right), \quad \text { then } \int a(x) d x=0 \tag{2.7}
\end{gather*}
$$

Similarly, b is said to be a generalized $\left(H_{A}^{p}, 1, \varepsilon, M\right)$-atom associated with a ball $B\left(x_{0}, r\right)$ if (2.5)-(2.6) are satisfied for b instead of a and (2.7) is replaced by

$$
\text { if } \quad r \leq \frac{1}{4} \varepsilon R\left(x_{0}\right), \quad \text { then } \int b(x) G_{\varepsilon}(x) d x=0
$$

Let us note that every $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom is also a generalized $\left(\mathbf{h}_{\varepsilon}^{p}(m), 1, M\right)$ atom. It is not difficult to prove the following lemma, using the properties of the function m stated in Lemma 4.3 and Corollary 4.6.

Lemma 2.8. If $d /(d+1)<p<1$ then there is a constant $C>0$ such that if a is a generalized $\left(\mathbf{h}_{\varepsilon}^{p}(m), 1, M\right)$-atom, then there is a sequence a_{j} of $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atoms and a sequence of scalars λ_{j} such that

$$
a=\sum \lambda_{j} a_{j}, \quad \sum\left|\lambda_{j}\right|^{p} \leq C
$$

The constant C depends on m and p, but it is independent of ε.
The norm in the space $\mathbf{h}_{\varepsilon}^{p}(m)$ is defined by

$$
\|f\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p}=\inf \left\{\sum_{j}\left|\lambda_{j}\right|^{p}\right\}
$$

where the infimum is taken over all decompositions $f=\sum_{j} \lambda_{j} a_{j}$, where a_{j} are $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atoms and λ_{j} are scalars.

Lemma 2.9. There exists $\varepsilon_{0}>0$ such that for every $0<\varepsilon<\varepsilon_{0}$ if a is a generalized $\left(\mathbf{h}_{\varepsilon}^{p}(m), 1\right)$-atom associated with a ball $B\left(x_{0}, r\right)$ then

$$
\left(\operatorname{Id}+A_{\varepsilon}\right) a
$$

is (up to a multiplicative constant independent of ε) a generalized $\left(H_{A}^{p}, 1, \varepsilon\right)$ atom associated with the ball $B\left(x_{0}, r\right)$.

Conversely, $\left(\operatorname{Id}+A_{\varepsilon}\right)^{-1} b$ is up to a multiplicative constant a generalized $\left(\mathbf{h}_{\varepsilon}^{p}(m), 1\right)$-atom associated with a ball $B\left(x_{0}, r\right)$, provided b is a generalized ($H_{A}^{p}, 1, \varepsilon$)-atom associated with the same ball.

Proof. See Section 5.

Corollary 2.10. There exists a constant $C>0$ such that

$$
\left\|G_{\varepsilon}\left(\operatorname{Id}+A_{\varepsilon}\right)\right\|_{\mathbf{h}_{\varepsilon}^{p}(m) \rightarrow \mathbf{h}_{\varepsilon}^{p}(m)} \leq C
$$

provided $0<\varepsilon<\varepsilon_{0}$.
It is not difficult to prove the following proposition.
Proposition 2.11. For every $\varepsilon^{\prime}>\varepsilon>0$ there exists a constant $C_{\varepsilon^{\prime}, \varepsilon}$ such that

$$
\|f\|_{\mathbf{h}_{\varepsilon}^{p}(m)} \leq\|f\|_{\mathbf{h}_{\varepsilon^{\prime}}^{p}(m)} \leq C_{\varepsilon^{\prime}, \varepsilon}\|f\|_{\mathbf{h}_{\varepsilon}^{p}(m)}
$$

3. Idea of the proof of atomic decomposition. In order to prove the second inequality in (1.14) it suffices to show that there are constants $C, \varepsilon_{0}>0$ such that for every $0<\varepsilon<\varepsilon_{0}$ if

$$
\mathcal{K}^{*} f(x)=\sup _{0<t<(\varepsilon R(x))^{2}}\left|T_{t} f(x)\right| \in L^{p}
$$

then

$$
f(x) G_{\varepsilon}(x) \in \mathbf{h}_{\varepsilon}^{p}(m)
$$

and

$$
\begin{equation*}
\left\|f(x) G_{\varepsilon}(x)\right\|_{\mathbf{h}_{\varepsilon}^{p}(m)} \leq C\left\|\mathcal{K}^{*} f\right\|_{L^{p}} \tag{3.1}
\end{equation*}
$$

To prove this we consider the following identity based on the perturbation formula:

$$
\begin{aligned}
p_{t}(x, y) & =k_{t}(x, y)+\int_{0}^{t} \int k_{t-s}(x, z) V(z) p_{s}(z, y) d z d s \\
& =\left(T_{t}\left(\operatorname{Id}+A_{\varepsilon}\right)\right)(x, y)+H_{t}(x, y)+E_{t}(x, y)+Z_{(\varepsilon), t}(x, y)
\end{aligned}
$$

where

$$
\begin{aligned}
H_{t}(x, y) & =\int_{t / 2}^{t} \int k_{t-s}(x, z) V(z) p_{s}(z-y) d z d s \\
E_{t}(x, y) & =\int_{0}^{t / 2} \int\left(k_{t-s}-k_{t}\right)(x, z) V(z) p_{s}(z-y) d z d s \\
Z_{(\varepsilon), t}(x, y) & =\int k_{t}(x, z) V(z) W_{(\varepsilon), t}(z, y) d z
\end{aligned}
$$

with

$$
W_{(\varepsilon), t}(z, y)= \begin{cases}-\int_{t / 2}^{(\varepsilon R(z))^{2}} p_{s}(z-y) d s \quad \text { if }(\varepsilon R(z))^{2}>t / 2 \\ \int_{(\varepsilon R(z))^{2}}^{t / 2} p_{s}(z-y) d s \quad \text { if }(\varepsilon R(z))^{2} \leq t / 2\end{cases}
$$

Let $f \in L_{\mathrm{c}}^{1}\left(\mathbb{R}^{d}\right)$. Set $g=\left(\operatorname{Id}+A_{\varepsilon}\right)^{-1} f$. We have

$$
P_{t} g=T_{t} f+E_{t} g+H_{t} g+Z_{(\varepsilon), t} g
$$

where $P_{t}, E_{t}, H_{t}, Z_{(\varepsilon), t}$ are the operators with the integral kernels $p_{t}(x-y)$, $E_{t}(x, y), H_{t}(x, y), Z_{(\varepsilon), t}(x, y)$ respectively. Set

$$
\begin{array}{ll}
\mathcal{P}_{\varepsilon}^{*} g(x)=\sup _{0<t<(\varepsilon R(x))^{2}}\left|P_{t} g(x)\right|, & \mathcal{H}_{\varepsilon}^{*} g(x)=\sup _{0<t<(\varepsilon R(x))^{2}}\left|H_{t} g(x)\right|, \\
\mathcal{E}_{\varepsilon}^{*} g(x)=\sup _{0<t<(\varepsilon R(x))^{2}}\left|E_{t} g(x)\right|, \quad \mathcal{Z}_{\varepsilon}^{*} g(x)=\sup _{0<t<(\varepsilon R(x))^{2}}\left|Z_{(\varepsilon), t} g(x)\right| .
\end{array}
$$

We shall show that the following two lemmas hold:
Lemma 3.2. There exists a constant $C>0$ independent of ε such that

$$
\begin{equation*}
C^{-1}\left\|\mathcal{P}_{\varepsilon}^{*} g\right\|_{L^{p}} \leq\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)} \leq C\left\|\mathcal{P}_{\varepsilon}^{*} g\right\|_{L^{p}} \tag{3.3}
\end{equation*}
$$

The proof of the lemma is given in Section 8.
Lemma 3.4.

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0^{+}}\left\|\mathcal{E}_{\varepsilon}^{*}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m) \rightarrow L^{p}}=0 \tag{3.5}\\
& \lim _{\varepsilon \rightarrow 0^{+}}\left\|\mathcal{H}_{\varepsilon}^{*}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m) \rightarrow L^{p}}=0 \tag{3.6}\\
& \lim _{\varepsilon \rightarrow 0^{+}}\left\|\mathcal{Z}_{\varepsilon}^{*}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m) \rightarrow L^{p}}=0 \tag{3.7}
\end{align*}
$$

See Section 6 for the proofs of (3.5), (3.6), and Section 7 for the proof of (3.7).

Having these, we obtain

$$
\begin{aligned}
\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)} \leq & C\left\|\mathcal{P}_{\varepsilon}^{*} g\right\|_{L^{p}} \\
\leq & C\left\|\mathcal{K}_{\varepsilon}^{*} f\right\|_{L^{p}}+C\left\|\mathcal{E}_{\varepsilon}^{*}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m) \rightarrow L^{p}}\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)} \\
& +C\left\|\mathcal{H}_{\varepsilon}^{*}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m) \rightarrow L^{p}}\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)}+C\left\|\mathcal{Z}_{\varepsilon}^{*}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m) \rightarrow L^{p}}\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)}
\end{aligned}
$$

As a consequence of Lemma 2.9 and the fact that every compactly supported L^{1}-function is an element of $H_{A, \varepsilon}^{p}$ we have $\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)}<\infty$. Thus, by Lemma 3.4, we get

$$
\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)} \leq C\left\|\mathcal{K}_{\varepsilon}^{*} f\right\|_{L^{p}}
$$

provided ε is close to 0 . Applying Corollary 2.10 we get (3.1).
The paper is organized as follows. In Section 4 we provide the proofs of Lemmas 1.6 and 1.7. The proof of Lemma 2.9 is presented in Section 5. Section 6 is devoted to the proofs of (3.5) and (3.6), whereas the proof of (3.7) is given in Section 7. The proof of Lemma 3.2 occupies Section 8. Finally, in Section 9 we show the first inequality in (1.14).
4. Auxiliary estimates. In the present section we state some result concerning the estimates of the kernels associated with the semigroup $\left\{T_{t}\right\}_{t>0}$. At the end of the section we prove Lemmas 1.6 and 1.7.

Lemma 4.1 (see [Sh, Lemma 1.2]). For every nonnegative potential $V \in$ $R H^{q}, q>d / 2$, there exists a constant $C>0$ such that for every $0<r<R$ we have

$$
\frac{1}{r^{d-2}} \int_{B(x, r)} V(y) d y \leq C\left(\frac{r}{R}\right)^{\delta} \frac{1}{R^{d-2}} \int_{B(x, R)} V(y) d y
$$

Corollary 4.2. If $r<R(x)=m(x, V)^{-1}$ then

$$
\int_{B(x, r)} V(y) d y \leq C(r m(x, V))^{\delta} r^{d-2}
$$

Lemma 4.3 (see [Sh, Lemma 1.4]). There exist constants $C, k_{0}>0$ such that

$$
\begin{align*}
m(y, V) & \leq C(1+|x-y| m(x, V))^{k_{0}} m(x, V) \tag{4.4}\\
m(y, V) & \geq \frac{m(x, V)}{C(1+|x-y| m(x, V))^{k_{0} /\left(1+k_{0}\right)}} \tag{4.5}
\end{align*}
$$

Corollary 4.6. For every $C_{1}>0$ there exists a constant $C_{2}>0$ such that if $|x-y| m(x, V) \leq C_{1}$ then

$$
C_{2}^{-1} \leq \frac{m(x, V)}{m(y, V)} \leq C_{2}
$$

Lemma 4.7 (cf. [Sh, Lemma 1.8]). There exist constants $C_{0}, C>0$ such that if $r>R(x)=m(x, V)^{-1}$ then

$$
\int_{B(x, r)} V(y) d y \leq C(r m(x, V))^{C_{0}} m(x, V)^{2-d}
$$

We say that a function ψ defined on \mathbb{R}^{d} is rapidly decaying if for every $N>0$ there exists a constant C_{N} such that

$$
|\psi(x)| \leq C_{N}(1+|x|)^{-N}
$$

Corollary 4.8. If ψ is a rapidly decaying nonnegative function, then there exists a constant $C>0$ such that

$$
\int V(y) \psi_{t}(x-y) d y \leq \begin{cases}C t^{-1}\left(m(x, V) t^{1 / 2}\right)^{\delta} & \text { for } t \leq R(x)^{2} \\ C t^{-d / 2}(\sqrt{t} m(x, V))^{C_{0}} m(x, V)^{2-d} & \text { for } t>R(x)^{2}\end{cases}
$$

where $\psi_{t}(x)=t^{-d / 2} \psi\left(t^{-1 / 2} x\right)$.

The Kato-Trotter formula asserts that

$$
\begin{align*}
k_{t}(x, y) & =p_{t}(x-y)-\int_{0}^{t} \int p_{s}(x-z) V(z) k_{t-s}(z, y) d z d s \tag{4.9}\\
& =p_{t}(x-y)-\int_{0}^{t} \int k_{t-s}(x, z) V(z) p_{s}(z-y) d z d s
\end{align*}
$$

A proof of the theorem below can be found in $[\mathrm{K}]$ (see also [DZ4]).
Theorem 4.10. For every $M>0$ there exists a constant C_{M} such that

$$
k_{t}(x, y) \leq C_{M} t^{-d / 2}(1+\sqrt{t}(m(x, V)+m(y, V)))^{-M} e^{-|x-y|^{2} /(5 t)}
$$

Proposition 4.11. For every $0<\delta^{\prime}<\delta_{0}$ there exists a constant $c>0$ such that for every $M>0$ there exists a constant $C>0$ such that for $|h|<\sqrt{t}$, we have

$$
\begin{align*}
\mid k_{t}(x, y+ & h)-k_{t}(x, y) \mid \tag{4.12}\\
\leq & C\left(\frac{|h|}{\sqrt{t}}\right)^{\delta^{\prime}} t^{-d / 2} e^{-c|x-y|^{2} / t}\left(1+\frac{\sqrt{t}}{R(x)}+\frac{\sqrt{t}}{R(y)}\right)^{-M}
\end{align*}
$$

Proof. Obviously, using Theorem 4.10 and Lemma 4.3, we see that (4.12) holds for $\sqrt{t / 2} \leq|h| \leq \sqrt{t}$. We first prove (4.12) under the assumption $|h| \leq|x-y| / 4$. Theorem 4.10 combined with Lemma 4.3 implies that for $|h|<|x-y| / 4$ one has

$$
\begin{align*}
& \left|k_{t}(x, y+h)-k_{t}(x, y)\right| \tag{4.13}\\
& \quad \leq C t^{-d / 2} e^{-|x-y|^{2} /(5 t)}\left(1+\frac{\sqrt{t}}{R(x)}+\frac{\sqrt{t}}{R(y)}\right)^{-3 M} \\
& \quad \leq C t^{-d / 2} e^{-|x-y|^{2} /(5 t)}\left(1+\frac{\sqrt{t}}{R(x)}+\frac{\sqrt{t}}{R(y)}\right)^{-2 M}\left(\frac{R(y)}{\sqrt{t}}\right)^{M}
\end{align*}
$$

Therefore it suffices to verify (4.12) for $|h| \leq R(y)$. Let $q_{t}(x, y)=p_{t}(x, y)-$ $k_{t}(x, y)$. One can prove (see [DZ4, Proposition 2.17]) that for every $0<\delta^{\prime \prime}$ $<\delta_{0}$ there is a constant $c>0$ such that for $|h| \leq|x-y| / 4,|h| \leq R(y)$, we have

$$
\left|q_{t}(x, y+h)-q_{t}(x, y)\right| \leq C\left(\frac{|h|}{\sqrt{t}}\right)^{\delta^{\prime \prime}}\left(\frac{\sqrt{t}}{R(x)}\right)^{\delta^{\prime \prime}} t^{-d / 2} e^{-c|x-y|^{2} / t}
$$

Thus

$$
\left|k_{t}(x, y+h)-k_{t}(x, y)\right| \leq C\left(\frac{|h|}{\sqrt{t}}\right)^{\delta^{\prime \prime}}\left(1+\frac{\sqrt{t}}{R(x)}\right)^{\delta^{\prime \prime}} t^{-d / 2} e^{-c|x-y|^{2} / t}
$$

which combined with (4.13) gives (4.12).

To complete the proof, we have to consider $|x-y| / 4<|h| \leq \sqrt{t / 2}$. By the semigroup property,

$$
\begin{aligned}
\left|k_{t}(x, y+h)-k_{t}(x, y)\right| & \leq \int k_{t / 2}(x, z)\left|k_{t / 2}(z, y+h)-k_{t / 2}(z, y)\right| d z \\
& =\int_{|z-y| \leq 4|h|}+\int_{|z-y|>4|h|}=S_{1}+S_{2}
\end{aligned}
$$

Obviously, by Theorem 4.10,

$$
S_{1} \leq C t^{-d / 2}\left(\frac{|h|}{\sqrt{t}}\right)^{d}(1+\sqrt{t} m(x, V))^{-M}
$$

Since $|z-y|>4|h|$, we apply (4.12) and obtain

$$
\begin{aligned}
S_{2} & \leq C \int_{|z-y|>4|h|} k_{t}(x, z)\left(\frac{|h|}{\sqrt{t}}\right)^{\delta^{\prime \prime}} t^{-d / 2} e^{-c|x-y|^{2} / t} d z \\
& \leq C(1+\sqrt{t} m(x, V))^{-M} t^{-d / 2} e^{-c|x-y|^{2} / t}\left(\frac{|h|}{\sqrt{t}}\right)^{\delta^{\prime \prime}}
\end{aligned}
$$

Hence, by the assumption $|x-y| / 4<|h| \leq \sqrt{t / 2}$, we have

$$
S_{1}+S_{2} \leq C(1+\sqrt{t} m(x, V))^{-M}\left(\frac{|h|}{\sqrt{t}}\right)^{\delta^{\prime \prime}} t^{-d / 2} e^{-c|x-y|^{2} / t}
$$

Applying Lemma 4.3, we get (4.12) for $|x-y|<4|h|$.
Let $A_{\varepsilon}(x, y)$ denote the integral kernel of the operator A_{ε}. Then

$$
A_{\varepsilon}(x, y)=V(x) \Gamma_{\varepsilon}(x, y), \quad \Gamma_{\varepsilon}(x, y)=\int_{0}^{(\varepsilon R(x))^{2}} p_{s}(x-y) d s
$$

It follows from (4.14) that there exist constants $C, c>0$ such that

$$
\begin{equation*}
\Gamma_{\varepsilon}(x, y) \leq \frac{C}{|x-y|^{d-2}} \exp \left(-c|x-y|^{2} /(\varepsilon R(x))^{2}\right) \tag{4.15}
\end{equation*}
$$

For a fixed nonnegative M we set $w_{M}(x)=(1+|x| / R(0))^{M}$.
PROPOSITION 4.16. $\lim _{\varepsilon \rightarrow 0^{+}}\left\|A_{\varepsilon}\right\|_{L^{1}\left(w_{M}(x) d x\right) \rightarrow L^{1}\left(w_{M}(x) d x\right)}=0$.
Proof. It suffices to show that

$$
\begin{equation*}
I=\int V(x) \Gamma_{\varepsilon}(x, y) w_{M}(x) d x \leq c(\varepsilon) w_{M}(y) \tag{4.17}
\end{equation*}
$$

where $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$. Split

$$
I=\int V(x) \Gamma_{\varepsilon}(x, y) w_{M}(x) d x=\int_{|x-y| \leq 2 R(y)}+\int_{|x-y|>2 R(y)}=I_{1}+I_{2}
$$

By (4.15) and Corollary 4.6 we have

$$
\begin{array}{rl}
I_{1} \leq C \sum_{j=-1}^{\infty} \int_{2^{-j-1}} & V(x) 2^{j(d-2)} R(y) \leq|x-y| \leq 2^{-j} R(y) \\
& \times \exp \left(-c^{\prime} 2^{-j} / \varepsilon\right)\left(1+\frac{|x|}{R(0)}\right)^{M} d x
\end{array}
$$

Applying Corollaries 4.6 and 4.2, and the fact that $1+|x| / R(0) \sim 1+|y| / R(0)$ for $|x-y| \leq 2 R(y)$ (cf. Lemma 4.3), we obtain

$$
\begin{equation*}
I_{1} \leq C\left(1+\frac{|y|}{R(0)}\right)^{M} \sum_{j=-1}^{\infty}\left(2^{-j}\right)^{\delta} \exp \left(-c^{\prime} 2^{-j} / \varepsilon\right) \tag{4.18}
\end{equation*}
$$

Now we estimate I_{2}. By (4.15),

$$
\begin{aligned}
I_{2} \leq C \sum_{j=1}^{\infty} \int_{2^{j} R(y) \leq|x-y| \leq 2^{j+1} R(y)} & V(x)\left(2^{j} R(y)\right)^{2-d} \\
& \times \exp \left(\frac{-c^{\prime}|x-y|}{\varepsilon R(x)}\right)\left(1+\frac{|x|}{R(0)}\right)^{M} d x
\end{aligned}
$$

It follows from (4.4) that

$$
|x| m(0, V) \leq C(1+|y| m(0, V))(1+|x-y| m(x, V))^{k_{0}+1}
$$

Thus, using Lemma 4.7, we have

$$
\begin{aligned}
I_{2} \leq C \sum_{j=1}^{\infty} \int_{2^{j}} \int_{R(y) \leq|x-y| \leq 2^{j+1} R(y)} & V(x)\left(2^{j} R(y)\right)^{2-d} \\
& \times \exp \left(\frac{-c_{1}|x-y|}{\varepsilon R(x)}\right)\left(1+\frac{|y|}{R(0)}\right)^{M} d x
\end{aligned}
$$

Observe that, by (4.5), $R(x)^{-1} \geq c R(y)^{-1}\left(1+2^{j}\right)^{-k_{0} /\left(1+k_{0}\right)}$ for $|x-y| \sim$ $2^{j} R(y)$. Hence, by Lemma 4.7, we obtain

$$
\begin{equation*}
I_{2} \leq C\left(1+\frac{|y|}{R(0)}\right)^{M} \sum_{j=1}^{\infty} 2^{C j} \exp \left(-c_{2} 2^{j / k_{0}} / \varepsilon\right) \tag{4.19}
\end{equation*}
$$

Now (4.17) follows from (4.18) and (4.19).
Setting $M=0$ we get
Corollary 4.20.

$$
\sup _{y \in \mathbb{R}^{d}} \int V(x)|x-y|^{2-d} \exp \left(-c|x-y|^{2} /(\varepsilon R(x))^{2}\right) d x \leq c(\varepsilon)
$$

where $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$.

Proof of Lemma 1.6. Applying Proposition 4.16 with $M=0$, we obtain $\left\|A_{\varepsilon}^{*}\right\|_{L^{\infty} \rightarrow L^{\infty}} \leq c(\varepsilon)$, where $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$. Since $G_{\varepsilon}(x)-\mathbf{1}=$ $\sum_{n=1}^{\infty}\left(\left(-A_{\varepsilon}^{*}\right)^{n} \mathbf{1}\right)(x)$, we get

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\|G_{\varepsilon}-\mathbf{1}\right\|_{L^{\infty}} \leq \lim _{\varepsilon \rightarrow 0^{+}} \sum_{n=1}^{\infty} c(\varepsilon)^{n}=0
$$

Proof of Lemma 1.7. We shall show that for every $\delta^{\prime}<\delta_{0}$ there exist constants $C_{\delta^{\prime}}$ and $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\left|G_{\varepsilon}(x+h)-G_{\varepsilon}(x)\right| \leq C_{\delta^{\prime}}(|h| m(x, V))^{\delta^{\prime}} \tag{4.21}
\end{equation*}
$$

for $0<\varepsilon<\varepsilon_{0}$. Let $A_{\varepsilon}^{*}(x, y)=A_{\varepsilon}(y, x)=V(y) \Gamma_{\varepsilon}(y, x)$ be the kernels of the operators A_{ε}^{*}. We are going to prove that

$$
\begin{equation*}
I=\int\left|A_{\varepsilon}^{*}(x+h, y)-A_{\varepsilon}^{*}(x, y)\right| d y \leq C_{\delta^{\prime}}(|h| m(x, V))^{\delta^{\prime}} \tag{4.22}
\end{equation*}
$$

It suffices to show (4.21) for $|h| m(x, V) \leq 1 / 4$. We have

$$
I=\int_{|x-y| \leq 4|h|}+\int_{4|h|<|x-y| \leq R(x)}+\int_{|x-y|>R(x)}=I_{1}+I_{2}+I_{3}
$$

Applying (4.15) and Corollary 4.2 we get

$$
\begin{aligned}
I_{1} \leq & C \int_{|x-y| \leq 4|h|}\left(A_{\varepsilon}^{*}(x+h, y)+A_{\varepsilon}^{*}(x, y)\right) d y \\
\leq & C \int_{|x-y| \leq 4|h|} V(y)|x-y|^{2-d} d y \\
& +C \int_{|x+h-y| \leq 5|h|} V(y)|x+h-y|^{2-d} d y \\
\leq & C \sum_{j \geq 0} \iint_{2^{-j+1}|h|<|x-y|<2^{-j+2}|h|} V(y)\left(2^{-j}|h|\right)^{2-d} d y \\
& +C \sum_{j \geq 0} V{ }_{2^{-j+2}|h|<|x+h-y|<2^{-j+3}|h|} V(y)\left(2^{-j}|h|\right)^{2-d} d y \\
\leq & C(|h| m(x, V))^{\delta}+C(|h| m(x+h, V))^{\delta} .
\end{aligned}
$$

Hence, by Corollary 4.6,

$$
I_{1} \leq C(|h| m(x, V))^{\delta}
$$

Note that for $|h|<|x-y| / 4$ we have

$$
\left|A_{\varepsilon}^{*}(x+h, y)-A_{\varepsilon}^{*}(x, y)\right| \leq C V(y) \frac{|h|}{|x-y|^{d-1}} e^{-c|x-y|^{2} /\left(\varepsilon^{2} R(y)^{2}\right)}
$$

Application of Lemma 4.3 leads to

$$
\begin{equation*}
\left|A_{\varepsilon}^{*}(x+h, y)-A_{\varepsilon}^{*}(x, y)\right| \leq C V(y) \frac{|h|}{|x-y|^{d-1}} e^{-c|x-y|^{\gamma} /\left(\varepsilon^{2} R(x)^{\gamma}\right)} \tag{4.23}
\end{equation*}
$$

with a constant $\gamma>0$. Therefore setting $n=\left[\log _{2}(R(x) /|h|)\right]+1$, and using (4.23) and Corollary 4.2, we obtain

$$
\begin{aligned}
I_{2} & \leq C \int_{4|h|<|x-y| \leq R(x)} V(y) \frac{|h|}{|x-y|^{d-1}} d y \\
& \leq C \sum_{j=2}^{n} \int_{2^{j}|h|<|x-y| \leq 2^{j}|h|} V(y) \frac{|h|}{\left(2^{j}|h|\right)^{d-1}} d y \\
& \leq C \sum_{j=1}^{n} 2^{-j}\left(2^{j} m(x, V)|h|\right)^{\delta} \leq C(m(x, V)|h|)^{\delta^{\prime}}
\end{aligned}
$$

Finally, by (4.23) and Lemma 4.7, we get

$$
\begin{aligned}
I_{3} & \leq C \sum_{j \geq 0} \int{ }_{2^{j} R(x)<|x-y|<2^{j+1} R(x)} V(y) \frac{|h|}{\left(2^{j} R(x)\right)^{d-1}} e^{-c\left(2^{j} R(x) /\left(\varepsilon^{2} R(x)\right)\right)^{\gamma}} \\
& \leq C \sum_{j \geq 0} \frac{|h|}{R(x)} 2^{j C} e^{-c\left(2^{j} / \varepsilon^{2}\right)^{\gamma}} \leq C(m(x, V)|h|)
\end{aligned}
$$

which completes the proof of (4.22). It follows from (4.22) that

$$
\begin{equation*}
\left|A_{\varepsilon}^{*} f(x+h)-A_{\varepsilon}^{*} f(x)\right| \leq C(|h| m(x, V))^{\delta^{\prime}}\|f\|_{L^{\infty}} \tag{4.24}
\end{equation*}
$$

Now (4.21) is a consequence of (4.24). Indeed,

$$
\begin{aligned}
\left|G_{\varepsilon}(x+h)-G_{\varepsilon}(x)\right| & =\left|\sum_{n=1}^{\infty}\left(\left(-A_{\varepsilon}^{*}\right)^{n} \mathbf{1}(x+h)-\left(-A_{\varepsilon}^{*}\right)^{n} \mathbf{1}(x)\right)\right| \\
& =\left|\sum_{n=0}^{\infty}-A_{\varepsilon}^{*}\left(\left(-A_{\varepsilon}^{*}\right)^{n} \mathbf{1}\right)(x+h)+A_{\varepsilon}^{*}\left(\left(-A_{\varepsilon}^{*}\right)^{n} \mathbf{1}\right)(x)\right| \\
& \leq \sum_{n=0}^{\infty} C(|h| m(x, V))^{\delta^{\prime}}\left\|\left(-A_{\varepsilon}^{*}\right)^{n} \mathbf{1}\right\|_{L^{\infty}} \\
& \leq C(|h| m(x, V))^{\delta^{\prime}} \sum_{n=0}^{\infty}\left\|A_{\varepsilon}^{*}\right\|_{L^{\infty} \rightarrow L^{\infty}}^{n} \\
& \leq C(|h| m(x, V))^{\delta^{\prime}} \sum_{n=0}^{\infty} c(\varepsilon)^{n} \leq C(|h| m(x, V))^{\delta^{\prime}}
\end{aligned}
$$

5. Proof of Lemma 2.9. For $\varepsilon>0, y_{0} \in \mathbb{R}^{d}, 0<r \leq \varepsilon R\left(y_{0}\right)$, and $M \geq 0$ we define the space $L_{\varepsilon, r, y_{0}, M}^{1}$ by

$$
\begin{aligned}
& L_{\varepsilon, r, y_{0}, M}^{1}=\left\{f: \int|f(x)|\left(1+\frac{\left|x-y_{0}\right|}{r}\right)\left(1+\frac{\left|x-y_{0}\right|}{\varepsilon R\left(y_{0}\right)}\right)^{M} d x\right. \\
&\left.=\|f\|_{L_{\varepsilon, r, y_{0}, M}^{1}}<\infty\right\}
\end{aligned}
$$

Let $L_{\varepsilon, r, y_{0}, M, 0}^{1}=\left\{f \in L_{\varepsilon, r, y_{0}, M}^{1}: \int f(x) d x=0\right\}$. Set

$$
\begin{equation*}
\mathcal{G}_{\varepsilon} f(x)=\left(G_{\varepsilon}(x)-\mathbf{1}\right) f(x)+G_{\varepsilon}(x) A_{\varepsilon} f(x) \tag{5.1}
\end{equation*}
$$

Lemma 5.2. For every $M \geq 0$ we have

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\|\mathcal{G}_{\varepsilon}\right\|_{L_{\varepsilon, r, y_{0}, M, 0}^{1} \rightarrow L_{\varepsilon, r, y_{0}, M, 0}^{1}}=0
$$

uniformly with respect to y_{0} and r.
Proof. Note that $\int \mathcal{G}_{\varepsilon} f(x) d x=0$. Indeed, by the definition of G_{ε},

$$
\begin{aligned}
\int \mathcal{G}_{\varepsilon} f(x) d x & =\int\left(G_{\varepsilon}(x)\left(\operatorname{Id}+A_{\varepsilon}\right) f(x)-f(x)\right) d x \\
& =\int\left(\left(\operatorname{Id}+A_{\varepsilon}^{*}\right) G_{\varepsilon}(x)\right) f(x) d x=\int f(x) d x=0
\end{aligned}
$$

Therefore, by Lemma 1.6, it suffices to show that
$\lim _{\varepsilon \rightarrow 0^{+}}\left\|A_{\varepsilon}\right\|_{L_{\varepsilon, r, y_{0}, M, 0}^{1} \rightarrow L_{\varepsilon, r, y_{0}, M}^{1}}=0 \quad$ uniformly with respect to y_{0} and r.
There is no loss of generality in assuming that $y_{0}=0$. Since

$$
\begin{aligned}
A_{\varepsilon} f(x) & =\int V(x) \Gamma_{\varepsilon}(x, y) f(y) d y \\
& =\int V(x)\left(\Gamma_{\varepsilon}(x, y)-\Gamma_{\varepsilon}(x, 0)\right) f(y) d y
\end{aligned}
$$

we need only show that

$$
\begin{aligned}
J_{1} & =\int V(x)\left|\Gamma_{\varepsilon}(x, y)-\Gamma_{\varepsilon}(x, 0)\right|\left(1+\frac{|x|}{r}\right)\left(1+\frac{|x|}{\varepsilon R(0)}\right)^{M} d x \\
& \leq c(\varepsilon)\left(1+\frac{|y|}{r}\right)\left(1+\frac{|y|}{\varepsilon R(0)}\right)^{M}
\end{aligned}
$$

with $c(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Note that there is a constant $C>0$ such that

$$
\left|\Gamma_{\varepsilon}(x, y)-\Gamma_{\varepsilon}(x, 0)\right| \leq C \frac{|y|}{|x|^{d-1}} \exp \left(-c|x|^{2} /(\varepsilon R(x))^{2}\right) \quad \text { for } 4|y|<|x|
$$

Thus

$$
\begin{aligned}
J_{1} \leq & \int_{|x|>4|y|}+\int_{|x| \leq 4|y|} \\
\leq & C \int_{|x|>4|y|} V(x) \frac{|y|}{|x|^{d-1}} \exp \left(-c|x|^{2} /(\varepsilon R(x))^{2}\right)\left(1+\frac{|x|}{\varepsilon R(0)}\right)^{M} d x \\
& +C \int_{|x|>4|y|} V(x) \frac{|y|}{|x|^{d-1}} \exp \left(-c|x|^{2} /(\varepsilon R(x))^{2}\right) \frac{|x|}{r}\left(1+\frac{|x|}{\varepsilon R(0)}\right)^{M} d x \\
& +C \int_{|x| \leq 4|y|} V(x)\left(\Gamma_{\varepsilon}(x, y)+\Gamma_{\varepsilon}(x, 0)\right)\left(1+\frac{|x|}{r}\right)\left(1+\frac{|x|}{\varepsilon R(0)}\right)^{M} d x \\
= & J_{1}^{(1)}+J_{1}^{(2)}+J_{1}^{(3)} .
\end{aligned}
$$

Obviously, by (4.4), since $0<\varepsilon<1$, we have

$$
\begin{equation*}
1+\frac{|x|}{\varepsilon R(0)} \leq C\left(1+\frac{|x|}{\varepsilon R(x)}\right)^{k_{0}+1} \tag{5.3}
\end{equation*}
$$

Therefore, applying Corollary 4.20, we get

$$
\begin{aligned}
J_{1}^{(1)} & \leq C \int_{|x|>4|y|} V(x) \frac{1}{|x|^{d-2}} \exp \left(\frac{-c|x|^{2}}{(\varepsilon R(x))^{2}}\right)\left(1+\frac{|x|}{\varepsilon R(x)}\right)^{M\left(k_{0}+1\right)} d x \\
& \leq c(\varepsilon) \leq c(\varepsilon)\left(1+\frac{|y|}{r}\right)\left(1+\frac{|y|}{\varepsilon R(0)}\right)^{M}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
J_{1}^{(2)} & \leq C \int_{|x|>4|y|} V(x) \frac{|y|}{r} \frac{1}{|x|^{d-2}} \exp \left(\frac{-c|x|^{2}}{(\varepsilon R(x))^{2}}\right)\left(1+\frac{|x|}{\varepsilon R(x)}\right)^{M\left(k_{0}+1\right)} d x \\
& \leq c(\varepsilon) \frac{|y|}{r} \leq c(\varepsilon)\left(1+\frac{|y|}{r}\right)\left(1+\frac{|x|}{\varepsilon R(0)}\right)^{M}
\end{aligned}
$$

In order to estimate $J_{1}^{(3)}$ we use again (4.15) and Corollary 4.20 to obtain

$$
\begin{aligned}
J_{1}^{(3)} & \leq C \int_{|x| \leq 4|y|} V(x)\left(\Gamma_{\varepsilon}(x, y)+\Gamma_{\varepsilon}(x, 0)\right)\left(1+\frac{|y|}{r}\right)\left(1+\frac{|y|}{\varepsilon R(0)}\right)^{M} d x \\
& \leq c(\varepsilon)\left(1+\frac{|y|}{r}\right)\left(1+\frac{|y|}{\varepsilon R(0)}\right)^{M}
\end{aligned}
$$

Lemma 5.4. Fix $M \geq 0$. If $\varepsilon R\left(y_{0}\right) / 4<r \leq \varepsilon R\left(y_{0}\right)$ then

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\|\mathcal{G}_{\varepsilon}\right\|_{L^{1}\left(\varepsilon, r, y_{0}, M\right) \rightarrow L^{1}\left(\varepsilon, r, y_{0}, M\right)}=0
$$

uniformly with respect to y_{0} and r.
Proof. By Lemma 1.6 it is enough to show that

$$
\begin{aligned}
\int V(x) \Gamma_{\varepsilon}(x, y)\left(1+\frac{\left|x-y_{0}\right|}{r}\right) & \left(1+\frac{\left|x-y_{0}\right|}{\varepsilon R\left(y_{0}\right)}\right)^{M} d x \\
& \leq c(\varepsilon)\left(1+\frac{\left|y-y_{0}\right|}{r}\right)\left(1+\frac{\left|y-y_{0}\right|}{\varepsilon R\left(y_{0}\right)}\right)^{M}
\end{aligned}
$$

We shall prove this for $y_{0}=0$. The proof for arbitrary y_{0} is identical. By
(5.3), (4.15), and Corollary 4.20, we get

$$
\begin{aligned}
& \int V(x) \Gamma_{\varepsilon}(x, y)\left(1+\frac{|x|}{r}\right)\left(1+\frac{|x|}{\varepsilon R(0)}\right)^{M} d x \\
& \leq C \int_{|x| \leq 4|y|}+C \int_{|x|>4|y|} \\
& \leq C \int_{|x| \leq 4|y|} V(x) \Gamma_{\varepsilon}(x, y)\left(1+\frac{|y|}{r}\right)\left(1+\frac{|y|}{\varepsilon R(0)}\right)^{M} d x \\
& \quad+C \int_{|x|>4|y|} V(x) \Gamma_{\varepsilon}(x, y)\left(1+\frac{|x-y|}{\varepsilon R(x)}\right)^{\left(k_{0}+1\right)(M+1)} d x \\
& \quad \leq c(\varepsilon)\left(1+\frac{|y|}{r}\right)\left(1+\frac{|y|}{\varepsilon R(0)}\right)^{M}+c(\varepsilon)
\end{aligned}
$$

Proof of Lemma 2.9. Since $G_{\varepsilon}\left(\operatorname{Id}+A_{\varepsilon}\right)=\operatorname{Id}+\mathcal{G}_{\varepsilon}$, Lemma 2.9 follows from Lemma 5.2, Lemma 5.4, and the equality

$$
\left(\operatorname{Id}+A_{\varepsilon}\right)^{-1} f=\left(\sum_{n=0}^{\infty}\left(-\mathcal{G}_{\varepsilon}\right)^{n}\right)\left(G_{\varepsilon} f\right)
$$

6. Estimates of the kernels E_{t}, H_{t} and related maximal functions

Lemma 6.1. There exist constants $C, c>0$ such that for every $\eta>0$ and every $y \in \mathbb{R}^{d}$ we have

$$
\left\|T_{t}\right\|_{L^{2}\left(e^{\eta|x-y|} d x\right) \rightarrow L^{2}\left(e^{\eta|x-y|} d x\right)} \leq C e^{c t \eta^{2}}
$$

Proof. This is a direct consequence of (1.2).
Corollary 6.2. The semigroup T_{t} has the (unique) extension to a holomorphic semigroup T_{ζ} on $L^{2}\left(e^{\eta|x-y|} d x\right)$ in the sector $\Delta_{\pi / 4}=\{\zeta:|\operatorname{Arg} \zeta|<$ $\pi / 4\}$. Moreover, there exist constants $C, c^{\prime}>0$ such that for every $\eta>0$ we have

$$
\left\|T_{\zeta}\right\|_{L^{2}\left(e^{\eta|x-y|} d x\right) \rightarrow L^{2}\left(e^{\eta|x-y|} d x\right)} \leq C e^{c^{\prime} \eta^{2} \Re \zeta}
$$

Proof. See the proof of Proposition 3.2 in [DZ3].
Let $k_{\zeta}(x, y)$ be the integral kernel of the operator T_{ζ}.
LEmmA 6.3. There exists a constant $c>0$ such that for every $M>0$ there exists a constant $C>0$ such that for every $\eta>0$ and every $y \in \mathbb{R}^{d}$ we have
$\int\left|k_{\zeta}(x, y)\right|^{2} e^{\eta|x-y|} d x \leq C e^{c \eta^{2} \Re \zeta}(\Re \zeta)^{-d / 2}\left(1+\frac{\Re \zeta}{R(y)^{2}}\right)^{-M} \quad$ for $\zeta \in \Delta_{\pi / 5}$.

Proof. Let $t=\Re \zeta$. Since $k_{\zeta}(x, y)=\left[T_{\zeta-t / 10} k_{t / 10}(\cdot, y)\right](x)$, using Corollary 6.2 , we obtain

$$
\int\left|k_{\zeta}(x, y)\right|^{2} e^{\eta|x-y|} d u \leq C e^{c \eta^{2} t} \int\left|k_{t / 10}(u, y)\right|^{2} e^{\eta|u-y|} d u
$$

Applying Theorem 4.10 we get

$$
\begin{aligned}
\int\left|k_{t / 10}(u, y)\right|^{2} e^{\eta|u-y|} d u & \leq C \int\left(1+\frac{\sqrt{t}}{R(y)}\right)^{-2 M} t^{-d} e^{-c|u-y|^{2} / t} e^{\eta|u-y|} d u \\
& \leq C t^{-d / 2} e^{2 c \eta^{2} t}\left(1+\frac{t}{R(y)^{2}}\right)^{-M}
\end{aligned}
$$

Corollary 6.4. There exists a constant $c>0$ such that for every $M \geq 0$ there is a constant C_{M} such that

$$
\left|k_{\zeta}(x, y)\right| \leq C_{M}(\Re \zeta)^{-d / 2}\left(1+\frac{\Re \zeta}{R(y)^{2}}\right)^{-M}\left(1+\frac{\Re \zeta}{R(x)^{2}}\right)^{-M} e^{-c|x-y|^{2} / \Re \zeta}
$$

for $\zeta \in \Delta_{\pi / 5}$.
Proof. We have

$$
\begin{aligned}
& \left|k_{\zeta}(x, y)\right| e^{\eta|x-y|}=\left|\int k_{\zeta / 2}(x, u) k_{\zeta / 2}(u, y) d u\right| e^{\eta|x-y|} \\
& \quad \leq\left(\int\left|k_{\zeta / 2}(x, u)\right|^{2} e^{2 \eta|x-u|} d u\right)^{1 / 2}\left(\int\left|k_{\zeta / 2}(u-y)\right|^{2} e^{2 \eta|u-y|} d u\right)^{1 / 2} \\
& \quad \leq C_{M}(\Re \zeta)^{-d / 2} e^{c \eta^{2} \Re \zeta}\left(1+\frac{\Re \zeta}{R(y)^{2}}\right)^{-M}
\end{aligned}
$$

Setting $\eta=c^{\prime \prime}|x-y|(\Re \zeta)^{-1}$ (with $c^{\prime \prime}>0$ small enough) and using the fact that $\left|k_{\zeta}(x, y)\right|=\left|k_{\bar{\zeta}}(y, x)\right|$ we get the required estimate.

Proposition 6.5. There exists a constant $c>0$ such that for every $M>0$ there exists a constant $C>0$ such that
$\left|k_{t+s}(x, y)-k_{t}(x, y)\right| \leq C \frac{s}{t} t^{-d / 2} e^{-c|x-y|^{2} / t}\left(1+\frac{t}{R(y)^{2}}\right)^{-M}\left(1+\frac{t}{R(x)^{2}}\right)^{-M}$
for $0<s<t$.
Proof. By Corollary 6.4 it suffices to prove the estimate for $0<s<t / 20$. Using the Cauchy integral formula and Corollary 6.4 we get

$$
\begin{aligned}
\left|k_{t+s}(x, y)-k_{t}(x, y)\right| & =\left|\int_{0}^{s} \frac{d}{d t} k_{t+\tau}(x, y) d \tau\right| \\
& =C\left|\int_{0}^{s} \int_{|\zeta-t|=t / 10} \frac{k_{\zeta}(x, y)}{(\zeta-t-\tau)^{2}} d \zeta d \tau\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \int_{0}^{s} \int_{|\zeta-t|=t / 10} \frac{\left|k_{\zeta}(x, y)\right|}{|\zeta-t-\tau|^{2}} d|\zeta| d \tau \\
& \leq C s \frac{t}{t^{2}} t^{-d / 2} e^{-c|x-y|^{2} / t}\left(1+\frac{t}{R(y)^{2}}\right)^{-M}\left(1+\frac{t}{R(x)^{2}}\right)^{-M}
\end{aligned}
$$

Lemma 6.6. There exists a rapidly decaying function ψ such that

$$
H_{t}(x, y) \leq \begin{cases}(\sqrt{t} m(x, V))^{\delta} \psi_{t}(x-y) & \text { for } t<m(x, V)^{-2} \tag{6.7}\\ \psi_{t}(x-y) & \text { for } t \geq m(x, V)^{-2}\end{cases}
$$

Proof. From Theorem 4.10 we conclude

$$
\begin{aligned}
H_{t}(x, y) \leq & C \int_{t / 2}^{t} \int(t-s)^{-d / 2} e^{-c|z| / \sqrt{t-s}} V(z+x) \\
& \times t^{-d / 2} e^{-c|z+x-y| / \sqrt{t}}\left(1+\frac{t-s}{R(x)^{2}}\right)^{-M} d z d s \\
\leq & C \int_{t / 2}^{t} \int|z| \leq|x-y| / 4 \\
& C \int_{t / 2}^{t} \int_{|z|>|x-y| / 4}
\end{aligned}
$$

We note that for $|z|>|x-y| / 4$ we have

$$
(t-s)^{-d / 2} e^{-c|z| / \sqrt{t-s}} \leq C(t-s)^{-d / 2} e^{-c^{\prime}|x-y| / \sqrt{t}} e^{-c^{\prime}|z| / \sqrt{t-s}}
$$

Thus

$$
\begin{aligned}
& H_{t}(x, y) \leq C_{M} \int_{t / 2}^{t} \int(t-s)^{-d / 2} e^{-c^{\prime}|z| / \sqrt{t-s}} V(z+x) \\
& \times t^{-d / 2} e^{-c^{\prime}|x-y| / \sqrt{t}}\left(1+\frac{t-s}{R(x)^{2}}\right)^{-M} d z d s
\end{aligned}
$$

Set $\psi_{t}(x)=t^{-d / 2} e^{-c^{\prime}|x| / \sqrt{t}}$. If $t<m(x, V)^{-2}$ then, by Corollary 4.8, we obtain

$$
\begin{aligned}
H_{t}(x, y) & \leq C \psi_{t}(x-y) \int_{t / 2}^{t}(t-s)^{-1}(m(x, V) \sqrt{t-s})^{\delta} d s \\
& \leq C \psi_{t}(x-y)(m(x, V) \sqrt{t})^{\delta}
\end{aligned}
$$

If $t \geq m(x, V)^{-2}$ then

$$
\begin{aligned}
H_{t}(x, y) & \leq \psi_{t}(x-y) \int_{t / 2}^{t} \int \frac{e^{-c^{\prime}|z| / \sqrt{t-s}}}{(t-s)^{d / 2}} V(z+x)\left(1+\frac{t-s}{R(x)^{2}}\right)^{-M} d z d s \\
& \leq \psi_{t}(x-y) \int_{0}^{t / 2} \frac{e^{-c^{\prime}|z| / \sqrt{s}}}{s^{d / 2}} V(z+x)\left(1+\frac{s}{R(x)^{2}}\right)^{-M} d z d s
\end{aligned}
$$

Applying again Corollary 4.8 we get

$$
\begin{aligned}
H_{t}(x, y) \leq & \psi_{t}(x-y)\left(\int_{0}^{R(x)^{2}} s^{-1}(m(x, V) \sqrt{s})^{\delta} d s\right. \\
& \left.+\int_{R(x)^{2}}^{t} s^{-d / 2}(\sqrt{s} m(x, V))^{-M+C} m(x, V)^{2-d} d s\right) \\
\leq & C \psi_{t}(x-y)
\end{aligned}
$$

Lemma 6.8. There exists a rapidly decaying function ψ such that

$$
\begin{equation*}
\left|H_{t}(x, y+h)-H_{t}(x, y)\right| \leq \frac{|h|}{\sqrt{t}}(m(x, V) \sqrt{t})^{\delta} \psi_{t}(x-y) \tag{6.9}
\end{equation*}
$$

for $t \leq C m(x, V)^{-2},|h| \leq|x-y| / 8$, and

$$
\begin{equation*}
\left|H_{t}(x, y+h)-H_{t}(x, y)\right| \leq \frac{|h|}{\sqrt{t}} \psi_{t}(x-y) \tag{6.10}
\end{equation*}
$$

for $t \geq C m(x, V)^{-2},|h|<|x-y| / 8$.
Proof. It suffices to show (6.9) and (6.10) for $2|h| \leq \sqrt{t}$. We have

$$
\begin{aligned}
\mid H_{t}(x, y+h) & -H_{t}(x, y) \mid \\
& =\left|\int_{t / 2}^{t} \int k_{t-s}(x, z) V(z)\left(p_{s}(z-y-h)-p_{s}(z-y)\right) d z d s\right|
\end{aligned}
$$

Since $2|h| \leq \sqrt{t}$ and $t / 2 \leq s \leq t$, we have

$$
\left|p_{s}(z-y-h)-p_{s}(z-y)\right| \leq C \frac{|h|}{\sqrt{t}} t^{-d / 2} e^{-c|z-y| / \sqrt{t}}
$$

Therefore

$$
\begin{aligned}
\mid H_{t}(x, y+h)- & H_{t}(x, y) \mid \\
& \leq C \int_{t / 2}^{t} \int k_{t-s}(z) V(z+x) \frac{|h|}{\sqrt{t}} t^{-d / 2} e^{-c|z+x-y| / \sqrt{t}} d z d s
\end{aligned}
$$

Using the same arguments as in the proof of Lemma 6.6 we get (6.9) and (6.10).

Lemma 6.11. There exists a rapidly decaying function φ such that for every $M>0$ there is a constant C_{M} such that

$$
\begin{align*}
\left|E_{t}(x, y)\right| \leq & C_{M}(\sqrt{t} m(x, V))^{\delta} \varphi_{t}(x-y) \tag{6.12}\\
& \times\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M}
\end{align*}
$$

Proof. Applying Proposition 6.5 and (4.5), we obtain

$$
\begin{aligned}
\left|E_{t}(x, y)\right| \leq & C \int_{0}^{t / 2} \int \frac{s}{t} t^{-d / 2} e^{-c|x-y-z| / \sqrt{t}} V(z+y) \\
& \times s^{-d / 2} e^{-c|z| / \sqrt{s}}\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} d z d s
\end{aligned}
$$

Now splitting the integral on the right-hand side into two integrals, we get

$$
\begin{aligned}
\left|E_{t}(x, y)\right| \leq & C \int_{0}^{t / 2} \int_{|z| \leq|x-y| / 4}+C \int_{0}^{t / 2} \int_{|z|>|x-y| / 4} \\
\leq & C_{M} \phi_{t}(x-y)\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& \times \int_{0}^{t / 2} \int_{t} \frac{s}{t} V(z+y) s^{-d / 2} e^{-c|z| / \sqrt{s}} d z d s \\
& +C_{M}\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& \times \int_{0}^{t / 2} \int_{|z|>|x-y| / 4} \frac{s}{t} t^{-d / 2} V(z+y) s^{-d / 2} e^{-c^{\prime}|z| / \sqrt{s}} e^{-c^{\prime}|z| / \sqrt{s}} d z d s \\
\leq & C_{M} \phi_{t}(x-y)\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& \times \int_{0}^{t / 2} \int_{t} \frac{s}{t} V(z+y) s^{-d / 2} e^{-c^{\prime}|z| / \sqrt{s}} d z d s \\
= & C_{M} \phi_{t}(x-y)\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& \times{\min \left(t / 2, R(y)^{2}\right)}_{\int_{0}} \frac{s}{t} V(z+y) \psi_{s}(z) d z d s
\end{aligned}
$$

$$
\begin{aligned}
& +C_{M} \phi_{t}(x-y)\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& \times \int_{\min \left(t / 2, R(y)^{2}\right)}^{t / 2} \int \frac{s}{t} V(z+y) \psi_{s}(z) d z d s
\end{aligned}
$$

where ϕ and ψ are rapidly decaying functions. By Corollary 4.8 we have

$$
\begin{aligned}
\left|E_{t}(x, y)\right| \leq & C_{M} t^{-1} \phi_{t}(x-y)\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& \times \int_{0}^{\min \left(t / 2, R(y)^{2}\right)}(\sqrt{s} m(y, V))^{\delta} d s \\
& +C_{M} t^{-1} \phi_{t}(x-y)\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& \times \int_{\min \left(t / 2, R(y)^{2}\right)}^{t / 2} s s^{-d / 2} \frac{(\sqrt{s} m(y, V))^{C_{0}}}{m(y, V)^{d-2}} d s \\
\leq & C_{M} \phi_{t}(x-y)(\sqrt{t} m(y, V))^{\delta}\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& +C_{M} \phi_{t}(x-y)\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M}\left(\frac{\sqrt{t}}{R(y)}\right)^{C_{0}+2-d}
\end{aligned}
$$

Applying Lemma 4.3, we get

$$
\begin{aligned}
\left|E_{t}(x, y)\right| \leq & C_{M} \phi_{t}(x-y)\left(1+\frac{|x-y|}{\sqrt{t}} \sqrt{t} m(x, V)\right)^{k_{0} \delta} \\
& \times(\sqrt{t} m(x, V))^{\delta}\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
& +C_{M}+\phi_{t}(x-y)\left(1+\frac{|x-y|}{\sqrt{t}} \sqrt{t} m(x, V)\right)^{k_{0}\left(2-d+C_{0}\right)} \\
& \times(\sqrt{t} m(x, V))^{2-d+C_{0}}\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M} \\
\leq & C_{M} \varphi_{t}(x-y)\left(\frac{\sqrt{t}}{R(x)}\right)^{\delta} \\
& \times\left(1+\frac{t}{R(x)^{2}}\right)^{-M+k_{0}\left(2-d+C_{0}+\delta\right) / 2}\left(1+\frac{t}{R(y)^{2}}\right)^{-M}
\end{aligned}
$$

Using the same method as in the proofs of Lemmas 6.6, 6.8, 6.11 one can prove

Lemma 6.13. For every $M \geq 0$ there exists a rapidly decaying function φ such that

$$
\begin{align*}
& \left|E_{t}(x, y+h)-E_{t}(x, y)\right| \tag{6.14}\\
& \quad \leq \frac{|h|}{\sqrt{t}}(\sqrt{t} m(x, V))^{\delta} \varphi_{t}(x-y)\left(1+\frac{t}{R(x)^{2}}\right)^{-M}\left(1+\frac{t}{R(y)^{2}}\right)^{-M}
\end{align*}
$$

provided $2|h|<\sqrt{t}, 8|h| \leq|x-y|$.
Proof of (3.5) and (3.6). First we prove (3.6). Assume that a is an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom associated with a ball $B\left(x_{0}, r\right)$. Then, by the definition, $r \leq \varepsilon R\left(x_{0}\right)$. By Lemma 6.6, if $t<\varepsilon^{2} R(x)^{2}$ and $x \in B\left(x_{0}, 8 r\right)$, then

$$
\left|H_{t} a(x)\right|=\left|\int H_{t}(x, y) a(y) d y\right| \leq C \varepsilon^{\delta}\|a\|_{\infty} \leq C \varepsilon^{\delta} r^{-d / p}
$$

Therefore

$$
\int_{B\left(x_{0}, 8 r\right)}\left(\mathcal{H}_{\varepsilon}^{*} a(x)\right)^{p} \leq C \varepsilon^{p \delta}
$$

In order to prove the required estimate on $B\left(x_{0}, 8 r\right)^{\text {c }}$ we consider two cases.
CASE 1: $\frac{1}{4} \varepsilon R\left(x_{0}\right)<r \leq \varepsilon R\left(x_{0}\right)$. Then, by Lemma 6.6, for $t<\varepsilon^{2} R(x)^{2}$ and $x \in B\left(x_{0}, 8 r\right)^{\mathrm{c}}$, we have

$$
\begin{aligned}
\left|H_{t} a(x)\right| & \leq \varepsilon^{\delta} \int_{B\left(x_{0}, r\right)}\left|\psi_{t}(x-y) a(y)\right| d y \\
& \leq C_{N} \varepsilon^{\delta}\|a\|_{L^{1}} t^{-d / 2}\left(1+\frac{\left|x-x_{0}\right|}{\sqrt{t}}\right)^{-2 N} \\
& \leq C \varepsilon^{\delta} r^{-d / p+d} t^{-d / 2}\left(1+\frac{\left|x-x_{0}\right|}{\sqrt{t}}\right)^{-2 N}
\end{aligned}
$$

It follows from (4.5) that $R(x)^{2} \leq C\left(1+\left|x-x_{0}\right| / R\left(x_{0}\right)\right)^{2 k_{0} /\left(1+k_{0}\right)} R\left(x_{0}\right)^{2}=$ $\tau\left(x, x_{0}\right)$. Thus

$$
\int_{B\left(x_{0}, 8 r\right)^{\mathrm{c}}}\left(\mathcal{H}_{\varepsilon}^{*} a(x)\right)^{p} d x
$$

$$
\begin{aligned}
& \leq C_{N} \varepsilon^{p \delta} r^{-d+d p} \int_{B\left(x_{0}, 8 r\right)^{\mathrm{c}}} \sup _{0<t<\varepsilon^{2} \tau\left(x, x_{0}\right)} t^{-d p / 2}\left(1+\frac{\left|x-x_{0}\right|}{\sqrt{t}}\right)^{-2 N p} d x \\
& \leq C_{N} \varepsilon^{p \delta}
\end{aligned}
$$

CASE 2: $r \leq \frac{1}{4} \varepsilon R\left(x_{0}\right)$. Then $\int a=0$. Therefore, by Lemma 6.8, for $\left|x-x_{0}\right|>8 r$ and $t<\varepsilon^{2} R(x)^{2}$, we have

$$
\begin{aligned}
\left|H_{t} a(x)\right| & =\left|\int_{B\left(x_{0}, r\right)}\left(H_{t}(x, y)-H_{t}\left(x, x_{0}\right)\right) a(y) d y\right| \\
& \leq C \varepsilon^{\delta} \int_{B\left(x_{0}, r\right)} \frac{\left|y-x_{0}\right|}{\sqrt{t}} \psi_{t}\left(x-x_{0}\right)|a(y)| d y
\end{aligned}
$$

This leads to

$$
\int_{B\left(x_{0}, 8 r\right)^{\mathrm{c}}}\left(\mathcal{H}_{\varepsilon}^{*} a(x)\right)^{p} d x \leq C \varepsilon^{p \delta}
$$

The proof of (3.5) is identical and uses Lemmas 6.11 and 6.13.
7. Maximal functions $\mathcal{Z}_{\varepsilon}^{*}$. Our goal in the present section is to prove (3.7). In order to do this it suffices to show that there exists a function $c(\varepsilon)$ satisfying $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$ such that

$$
\begin{equation*}
\left\|\mathcal{Z}_{\varepsilon}^{*} a\right\|_{L^{p}} \leq c(\varepsilon) \tag{7.1}
\end{equation*}
$$

for every $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom a. There is no loss of generality in assuming that if a is an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom associated with $B\left(x_{0}, r\right)$, and if $r<\frac{1}{4} \varepsilon R\left(x_{0}\right)$, then

$$
\begin{equation*}
\int x^{\alpha} a(x) d x=0 \quad \text { for }|\alpha| \leq C_{0}+d+4 \tag{7.2}
\end{equation*}
$$

where C_{0} is a constant from Corollary 4.8. Indeed, every $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom a satisfying (2.4) can be decomposed as $a=\sum c_{j} a_{j}^{\prime}$, where a_{j}^{\prime} satisfies (2.1), (2.2), (2.3) and (7.2) in such a way that $\sum_{j}\left|c_{j}\right|^{p} \leq C$.

The following lemma can be easily proved.
Lemma 7.3. Assume that a is an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom associated with a ball $B=B\left(x_{0}, r\right)$, where $r<\varepsilon R\left(x_{0}\right)$. Then

$$
\begin{equation*}
\left|\int_{\alpha}^{\beta} a * p_{s}(z) d s\right| \leq C \frac{e^{-c\left|z-x_{0}\right|^{2} / \beta}}{\left|z-x_{0}\right|^{d-2+M}+\alpha^{(d-2+M) / 2}}|B|^{1-1 / p+M / d} \tag{7.4}
\end{equation*}
$$

for $\left|z-x_{0}\right|>2 r$, where $M=C_{0}+d+4$ if $r \leq \frac{1}{4} \varepsilon R\left(x_{0}\right)$, and $M=0$ if $\frac{1}{4} \varepsilon R(0)<r<\varepsilon R\left(x_{0}\right)$.

Let a be as in Lemma 7.3 and let $K=B\left(x_{0}, R\left(x_{0}\right)\right)$. We define

$$
\begin{align*}
\mathcal{Z}_{\varepsilon, 0}^{*} a(x) & =\sup _{0<t<(\varepsilon R(x))^{2}}\left|Z_{(\varepsilon), t}^{0} a(x)\right| \tag{7.5}\\
& =\sup _{0<t<(\varepsilon R(x))^{2}}\left|\int_{K} k_{t}(x, z) V(z) W_{(\varepsilon), t} a(z) d z\right|, \\
\mathcal{Z}_{\varepsilon, \infty}^{*} a(x) & =\sup _{0<t<(\varepsilon R(x))^{2}}\left|\int_{K^{c}} k_{t}(x, z) V(z) W_{(\varepsilon), t} a(z) d z\right|, \tag{7.6}
\end{align*}
$$

where $W_{(\varepsilon), t} a(z)=\int W_{(\varepsilon), t}(z, y) a(y) d y$ (cf. Section 3).

Lemma 7.7. There exists a function $c(\varepsilon)$ with $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$ such that for every $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom a associated with a ball $B\left(x_{0}, r\right)$ we have

$$
\begin{equation*}
\left\|\mathcal{Z}_{\varepsilon, \infty}^{*} a\right\|_{L^{p}}^{p} \leq c(\varepsilon) \tag{7.8}
\end{equation*}
$$

Proof. There is no loss of generality in assuming that $x_{0}=0$. Then

$$
\begin{align*}
\mathcal{Z}_{\varepsilon, \infty}^{*} a(x) & \leq \sum_{j=0}^{\infty} \sup _{0<t<(\varepsilon R(x))^{2}} \int k_{t}(x, z) V(z)\left|W_{(\varepsilon), t} a(z)\right| \chi_{U_{j}}(z) d z \tag{7.9}\\
& =\sum_{j=0}^{\infty} f_{j}^{*}(x)
\end{align*}
$$

where $U_{j}=B\left(0,2^{j+1} R(0)\right) \backslash B\left(0,2^{j} R(0)\right)$. It follows from Lemma 4.3 that if $|x|<2^{j+2} R(0)$, then $R(x) \leq C 2^{j k_{0} /\left(1+k_{0}\right)} R(0)$. Therefore, by Lemma 7.3, there exists $\gamma>0$ such that

$$
\begin{aligned}
V(z)\left|W_{(\varepsilon), t} a(z)\right| \chi_{U_{j}}(z) & \leq C V(z) e^{-c(|z| / \varepsilon R(0))^{\gamma}} \frac{|B(0, r)|^{1-1 / p+M / d}}{|z|^{d+M-2}} \chi_{U_{j}}(z) \\
& =f_{j}(z)
\end{aligned}
$$

One can check using Lemma 4.7 that

$$
\left\|f_{j}\right\|_{L^{1}} \leq e^{-c^{\prime}\left(2^{j} / \varepsilon\right)^{\gamma}}\left|B\left(0,2^{j} R(0)\right)\right|^{1-1 / p}
$$

This gives

$$
\begin{equation*}
\left\|f_{j}^{*}\right\|_{L^{p}\left(B\left(0,2^{j+2} R(0)\right)\right)}^{p} \leq c(\varepsilon) 2^{-j} \tag{7.10}
\end{equation*}
$$

We now turn to estimating f_{j}^{*} on the set $|x|>2^{j+2} R(0)$. In this case

$$
\begin{aligned}
& V(z)\left|W_{(\varepsilon), t} a(z)\right| \chi_{U_{j}}(z) \\
& \quad \leq \begin{cases}C V(z) e^{-c(|z| / \varepsilon R(0))^{\gamma}} \frac{|B(0, r)|^{1-1 / p+M / d}}{|z|^{d+M-2}} \chi_{U_{j}}(z) & \text { if } t / 2 \leq(\varepsilon R(z))^{2} \\
C V(z) e^{-c|z|^{2} / t} \frac{|B(0, r)|^{1-1 / p+M / d}}{|z|^{d+M-2}} \chi_{U_{j}}(z) & \text { if } t / 2>(\varepsilon R(z))^{2}\end{cases} \\
& \quad=f_{j}^{(x, t)}(z) .
\end{aligned}
$$

Thus

$$
\int k_{t}(x, z) V(z)\left|W_{(\varepsilon), t} a(z)\right| \chi_{U_{j}}(z) d z \leq \varphi_{t}(x)\left\|f_{j}^{(x, t)}\right\|_{L^{1}}
$$

where φ is a rapidly decaying function. Therefore, for $|x|>2^{j+2} R(0)$, we have

$$
f_{j}^{*}(x) \leq \sup _{0<t<(\varepsilon R(x))^{2}} \varphi_{t}(x)\left\|f_{j}^{(x, t)}\right\|_{L^{1}}
$$

It is not difficult to verify using Lemmas 4.3 and 4.7 that

$$
\left\|f_{j}^{(x, t)}\right\|_{L^{1}} \leq C 2^{C j}\left|B\left(0,2^{j} R(0)\right)\right|^{1-1 / p}\left(e^{-c\left(2^{j} / \varepsilon\right)^{\gamma}}+e^{-c 2^{2 j}(R(0) /(\varepsilon|x|))^{\frac{2 k_{0}}{k_{0}+1}}}\right)
$$

Consequently,

$$
f_{j}^{*}(x) \leq c(\varepsilon) 2^{-j}\left|B\left(0,2^{j} R(0)\right)\right|^{1-1 / p}\left(R(0)^{-d+N}|x|^{-N}+R(0)^{-d+L}|x|^{-L}\right)
$$

This leads to

$$
\left\|f_{j}^{*}\right\|_{L^{p}\left(B\left(0,2^{j+2} R(0)\right)^{c}\right)}^{p} \leq c(\varepsilon)^{p} 2^{-j p}
$$

which combined with (7.9) and (7.10) completes the proof of the lemma.
Lemma 7.11. There exists a function $c(\varepsilon)$ with $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$ such that for every $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom a associated with a ball $B\left(x_{0}, r\right)$, where $r<\frac{1}{4} \varepsilon R\left(x_{0}\right)$, we have

$$
\left\|\mathcal{Z}_{\varepsilon, 0}^{*} a\right\|_{L^{p}} \leq c(\varepsilon)
$$

Proof. Similarly to the proof of Lemma 7.7 we assume that $x_{0}=0$. Let $C_{1}>4$ be such that $C_{1}^{-1 / 2}<m(x, V) / m(y, V)<C_{1}^{1 / 2}$ for $|x-y|<$ $16 m(x, V)^{-1}$ (cf. Corollary 4.6).

Case 1: $r^{2}<t / 2$. We have

$$
\begin{aligned}
\left|Z_{(\varepsilon), t}^{0} a(x)\right| \leq & \left|\int_{K_{1}} k_{t}(x, z) V(z) \int_{t / 2}^{(\varepsilon R(z))^{2}} p_{s} * a(z) d s d z\right| \\
& +\left|\int_{K_{2}} k_{t}(x, z) V(z) \int_{(\varepsilon R(z))^{2}}^{t / 2} p_{s} * a(z) d s d z\right| \\
= & J_{K_{1}}(x)+J_{K_{2}}(x)
\end{aligned}
$$

where $K_{1}=\left\{z \in K: t / 2<(\varepsilon R(z))^{2}\right\}$ and $K_{2}=K \backslash K_{1}$. From Corollary 4.6 we conclude

$$
\begin{aligned}
J_{K_{1}}(x) & \leq\left|\int_{K_{1}} k_{t}(x, z) V(z) \int_{t / 2-t / 4}^{(\varepsilon R(z))^{2}-t / 4} p_{t / 4} * p_{s} * a(z) d s d z\right| \\
& \leq \int_{K_{1}} k_{t}(x, z) V(z) \int_{t / 4}^{C_{1}(\varepsilon R(0))^{2}} \int p_{t / 4}(z-y)\left|p_{s} * a(y)\right| d y d s d z
\end{aligned}
$$

Since $\int_{K_{1}} k_{t}(x, z) V(z) p_{t / 4}(z-y) d z \leq t^{-1} \phi_{t}(x-y)\left(t^{1 / 2} m(x, V)\right)^{\delta}$, where ϕ is a rapidly decaying function, we get

$$
J_{K_{1}}(x) \leq \int t^{-1} \phi_{t}(x-y) c(\varepsilon) \int_{t / 4}^{C_{1}(\varepsilon R(0))^{2}}\left|a * p_{s}(y)\right| d s d y
$$

Now using (7.2) we obtain

$$
\begin{aligned}
J_{K_{1}}(x) \leq & \int t^{-1} \phi_{t}(x-y) \\
& \times c(\varepsilon) \sum_{j \geq 0,2^{j} t / 4<2 C_{1}(\varepsilon R(0))^{2}}\left(\frac{r}{2^{j / 2} t^{1 / 2}}\right)^{M} \phi_{2^{j} t}(y) 2^{j} t\|a\|_{L^{1}} d y \\
\leq & \sum_{j \geq 0} D_{j}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
D_{j}(x)= & \sup _{r^{2}<t<2^{-j+1} C_{1}(\varepsilon R(0))^{2}} 2^{j} c(\varepsilon)\left(\frac{r}{2^{j / 2} t^{1 / 2}}\right)^{M / 2}\left(\frac{r}{2^{j / 2} t^{1 / 2}}\right)^{M / 2} \\
& \times \phi_{2^{j} t}(x)\|a\|_{L^{1}} \\
\leq & \begin{cases}2^{j} c(\varepsilon) 2^{-j M / 2}\left(2^{j} r^{2}\right)^{-d / 2}\|a\|_{L^{1}} & \text { for }|x| \leq 2 r \\
2^{j} c(\varepsilon) r^{M / 2}|x|^{-d-M / 2} 2^{-j M / 4}\|a\|_{L^{1}} & \text { for }|x|>2 r .\end{cases}
\end{aligned}
$$

This leads to

$$
\int_{0<t<(\varepsilon R(x))^{2}, 2 r^{2}<t}\left|J_{K_{1}}(x)\right|^{p} d x \leq c(\varepsilon)^{p}
$$

In order to estimate $J_{K_{2}}(x)$ we first consider $|x|>3 R(0)$. There are rapidly decaying functions ϕ and ψ such that

$$
\begin{aligned}
J_{K_{2}}(x) \leq & \int_{K_{2}} k_{t}(x, z) V(z) \int_{\left(\varepsilon R(0) / C_{4}\right)^{2}}^{t / 2}\left|p_{s} * a(z)\right| d s d z \\
\leq & \int_{K_{2}} \phi_{t}(x) V(z)\|a\|_{L^{1}}\left(\int_{\left(\varepsilon R(0) / C_{4}\right)^{2}}^{R(0)^{2}}\left(\frac{r}{\sqrt{s}}\right)^{M} \psi_{s}(z) d s\right. \\
& \left.+\int_{R(0)^{2}}^{\max \left(R(0)^{2}, t / 2\right)}\left(\frac{r}{\sqrt{s}}\right)^{M} \psi_{s}(z) d s\right) d z
\end{aligned}
$$

Applying Corollaries 4.6 and 4.8, we have

$$
\begin{aligned}
J_{K_{2}}(x) \leq & C\|a\|_{L^{1}} \phi_{t}(x)\left(\int_{\left(\varepsilon R(0) / C_{4}\right)^{2}}^{R(0)^{2}} r^{M} s^{-M / 2}(\sqrt{s} / R(0))^{\delta} s^{-1} d s\right. \\
& \left.+\int_{R(0)^{2}}^{\max \left(R(0)^{2}, t / 2\right)} r^{M} s^{-M / 2} s^{-d / 2} R(0)^{d-2}\left(\frac{\sqrt{s}}{R(0)}\right)^{C_{0}} d s\right) \\
\leq & C r^{M}\|a\|_{L^{1}} \phi_{t}(x)\left((\varepsilon R(0))^{-M}+R(0)^{-M}\right)
\end{aligned}
$$

Since

$$
\sup _{0<t<(\varepsilon R(x))^{2}} \phi_{t}(x) \leq C \varepsilon^{-d+L} R(0)^{(-d+L) /\left(1+k_{0}\right)}|x|^{-L+k_{0}(-d+L) /\left(1+k_{0}\right)}
$$

we get

$$
\begin{aligned}
& \int_{|x|>3 R(0)}\left(\sup _{0<t<(\varepsilon R(x))^{2}, 2 r^{2}<t} J_{K_{2}}(x)\right)^{p} d x \\
& \quad \leq C \varepsilon^{(-d+L) p} R(0)^{-p d+d}\left(\left(\frac{r}{\varepsilon R(0)}\right)^{M p}+\left(\frac{r}{R(0)}\right)^{M p}\right)\|a\|_{L^{1}}^{p} \leq c(\varepsilon) .
\end{aligned}
$$

If $|x| \leq 3 R(0)$ and $z \in K_{2}$, then $R(x) \sim R(0) \sim R(z)$. Therefore

$$
\begin{aligned}
J_{K_{2}}(x) & =\left|\int_{K_{2}} k_{t}(x, z) V(z) \int_{(\varepsilon R(z))^{2}}^{t / 2} p_{s} * a(z) d s d z\right| \\
& \leq \int_{K_{2}} k_{t}(x, z) V(z) \int_{\left(\varepsilon R(0) / 2 C_{4}\right)^{2}}^{\left(C_{4} \varepsilon R(0)\right)^{2}} \int p_{t / C_{4}}(z-y)\left|p_{s} * a(y)\right| d y d s d z
\end{aligned}
$$

Moreover, there exist rapidly decaying functions ϕ and ψ such that

$$
\begin{gathered}
\int_{K_{2}} k_{t}(x, z) V(z) p_{t / C_{4}}(z-y) d z \leq t^{-1} \phi_{t}(x-y)(\sqrt{t} m(x, V))^{\delta} \\
\left|p_{s} * a(y)\right| \leq\left(\frac{r}{\varepsilon R(0)}\right)^{M} \psi_{(\varepsilon R(0))^{2}}(y)\|a\|_{L^{1}}
\end{gathered}
$$

Hence

$$
J_{K_{2}}(x) \leq C \varepsilon^{\delta}\left(\frac{r}{\varepsilon R(0)}\right)^{M-1} \psi_{(\varepsilon R(0))^{2}}(x)\|a\|_{L^{1}}
$$

It is not difficult to check that

$$
\begin{aligned}
\int_{B(0,3 R(0))} & \left(\sup _{0<t<(\varepsilon R(x))^{2}, 2 r^{2}<t} J_{K_{2}}(x)\right)^{p} d x \\
& \leq C \int_{B(0,3 R(0))} \varepsilon^{\delta p}\left(\frac{r}{\varepsilon R(0)}\right)^{(M-1) p} \psi_{(\varepsilon R(0))^{2}}(x)^{p}\|a\|_{L^{1}}^{p} d x \leq c(\varepsilon)
\end{aligned}
$$

CASE 2: $t / 2 \leq r^{2}$. Then

$$
\begin{aligned}
\left|Z_{(\varepsilon), t}^{0} a(x)\right| \leq & \left|\int_{K_{3}} k_{t}(x, z) V(z) \int_{t / 2}^{\min \left(r^{2},(\varepsilon R(z))^{2}\right)} p_{s} * a(z) d s d z\right| \\
& +\left|\int_{K_{3}} k_{t}(x, z) V(z) \int_{\min \left(r^{2},(\varepsilon R(z))^{2}\right)}^{(\varepsilon R(z))^{2}} p_{s} * a(z) d s d z\right| \\
& +\left|\int_{K_{4}} k_{t}(x, z) V(z) \int_{(\varepsilon R(z))^{2}}^{t / 2} p_{s} * a(z) d s d z\right|
\end{aligned}
$$

where $K_{3}=\left\{z \in K: t / 2<(\varepsilon R(z))^{2}\right\}$ and $K_{4}=K \backslash K_{3}$. By (7.4) and Corollary 4.6 we get

$$
\begin{aligned}
& V(z) \chi_{K_{3}}(z)\left|\int_{t / 2}^{\min \left(r^{2},(\varepsilon R(z))\right)^{2}} p_{s} * a(z) d s\right| \\
& \quad+\left.V(z) \chi_{K_{3}}(z)\right|_{\min \left(r^{2},(\varepsilon R(z))^{2}\right)} ^{(\varepsilon R(z))^{2}} p_{s} * a(z) d s \mid \\
& \quad+V(z) \chi_{K_{4}}(z)\left|\int_{(\varepsilon R(z))^{2}}^{t / 2} p_{s} * a(z) d s\right| \\
& \leq \begin{cases}C V(z)\left(r^{2}\|a\|_{L^{\infty}}+r^{-d+2}\|a\|_{L^{1}}\right) & \text { for }|z|<2 r \\
C V(z) e^{-c|z|^{2} /(\varepsilon R(0))^{2}}|z|^{2-d-M}|B(0, r)|^{1-1 / p+M / d} & \text { for } 2 r<|z| \leq R(0)\end{cases}
\end{aligned}
$$

It is not difficult to check that this is a multiple of $c(\varepsilon)$ and a generalized $\left(\mathbf{h}_{r / R(0)}^{p}(m), 1, M-1\right)$-atom associated with the ball $B(0, r)$. Thus

$$
\left\|\sup _{0<t<2 r^{2}}\left|Z_{(\varepsilon), t}^{0} a(x)\right|\right\|_{L^{p}(d x)}^{p} \leq c(\varepsilon)
$$

This completes the proof of the lemma.
Lemma 7.12. There exists a function $c(\varepsilon)$ with $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$ such that for every $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom a associated with a ball $B\left(x_{0}, r\right)$, where $r \sim \varepsilon R\left(x_{0}\right)$, we have

$$
\left\|\mathcal{Z}_{\varepsilon, 0}^{*} a\right\|_{L^{p}} \leq c(\varepsilon)
$$

Proof. As above we assume that $x_{0}=0$.
CASE 1: $C_{1}(\varepsilon R(0))^{2}<t / 2<(\varepsilon R(x))^{2}$. Then it suffices to consider $|x|>3 R(0)$. Therefore applying Lemma 4.7 and Corollary 4.8 we have

$$
\begin{aligned}
\left|Z_{(\varepsilon), t}^{0} a(x)\right| \leq & \int_{K} \phi_{t}(x) V(z) \int_{(\varepsilon R(0))^{2} / C_{5}}^{t / 2} \int p_{s}(z-y)|a(y)| d y d s d z \\
\leq & \|a\|_{L^{1}} \phi_{t}(x)\left[\int_{(\varepsilon R(0))^{2} / C_{5}}^{R(0)^{2}} s^{-1}\left(\frac{\sqrt{s}}{R(0)}\right)^{\delta} d s\right. \\
& \left.+\int_{R(0)^{2}}^{\max \left(t / 2, R(0)^{2}\right)} s^{-d / 2} R(0)^{d-2} d s\right] \\
& \leq\|a\|_{L^{1}} \phi_{t}(x)
\end{aligned}
$$

Applying Lemma 4.3 we obtain

$$
\left\|\sup _{C_{1}(\varepsilon R(0))^{2}<t / 2<(\varepsilon R(x))^{2}}\left|Z_{(\varepsilon), t}^{0} a(x)\right|\right\|_{L^{p}\left(B(0,3 R(0))^{\mathrm{c}}, d x\right)} \leq c(\varepsilon) .
$$

CASE 2: $t / 2<C_{1}(\varepsilon R(0))^{2} \sim r^{2}$. Then

$$
\left|Z_{(\varepsilon), t}^{0} a(x)\right| \leq \int_{K} k_{t}(x, z) V(z) \int_{t / C_{5}}^{C_{5}(\varepsilon R(0))^{2}}\left|a * p_{s}(z)\right| d s d z
$$

Observe that

$$
V(z) \int_{t / C_{5}}^{C_{5} r^{2}}\left|p_{s} * a(z)\right| d s \leq C \begin{cases}V(z) r^{2}\|a\|_{L^{\infty}} & \text { for }|z| \leq 2 r \\ \frac{V(z)}{|z|^{d-2}} e^{-c|z|^{2} / r^{2}}\|a\|_{L^{1}} & \text { for } 2 r<|z| \leq R(0)\end{cases}
$$

Now the same argument as in the proof of Lemma 7.11 (Case 2) can be used.
8. Proof of Lemma 3.2. First we prove that there is a constant $C>0$ such that

$$
\begin{equation*}
\left\|\mathcal{P}_{\varepsilon}^{*} g\right\|_{L^{p}} \leq C\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)} \tag{8.1}
\end{equation*}
$$

Let a be an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom associated with a ball $B\left(y_{0}, r\right)$. If $\int a=0$ then $\left\|\mathcal{P}_{\varepsilon}^{*} a\right\|_{L^{p}} \leq C$. If $\int a \neq 0$ then, by definition, $r \sim \varepsilon R\left(y_{0}\right)$. Obviously, by Corollary 4.6 and $[\mathrm{G}],\left\|\mathcal{P}_{\varepsilon}^{*} a\right\|_{L^{p}\left(B\left(y_{0}, R\left(y_{0}\right)\right)^{*}\right)} \leq C$. Here and subsequently, for any ball B we define B^{*} to be the ball that has the same center as B but whose radius is 4 times that of B. If $x \notin B\left(y_{0}, R\left(y_{0}\right)\right)^{*}$, then, by (4.5), $R(x) \leq$ $C\left|x-y_{0}\right|^{k_{0} /\left(k_{0}+1\right)} R\left(y_{0}\right)^{1 /\left(k_{0}+1\right)}$. Therefore for $0<t<(\varepsilon R(x))^{2}$ we have

$$
\left|p_{t} * a(x)\right| \leq C\|a\|_{L^{1}} \varepsilon^{M-d} R\left(y_{0}\right)^{(M-d) /\left(1+k_{0}\right)}\left|x-y_{0}\right|^{-\left(M+d k_{0}\right) /\left(1+k_{0}\right)}
$$

This leads to $\int_{\left|x-y_{0}\right|>2 R\left(y_{0}\right)}\left(\mathcal{P}_{\varepsilon}^{*} a(x)\right)^{p} d x \leq C$, and (8.1) is proved.
Let $\varphi^{(\alpha)}$ be C^{∞}-functions on \mathbb{R}^{d} such that $0 \leq \varphi^{(\alpha)} \leq 1, \sum_{\alpha} \varphi^{(\alpha)}(x)=1$ for every $x \in \mathbb{R}^{d}, \operatorname{supp} \varphi^{(\alpha)} \subset B_{\alpha}=B\left(y_{\alpha}, R\left(y_{\alpha}\right)\right)$, and the family of the balls B_{α} has the finite covering property.

Lemma 8.2. There exists a function $c(\varepsilon)$ with $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$ such that for every α,

$$
\begin{align*}
& \left\|\sup _{0<t<\left(\varepsilon \max \left(R\left(y_{\alpha}\right), R(x)\right)\right)^{2}}\left|\left(g \varphi^{(\alpha)}\right) * p_{t}(x)\right|\right\|_{L^{p}\left(B_{\alpha}^{* c}\right)}^{p} \tag{8.3}\\
& \quad \leq c(\varepsilon)\left\|g \varphi^{(\alpha)}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p}
\end{align*}
$$

Proof. It suffices to prove (8.3) if $g \varphi^{(\alpha)}$ is replaced by an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$ atom a associated with a ball $B\left(y_{0}, r\right)$, where $B\left(y_{0}, r\right) \cap B_{\alpha} \neq \emptyset$. Obviously $R\left(y_{0}\right) \sim R\left(y_{\alpha}\right)$. Note that for $x \in B_{\alpha}^{* c}$, we have

$$
\max \left(R\left(y_{\alpha}\right), R(x)\right) \leq C\left|x-y_{0}\right|^{k_{0} /\left(1+k_{0}\right)} R\left(y_{0}\right)^{1 /\left(1+k_{0}\right)}
$$

Therefore if $r \sim \varepsilon R\left(y_{\alpha}\right)$ then

$$
\left|a * p_{t}(x)\right| \leq C_{M} \varepsilon^{M-d}\|a\|_{L^{1}} R\left(y_{0}\right)^{(M-d) /\left(1+k_{0}\right)}\left|x-y_{0}\right|^{-\left(M+d k_{0}\right) /\left(1+k_{0}\right)}
$$

for $0<t \leq\left(\varepsilon \max \left(R\left(y_{\alpha}\right), R(x)\right)\right)^{2}$, and consequently, the left-hand side of (8.3) is estimated by $C_{M} \varepsilon^{M p-d}$.

If $r<\varepsilon R\left(y_{0}\right) / 4$ then, by (2.4),

$$
\left|a * p_{t}(x)\right| \leq C r^{d+1-d / p}\left|x-y_{0}\right|^{-d-1}
$$

Thus the left-hand side of (8.3) is bounded by $C \varepsilon^{d p+p-d}$.
Corollary 8.4. There exists a constant $C>0$ such that for every α and every $\varepsilon>0$ small enough we have

$$
\begin{equation*}
\left\|g \varphi^{(\alpha)}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p} \leq C\left\|\mathcal{P}_{\varepsilon}^{*}\left(g \varphi^{(\alpha)}\right)\right\|_{L^{p}}^{p} \tag{8.5}
\end{equation*}
$$

Proof. Applying results of Goldberg [G] and Lemma 8.2, we have

$$
\begin{aligned}
\left\|g \varphi^{(\alpha)}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p} \leq & C\left\|\sup _{0<t<\left(\varepsilon R\left(y_{\alpha}\right)\right)^{2}}\left|\left(g \varphi^{(\alpha)}\right) * p_{t}(x)\right|\right\|_{L^{p}}^{p} \\
\leq & C\left\|\sup _{0<t<\left(\varepsilon R\left(y_{\alpha}\right)\right)^{2}}\left|\left(g \varphi^{(\alpha)}\right) * p_{t}(x)\right|\right\|_{L^{p}\left(B_{\alpha}^{*}\right)}^{p} \\
& +C\left\|\sup _{0<t<\left(\varepsilon R\left(y_{\alpha}\right)\right)^{2}}\left|\left(g \varphi^{(\alpha)}\right) * p_{t}(x)\right|\right\|_{L^{p}\left(B_{\alpha}^{* c}\right)}^{p} \\
\leq & C\left\|\mathcal{P}_{\varepsilon}^{*}\left(g \varphi^{(\alpha)}\right)\right\|_{L^{p}}^{p}+C c(\varepsilon)\left\|g \varphi^{(\alpha)}\right\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p} .
\end{aligned}
$$

LEMmA 8.6. There exists a function $c(\varepsilon)$ with $\lim _{\varepsilon \rightarrow 0^{+}} c(\varepsilon)=0$ such that

$$
\begin{equation*}
\sum_{\alpha} \int\left(\sup _{0<t<(\varepsilon R(x))^{2}}\left|\varphi^{(\alpha)}(x) P_{t} g(x)-P_{t}\left(\varphi^{(\alpha)} g\right)(x)\right|^{p}\right) d x \leq c(\varepsilon)\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p} \tag{8.7}
\end{equation*}
$$

Proof. Define $\mathcal{J}_{\alpha, \varepsilon}^{*} g(x)=\sup _{0<t<(\varepsilon R(x))^{2}}\left|\mathcal{J}_{\alpha, t} g(x)\right|$, where

$$
\begin{aligned}
\mathcal{J}_{\alpha, t} g(x) & =\varphi^{(\alpha)}(x) P_{t} g(x)-P_{t}\left(\varphi^{(\alpha)} g\right)(x) \\
& =\int\left(\varphi^{(\alpha)}(x)-\varphi^{(\alpha)}(y)\right) p_{t}(x-y) g(y) d y
\end{aligned}
$$

Let a be an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom associated with a ball $B\left(y_{0}, r\right)$. Let $\mathcal{I}_{1}=\{\alpha$: $\left.y_{0} \notin B_{\alpha}^{* *}\right\}$ and $\mathcal{I}_{2}=\left\{\alpha: y_{0} \in B_{\alpha}^{* *}\right\}$. We note that the number of elements in \mathcal{I}_{2} is bounded by a constant independent of a. We may assume that ε is small. Therefore if $\alpha \in \mathcal{I}_{1}$, then $\mathcal{J}_{\alpha, t} a(x)=\int \varphi^{(\alpha)}(x) p_{t}(x-y) a(y) d y$. Thus, by Lemma 8.2, we get

$$
\sum_{\alpha \in \mathcal{I}_{1}} \int_{0<t<(\varepsilon R(x))^{2}}\left|\mathcal{J}_{\alpha, t} a(x)\right|^{p} d x \leq c(\varepsilon)
$$

Let now $\alpha \in \mathcal{I}_{2}$. If $x \notin B\left(y_{\alpha}, R\left(y_{\alpha}\right)\right)^{*}$, then

$$
\mathcal{J}_{\alpha, t} a(x)=\int p_{t}(x-y) \varphi^{(\alpha)}(y) a(y) d y
$$

Since $\left\|\varphi^{(\alpha)} a\right\|_{\mathbf{h}_{\varepsilon}^{p}(m)} \leq C$, where the constant C is independent of ε, a and α, the same arguments as in the proof of Lemma 8.2 can be applied to obtain

$$
\int_{B\left(y_{\alpha}, R\left(y_{\alpha}\right)\right)^{* c}} \sup _{0<t<(\varepsilon R(x))^{2}}\left|\mathcal{J}_{\alpha, t} a(x)\right|^{p} d x \leq c(\varepsilon)
$$

If $x \in B\left(y_{\alpha}, R\left(y_{\alpha}\right)\right)^{*}$, then $R(x) \sim R\left(y_{0}\right) \sim R\left(y_{\alpha}\right)$. Thus

$$
\left|J_{\alpha, t} a(x)\right|=\left|\int \frac{\sqrt{t}}{R\left(y_{0}\right)} \Psi_{t}(x, y) a(y) d y\right| \leq C \varepsilon\left|\int \Psi_{t}(x, y) a(y) d y\right|
$$

where $\Psi_{t}(x, y)=R\left(y_{0}\right) t^{-1 / 2}\left(\varphi^{(\alpha)}(x)-\varphi^{(\alpha)}(y)\right) p_{t}(x-y)$. Clearly, $\left|\nabla_{x} \Psi_{t}(x, y)\right|$ $\leq t^{-1 / 2} \psi_{t}(x-y)$ for $0<t<C R\left(y_{0}\right)^{2}$ with ψ being a rapidly decaying function. Therefore standard arguments can be used in order to show that

$$
\sum_{\alpha \in \mathcal{I}_{2}} \int_{B\left(y_{\alpha}, R\left(y_{\alpha}\right)\right)^{*}} \sup _{0<t<(\varepsilon R(x))^{2}}\left|J_{\alpha, t} a(x)\right|^{p} d x \leq c(\varepsilon)
$$

We are now in a position to finish the proof of the second inequality in (3.3). Indeed, by Corollary 8.4 and Lemma 8.6, we obtain

$$
\begin{aligned}
\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p} & \leq C \sum_{\alpha}\left\|\varphi^{(\alpha)} g\right\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p} \leq C \sum_{\alpha}\left\|\mathcal{P}_{\varepsilon}^{*}\left(\varphi^{(\alpha)} g\right)\right\|_{L^{p}}^{p} \\
& \leq C\left\|\mathcal{P}_{\varepsilon}^{*} g\right\|_{L^{p}}^{p}+C \sum_{\alpha}\left\|\mathcal{J}_{\alpha, \varepsilon}^{*} g\right\|_{L^{p}}^{p} \leq C\left\|\mathcal{P}_{\varepsilon}^{*} g\right\|_{L^{p}}^{p}+C c(\varepsilon)\|g\|_{\mathbf{h}_{\varepsilon}^{p}(m)}^{p} .
\end{aligned}
$$

Taking ε_{0} sufficiently small we get the required estimates for $0<\varepsilon<\varepsilon_{0}$.
9. Proof of the first inequality of (1.14). Fix $\varepsilon>0$ (small). According to Lemma 2.9 it suffices to show that for every b of the form

$$
\begin{equation*}
b=\left(\operatorname{Id}+A_{\varepsilon}\right) a \tag{9.1}
\end{equation*}
$$

where a is an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom we have

$$
\begin{equation*}
\|\mathcal{M} b\|_{L^{p}}^{p} \leq C \tag{9.2}
\end{equation*}
$$

with C independent of a. Assume that a is an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom associated with a ball $B\left(x_{0}, r\right), r \leq \varepsilon R\left(x_{0}\right)$. Then, by Lemma 2.9,

$$
\begin{equation*}
\int|b(x)| d x \leq \int|b(x)|\left(1+\frac{\left|x-x_{0}\right|}{r}\right)^{M} d x \leq C\left|B\left(x_{0}, r\right)\right|^{1-1 / p} \tag{9.3}
\end{equation*}
$$

Since \mathcal{M} is of weak type $(1,1)$, we have

$$
\begin{align*}
\int_{\left|x-x_{0}\right|<4 r}(\mathcal{M} b(x))^{p} d x & =p \int_{0}^{\infty}\left|\left\{x \in B\left(x_{0}, 4 r\right): \mathcal{M} b(x)>\lambda\right\}\right| \lambda^{p-1} d \lambda \tag{9.4}\\
& \leq C \int_{0}^{r^{-d / p}} r^{d} \lambda^{p-1} d \lambda+C \int_{r^{-d / p}}^{\infty}\|b\|_{L^{1}} \lambda^{p-2} d \lambda \leq C
\end{align*}
$$

Therefore it remains to show that

$$
\begin{equation*}
\int_{B\left(x_{0}, 4 r\right)^{\mathrm{c}}}(\mathcal{M} b(x))^{p} d x \leq C \tag{9.5}
\end{equation*}
$$

CASE 1: $\varepsilon R\left(x_{0}\right) / 4 \leq r \leq \varepsilon R\left(x_{0}\right)$. Then we set $b(x)=\sum_{j=0}^{\infty} b_{j}(x)$, where $b_{0}(x)=b(x) \chi_{B\left(x_{0}, r\right)}(x)$ and $b_{j}(x)=b(x) \chi_{B\left(x_{0}, 2^{j} r\right) \backslash B\left(x_{0}, 2^{j-1} r\right)}(x)$. Obviously

$$
\begin{equation*}
\left\|b_{j}\right\|_{L^{1}} \leq C\left|B\left(x_{0}, 2^{j} r\right)\right|^{1-1 / p} 2^{-j(N+d-d / p)} \tag{9.6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|\mathcal{M} b_{j}\right\|_{L^{p}\left(B\left(x_{0}, 2^{j+2} r\right)\right)}^{p} \leq C 2^{-j(N+d-d / p) p} \tag{9.7}
\end{equation*}
$$

If $x \notin B\left(x_{0}, 2^{j+2} r\right)$ then using Corollary 6.4 and Lemma 4.3, we have

$$
\begin{align*}
\mathcal{M} b_{j}(x) & \leq C_{L} \sup _{t>0} \int\left|b_{j}(y)\right| t^{-d / 2} e^{-c|x-y| / \sqrt{t}}\left(1+\frac{t}{R(x)^{2}}\right)^{-L} d y \tag{9.8}\\
& \leq C_{L} \sup _{t>0}\left\|b_{j}\right\|_{L^{1}} t^{-d / 2-L} e^{-c\left|x-x_{0}\right| / \sqrt{t}} R(x)^{2 L} \\
& \leq C_{L}\left\|b_{j}\right\|_{L^{1}} R\left(x_{0}\right)^{2 L /\left(1+k_{0}\right)}\left|x-x_{0}\right|^{-d-2 L /\left(1+k_{0}\right)}
\end{align*}
$$

Applying (9.6)-(9.8) we obtain (9.5).
CASE 2: $r<\varepsilon R\left(x_{0}\right) / 4$. It follows from Lemma 2.9 and Proposition 2.11 that $a=\left(\operatorname{Id}+A_{\varepsilon}\right)^{-1} b \in \mathbf{h}_{\varepsilon}^{p}(m)$. We have

$$
T_{t} b(x)=p_{t} * a(x)-H_{t} a(x)-E_{t} a(x)-Z_{(\varepsilon), t} a(x)
$$

and consequently

$$
\mathcal{M} b(x) \leq \mathcal{P}^{*} a(x)+\mathcal{H}^{*} a(x)+\mathcal{E}^{*} a(x)+\mathbf{Z}_{\varepsilon}^{*} a(x)
$$

where

$$
\begin{array}{rlrl}
\mathcal{P}^{*} a(x) & =\sup _{t>0}\left|p_{t} * a(x)\right|, & \mathcal{H}^{*} a(x) & =\sup _{t>0}\left|H_{t} a(x)\right|, \\
\mathcal{E}^{*} a(x) & =\sup _{t>0}\left|E_{t} a(x)\right|, & \mathbf{Z}_{\varepsilon}^{*} a(x)=\sup _{t>0}\left|Z_{(\varepsilon), t} a(x)\right| .
\end{array}
$$

The estimates for $\left\|\mathcal{P}^{*} a\right\|_{L^{p}},\left\|\mathcal{H}^{*} a\right\|_{L^{p}},\left\|\mathcal{E}^{*} a\right\|_{L^{p}}$ follow from Lemmas 6.6, $6.8,6.11,6.13$. Therefore it remains to prove the following proposition.

Proposition 9.9. For every $\varepsilon>0$ (sufficiently small) there exists a constant $C_{\varepsilon}>0$ such that for every $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$-atom a associated with a ball $B\left(x_{0}, r\right)$ with $r<\varepsilon R\left(x_{0}\right) / 4$ we have

$$
\begin{equation*}
\left\|\mathbf{Z}_{\varepsilon}^{*} a\right\|_{L^{p}}^{p} \leq C_{\varepsilon} \tag{9.10}
\end{equation*}
$$

Proof. There is no loss of generality in assuming that a is an $\left(\mathbf{h}_{\varepsilon}^{p}(m), \infty\right)$ atom associated with a ball $B(0, r)$, where $r<\varepsilon R(0) / 4$. By definition
(cf. (2.4)), $\int a=0$. We have

$$
\mathbf{Z}_{\varepsilon}^{*} a(x) \leq \sum_{j=0}^{\infty} \sup _{t>0}\left|\int_{U_{j}} k_{t}(x, z) V(z) W_{(\varepsilon), t} a(z) d z\right|=\sum_{j=0}^{\infty} \mathbf{Z}_{(\varepsilon), j}^{*} a(x)
$$

where $U_{0}=B(0,2 \varepsilon R(0))$ and $U_{j}=\left\{z: 2^{j} \varepsilon R(0)<|z| \leq 2^{j+1} \varepsilon R(0)\right\}$ for $j=1,2, \ldots$

For $z \in U_{j}, j \geq 1$, by Lemmas 7.3, 4.3 and Corollary 4.6, we have

$$
\begin{aligned}
& \left|W_{(\varepsilon), t} a(z)\right| \\
& \quad \leq \begin{cases}C e^{-c 2^{\gamma j} / \varepsilon^{2}}|B(0, r)|^{1-1 / p-1 / d}\left(2^{j} \varepsilon R(0)\right)^{1-d} & \text { if } t / 2<(\varepsilon R(z))^{2}, \\
C e^{-c 2^{j} \varepsilon R(0) / \sqrt{t}}|B(0, r)|^{1-1 / p-1 / d}\left(2^{j} \varepsilon R(0)\right)^{1-d} & \text { if } t / 2 \geq(\varepsilon R(z))^{2} .\end{cases}
\end{aligned}
$$

Applying Corollary 6.4 and the fact that $k_{t}(x, y)=k_{t}(y, x)$, we obtain

$$
\begin{aligned}
\mathbf{Z}_{(\varepsilon), j}^{*} a(x) \leq & \sup _{t>0} C \int_{U_{j}} t^{-d / 2} e^{-c|x-z|^{2} / t}\left(1+\frac{\sqrt{t}}{R(x)}\right)^{-M} \\
& \times\left(1+\frac{\sqrt{t}}{R(z)}\right)^{-2 L} V(z)|B(0, r)|^{1-1 / p+1 / d}\left(2^{j} \varepsilon R(0)\right)^{1-d} \\
& \times\left(e^{-c 2^{j} \varepsilon R(0) / \sqrt{t}}+e^{-c 2^{\gamma j} / \varepsilon^{2}}\right) d z
\end{aligned}
$$

Since $R(z) \leq C(1+|z| / R(0))^{k_{0} /\left(k_{0}+1\right)} R(0)$ (cf. Lemma 4.3), we have

$$
\begin{aligned}
\mathbf{Z}_{(\varepsilon), j}^{*} a(x) \leq & \sup _{t>0} C_{\varepsilon} \int_{U_{j}} t^{-d / 2} e^{-c|x-z|^{2} / t}\left(1+\frac{\sqrt{t}}{R(x)}\right)^{-M}\left(1+\frac{\sqrt{t}}{R(z)}\right)^{-L} \\
& \times\left(1+\frac{\sqrt{t}}{2^{j k_{0} /\left(1+k_{0}\right)} R(0)}\right)^{-L} V(z)|B(0, r)|^{1-1 / p+1 / d} \\
& \times\left(2^{j} \varepsilon R(0)\right)^{1-d}\left(e^{-c 2^{j} R(0) / \sqrt{t}}+e^{-c 2^{\gamma j}}\right) d z
\end{aligned}
$$

Since

$$
\sup _{t>0}\left(1+\frac{\sqrt{t}}{2^{j k_{0} /\left(1+k_{0}\right)} \varepsilon R(0)}\right)^{-L} e^{-c 2^{j} \varepsilon R(0) / \sqrt{t}} \leq C_{N, \varepsilon} 2^{-N j}
$$

we get

$$
\begin{aligned}
\mathbf{Z}_{(\varepsilon), j}^{*} a(x) \leq & \sup _{t>0} C_{\varepsilon} \int_{U_{j}} t^{-d / 2} e^{-c|x-z|^{2} / t}\left(1+\frac{\sqrt{t}}{R(x)}\right)^{-M}\left(1+\frac{\sqrt{t}}{R(z)}\right)^{-L} \\
& \times|B(0, r)|^{1-1 / p+1 / d}\left(2^{j} R(0)\right)^{1-d} V(z) 2^{-N j} d z
\end{aligned}
$$

Note that the function $|B(0, r)|^{1-1 / p+1 / d}\left(2^{j} R(0)\right)^{1-d} V(z) 2^{-N j} \chi_{U_{j}}(z)$ is supported by the ball $B\left(0,2^{j} R(0)\right)$ and its L^{1}-norm is bounded by
$C 2^{-j N^{\prime}}\left|B\left(0,2^{j} R(0)\right)\right|^{1-1 / p}$ ．Therefore

$$
\sum_{j=1}^{\infty}\left\|\mathbf{Z}_{(\varepsilon), j}^{*} a\right\|_{L^{p}}^{p} \leq C_{\varepsilon}
$$

In order to estimate $\mathbf{Z}_{(\varepsilon), 0}^{*} a$ we consider two cases．
Case 1：$t>2 C(\varepsilon R(0))^{2}$ ．Then

$$
\begin{aligned}
\left|W_{(\varepsilon), t} a(z)\right| & \leq \int_{(\varepsilon R(0))^{2} / C_{0}}^{\infty}\left|p_{s} * a(z)\right| d s \\
& \leq C_{\varepsilon} \int_{(\varepsilon R(0))^{2} / C_{0}}^{\infty} s^{-(d+1) / 2} r\|a\|_{L^{1}} d s \leq C_{\varepsilon} R(0)^{1-d} r\|a\|_{L^{1}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sup _{t>2(\varepsilon R(0))^{2}} \int_{U_{0}} k_{t}(x, z) & V(z)\left|W_{(\varepsilon), t} a(z)\right| d z \\
& \leq \sup _{t>2(\varepsilon R(0))^{2}} C_{\varepsilon} \int_{U_{0}} k_{t}(x, z) V(z) R(0)^{1-d} r\|a\|_{L^{1}} d z
\end{aligned}
$$

Observe that the function $V(z) R(0)^{1-d} r\|a\|_{L^{1}} \chi_{U_{0}}(z)$ is supported by the ball $B(0,2 \varepsilon R(0))$ and its L^{1}－norm is bounded by $C(\varepsilon R(0))^{d-d / p}$ ．Therefore

$$
\left\|\sup _{t>2(\varepsilon R(0))^{2}} \int_{U_{0}} k_{t}(x, z) V(z)\left|W_{(\varepsilon), t} a(z)\right| d z\right\|_{L^{p}}^{p} \leq C_{\varepsilon}
$$

CASE 2：$t<2 C(\varepsilon R(0))^{2}$ ．In this case we may apply the same arguments as in the proof of Lemma 7．11．

REFERENCES

［DZ1］J．Dziubański and J．Zienkiewicz，Hardy spaces associated with some Schrödinger operators，Studia Math． 126 （1998），149－160．
［DZ2］—，一，Hardy space H^{1} associated to Schrödinger operator with potential satisfying reverse Hölder inequality，Rev．Mat．Iberoamericana 15 （1999），279－296．
［DZ3］—，一，Smoothness of densities of semigroups of measures on homogeneous groups， Colloq．Math． 66 （1994），227－242．
［DZ4］—，一，H^{p} spaces for Schrödinger operators，in：Fourier Analysis and Related Topics，Banach Center Publ．56，Inst．Math．，Polish Acad．Sci．，2002，45－53．
［G］D．Goldberg，A local version of real Hardy spaces，Duke Math．J． 46 （1979），27－42．
［K］K．Kurata，An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non－negative potentials，J．London Math．Soc． （2） 62 （2000），885－903．
［Sh］Z．Shen，L^{p} estimates for Schrödinger operators with certain potentials，Ann．Inst． Fourier（Grenoble） 45 （1995），513－546．
[S] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

Institute of Mathematics
University of Wrocław
Pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
E-mail: jdziuban@math.uni.wroc.pl
zenek@math.uni.wroc.pl

Received 20 May 2003

[^0]: 2000 Mathematics Subject Classification: Primary 42B30, 42B25, 35J10; Secondary 47D03.

 Research partially supported by the European Commission via RTN network "Harmonic Analysis and Related Problems", contract HPRN-CT-2001-00273-HARP, by Polish Grants 5P03A05020, 5P03A02821 from KBN, and by Foundation for Polish Science, Subsidy $3 / 99$.

