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Hp SPACES ASSOCIATED WITH SCHRÖDINGER OPERATORS
WITH POTENTIALS FROM REVERSE HÖLDER CLASSES

BY

JACEK DZIUBAŃSKI and JACEK ZIENKIEWICZ (Wrocław)

Abstract. Let A = −∆ + V be a Schrödinger operator on Rd, d ≥ 3, where V is a
nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2.
We say that f is an element of Hp

A if the maximal function supt>0 |Ttf(x)| belongs to
Lp(Rd), where {Tt}t>0 is the semigroup generated by −A. It is proved that for d/(d+1) <
p ≤ 1 the space Hp

A admits a special atomic decomposition.

1. Introduction. Let kt(x, y) be the integral kernels of the semigroup
of linear operators {Tt}t>0 generated by a Schrödinger operator −A = ∆−V
on Rd, d ≥ 3.

Throughout this paper we assume that V is a nonnegative potential on
Rd that belongs to the reverse Hölder class RHq, q > d/2, that is, there
exists a constant C > 0 such that

(1.1)
(

1
|B|

�

B

V (y)q dy
)1/q

≤ C

|B|
�

B

V (y) dy for every ball B.

Since V is nonnegative and belongs to Lqloc(Rd) the Feynman–Kac formula
implies that

(1.2) 0 ≤ kt(x, y) ≤ (4πt)−d/2e−|x−y|
2/(4t) = pt(x− y).

For 0 < p < 1 we define the space Hp
A as the completion of the space of com-

pactly supported L1(Rd)-functions in the quasi-norm ‖f‖p
HpA

= ‖Mf‖pLp ,
where

(1.3) Mf(x) = sup
t>0
|Ttf(x)| = sup

t>0

∣∣∣
�
kt(x, y)f(y) dy

∣∣∣.
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Hp
A spaces associated with Schrödinger operators with potentials from

reverse Hölder classes were studied in [DZ2] and [DZ4]. It was proved there
that for d/(d + min(1, 2 − d/q)) < p ≤ 1 the space Hp

A admits an atomic
decomposition. The main purpose of the present paper is to prove that if
d/2 < q < d, then also for

d

d+ 1
< p ≤ d

d+ min(1, 2− d/q) =
d

d+ 2− d/q
the elements of Hp

A can be decomposed into special atoms, but for this range
of p’s different type cancellation conditions for the atoms may occur.

The auxiliary function

(1.4) m(x, V ) =
(

sup
{
r > 0 :

1
rd−2

�

B(x,r)

V (y) dy ≤ 1
})−1

will play a crucial role in the paper. The function m(x, V ) is well defined,
and 0 < m(x, V ) <∞ (cf. [Sh]). We set

(1.5) R(x) = R(x, V ) = m(x, V )−1.

For a positive ε (small) we define

Gε(x) = ((Id + A∗ε)
−11)(x),

where 1(x) = 1 for x ∈ Rd,

Aεf(x) = V (x)
(εR(x))2�

0

ps ∗ f(x) ds,

and (Id + A∗ε)
−1 is the inverse operator to Id + A∗ε.

We have

Lemma 1.6.
lim
ε→0+

‖Gε − 1‖∞ = 0,

Let δ = 2− d/q and δ0 = min(1, δ).

Lemma 1.7. For every δ′ < δ0 there exists a constant C > 0 such that

|Gε(x)−Gε(y)| ≤ C((m(x, V ) +m(y, V ))|x− y|)δ′ .
The constant C is independent of ε provided ε < ε0, with ε0 > 0 sufficiently
small.

Remark. For δ0 = δ < 1 the conclusion of Lemma 1.7 holds with δ′ = δ.

The proofs of Lemmas 1.6 and 1.7 are provided in Section 4.
We are now in a position to define a notion of Hp

A-atom. Fix a small real
number ε > 0. A function b is an Hp

A-atom associated with a ball B(x0, r) if

supp b ⊂ B(x0, r),(1.8)
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‖b‖∞ ≤ |B(x0, r)|−1/p,(1.9)

r ≤ R(x0),(1.10)

if r ≤ 1
4R(x0) then

�
b(x)Gε(x) dx = 0(1.11)

The atomic quasi-norm of an element f ∈ Hp
A is given by

(1.12) ‖f‖p
HpA-atom = inf

{∑

j

|λj |p
}
,

where the infimum is taken over all decompositions f =
∑
j λjbj , where

λj are scalars and bj are Hp
A-atoms. The main result of the paper is the

following theorem:

Theorem 1.13. Let d/(d+ 1) < p ≤ 1. There exists a constant C such
that for every compactly supported function f ∈ L1(Rd) we have

(1.14) C−1‖f‖HpA ≤ ‖f‖HpA-atom ≤ C‖f‖HpA .

Remark. We point out that the notion of Hp
A-atom, and, in conse-

quence, the norm ‖f‖HpA-atom depend on ε (see (1.11)). However, we shall
prove that (1.14) holds for any fixed ε > 0 provided ε is small enough.

It follows from Lemma 1.7 that for p ∈ (p0, 1], where p0 = d/(d + δ0),
the condition (1.11) in the definition of Hp

A-atoms can be replaced by

(1.15) if r ≤ 1
4R(x0) then

�
b(x) dx = 0.

In this case the atoms are appropriately scaled local atoms in the sense of
Goldberg (cf. [G]).

For p = 1 the above result was obtained in [DZ2]. Therefore we shall
restrict our attention to the case where p ∈ (d/(d+ 1), 1).

2. Auxiliary definitions. A function a is said to be an (hpε(m),∞)-
atom associated with a ball B(x0, r) if

r ≤ εR(x0),(2.1)

supp a ⊂ B(x0, r),(2.2)

‖a‖∞ ≤ |B(x0, r)|−1/p,(2.3)

if r ≤ 1
4εR(x0), then

�
a(x) dx = 0.(2.4)

We say that a function b is an (Hp
A,∞, ε)-atom associated with a ball

B(x0, r) if (2.1)–(2.3) hold for b instead of a, and the condition (2.4) is
replaced by

(2.4′) if r ≤ 1
4εR(x0), then

�
b(x)Gε(x) dx = 0.
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Let M ≥ 0 and d/(d + 1) < p < 1. A function a is called a generalized
(hpε(m), 1,M)-atom associated with a ball B(x0, r) if

r ≤ εR(x0),(2.5)

�
|a(x)|

(
1 +
|x− x0|

r

)(
1 +
|x− x0|
εR(x0)

)M
dx ≤ |B(x0, r)|1−1/p,(2.6)

if r ≤ 1
4εR(x0), then

�
a(x) dx = 0.(2.7)

Similarly, b is said to be a generalized (Hp
A, 1, ε,M)-atom associated with a

ball B(x0, r) if (2.5)–(2.6) are satisfied for b instead of a and (2.7) is replaced
by

(2.7′) if r ≤ 1
4εR(x0), then

�
b(x)Gε(x) dx = 0.

Let us note that every (hpε(m),∞)-atom is also a generalized (hpε(m), 1,M)-
atom. It is not difficult to prove the following lemma, using the properties
of the function m stated in Lemma 4.3 and Corollary 4.6.

Lemma 2.8. If d/(d + 1) < p < 1 then there is a constant C > 0 such
that if a is a generalized (hpε(m), 1,M)-atom, then there is a sequence aj of
(hpε(m),∞)-atoms and a sequence of scalars λj such that

a =
∑

λjaj ,
∑
|λj |p ≤ C.

The constant C depends on m and p, but it is independent of ε.

The norm in the space hpε(m) is defined by

‖f‖phpε(m) = inf
{∑

j

|λj |p
}
,

where the infimum is taken over all decompositions f =
∑
j λjaj , where aj

are (hpε(m),∞)-atoms and λj are scalars.

Lemma 2.9. There exists ε0 > 0 such that for every 0 < ε < ε0 if a is
a generalized (hpε(m), 1)-atom associated with a ball B(x0, r) then

(Id + Aε)a

is (up to a multiplicative constant independent of ε) a generalized (Hp
A, 1, ε)-

atom associated with the ball B(x0, r).
Conversely , (Id +Aε)−1b is up to a multiplicative constant a generalized

(hpε(m), 1)-atom associated with a ball B(x0, r), provided b is a generalized
(Hp

A, 1, ε)-atom associated with the same ball.

Proof. See Section 5.
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Corollary 2.10. There exists a constant C > 0 such that

‖Gε(Id +Aε)‖hpε(m)→hpε(m) ≤ C
provided 0 < ε < ε0.

It is not difficult to prove the following proposition.

Proposition 2.11. For every ε′ > ε > 0 there exists a constant Cε′,ε
such that

‖f‖hpε(m) ≤ ‖f‖hp
ε′ (m) ≤ Cε′,ε‖f‖hpε(m).

3. Idea of the proof of atomic decomposition. In order to prove
the second inequality in (1.14) it suffices to show that there are constants
C, ε0 > 0 such that for every 0 < ε < ε0 if

K∗f(x) = sup
0<t<(εR(x))2

|Ttf(x)| ∈ Lp

then
f(x)Gε(x) ∈ hpε(m),

and

(3.1) ‖f(x)Gε(x)‖hpε(m) ≤ C‖K∗f‖Lp .
To prove this we consider the following identity based on the perturba-

tion formula:

pt(x, y) = kt(x, y) +
t�

0

�
kt−s(x, z)V (z)ps(z, y) dz ds

= (Tt(Id + Aε))(x, y) +Ht(x, y) + Et(x, y) + Z(ε),t(x, y),

where

Ht(x, y) =
t�

t/2

�
kt−s(x, z)V (z)ps(z − y) dz ds,

Et(x, y) =
t/2�

0

�
(kt−s − kt)(x, z)V (z)ps(z − y) dz ds,

Z(ε),t(x, y) =
�
kt(x, z)V (z)W(ε),t(z, y) dz,

with

W(ε),t(z, y) =





−
(εR(z))2�

t/2

ps(z − y) ds if (εR(z))2 > t/2,

t/2�

(εR(z))2

ps(z − y) ds if (εR(z))2 ≤ t/2.
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Let f ∈ L1
c(Rd). Set g = (Id + Aε)−1f . We have

Ptg = Ttf + Etg +Htg + Z(ε),tg,

where Pt, Et, Ht, Z(ε),t are the operators with the integral kernels pt(x−y),
Et(x, y), Ht(x, y), Z(ε),t(x, y) respectively. Set

P∗ε g(x) = sup
0<t<(εR(x))2

|Ptg(x)|, H∗εg(x) = sup
0<t<(εR(x))2

|Htg(x)|,

E∗ε g(x) = sup
0<t<(εR(x))2

|Etg(x)|, Z∗ε g(x) = sup
0<t<(εR(x))2

|Z(ε),tg(x)|.

We shall show that the following two lemmas hold:

Lemma 3.2. There exists a constant C > 0 independent of ε such that

(3.3) C−1‖P∗ε g‖Lp ≤ ‖g‖hpε(m) ≤ C‖P∗ε g‖Lp .

The proof of the lemma is given in Section 8.

Lemma 3.4.

lim
ε→0+

‖E∗ε ‖hpε(m)→Lp = 0,(3.5)

lim
ε→0+

‖H∗ε‖hpε(m)→Lp = 0,(3.6)

lim
ε→0+

‖Z∗ε ‖hpε(m)→Lp = 0.(3.7)

See Section 6 for the proofs of (3.5), (3.6), and Section 7 for the proof
of (3.7).

Having these, we obtain

‖g‖hpε(m) ≤ C‖P∗ε g‖Lp
≤ C‖K∗εf‖Lp + C‖E∗ε ‖hpε(m)→Lp‖g‖hpε(m)

+ C‖H∗ε‖hpε(m)→Lp‖g‖hpε(m) + C‖Z∗ε ‖hpε(m)→Lp‖g‖hpε(m).

As a consequence of Lemma 2.9 and the fact that every compactly sup-
ported L1-function is an element of Hp

A,ε we have ‖g‖hpε(m) < ∞. Thus, by
Lemma 3.4, we get

‖g‖hpε(m) ≤ C‖K∗εf‖Lp
provided ε is close to 0. Applying Corollary 2.10 we get (3.1).

The paper is organized as follows. In Section 4 we provide the proofs
of Lemmas 1.6 and 1.7. The proof of Lemma 2.9 is presented in Section 5.
Section 6 is devoted to the proofs of (3.5) and (3.6), whereas the proof of
(3.7) is given in Section 7. The proof of Lemma 3.2 occupies Section 8.
Finally, in Section 9 we show the first inequality in (1.14).
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4. Auxiliary estimates. In the present section we state some result con-
cerning the estimates of the kernels associated with the semigroup {Tt}t>0.
At the end of the section we prove Lemmas 1.6 and 1.7.

Lemma 4.1 (see [Sh, Lemma 1.2]). For every nonnegative potential V ∈
RHq, q > d/2, there exists a constant C > 0 such that for every 0 < r < R
we have

1
rd−2

�

B(x,r)

V (y) dy ≤ C
(
r

R

)δ 1
Rd−2

�

B(x,R)

V (y) dy.

Corollary 4.2. If r < R(x) = m(x, V )−1 then
�

B(x,r)

V (y) dy ≤ C(rm(x, V ))δrd−2.

Lemma 4.3 (see [Sh, Lemma 1.4]). There exist constants C, k0 > 0 such
that

m(y, V ) ≤ C(1 + |x− y|m(x, V ))k0m(x, V ),(4.4)

m(y, V ) ≥ m(x, V )
C(1 + |x− y|m(x, V ))k0/(1+k0)

.(4.5)

Corollary 4.6. For every C1 > 0 there exists a constant C2 > 0 such
that if |x− y|m(x, V ) ≤ C1 then

C−1
2 ≤ m(x, V )

m(y, V )
≤ C2.

Lemma 4.7 (cf. [Sh, Lemma 1.8]). There exist constants C0, C > 0 such
that if r > R(x) = m(x, V )−1 then

�

B(x,r)

V (y) dy ≤ C(rm(x, V ))C0m(x, V )2−d.

We say that a function ψ defined on Rd is rapidly decaying if for every
N > 0 there exists a constant CN such that

|ψ(x)| ≤ CN (1 + |x|)−N .

Corollary 4.8. If ψ is a rapidly decaying nonnegative function, then
there exists a constant C > 0 such that

�
V (y)ψt(x− y) dy ≤

{
Ct−1(m(x, V )t1/2)δ for t ≤ R(x)2,

Ct−d/2(
√
tm(x, V ))C0m(x, V )2−d for t > R(x)2,

where ψt(x) = t−d/2ψ(t−1/2x).
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The Kato–Trotter formula asserts that

kt(x, y) = pt(x− y)−
t�

0

�
ps(x− z)V (z)kt−s(z, y) dz ds(4.9)

= pt(x− y)−
t�

0

�
kt−s(x, z)V (z)ps(z − y) dz ds.

A proof of the theorem below can be found in [K] (see also [DZ4]).

Theorem 4.10. For every M > 0 there exists a constant CM such that

kt(x, y) ≤ CM t−d/2(1 +
√
t(m(x, V ) +m(y, V )))−Me−|x−y|

2/(5t).

Proposition 4.11. For every 0 < δ′ < δ0 there exists a constant c > 0
such that for every M > 0 there exists a constant C > 0 such that for
|h| <

√
t, we have

(4.12) |kt(x, y + h)− kt(x, y)|

≤ C
( |h|√

t

)δ′
t−d/2e−c|x−y|

2/t

(
1 +

√
t

R(x)
+

√
t

R(y)

)−M
.

Proof. Obviously, using Theorem 4.10 and Lemma 4.3, we see that (4.12)
holds for

√
t/2 ≤ |h| ≤

√
t. We first prove (4.12) under the assumption

|h| ≤ |x − y|/4. Theorem 4.10 combined with Lemma 4.3 implies that for
|h| < |x− y|/4 one has

(4.13) |kt(x, y + h)− kt(x, y)|

≤ Ct−d/2e−|x−y|2/(5t)
(

1 +

√
t

R(x)
+

√
t

R(y)

)−3M

≤ Ct−d/2e−|x−y|2/(5t)
(

1 +

√
t

R(x)
+

√
t

R(y)

)−2M(
R(y)√
t

)M
.

Therefore it suffices to verify (4.12) for |h| ≤ R(y). Let qt(x, y) = pt(x, y)−
kt(x, y). One can prove (see [DZ4, Proposition 2.17]) that for every 0 < δ′′

< δ0 there is a constant c > 0 such that for |h| ≤ |x− y|/4, |h| ≤ R(y), we
have

|qt(x, y + h)− qt(x, y)| ≤ C
( |h|√

t

)δ′′( √
t

R(x)

)δ′′
t−d/2e−c|x−y|

2/t.

Thus

|kt(x, y + h)− kt(x, y)| ≤ C
( |h|√

t

)δ′′(
1 +

√
t

R(x)

)δ′′
t−d/2e−c|x−y|

2/t,

which combined with (4.13) gives (4.12).
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To complete the proof, we have to consider |x− y|/4 < |h| ≤
√
t/2. By

the semigroup property,

|kt(x, y + h)− kt(x, y)| ≤
�
kt/2(x, z)|kt/2(z, y + h)− kt/2(z, y)| dz

=
�

|z−y|≤4|h|
+

�

|z−y|>4|h|
= S1 + S2.

Obviously, by Theorem 4.10,

S1 ≤ Ct−d/2
( |h|√

t

)d
(1 +

√
tm(x, V ))−M .

Since |z − y| > 4|h|, we apply (4.12) and obtain

S2 ≤ C
�

|z−y|>4|h|
kt(x, z)

( |h|√
t

)δ′′
t−d/2e−c|x−y|

2/t dz

≤ C(1 +
√
tm(x, V ))−M t−d/2e−c|x−y|

2/t

( |h|√
t

)δ′′
.

Hence, by the assumption |x− y|/4 < |h| ≤
√
t/2, we have

S1 + S2 ≤ C(1 +
√
tm(x, V ))−M

( |h|√
t

)δ′′
t−d/2e−c|x−y|

2/t.

Applying Lemma 4.3, we get (4.12) for |x− y| < 4|h|.
Let Aε(x, y) denote the integral kernel of the operator Aε. Then

(4.14) Aε(x, y) = V (x)Γε(x, y), Γε(x, y) =
(εR(x))2�

0

ps(x− y) ds.

It follows from (4.14) that there exist constants C, c > 0 such that

(4.15) Γε(x, y) ≤ C

|x− y|d−2 exp(−c|x− y|2/(εR(x))2).

For a fixed nonnegative M we set wM (x) = (1 + |x|/R(0))M .

Proposition 4.16. limε→0+ ‖Aε‖L1(wM (x) dx)→L1(wM (x) dx) = 0.

Proof. It suffices to show that

(4.17) I =
�
V (x)Γε(x, y)wM(x) dx ≤ c(ε)wM(y),

where limε→0+ c(ε) = 0. Split

I =
�
V (x)Γε(x, y)wM (x) dx =

�

|x−y|≤2R(y)

+
�

|x−y|>2R(y)

= I1 + I2.
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By (4.15) and Corollary 4.6 we have

I1 ≤ C
∞∑

j=−1

�

2−j−1R(y)≤|x−y|≤2−jR(y)

V (x)2j(d−2)R(y)2−d

× exp(−c′2−j/ε)
(

1 +
|x|
R(0)

)M
dx.

Applying Corollaries 4.6 and 4.2, and the fact that 1+|x|/R(0) ∼ 1+|y|/R(0)
for |x− y| ≤ 2R(y) (cf. Lemma 4.3), we obtain

(4.18) I1 ≤ C
(

1 +
|y|
R(0)

)M ∞∑

j=−1

(2−j)δ exp(−c′2−j/ε).

Now we estimate I2. By (4.15),

I2 ≤ C
∞∑

j=1

�

2jR(y)≤|x−y|≤2j+1R(y)

V (x)(2jR(y))2−d

× exp
(−c′|x− y|

εR(x)

)(
1 +

|x|
R(0)

)M
dx.

It follows from (4.4) that

|x|m(0, V ) ≤ C(1 + |y|m(0, V ))(1 + |x− y|m(x, V ))k0+1.

Thus, using Lemma 4.7, we have

I2 ≤ C
∞∑

j=1

�

2jR(y)≤|x−y|≤2j+1R(y)

V (x)(2jR(y))2−d

× exp
(−c1|x− y|

εR(x)

)(
1 +

|y|
R(0)

)M
dx.

Observe that, by (4.5), R(x)−1 ≥ cR(y)−1(1 + 2j)−k0/(1+k0) for |x − y| ∼
2jR(y). Hence, by Lemma 4.7, we obtain

(4.19) I2 ≤ C
(

1 +
|y|
R(0)

)M ∞∑

j=1

2Cj exp(−c22j/k0/ε).

Now (4.17) follows from (4.18) and (4.19).

Setting M = 0 we get

Corollary 4.20.

sup
y∈Rd

�
V (x)|x− y|2−d exp(−c|x− y|2/(εR(x))2) dx ≤ c(ε),

where limε→0+ c(ε) = 0.
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Proof of Lemma 1.6. Applying Proposition 4.16 with M = 0, we ob-
tain ‖A∗ε‖L∞→L∞ ≤ c(ε), where limε→0+ c(ε) = 0. Since Gε(x) − 1 =∑∞
n=1((−A∗ε)n1)(x), we get

lim
ε→0+

‖Gε − 1‖L∞ ≤ lim
ε→0+

∞∑

n=1

c(ε)n = 0.

Proof of Lemma 1.7. We shall show that for every δ′ < δ0 there exist
constants Cδ′ and ε0 > 0 such that

(4.21) |Gε(x+ h)−Gε(x)| ≤ Cδ′(|h|m(x, V ))δ
′

for 0 < ε < ε0. Let A∗ε(x, y) = Aε(y, x) = V (y)Γε(y, x) be the kernels of the
operators A∗ε. We are going to prove that

(4.22) I =
�
|A∗ε(x+ h, y)−A∗ε(x, y)| dy ≤ Cδ′(|h|m(x, V ))δ

′
.

It suffices to show (4.21) for |h|m(x, V ) ≤ 1/4. We have

I =
�

|x−y|≤4|h|
+

�

4|h|<|x−y|≤R(x)

+
�

|x−y|>R(x)

= I1 + I2 + I3.

Applying (4.15) and Corollary 4.2 we get

I1 ≤ C
�

|x−y|≤4|h|
(A∗ε(x+ h, y) + A∗ε(x, y)) dy

≤ C
�

|x−y|≤4|h|
V (y)|x− y|2−d dy

+ C
�

|x+h−y|≤5|h|
V (y)|x+ h− y|2−d dy

≤ C
∑

j≥0

�

2−j+1|h|<|x−y|<2−j+2|h|
V (y)(2−j|h|)2−d dy

+ C
∑

j≥0

�

2−j+2|h|<|x+h−y|<2−j+3|h|
V (y)(2−j|h|)2−d dy

≤ C(|h|m(x, V ))δ + C(|h|m(x+ h, V ))δ.

Hence, by Corollary 4.6,

I1 ≤ C(|h|m(x, V ))δ.

Note that for |h| < |x− y|/4 we have

|A∗ε(x+ h, y)− A∗ε(x, y)| ≤ CV (y)
|h|

|x− y|d−1 e
−c|x−y|2/(ε2R(y)2).

Application of Lemma 4.3 leads to

(4.23) |A∗ε(x+ h, y)− A∗ε(x, y)| ≤ CV (y)
|h|

|x− y|d−1 e
−c|x−y|γ/(ε2R(x)γ),
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with a constant γ > 0. Therefore setting n = [log2(R(x)/|h|)] + 1, and using
(4.23) and Corollary 4.2, we obtain

I2 ≤ C
�

4|h|<|x−y|≤R(x)

V (y)
|h|

|x− y|d−1 dy

≤ C
n∑

j=2

�

2j |h|<|x−y|≤2j |h|
V (y)

|h|
(2j |h|)d−1 dy

≤ C
n∑

j=1

2−j(2jm(x, V )|h|)δ ≤ C(m(x, V )|h|)δ′ .

Finally, by (4.23) and Lemma 4.7, we get

I3 ≤ C
∑

j≥0

�

2jR(x)<|x−y|<2j+1R(x)

V (y)
|h|

(2jR(x))d−1 e
−c(2jR(x)/(ε2R(x)))γ

≤ C
∑

j≥0

|h|
R(x)

2jCe−c(2
j/ε2)γ ≤ C(m(x, V )|h|),

which completes the proof of (4.22). It follows from (4.22) that

(4.24) |A∗εf(x+ h)− A∗εf(x)| ≤ C(|h|m(x, V ))δ
′‖f‖L∞ .

Now (4.21) is a consequence of (4.24). Indeed,

|Gε(x+ h)−Gε(x)| =
∣∣∣
∞∑

n=1

((−A∗ε)n1(x+ h)− (−A∗ε)n1(x))
∣∣∣

=
∣∣∣
∞∑

n=0

−A∗ε((−A∗ε)n1)(x+ h) + A∗ε((−A∗ε)n1)(x)
∣∣∣

≤
∞∑

n=0

C(|h|m(x, V ))δ
′‖(−A∗ε)n1‖L∞

≤ C(|h|m(x, V ))δ
′
∞∑

n=0

‖A∗ε‖nL∞→L∞

≤ C(|h|m(x, V ))δ
′
∞∑

n=0

c(ε)n ≤ C(|h|m(x, V ))δ
′
.

5. Proof of Lemma 2.9. For ε > 0, y0 ∈ Rd, 0 < r ≤ εR(y0), and
M ≥ 0 we define the space L1

ε,r,y0,M
by

L1
ε,r,y0,M =

{
f :

�
|f(x)|

(
1 +
|x− y0|

r

)(
1 +
|x− y0|
εR(y0)

)M
dx

= ‖f‖L1
ε,r,y0,M

<∞
}
.
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Let L1
ε,r,y0,M,0 = {f ∈ L1

ε,r,y0,M
: � f(x) dx = 0}. Set

(5.1) Gεf(x) = (Gε(x)− 1)f(x) +Gε(x)Aεf(x).

Lemma 5.2. For every M ≥ 0 we have

lim
ε→0+

‖Gε‖L1
ε,r,y0,M,0

→L1
ε,r,y0,M,0

= 0

uniformly with respect to y0 and r.

Proof. Note that � Gεf(x) dx = 0. Indeed, by the definition of Gε,
�
Gεf(x) dx =

�
(Gε(x)(Id + Aε)f(x)− f(x)) dx

=
�
((Id + A∗ε)Gε(x))f(x) dx =

�
f(x) dx = 0.

Therefore, by Lemma 1.6, it suffices to show that

lim
ε→0+

‖Aε‖L1
ε,r,y0,M,0

→L1
ε,r,y0,M

= 0 uniformly with respect to y0 and r.

There is no loss of generality in assuming that y0 = 0. Since

Aεf(x) =
�
V (x)Γε(x, y)f(y) dy

=
�
V (x)(Γε(x, y)− Γε(x, 0))f(y) dy,

we need only show that

J1 =
�
V (x)|Γε(x, y)− Γε(x, 0)|

(
1 +
|x|
r

)(
1 +

|x|
εR(0)

)M
dx

≤ c(ε)
(

1 +
|y|
r

)(
1 +

|y|
εR(0)

)M
,

with c(ε)→ 0 as ε→ 0. Note that there is a constant C > 0 such that

|Γε(x, y)− Γε(x, 0)| ≤ C |y|
|x|d−1 exp(−c|x|2/(εR(x))2) for 4|y| < |x|.

Thus
J1 ≤

�

|x|>4|y|
+

�

|x|≤4|y|

≤ C
�

|x|>4|y|
V (x)

|y|
|x|d−1 exp(−c|x|2/(εR(x))2)

(
1 +

|x|
εR(0)

)M
dx

+ C
�

|x|>4|y|
V (x)

|y|
|x|d−1 exp(−c|x|2/(εR(x))2)

|x|
r

(
1 +

|x|
εR(0)

)M
dx

+ C
�

|x|≤4|y|
V (x)(Γε(x, y) + Γε(x, 0))

(
1 +
|x|
r

)(
1 +

|x|
εR(0)

)M
dx

= J
(1)
1 + J

(2)
1 + J

(3)
1 .



18 J. DZIUBAŃSKI AND J. ZIENKIEWICZ

Obviously, by (4.4), since 0 < ε < 1, we have

(5.3) 1 +
|x|

εR(0)
≤ C

(
1 +

|x|
εR(x)

)k0+1

.

Therefore, applying Corollary 4.20, we get

J
(1)
1 ≤ C

�

|x|>4|y|
V (x)

1
|x|d−2 exp

( −c|x|2
(εR(x))2

)(
1 +

|x|
εR(x)

)M(k0+1)

dx

≤ c(ε) ≤ c(ε)
(

1 +
|y|
r

)(
1 +

|y|
εR(0)

)M
.

Similarly

J
(2)
1 ≤ C

�

|x|>4|y|
V (x)

|y|
r

1
|x|d−2 exp

( −c|x|2
(εR(x))2

)(
1 +

|x|
εR(x)

)M(k0+1)

dx

≤ c(ε) |y|
r
≤ c(ε)

(
1 +
|y|
r

)(
1 +

|x|
εR(0)

)M
.

In order to estimate J (3)
1 we use again (4.15) and Corollary 4.20 to obtain

J
(3)
1 ≤ C

�

|x|≤4|y|
V (x)(Γε(x, y) + Γε(x, 0))

(
1 +
|y|
r

)(
1 +

|y|
εR(0)

)M
dx

≤ c(ε)
(

1 +
|y|
r

)(
1 +

|y|
εR(0)

)M
.

Lemma 5.4. Fix M ≥ 0. If εR(y0)/4 < r ≤ εR(y0) then

lim
ε→0+

‖Gε‖L1(ε,r,y0,M)→L1(ε,r,y0,M) = 0

uniformly with respect to y0 and r.

Proof. By Lemma 1.6 it is enough to show that

�
V (x)Γε(x, y)

(
1 +
|x− y0|

r

)(
1 +
|x− y0|
εR(y0)

)M
dx

≤ c(ε)
(

1 +
|y − y0|

r

)(
1 +
|y − y0|
εR(y0)

)M
.

We shall prove this for y0 = 0. The proof for arbitrary y0 is identical. By
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(5.3), (4.15), and Corollary 4.20, we get

�
V (x)Γε(x, y)

(
1 +
|x|
r

)(
1 +

|x|
εR(0)

)M
dx

≤ C
�

|x|≤4|y|
+C

�

|x|>4|y|

≤ C
�

|x|≤4|y|
V (x)Γε(x, y)

(
1 +
|y|
r

)(
1 +

|y|
εR(0)

)M
dx

+ C
�

|x|>4|y|
V (x)Γε(x, y)

(
1 +
|x− y|
εR(x)

)(k0+1)(M+1)

dx

≤ c(ε)
(

1 +
|y|
r

)(
1 +

|y|
εR(0)

)M
+ c(ε).

Proof of Lemma 2.9. Since Gε(Id + Aε) = Id + Gε, Lemma 2.9 follows
from Lemma 5.2, Lemma 5.4, and the equality

(Id + Aε)−1f =
( ∞∑

n=0

(−Gε)n
)

(Gεf).

6. Estimates of the kernels Et, Ht and related maximal functions

Lemma 6.1. There exist constants C, c > 0 such that for every η > 0
and every y ∈ Rd we have

‖Tt‖L2(eη|x−y| dx)→L2(eη|x−y| dx) ≤ Cectη
2
.

Proof. This is a direct consequence of (1.2).

Corollary 6.2. The semigroup Tt has the (unique) extension to a holo-
morphic semigroup Tζ on L2(eη|x−y| dx) in the sector ∆π/4 = {ζ : |Arg ζ| <
π/4}. Moreover , there exist constants C, c′ > 0 such that for every η > 0 we
have

‖Tζ‖L2(eη|x−y| dx)→L2(eη|x−y| dx) ≤ Cec
′η2<ζ .

Proof. See the proof of Proposition 3.2 in [DZ3].

Let kζ(x, y) be the integral kernel of the operator Tζ .

Lemma 6.3. There exists a constant c > 0 such that for every M > 0
there exists a constant C > 0 such that for every η > 0 and every y ∈ Rd
we have

�
|kζ(x, y)|2eη|x−y| dx ≤ Cecη2<ζ(<ζ)−d/2

(
1 +

<ζ
R(y)2

)−M
for ζ ∈ ∆π/5.
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Proof. Let t = <ζ. Since kζ(x, y) = [Tζ−t/10kt/10( · , y)](x), using Corol-
lary 6.2, we obtain

�
|kζ(x, y)|2eη|x−y| du ≤ Cecη2t

�
|kt/10(u, y)|2eη|u−y| du.

Applying Theorem 4.10 we get

�
|kt/10(u, y)|2eη|u−y| du ≤ C

� (
1 +

√
t

R(y)

)−2M

t−de−c|u−y|
2/teη|u−y| du

≤ Ct−d/2e2cη2t

(
1 +

t

R(y)2

)−M
.

Corollary 6.4. There exists a constant c>0 such that for every M≥0
there is a constant CM such that

|kζ(x, y)| ≤ CM (<ζ)−d/2
(

1 +
<ζ
R(y)2

)−M(
1 +

<ζ
R(x)2

)−M
e−c|x−y|

2/<ζ

for ζ ∈ ∆π/5.

Proof. We have

|kζ(x, y)|eη|x−y| =
∣∣∣

�
kζ/2(x, u)kζ/2(u, y) du

∣∣∣eη|x−y|

≤
( �
|kζ/2(x, u)|2e2η|x−u| du

)1/2( �
|kζ/2(u− y)|2e2η|u−y| du

)1/2

≤ CM (<ζ)−d/2ecη
2<ζ
(

1 +
<ζ
R(y)2

)−M
.

Setting η = c′′|x− y|(<ζ)−1 (with c′′ > 0 small enough) and using the fact
that |kζ(x, y)| = |kζ̄(y, x)| we get the required estimate.

Proposition 6.5. There exists a constant c > 0 such that for every
M > 0 there exists a constant C > 0 such that

|kt+s(x, y)−kt(x, y)| ≤ C s

t
t−d/2e−c|x−y|

2/t

(
1+

t

R(y)2

)−M(
1+

t

R(x)2

)−M

for 0 < s < t.

Proof. By Corollary 6.4 it suffices to prove the estimate for 0 < s < t/20.
Using the Cauchy integral formula and Corollary 6.4 we get

|kt+s(x, y)− kt(x, y)| =
∣∣∣
s�

0

d

dt
kt+τ (x, y) dτ

∣∣∣

= C

∣∣∣∣
s�

0

�

|ζ−t|=t/10

kζ(x, y)
(ζ − t− τ)2 dζ dτ

∣∣∣∣
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≤ C
s�

0

�

|ζ−t|=t/10

|kζ(x, y)|
|ζ − t− τ |2 d|ζ| dτ

≤ Cs t

t2
t−d/2e−c|x−y|

2/t

(
1 +

t

R(y)2

)−M(
1 +

t

R(x)2

)−M
.

Lemma 6.6. There exists a rapidly decaying function ψ such that

(6.7) Ht(x, y) ≤
{

(
√
tm(x, V ))δψt(x− y) for t < m(x, V )−2,

ψt(x− y) for t ≥ m(x, V )−2.

Proof. From Theorem 4.10 we conclude

Ht(x, y) ≤ C
t�

t/2

�
(t− s)−d/2e−c|z|/

√
t−sV (z + x)

× t−d/2e−c|z+x−y|/
√
t

(
1 +

t− s
R(x)2

)−M
dz ds

≤ C
t�

t/2

�

|z|≤|x−y|/4
+C

t�

t/2

�

|z|>|x−y|/4
.

We note that for |z| > |x− y|/4 we have

(t− s)−d/2e−c|z|/
√
t−s ≤ C(t− s)−d/2e−c′|x−y|/

√
te−c

′|z|/√t−s.

Thus

Ht(x, y) ≤ CM
t�

t/2

�
(t− s)−d/2e−c′|z|/

√
t−sV (z + x)

× t−d/2e−c′|x−y|/
√
t

(
1 +

t− s
R(x)2

)−M
dz ds.

Set ψt(x) = t−d/2e−c
′|x|/

√
t. If t < m(x, V )−2 then, by Corollary 4.8, we

obtain

Ht(x, y) ≤ Cψt(x− y)
t�

t/2

(t− s)−1(m(x, V )
√
t− s)δ ds

≤ Cψt(x− y)(m(x, V )
√
t)δ.
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If t ≥ m(x, V )−2 then

Ht(x, y) ≤ ψt(x− y)
t�

t/2

� e−c′|z|/
√
t−s

(t− s)d/2 V (z + x)
(

1 +
t− s
R(x)2

)−M
dz ds

≤ ψt(x− y)
t/2�

0

e−c
′|z|/√s

sd/2
V (z + x)

(
1 +

s

R(x)2

)−M
dz ds.

Applying again Corollary 4.8 we get

Ht(x, y) ≤ ψt(x− y)
(R(x)2�

0

s−1(m(x, V )
√
s)δ ds

+
t�

R(x)2

s−d/2(
√
sm(x, V ))−M+Cm(x, V )2−d ds

)

≤ Cψt(x− y).

Lemma 6.8. There exists a rapidly decaying function ψ such that

(6.9) |Ht(x, y + h)−Ht(x, y)| ≤ |h|√
t

(m(x, V )
√
t)δψt(x− y)

for t ≤ Cm(x, V )−2, |h| ≤ |x− y|/8, and

(6.10) |Ht(x, y + h)−Ht(x, y)| ≤ |h|√
t
ψt(x− y)

for t ≥ Cm(x, V )−2, |h| < |x− y|/8.

Proof. It suffices to show (6.9) and (6.10) for 2|h| ≤
√
t. We have

|Ht(x, y + h)−Ht(x, y)|

=
∣∣∣
t�

t/2

�
kt−s(x, z)V (z)(ps(z − y − h)− ps(z − y)) dz ds

∣∣∣.

Since 2|h| ≤
√
t and t/2 ≤ s ≤ t, we have

|ps(z − y − h)− ps(z − y)| ≤ C |h|√
t
t−d/2e−c|z−y|/

√
t.

Therefore

|Ht(x, y + h)−Ht(x, y)|

≤ C
t�

t/2

�
kt−s(z)V (z + x)

|h|√
t
t−d/2e−c|z+x−y|/

√
t dz ds.

Using the same arguments as in the proof of Lemma 6.6 we get (6.9) and
(6.10).
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Lemma 6.11. There exists a rapidly decaying function ϕ such that for
every M > 0 there is a constant CM such that

|Et(x, y)| ≤ CM (
√
tm(x, V ))δϕt(x− y)(6.12)

×
(

1 +
t

R(x)2

)−M(
1 +

t

R(y)2

)−M
.

Proof. Applying Proposition 6.5 and (4.5), we obtain

|Et(x, y)| ≤ C
t/2�

0

� s
t
t−d/2e−c|x−y−z|/

√
tV (z + y)

× s−d/2e−c|z|/
√
s

(
1 +

t

R(x)2

)−M(
1 +

t

R(y)2

)−M
dz ds.

Now splitting the integral on the right-hand side into two integrals, we get

|Et(x, y)| ≤ C
t/2�

0

�

|z|≤|x−y|/4
+C

t/2�

0

�

|z|>|x−y|/4

≤ CMφt(x− y)
(

1 +
t

R(x)2

)−M(
1 +

t

R(y)2

)−M

×
t/2�

0

� s
t
V (z + y)s−d/2e−c|z|/

√
s dz ds

+ CM

(
1 +

t

R(x)2

)−M(
1 +

t

R(y)2

)−M

×
t/2�

0

�

|z|>|x−y|/4

s

t
t−d/2V (z + y)s−d/2e−c

′|z|/√se−c
′|z|/√s dz ds

≤ CMφt(x− y)
(

1 +
t

R(x)2

)−M(
1 +

t

R(y)2

)−M

×
t/2�

0

� s
t
V (z + y)s−d/2e−c

′|z|/√s dz ds

= CMφt(x− y)
(

1 +
t

R(x)2

)−M(
1 +

t

R(y)2

)−M

×
min(t/2,R(y)2)�

0

� s
t
V (z + y)ψs(z) dz ds
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+ CMφt(x− y)
(

1 +
t

R(x)2

)−M(
1 +

t

R(y)2

)−M

×
t/2�

min(t/2,R(y)2)

� s
t
V (z + y)ψs(z) dz ds,

where φ and ψ are rapidly decaying functions. By Corollary 4.8 we have

|Et(x, y)| ≤ CM t−1φt(x− y)
(

1 +
t

R(x)2

)−M(
1 +

t

R(y)2

)−M

×
min(t/2,R(y)2)�

0

(
√
sm(y, V ))δ ds

+ CM t
−1φt(x− y)

(
1 +

t

R(x)2

)−M(
1 +

t

R(y)2

)−M

×
t/2�

min(t/2,R(y)2)

ss−d/2
(
√
sm(y, V ))C0

m(y, V )d−2 ds

≤ CMφt(x− y)(
√
tm(y, V ))δ

(
1 +

t

R(x)2

)−M(
1 +

t

R(y)2

)−M

+ CMφt(x− y)
(

1 +
t

R(x)2

)−M(
1 +

t

R(y)2

)−M( √
t

R(y)

)C0+2−d
.

Applying Lemma 4.3, we get

|Et(x, y)| ≤ CMφt(x− y)
(

1 +
|x− y|√

t

√
tm(x, V )

)k0δ

× (
√
tm(x, V ))δ

(
1 +

t

R(x)2

)−M(
1 +

t

R(y)2

)−M

+ CM + φt(x− y)
(

1 +
|x− y|√

t

√
tm(x, V )

)k0(2−d+C0)

× (
√
tm(x, V ))2−d+C0

(
1 +

t

R(x)2

)−M(
1 +

t

R(y)2

)−M

≤ CMϕt(x− y)
( √

t

R(x)

)δ

×
(

1 +
t

R(x)2

)−M+k0(2−d+C0+δ)/2(
1 +

t

R(y)2

)−M
.

Using the same method as in the proofs of Lemmas 6.6, 6.8, 6.11 one
can prove



Hp SPACES 25

Lemma 6.13. For every M ≥ 0 there exists a rapidly decaying function
ϕ such that

(6.14) |Et(x, y + h)−Et(x, y)|

≤ |h|√
t

(
√
tm(x, V ))δϕt(x− y)

(
1 +

t

R(x)2

)−M(
1 +

t

R(y)2

)−M

provided 2|h| <
√
t, 8|h| ≤ |x− y|.

Proof of (3.5) and (3.6). First we prove (3.6). Assume that a is an
(hpε(m),∞)-atom associated with a ball B(x0, r). Then, by the definition,
r ≤ εR(x0). By Lemma 6.6, if t < ε2R(x)2 and x ∈ B(x0, 8r), then

|Hta(x)| =
∣∣∣

�
Ht(x, y)a(y) dy

∣∣∣ ≤ Cεδ‖a‖∞ ≤ Cεδr−d/p.

Therefore �

B(x0,8r)

(H∗εa(x))p ≤ Cεpδ.

In order to prove the required estimate on B(x0, 8r)c we consider two cases.

Case 1: 1
4εR(x0) < r ≤ εR(x0). Then, by Lemma 6.6, for t < ε2R(x)2

and x ∈ B(x0, 8r)c, we have

|Hta(x)| ≤ εδ
�

B(x0,r)

|ψt(x− y)a(y)| dy

≤ CNεδ‖a‖L1t−d/2
(

1 +
|x− x0|√

t

)−2N

≤ Cεδr−d/p+dt−d/2
(

1 +
|x− x0|√

t

)−2N

.

It follows from (4.5) that R(x)2 ≤ C(1 + |x− x0|/R(x0))2k0/(1+k0)R(x0)2 =
τ(x, x0). Thus

�

B(x0,8r)c

(H∗εa(x))p dx

≤ CNεpδr−d+dp
�

B(x0,8r)c

sup
0<t<ε2τ(x,x0)

t−dp/2
(

1 +
|x− x0|√

t

)−2Np

dx

≤ CNεpδ.
Case 2: r ≤ 1

4εR(x0). Then � a = 0. Therefore, by Lemma 6.8, for
|x− x0| > 8r and t < ε2R(x)2, we have
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|Hta(x)| =
∣∣∣

�

B(x0,r)

(Ht(x, y)−Ht(x, x0))a(y) dy
∣∣∣

≤ Cεδ
�

B(x0,r)

|y − x0|√
t

ψt(x− x0)|a(y)| dy.

This leads to �

B(x0,8r)c

(H∗εa(x))p dx ≤ Cεpδ.

The proof of (3.5) is identical and uses Lemmas 6.11 and 6.13.

7. Maximal functions Z∗ε . Our goal in the present section is to prove
(3.7). In order to do this it suffices to show that there exists a function c(ε)
satisfying limε→0+ c(ε) = 0 such that

(7.1) ‖Z∗εa‖Lp ≤ c(ε)
for every (hpε(m),∞)-atom a. There is no loss of generality in assuming that
if a is an (hpε(m),∞)-atom associated with B(x0, r), and if r < 1

4εR(x0),
then

(7.2)
�
xαa(x) dx = 0 for |α| ≤ C0 + d+ 4,

where C0 is a constant from Corollary 4.8. Indeed, every (hpε(m),∞)-atom
a satisfying (2.4) can be decomposed as a =

∑
cja
′
j , where a′j satisfies (2.1),

(2.2), (2.3) and (7.2) in such a way that
∑
j |cj |p ≤ C.

The following lemma can be easily proved.

Lemma 7.3. Assume that a is an (hpε(m),∞)-atom associated with a ball
B = B(x0, r), where r < εR(x0). Then

(7.4)
∣∣∣
β�

α

a ∗ ps(z) ds
∣∣∣ ≤ C e−c|z−x0|2/β

|z − x0|d−2+M + α(d−2+M)/2
|B|1−1/p+M/d

for |z − x0| > 2r, where M = C0 + d + 4 if r ≤ 1
4εR(x0), and M = 0 if

1
4εR(0) < r < εR(x0).

Let a be as in Lemma 7.3 and let K = B(x0, R(x0)). We define

Z∗ε,0a(x) = sup
0<t<(εR(x))2

|Z0
(ε),ta(x)|(7.5)

= sup
0<t<(εR(x))2

∣∣∣
�

K

kt(x, z)V (z)W(ε),ta(z) dz
∣∣∣,

Z∗ε,∞a(x) = sup
0<t<(εR(x))2

∣∣∣
�

Kc

kt(x, z)V (z)W(ε),ta(z) dz
∣∣∣,(7.6)

where W(ε),ta(z) = � W(ε),t(z, y)a(y) dy (cf. Section 3).
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Lemma 7.7. There exists a function c(ε) with limε→0+ c(ε) = 0 such
that for every (hpε(m),∞)-atom a associated with a ball B(x0, r) we have

(7.8) ‖Z∗ε,∞a‖pLp ≤ c(ε).
Proof. There is no loss of generality in assuming that x0 = 0. Then

Z∗ε,∞a(x) ≤
∞∑

j=0

sup
0<t<(εR(x))2

�
kt(x, z)V (z)|W(ε),ta(z)|χUj (z) dz(7.9)

=
∞∑

j=0

f∗j (x),

where Uj = B(0, 2j+1R(0)) \ B(0, 2jR(0)). It follows from Lemma 4.3 that
if |x| < 2j+2R(0), then R(x) ≤ C2jk0/(1+k0)R(0). Therefore, by Lemma 7.3,
there exists γ > 0 such that

V (z)|W(ε),ta(z)|χUj (z) ≤ CV (z)e−c(|z|/εR(0))γ |B(0, r)|1−1/p+M/d

|z|d+M−2 χUj (z)

= fj(z).

One can check using Lemma 4.7 that

‖fj‖L1 ≤ e−c′(2j/ε)γ |B(0, 2jR(0))|1−1/p.

This gives

(7.10) ‖f∗j ‖pLp(B(0,2j+2R(0))) ≤ c(ε)2−j.

We now turn to estimating f∗j on the set |x| > 2j+2R(0). In this case

V (z)|W(ε),ta(z)|χUj (z)

≤





CV (z)e−c(|z|/εR(0))γ |B(0, r)|1−1/p+M/d

|z|d+M−2 χUj (z) if t/2 ≤ (εR(z))2

CV (z)e−c|z|
2/t |B(0, r)|1−1/p+M/d

|z|d+M−2 χUj (z) if t/2 > (εR(z))2

= f
(x,t)
j (z).

Thus �
kt(x, z)V (z)|W(ε),ta(z)|χUj (z) dz ≤ ϕt(x)‖f (x,t)

j ‖L1 ,

where ϕ is a rapidly decaying function. Therefore, for |x| > 2j+2R(0), we
have

f∗j (x) ≤ sup
0<t<(εR(x))2

ϕt(x)‖f (x,t)
j ‖L1 .
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It is not difficult to verify using Lemmas 4.3 and 4.7 that

‖f (x,t)
j ‖L1 ≤ C2Cj |B(0, 2jR(0))|1−1/p(e−c(2

j/ε)γ + e−c2
2j(R(0)/(ε|x|))

2k0
k0+1

).

Consequently,

f∗j (x) ≤ c(ε)2−j|B(0, 2jR(0))|1−1/p(R(0)−d+N |x|−N +R(0)−d+L|x|−L).

This leads to
‖f∗j ‖pLp(B(0,2j+2R(0))c) ≤ c(ε)p2−jp,

which combined with (7.9) and (7.10) completes the proof of the lemma.

Lemma 7.11. There exists a function c(ε) with limε→0+ c(ε) = 0 such
that for every (hpε(m),∞)-atom a associated with a ball B(x0, r), where
r < 1

4εR(x0), we have
‖Z∗ε,0a‖Lp ≤ c(ε).

Proof. Similarly to the proof of Lemma 7.7 we assume that x0 = 0.
Let C1 > 4 be such that C−1/2

1 < m(x, V )/m(y, V ) < C
1/2
1 for |x − y| <

16m(x, V )−1 (cf. Corollary 4.6).

Case 1: r2 < t/2. We have

|Z0
(ε),ta(x)| ≤

∣∣∣
�

K1

kt(x, z)V (z)
(εR(z))2�

t/2

ps ∗ a(z) ds dz
∣∣∣

+
∣∣∣

�

K2

kt(x, z)V (z)
t/2�

(εR(z))2

ps ∗ a(z) ds dz
∣∣∣

= JK1(x) + JK2(x),

where K1 = {z ∈ K : t/2 < (εR(z))2} and K2 = K\K1. From Corollary 4.6
we conclude

JK1(x) ≤
∣∣∣

�

K1

kt(x, z)V (z)
(εR(z))2−t/4�

t/2−t/4
pt/4 ∗ ps ∗ a(z) ds dz

∣∣∣

≤
�

K1

kt(x, z)V (z)
C1(εR(0))2�

t/4

�
pt/4(z − y)|ps ∗ a(y)| dy ds dz.

Since �
K1
kt(x, z)V (z)pt/4(z − y) dz ≤ t−1φt(x− y)(t1/2m(x, V ))δ, where φ

is a rapidly decaying function, we get

JK1(x) ≤
�
t−1φt(x− y)c(ε)

C1(εR(0))2�

t/4

|a ∗ ps(y)| ds dy.
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Now using (7.2) we obtain

JK1(x) ≤
�
t−1φt(x− y)

× c(ε)
∑

j≥0, 2jt/4<2C1(εR(0))2

(
r

2j/2t1/2

)M
φ2jt(y)2jt‖a‖L1dy

≤
∑

j≥0

Dj(x),

where

Dj(x) = sup
r2<t<2−j+1C1(εR(0))2

2jc(ε)
(

r

2j/2t1/2

)M/2(
r

2j/2t1/2

)M/2

× φ2jt(x)‖a‖L1

≤
{

2jc(ε)2−jM/2(2jr2)−d/2‖a‖L1 for |x| ≤ 2r,

2jc(ε)rM/2|x|−d−M/22−jM/4‖a‖L1 for |x| > 2r.

This leads to �
sup

0<t<(εR(x))2, 2r2<t

|JK1(x)|p dx ≤ c(ε)p.

In order to estimate JK2(x) we first consider |x| > 3R(0). There are rapidly
decaying functions φ and ψ such that

JK2(x) ≤
�

K2

kt(x, z)V (z)
t/2�

(εR(0)/C4)2

|ps ∗ a(z)| ds dz

≤
�

K2

φt(x)V (z)‖a‖L1

( R(0)2�

(εR(0)/C4)2

(
r√
s

)M
ψs(z) ds

+
max(R(0)2,t/2)�

R(0)2

(
r√
s

)M
ψs(z) ds

)
dz.

Applying Corollaries 4.6 and 4.8, we have

JK2(x) ≤ C‖a‖L1φt(x)
( R(0)2�

(εR(0)/C4)2

rMs−M/2(
√
s/R(0))δs−1 ds

+
max(R(0)2,t/2)�

R(0)2

rMs−M/2s−d/2R(0)d−2
( √

s

R(0)

)C0

ds

)

≤ CrM‖a‖L1φt(x)((εR(0))−M +R(0)−M ).

Since

sup
0<t<(εR(x))2

φt(x) ≤ Cε−d+LR(0)(−d+L)/(1+k0)|x|−L+k0(−d+L)/(1+k0),
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we get
�

|x|>3R(0)

( sup
0<t<(εR(x))2, 2r2<t

JK2(x))p dx

≤ Cε(−d+L)pR(0)−pd+d
((

r

εR(0)

)Mp

+
(

r

R(0)

)Mp)
‖a‖pL1 ≤ c(ε).

If |x| ≤ 3R(0) and z ∈ K2, then R(x) ∼ R(0) ∼ R(z). Therefore

JK2(x) =
∣∣∣

�

K2

kt(x, z)V (z)
t/2�

(εR(z))2

ps ∗ a(z) ds dz
∣∣∣

≤
�

K2

kt(x, z)V (z)
(C4εR(0))2�

(εR(0)/2C4)2

�
pt/C4(z − y)|ps ∗ a(y)| dy ds dz.

Moreover, there exist rapidly decaying functions φ and ψ such that
�

K2

kt(x, z)V (z)pt/C4(z − y) dz ≤ t−1φt(x− y)(
√
tm(x, V ))δ,

|ps ∗ a(y)| ≤
(

r

εR(0)

)M
ψ(εR(0))2(y)‖a‖L1 .

Hence

JK2(x) ≤ Cεδ
(

r

εR(0)

)M−1

ψ(εR(0))2(x)‖a‖L1 .

It is not difficult to check that
�

B(0,3R(0))

( sup
0<t<(εR(x))2, 2r2<t

JK2(x))p dx

≤ C
�

B(0,3R(0))

εδp
(

r

εR(0)

)(M−1)p

ψ(εR(0))2(x)p‖a‖pL1 dx ≤ c(ε).

Case 2: t/2 ≤ r2. Then

|Z0
(ε),ta(x)| ≤

∣∣∣
�

K3

kt(x, z)V (z)
min(r2,(εR(z))2)�

t/2

ps ∗ a(z) ds dz
∣∣∣

+
∣∣∣

�

K3

kt(x, z)V (z)
(εR(z))2�

min(r2,(εR(z))2)

ps ∗ a(z) ds dz
∣∣∣

+
∣∣∣

�

K4

kt(x, z)V (z)
t/2�

(εR(z))2

ps ∗ a(z) ds dz
∣∣∣,
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where K3 = {z ∈ K : t/2 < (εR(z))2} and K4 = K \ K3. By (7.4) and
Corollary 4.6 we get

V (z)χK3(z)
∣∣∣

min(r2,(εR(z)))2�

t/2

ps ∗ a(z) ds
∣∣∣

+ V (z)χK3(z)
∣∣∣

(εR(z))2�

min(r2,(εR(z))2)

ps ∗ a(z) ds
∣∣∣

+ V (z)χK4(z)
∣∣∣

t/2�

(εR(z))2

ps ∗ a(z) ds
∣∣∣

≤




CV (z)(r2‖a‖L∞ + r−d+2‖a‖L1) for |z| < 2r,

CV (z)e−c|z|
2/(εR(0))2 |z|2−d−M |B(0, r)|1−1/p+M/d for 2r< |z|≤R(0).

It is not difficult to check that this is a multiple of c(ε) and a generalized
(hpr/R(0)(m), 1,M − 1)-atom associated with the ball B(0, r). Thus

‖ sup
0<t<2r2

|Z0
(ε),ta(x)| ‖pLp(dx) ≤ c(ε).

This completes the proof of the lemma.

Lemma 7.12. There exists a function c(ε) with limε→0+ c(ε) = 0 such
that for every (hpε(m),∞)-atom a associated with a ball B(x0, r), where
r ∼ εR(x0), we have

‖Z∗ε,0a‖Lp ≤ c(ε).
Proof. As above we assume that x0 = 0.

Case 1: C1(εR(0))2 < t/2 < (εR(x))2. Then it suffices to consider
|x| > 3R(0). Therefore applying Lemma 4.7 and Corollary 4.8 we have

|Z0
(ε),ta(x)| ≤

�

K

φt(x)V (z)
t/2�

(εR(0))2/C5

�
ps(z − y)|a(y)| dy ds dz

≤ ‖a‖L1φt(x)
[ R(0)2�

(εR(0))2/C5

s−1
( √

s

R(0)

)δ
ds

+
max(t/2,R(0)2)�

R(0)2

s−d/2R(0)d−2 ds

]

≤ ‖a‖L1φt(x).



32 J. DZIUBAŃSKI AND J. ZIENKIEWICZ

Applying Lemma 4.3 we obtain

‖ sup
C1(εR(0))2<t/2<(εR(x))2

|Z0
(ε),ta(x)| ‖Lp(B(0,3R(0))c,dx) ≤ c(ε).

Case 2: t/2 < C1(εR(0))2 ∼ r2. Then

|Z0
(ε),ta(x)| ≤

�

K

kt(x, z)V (z)
C5(εR(0))2�

t/C5

|a ∗ ps(z)| ds dz.

Observe that

V (z)
C5r

2�

t/C5

|ps ∗ a(z)| ds ≤ C





V (z)r2‖a‖L∞ for |z| ≤ 2r,

V (z)
|z|d−2 e

−c|z|2/r2‖a‖L1 for 2r < |z| ≤ R(0).

Now the same argument as in the proof of Lemma 7.11 (Case 2) can be
used.

8. Proof of Lemma 3.2. First we prove that there is a constant C > 0
such that

(8.1) ‖P∗ε g‖Lp ≤ C‖g‖hpε(m).

Let a be an (hpε(m),∞)-atom associated with a ball B(y0, r). If � a = 0 then
‖P∗ε a‖Lp ≤ C. If � a 6= 0 then, by definition, r ∼ εR(y0). Obviously, by Corol-
lary 4.6 and [G], ‖P∗ε a‖Lp(B(y0,R(y0))∗) ≤ C. Here and subsequently, for any
ball B we define B∗ to be the ball that has the same center as B but whose
radius is 4 times that of B. If x 6∈ B(y0, R(y0))∗, then, by (4.5), R(x) ≤
C|x− y0|k0/(k0+1)R(y0)1/(k0+1). Therefore for 0 < t < (εR(x))2 we have

|pt ∗ a(x)| ≤ C‖a‖L1εM−dR(y0)(M−d)/(1+k0)|x− y0|−(M+dk0)/(1+k0).

This leads to � |x−y0|>2R(y0)(P∗ε a(x))p dx ≤ C, and (8.1) is proved.

Let ϕ(α) be C∞-functions on Rd such that 0 ≤ ϕ(α) ≤ 1,
∑
α ϕ

(α)(x) = 1
for every x ∈ Rd, supp ϕ(α) ⊂ Bα = B(yα, R(yα)), and the family of the
balls Bα has the finite covering property.

Lemma 8.2. There exists a function c(ε) with limε→0+ c(ε) = 0 such
that for every α,

(8.3) ‖ sup
0<t<(εmax(R(yα),R(x)))2

|(gϕ(α)) ∗ pt(x)| ‖pLp(B∗cα )

≤ c(ε)‖gϕ(α)‖phpε(m).

Proof. It suffices to prove (8.3) if gϕ(α) is replaced by an (hpε(m),∞)-
atom a associated with a ball B(y0, r), where B(y0, r) ∩Bα 6= ∅. Obviously
R(y0) ∼ R(yα). Note that for x ∈ B∗cα , we have

max(R(yα), R(x)) ≤ C|x− y0|k0/(1+k0)R(y0)1/(1+k0).
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Therefore if r ∼ εR(yα) then

|a ∗ pt(x)| ≤ CMεM−d‖a‖L1R(y0)(M−d)/(1+k0)|x− y0|−(M+dk0)/(1+k0)

for 0 < t ≤ (εmax(R(yα), R(x)))2, and consequently, the left-hand side of
(8.3) is estimated by CMεMp−d.

If r < εR(y0)/4 then, by (2.4),

|a ∗ pt(x)| ≤ Crd+1−d/p|x− y0|−d−1.

Thus the left-hand side of (8.3) is bounded by Cεdp+p−d.

Corollary 8.4. There exists a constant C > 0 such that for every α
and every ε > 0 small enough we have

(8.5) ‖gϕ(α)‖phpε(m) ≤ C‖P
∗
ε (gϕ(α))‖pLp .

Proof. Applying results of Goldberg [G] and Lemma 8.2, we have

‖gϕ(α)‖phpε(m) ≤ C‖ sup
0<t<(εR(yα))2

|(gϕ(α)) ∗ pt(x)|‖pLp

≤ C‖ sup
0<t<(εR(yα))2

|(gϕ(α)) ∗ pt(x)|‖pLp(B∗α)

+ C‖ sup
0<t<(εR(yα))2

|(gϕ(α)) ∗ pt(x)|‖pLp(B∗cα )

≤ C‖P∗ε (gϕ(α))‖pLp + Cc(ε)‖gϕ(α)‖phpε(m).

Lemma 8.6. There exists a function c(ε) with limε→0+ c(ε) = 0 such
that

(8.7)
∑

α

�
( sup
0<t<(εR(x))2

|ϕ(α)(x)Ptg(x)−Pt(ϕ(α)g)(x)|p) dx ≤ c(ε)‖g‖phpε(m).

Proof. Define J ∗α,εg(x) = sup0<t<(εR(x))2 |Jα,tg(x)|, where

Jα,tg(x) = ϕ(α)(x)Ptg(x)− Pt(ϕ(α)g)(x)

=
�
(ϕ(α)(x)− ϕ(α)(y))pt(x− y)g(y) dy.

Let a be an (hpε(m),∞)-atom associated with a ball B(y0, r). Let I1 = {α :
y0 6∈ B∗∗α } and I2 = {α : y0 ∈ B∗∗α }. We note that the number of elements
in I2 is bounded by a constant independent of a. We may assume that ε is
small. Therefore if α ∈ I1, then Jα,ta(x) = � ϕ(α)(x)pt(x− y)a(y) dy. Thus,
by Lemma 8.2, we get

∑

α∈I1

�
sup

0<t<(εR(x))2
|Jα,ta(x)|p dx ≤ c(ε).

Let now α ∈ I2. If x 6∈ B(yα, R(yα))∗, then

Jα,ta(x) =
�
pt(x− y)ϕ(α)(y)a(y) dy.
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Since ‖ϕ(α)a‖hpε(m) ≤ C, where the constant C is independent of ε, a and α,
the same arguments as in the proof of Lemma 8.2 can be applied to obtain

�

B(yα,R(yα))∗c

sup
0<t<(εR(x))2

|Jα,ta(x)|p dx ≤ c(ε).

If x ∈ B(yα, R(yα))∗, then R(x) ∼ R(y0) ∼ R(yα). Thus

|Jα,ta(x)| =
∣∣∣∣

� √
t

R(y0)
Ψt(x, y)a(y) dy

∣∣∣∣ ≤ Cε
∣∣∣

�
Ψt(x, y)a(y) dy

∣∣∣,

where Ψt(x, y) = R(y0)t−1/2(ϕ(α)(x)−ϕ(α)(y))pt(x−y). Clearly, |∇xΨt(x, y)|
≤ t−1/2ψt(x − y) for 0 < t < CR(y0)2 with ψ being a rapidly decaying
function. Therefore standard arguments can be used in order to show that

∑

α∈I2

�

B(yα,R(yα))∗

sup
0<t<(εR(x))2

|Jα,ta(x)|p dx ≤ c(ε).

We are now in a position to finish the proof of the second inequality in
(3.3). Indeed, by Corollary 8.4 and Lemma 8.6, we obtain

‖g‖phpε(m) ≤ C
∑

α

‖ϕ(α)g‖phpε(m) ≤ C
∑

α

‖P∗ε (ϕ(α)g)‖pLp

≤ C‖P∗ε g‖pLp + C
∑

α

‖J ∗α,εg‖pLp ≤ C‖P∗ε g‖
p
Lp + Cc(ε)‖g‖phpε(m).

Taking ε0 sufficiently small we get the required estimates for 0 < ε < ε0.

9. Proof of the first inequality of (1.14). Fix ε > 0 (small). Ac-
cording to Lemma 2.9 it suffices to show that for every b of the form

(9.1) b = (Id + Aε)a,

where a is an (hpε(m),∞)-atom we have

(9.2) ‖Mb‖pLp ≤ C
with C independent of a. Assume that a is an (hpε(m),∞)-atom associated
with a ball B(x0, r), r ≤ εR(x0). Then, by Lemma 2.9,

(9.3)
�
|b(x)| dx ≤

�
|b(x)|

(
1 +
|x− x0|

r

)M
dx ≤ C|B(x0, r)|1−1/p.

Since M is of weak type (1, 1), we have

�

|x−x0|<4r

(Mb(x))p dx = p

∞�

0

|{x ∈ B(x0, 4r) :Mb(x) > λ}|λp−1 dλ(9.4)

≤ C
r−d/p�

0

rdλp−1 dλ+ C

∞�

r−d/p

‖b‖L1λp−2 dλ ≤ C.
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Therefore it remains to show that

(9.5)
�

B(x0,4r)c

(Mb(x))p dx ≤ C.

Case 1: εR(x0)/4 ≤ r ≤ εR(x0). Then we set b(x) =
∑∞
j=0 bj(x),

where b0(x) = b(x)χB(x0,r)(x) and bj(x) = b(x)χB(x0,2jr)\B(x0,2j−1r)(x). Ob-
viously

(9.6) ‖bj‖L1 ≤ C|B(x0, 2jr)|1−1/p2−j(N+d−d/p).

Hence

(9.7) ‖Mbj‖pLp(B(x0,2j+2r)) ≤ C2−j(N+d−d/p)p.

If x 6∈ B(x0, 2j+2r) then using Corollary 6.4 and Lemma 4.3, we have

Mbj(x) ≤ CL sup
t>0

�
|bj(y)|t−d/2e−c|x−y|/

√
t

(
1 +

t

R(x)2

)−L
dy(9.8)

≤ CL sup
t>0
‖bj‖L1t−d/2−Le−c|x−x0|/

√
tR(x)2L

≤ CL‖bj‖L1R(x0)2L/(1+k0)|x− x0|−d−2L/(1+k0)

Applying (9.6)–(9.8) we obtain (9.5).
Case 2: r < εR(x0)/4. It follows from Lemma 2.9 and Proposition 2.11

that a = (Id + Aε)−1b ∈ hpε(m). We have

Ttb(x) = pt ∗ a(x)−Hta(x)− Eta(x)− Z(ε),ta(x),

and consequently

Mb(x) ≤ P∗a(x) +H∗a(x) + E∗a(x) + Z∗εa(x),

where
P∗a(x) = sup

t>0
|pt ∗ a(x)|, H∗a(x) = sup

t>0
|Hta(x)|,

E∗a(x) = sup
t>0
|Eta(x)|, Z∗εa(x) = sup

t>0
|Z(ε),ta(x)|.

The estimates for ‖P∗a‖Lp , ‖H∗a‖Lp , ‖E∗a‖Lp follow from Lemmas 6.6,
6.8, 6.11, 6.13. Therefore it remains to prove the following proposition.

Proposition 9.9. For every ε > 0 (sufficiently small) there exists a
constant Cε > 0 such that for every (hpε(m),∞)-atom a associated with a
ball B(x0, r) with r < εR(x0)/4 we have

(9.10) ‖Z∗εa‖pLp ≤ Cε.
Proof. There is no loss of generality in assuming that a is an (hpε(m),∞)-

atom associated with a ball B(0, r), where r < εR(0)/4. By definition
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(cf. (2.4)), � a = 0. We have

Z∗εa(x) ≤
∞∑

j=0

sup
t>0

∣∣∣
�

Uj

kt(x, z)V (z)W(ε),ta(z) dz
∣∣∣ =

∞∑

j=0

Z∗(ε),ja(x),

where U0 = B(0, 2εR(0)) and Uj = {z : 2jεR(0) < |z| ≤ 2j+1εR(0)} for
j = 1, 2, . . .

For z ∈ Uj , j ≥ 1, by Lemmas 7.3, 4.3 and Corollary 4.6, we have

|W(ε),ta(z)|

≤
{
Ce−c2

γj/ε2 |B(0, r)|1−1/p−1/d(2jεR(0))1−d if t/2 < (εR(z))2,

Ce−c2
jεR(0)/

√
t|B(0, r)|1−1/p−1/d(2jεR(0))1−d if t/2 ≥ (εR(z))2.

Applying Corollary 6.4 and the fact that kt(x, y) = kt(y, x), we obtain

Z∗(ε),ja(x) ≤ sup
t>0

C
�

Uj

t−d/2e−c|x−z|
2/t

(
1 +

√
t

R(x)

)−M

×
(

1 +

√
t

R(z)

)−2L

V (z)|B(0, r)|1−1/p+1/d(2jεR(0))1−d

× (e−c2
jεR(0)/

√
t + e−c2

γj/ε2) dz.

Since R(z) ≤ C(1 + |z|/R(0)
)k0/(k0+1)

R(0) (cf. Lemma 4.3), we have

Z∗(ε),ja(x) ≤ sup
t>0

Cε
�

Uj

t−d/2e−c|x−z|
2/t

(
1 +

√
t

R(x)

)−M(
1 +

√
t

R(z)

)−L

×
(

1 +

√
t

2jk0/(1+k0)R(0)

)−L
V (z)|B(0, r)|1−1/p+1/d

× (2jεR(0))1−d(e−c2
jR(0)/

√
t + e−c2

γj

) dz.

Since

sup
t>0

(
1 +

√
t

2jk0/(1+k0)εR(0)

)−L
e−c2

jεR(0)/
√
t ≤ CN,ε2−Nj ,

we get

Z∗(ε),ja(x) ≤ sup
t>0

Cε
�

Uj

t−d/2e−c|x−z|
2/t

(
1 +

√
t

R(x)

)−M(
1 +

√
t

R(z)

)−L

× |B(0, r)|1−1/p+1/d(2jR(0))1−dV (z)2−Nj dz.

Note that the function |B(0, r)|1−1/p+1/d(2jR(0))1−dV (z)2−NjχUj (z) is
supported by the ball B(0, 2jR(0)) and its L1-norm is bounded by
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C2−jN
′ |B(0, 2jR(0))|1−1/p. Therefore

∞∑

j=1

‖Z∗(ε),ja‖pLp ≤ Cε.

In order to estimate Z∗(ε),0a we consider two cases.

Case 1: t > 2C(εR(0))2. Then

|W(ε),ta(z)| ≤
∞�

(εR(0))2/C0

|ps ∗ a(z)| ds

≤ Cε
∞�

(εR(0))2/C0

s−(d+1)/2r‖a‖L1 ds ≤ CεR(0)1−dr‖a‖L1 .

Thus

sup
t>2(εR(0))2

�

U0

kt(x, z)V (z)|W(ε),ta(z)| dz

≤ sup
t>2(εR(0))2

Cε
�

U0

kt(x, z)V (z)R(0)1−dr‖a‖L1 dz.

Observe that the function V (z)R(0)1−dr‖a‖L1χU0(z) is supported by the
ball B(0, 2εR(0)) and its L1-norm is bounded by C(εR(0))d−d/p. Therefore

∥∥∥ sup
t>2(εR(0))2

�

U0

kt(x, z)V (z)|W(ε),ta(z)| dz
∥∥∥
p

Lp
≤ Cε.

Case 2: t < 2C(εR(0))2. In this case we may apply the same arguments
as in the proof of Lemma 7.11.
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