VOL. 98

2003

NO. 1

CONVERGENCE TO STATIONARY SOLUTIONS IN A MODEL OF SELF-GRAVITATING SYSTEMS

BҮ

IGNACIO GUERRA (Amsterdam) and TADEUSZ NADZIEJA (Zielona Góra)

Abstract. We study convergence of solutions to stationary states in an astrophysical model of evolution of clouds of self-gravitating particles.

1. Introduction. In this paper we study asymptotic properties of solutions of the system introduced in [8], [7] for describing the temporal evolution of the density $u(x,t) \geq 0$ and the uniform-in-space temperature $\vartheta(t) > 0$ of a cloud of self-gravitating particles confined to a bounded subdomain $\Omega \subset \mathbb{R}^d$, d = 2, 3.

This system consists of the continuity equation

(1)
$$u_t(x,t) = \operatorname{div}\{\vartheta(t)\nabla u(x,t) + u(x,t)\nabla\varphi(x,t)\}$$
 in $\Omega \times \mathbb{R}^+$,

coupled with the Poisson equation

(2)
$$\Delta \varphi(x,t) = u(x,t) \quad \text{in } \Omega \times \mathbb{R}^+,$$

which gives the relation between the gravitational potential $\varphi(x, t)$ and the distribution of mass u(x, t).

The equations (1)–(2) are supplemented with the no-flux boundary condition

(3)
$$(\vartheta(t)\nabla u + u\nabla\varphi) \cdot \vec{\nu} = 0 \quad \text{on } \partial\Omega \times \mathbb{R}^+,$$

and the initial data

(4)
$$u(x,0) = u_0(x) \ge 0 \quad \text{in } \Omega.$$

Here $\vec{\nu}$ denotes the exterior normal vector to $\partial \Omega$.

Without loss of generality, we assume that the total mass of the particles is equal to one:

(5)
$$\int_{\Omega} u(x,t) \, dx = \int_{\Omega} u_0(x) \, dx = 1.$$

The potential φ satisfies either the Dirichlet condition

(6)
$$\varphi(x,t) = 0 \quad \text{for } x \in \partial \Omega$$

2000 Mathematics Subject Classification: 35Q, 35K60, 35B40, 82C21.

Key words and phrases: Chavanis–Sommeria–Robert model, mean field equations, drift-diffusion and energy-transport systems, asymptotics of solutions.

or the physically acceptable "free" condition

(7)
$$\varphi = E_d \star u$$

where E_d is the fundamental solution of the Laplacian in \mathbb{R}^d .

The total energy \mathcal{E} is the sum of the thermal energy $\int_{\Omega} \vartheta(t)u(x,t) dx$ and the potential energy $\frac{1}{2} \int_{\Omega} u(x,t)\varphi(x,t) dx$. For simplicity, we set all the physical constants to be one. In our case $\int_{\Omega} u(x,t) dx = 1$, hence the energy \mathcal{E} takes the form

(8)
$$\mathcal{E} = \vartheta(t) + \frac{1}{2} \int_{\Omega} u(x,t)\varphi(x,t) \, dx$$

Its conservation permits one to determine the temperature $\vartheta(t)$, uniform in Ω .

For a given energy level \mathcal{E} , (1)–(8) is problem $\mathcal{P}_{\mathcal{E}}$ for the unknown quantities u, φ, ϑ . Below we consider $\mathcal{P}_{\mathcal{E}}$ in the ball; in this case there is no qualitative difference between the conditions (6) and (7).

The problem of existence and uniqueness of solutions of the problem $\mathcal{P}_{\mathcal{E}}$ for d = 2, 3 was studied in [6] and [9]. For $u_0 \in L^2(\Omega)$ the local existence and uniqueness of solution was proved. The existence of global-in-time solutions was obtained in [6] for d = 2, and in [9] for the three-dimensional radially symmetric case under some assumptions on the initial density and temperature. The solutions of the model under consideration may exhibit finite time blow-up for large initial data [6], [9]. The structure of the set of stationary solutions of the problem $\mathcal{P}_{\mathcal{E}}$ was investigated in [1] and [5].

Our aim is to prove that for some initial distribution of mass u_0 and initial temperature ϑ_0 (or fixed energy \mathcal{E}), the solution converges to the unique stationary state.

2. Radially symmetric solutions. We consider radially symmetric solutions of the system (1)–(8) in the unit ball $\Omega = \{x \in \mathbb{R}^d : |x| \leq 1\}, d = 2, 3$. Hence, we may assume

(9)
$$\varphi(x,t) = 0 \quad \text{for } |x| = 1.$$

Following [2] we write the problem $\mathcal{P}_{\mathcal{E}}$ in terms of the integrated density

$$Q(r,t) := \int_{B_r(0)} u(x,t) \, dx \quad \text{ for } r \in (0,1] \text{ and } t \in [0,T), \ T \le \infty.$$

Let σ_d denote the area of the unit sphere in \mathbb{R}^d . Rescaling $t := (d/\sigma_d)t$ and $\vartheta := d\sigma_d \vartheta$, we obtain as in [9] (cf. also [2]), for Q(y,t) := Q(r,t) with $y = r^d$, the equation

(10)
$$Q_t = y^{2-2/d}\vartheta(t)Q_{yy} + QQ_y$$

for $(y,t) \in D_T = \{(y,t) : y \in (0,1), t \in (0,T)\}.$

Using the variable Q we transform the energy relation (8) into the form

(11)
$$\mathcal{E} = \vartheta(t) - \frac{1}{2} \int_{0}^{1} Q^{2}(y, t) y^{2/d-2} \, dy,$$

where $\mathcal{E} := d\sigma_d \mathcal{E}$.

The equation (10) is supplemented with the boundary conditions

(12)
$$Q(0,t) = 0, \quad Q(1,t) = 1, \quad \text{for } t \in [0,T),$$

and the initial data

(13)
$$Q(y,0) = Q_0(y) := \int_{B_r(0)} u_0(x) \, dx$$

The equation (10), boundary conditions (12), initial data (13) and a given total energy (11) define the problem $Q_{\mathcal{E}}$.

Formally, the transformation of $\mathcal{P}_{\mathcal{E}}$ to $\mathcal{Q}_{\mathcal{E}}$ allows us to consider densities u from L^1 , which was not possible in the framework of the L^2 theory used in [6], [9]. In our case, we stress that the problem $\mathcal{Q}_{\mathcal{E}}$ plays only an auxiliary role, i.e. each solution Q we take into account comes from a density u. Here, remember that $Q_y = (\sigma_d/d)u$.

We prove our main result:

THEOREM 2.1. Assume that the initial data Q_0 and the energy \mathcal{E} are chosen so that

(a) the stationary solution Q^s , ϑ^s of the problem $\mathcal{Q}_{\mathcal{E}}$ is unique,

(b) the problem $\mathcal{Q}_{\mathcal{E}}$ has a global solution $Q(y,t), \vartheta(t)$ with the uniformly bounded derivative Q_y ,

(c) the temperature $\vartheta(t)$ satisfies $0 < c \le \vartheta(t) \le C < \infty$.

Then Q(y,t) tends to Q^s uniformly on [0,1] and $\vartheta(t)$ converges to ϑ^s as $t \to \infty$.

Proof. The idea of the proof comes from [11], where a simpler case of electrically repulsing particles has been considered.

We introduce the entropy functional W for the problem $\mathcal{Q}_{\mathcal{E}}$ by

(14)
$$W(t) := \int_{0}^{1} Q_y \log Q_y \, dy - \log \vartheta.$$

Note that W(t) is well defined and bounded from below for the solutions satisfying the conditions (b) and (c).

Observing that

$$W'(t) = \int_{0}^{1} (Q_t)_y (\log Q_y + 1) \, dy - \frac{\vartheta_t}{\vartheta}$$

and integrating by parts we get

(15)
$$W'(t) = -\int_{0}^{1} Q_t \frac{Q_{yy}}{Q_y} dy - \frac{\vartheta_t}{\vartheta} = -\int_{0}^{1} Q_t \left(\frac{Q_{yy}}{Q_y} + \frac{1}{\vartheta} Qy^{2/d-2}\right) dy$$
$$= -\int_{0}^{1} \frac{Q_t^2}{Q_y \vartheta} y^{2/d-2} dy \le 0.$$

Hence W is the Lyapunov functional for the problem $\mathcal{Q}_{\mathcal{E}}$.

Since W is bounded from below, there exists a sequence $t_m \to \infty$ such that $W'(t_m) \to 0$ as $m \to \infty$. We prove that $Q(y, t_m)$ tends to the stationary solution. Set

(16)
$$A(y, t_m)$$

$$:= \int_{0}^{y} Q_t(v, t_m) \, dv = \int_{0}^{y} (v^{2-2/d} \vartheta(t) Q_{yy}(v, t) + Q(v, t) Q_y(v, t)) \, dv.$$

Integrating by parts we have

$$\begin{aligned} A(y,t_m) &= y^{2-2/d} \vartheta(t_m) Q_y(y,t_m) - \left(2 - \frac{2}{d}\right) y^{1-2/d} \vartheta(t_m) Q(y,t_m) \\ &+ \left(2 - \frac{2}{d}\right) \left(1 - \frac{2}{d}\right) \int_0^y v^{-2/d} \vartheta(t_m) Q(v,t_m) \, dv + \frac{1}{2} \, Q^2(y,t_m). \end{aligned}$$

It follows from our assumptions imposed on Q_y and ϑ that

$$\int_{0}^{1} \frac{Q_t^2}{Q_y \vartheta} \, y^{2/d-2} \, dy \ge C \int_{0}^{y} |Q_t| \, dy$$

for some C > 0. Hence

(17) $W'(t_m) \le -C|A(y,t_m)|.$

Thus $A(y, t_m)$ tends to 0 as $m \to \infty$. The family $Q(\cdot, t_m)$ is compact in C^0 topology and $\vartheta(t_m)$ is bounded, so we may assume that $Q(\cdot, t_m) \to \overline{Q}(\cdot)$ uniformly on [0, 1] and $\vartheta(t_m)$ converges to $\overline{\vartheta}$. Again, from $A(y, t_m) \to 0$, we conclude that $Q_y(\cdot, t_m)$ converges almost uniformly on (0, 1] to \overline{Q}_y , and \overline{Q} satisfies

$$y^{2-2/d}\overline{\vartheta}\overline{Q}_{y} - \left(2 - \frac{2}{d}\right)y^{1-2/d}\overline{\vartheta}\overline{Q} + \left(2 - \frac{2}{d}\right)\left(1 - \frac{2}{d}\right)\int_{0}^{y} v^{-2/d}\overline{\vartheta}\overline{Q}(v)\,dv + \frac{1}{2}\,\overline{Q}^{2}(y) = 0.$$

Differentiating the above formula with respect to y we see that $y^{2-2/d}\overline{\partial}\overline{Q}_{yy} + \overline{Q}\overline{Q}_y = 0$, so \overline{Q} , $\overline{\vartheta}$ is the unique stationary solution Q^s , ϑ^s of the problem $\mathcal{Q}_{\mathcal{E}}$.

Now we assume that $\{s_m\}$ is an arbitrary sequence which goes to ∞ . Since W(t) is bounded, there exists a sequence $\{t_m\}$ such that $|t_m - s_m| \to 0$, $W'(t_m) \to 0$ and $|W(t_m) - W(s_m)| \to 0$ as $m \to \infty$. We may assume that the whole sequence $Q(\cdot, s_m)$ tends to Q_1 , and as we proved above $Q(\cdot, t_m)$ goes to Q^s . We have to show that $Q_1 = Q^s$. From (15) we get

(18)
$$|W(t_m) - W(s_m)| = \int_0^1 \int_{s_m}^{t_m} \frac{Q_t^2}{Q_y \vartheta} y^{2/d-2} dt dy \to 0 \quad \text{as } m \to \infty.$$

We derive from (18) that $\int_0^1 \int_{s_m}^{t_m} |Q_t| dt dy \to 0$, hence

$$\int_{0}^{1} |Q(y,s_m) - Q(y,t_m)| \, dy \le \int_{0}^{1} \int_{t_m}^{s_m} |Q_t| \, dt \, dy \to 0.$$

Thus, $Q_1 = Q^s$. From the energy equation (11) we conclude that $\vartheta \to \vartheta^s$ as $t \to \infty$.

Now our aim is to show that for some values of the energy \mathcal{E} and the initial data Q_0 the assumptions of Theorem 2.1 are satisfied.

LEMMA 2.2. For sufficiently large energy \mathcal{E} there exists a unique stationary solution Q^s , ϑ^s of the problem $\mathcal{Q}_{\mathcal{E}}$.

 $\mathit{Proof.}$ We introduce the new function $\overline{Q}:=Q^s/\vartheta^s$ which satisfies the equation

(19)
$$y^{2-2/d}\overline{Q}_{yy} + \overline{Q}\overline{Q}_y = 0 \quad \text{for } y \in (0,1),$$

and the boundary conditions

(20)
$$\overline{Q}(0) = 0, \quad \overline{Q}(1) = 1/\vartheta^s.$$

For d = 2 the problem (19)–(20) is integrable, and the unique solution is

$$\overline{Q}(y) = \frac{2Cy}{1+Cy}$$
, where $C = \frac{1}{2\vartheta^s - 1}$, $\vartheta^s > 1/2$.

To obtain the uniqueness of a stationary solution of the problem $\mathcal{Q}_{\mathcal{E}}$ observe that the energy of \overline{Q} ,

$$\mathcal{E}(\vartheta^s) = \kappa \vartheta^s - \frac{1}{2} \int_0^{1/(2\vartheta^s - 1)} \left(\frac{2v}{1+v}\right)^2 \frac{1}{v} \, dv,$$

is an increasing function of ϑ^s and $\lim_{\vartheta^s \to \infty} \mathcal{E}(\vartheta^s) = \infty$, $\lim_{\vartheta^s \to 1/2} \mathcal{E}(\vartheta^s) = -\infty$.

The three-dimensional case is more complicated. For the proof we introduce the new variables [2]

$$v = 9y^{2/3}\overline{Q}_y, \quad w = 3y^{-1/3}Q, \quad y = e^{3\tau}.$$

A simple computation shows that v, w satisfy the system of equations

(21)
$$v' = (2 - w)v, \quad w' = v - w,$$

where the prime denotes $d/d\tau$. The boundary data (20) take the form $w(-\infty) = 0, w(0) = 1/\theta^s$. There is a unique trajectory (v, w) of (21) with

 $w \ge 0$ which satisfies these boundary conditions (cf. an analogous reasoning in [2]).

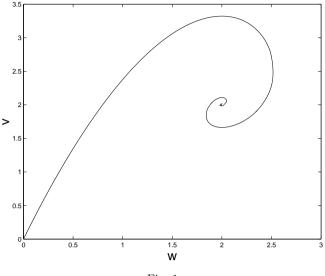


Fig. 1

To finish the proof note that for sufficiently large ϑ^s the energy of the unique solution,

$$\mathcal{E}(\vartheta^s) = \vartheta^s - \int_{-\infty}^0 w^2(\tau) e^{\tau} \, d\tau,$$

is an increasing function of ϑ^s .

LEMMA 2.3. For sufficiently large \mathcal{E} and bounded Q_0' the temperature satisfies

(22)
$$0 < c \le \vartheta(t) \le C < \infty \quad for \ t > 0.$$

Proof. The estimate from below for ϑ was proved in [9, Proposition 5.4] for the radially symmetric case and in [6, Lemma 2.1] for general domains. The estimate from above valid for any initial data is specific to the system in two-dimensional bounded domains [6, Lemma 2.2]. In the three-dimensional situation, [9, Theorem 5.5] states that for bounded Q'_0 and sufficiently large energy \mathcal{E} the inequalities (22) are satisfied.

In the next result we provide a class of initial data for the problem $Q_{\mathcal{E}}$ which gives a bound for Q_y uniform in time.

LEMMA 2.4. If $Q'_0 < Q_0/y$ for $y \in (0,1]$, then the solution Q, ϑ of the problem $\mathcal{Q}_{\mathcal{E}}$ satisfies

$$Q_y \leq Q/y$$
 in D_T .

Proof. Denote by b the auxiliary quantity b(y,t) := Q(y,t)/y. It is easy to show that

(23)
$$b_t = \vartheta y^{2-2/d} b_{yy} + (2\vartheta y^{1-2/d} + yb) b_y + b^2.$$

Following the ideas of [10], we define $w := yQ_y - Q$, which satisfies

$$w_t = y^{1-2/d} \vartheta w_{yy} + \left(b_y - \frac{2}{d}\vartheta\right) w_y + (yb_y + b)w.$$

To apply the maximum principle [12, Lemma 2.1] we should check that $w(0,t) \leq 0, w(y,0) \leq 0, w(1,t) \leq 0$ and yb_y+b is a bounded function on \overline{D}_T . The first two inequalities follow from the assumptions on Q_0 and Q (recall that Q is the integrated density). To prove $w(1,t) \leq 0$, note that b(y,t) > 1 for y < 1. In fact, b(1,t) = 1 and $(b(y,0))' = (Q_0(y)/y)' < 0$. Hence, $b(\cdot,t)$ is a decreasing function for $t \in (0,\delta), 0 < \delta < T$. Thus, 1 < b(0,t). It is easy to check that the constant function equal to 1 is a subsolution of (23) on $[0,1] \times [0,\delta)$. The strong maximum principle implies that $b(y,\delta) > 1$ for y < 1. Thus 1 is a subsolution on D_T .

Applying the Hopf maximum principle we find that $b_y(1,t) = Q_y - Q = w(1,t) < 0$. Since the initial data $(Q_0)' = u_0 \sigma_d/d$ is bounded, by the theorem on the regularity of solutions of parabolic systems (cf. [3, Theorem 2]) we get the local bound on $yb_y + b = Q_y = u\sigma_d/d$.

Now we prove the existence of initial data which guarantee the existence of global solutions with bounded Q_y and the temperature ϑ . We begin with the three-dimensional case. It was shown in [9, Theorem 5.5] that if $(Q_0)'$ is bounded, the initial temperature ϑ_0 is sufficiently large and there exists B > 0 such that

$$Q_0(y) \le \frac{y(1+B)}{y^{1/3}+B}$$

then there exists a global solution Q, ϑ which satisfies

(24)
$$Q(y,t) \le \frac{y(1+B)}{y^{2/3}+B}, \quad 0 < c < \vartheta < C.$$

Obviously, we can also assume that $(Q_0)' \leq Q_0/y$, and if the initial temperature is sufficiently large, we can guarantee that the energy \mathcal{E} is as large as we wish.

For example $Q_0(y) = y$, i.e. $u_0(x) = 3\pi/4$, and $\vartheta \gg 1$ satisfy the assumptions of Theorem 2.1.

In the proof of the existence of Q satisfying (24) the following auxiliary lemmas are used.

LEMMA 2.5 ([9, Proposition 5.3]). Suppose Q^i , i = 1, 2, is a solution of the problem

(25) $Q_t^i = y^{1-2/d} \vartheta^i(t) Q_{yy} + QQ_y,$ $Q^i(y,0) = Q_0^i, \quad Q_i(0,t) = 0, \quad Q_i(1,t) = 1,$

with a fixed continuous $\vartheta^i(t) > \delta > 0$. If $\vartheta^1(t) \le \vartheta^2(t)$, $Q_0^1 \ge Q_0^2$, and either Q_y^1 or Q_y^2 is bounded, then $Q^1 \ge Q^2$.

LEMMA 2.6 ([9, Proposition 5.4]). Let Q, ϑ be a solution of $\mathcal{Q}_{\mathcal{E}}$ with the initial data Q_0, ϑ_0 . Then

$$\vartheta(t) \ge \vartheta_0 \exp\left(-\int_0^1 Q_0' \log Q_0'\right).$$

These lemmas together with Lemma 2.4 guarantee the existence of initial data satisfying the assumptions of Theorem 2.1 in the two-dimensional case.

REMARK. In fact, [9, Propositions 5.3 and 5.4] was proved for d = 3, but it is easy to check that the arguments used in the proofs work for all d > 1.

LEMMA 2.7. Let d = 2. There exist initial data Q_0 and ϑ_0 such that the solution Q(y,t) of $Q_{\mathcal{E}}$ is global in time and satisfies

(26)
$$Q(y,t) \le \frac{Ay}{y^2 + B}$$
 for some positive constants A, B .

Proof. Consider the auxiliary problem

(27)
$$q_t = y \vartheta q_{yy} + q q_y, \quad q(0,t) = 0, \quad q(1,t) = 1, \quad q(y,0) = q_0(y)$$

with a given constant $\tilde{\vartheta} > 1/(8\pi)$. Putting $\tau = t\tilde{\vartheta}$, $q = \tilde{\vartheta}\bar{q}$, we transform (27) into the problem

(28)
$$\begin{aligned} \bar{q}_{\tau} &= y\bar{q}_{yy} + \bar{q}\bar{q}_{y}, \\ \bar{q}(0,\tau) &= 0, \quad \bar{q}(1,\tau) = 1/\widetilde{\vartheta}, \quad \bar{q}(y,0) = q_{0}(y)/\widetilde{\vartheta} =: \bar{q}_{0}(y). \end{aligned}$$

It follows from [4, Theorem 1(ii)] that if $\bar{q}'_0(y) \leq AB/(y+B)^2$ for some $A < 8\pi, B > 0, B(8 - A/\pi) \geq 16$, and $\bar{q}_0(y) \geq y^k/\tilde{\vartheta}$ for some $k \geq 1$, then the problem (28) has a solution \bar{q} such that \bar{q}_y is uniformly bounded and $\bar{q}(y,\tau) \leq Cy/(y^2+B)$ (cf. the proof of [4, Theorem 1]). Hence

$$q(y,t) \le \frac{Ay}{y^2 + B},$$

where $A = \tilde{\vartheta}C$.

Now we choose the initial data Q_0 , ϑ_0 such that $\vartheta(t) \ge 1/(8\pi)$ (cf. Lemma 2.6). It follows from the comparison principle (Lemma 2.5) that the solution Q(y,t) of (10)–(13) satisfies the estimates

$$Q(y,t) \le q(y,t) \le \frac{Ay}{y^2 + B}. \quad \bullet$$

Using Lemmas 2.7 and 2.4 we are able to construct the initial data which guarantee the existence of global solutions converging to the stationary state, for example for d = 2, $Q_0(y) = y$ and $\vartheta_0 > 1/(8\pi)$ will do.

Acknowledgements. The preparation of this paper was partially supported by the KBN grant 2/PO3A/011/19 and by the EU network HYKE under the contract HPRN-CT-2002-00282.

We thank Piotr Biler and Andrzej Raczyński for interesting discussions during the preparation of this paper.

REFERENCES

- P. Biler, J. Dolbeault, M. J. Esteban, P. A. Markowich and T. Nadzieja, Steady states for Streater's energy-transport models of self-gravitating particles, in: IMA Vol. Math. Appl. 135, Springer, 2003, 37–56.
- [2] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297–308.
- [3] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319–334.
- [4] —, —, Growth and accretion of mass in an astrophysical model II, Appl. Math. (Warsaw) 23 (1995), 351–361.
- [5] —, —, Structure of steady states for Streater's energy-transport models of gravitating particles, Topol. Methods Nonlinear Anal. 19 (2002), 283–301.
- [6] —, —, Global and exploding solutions in a model of self-gravitating systems, Rep. Math. Phys., in print.
- [7] P.-H. Chavanis, C. Rosier and C. Sire, *Thermodynamics of self-gravitating systems*, Phys. Rev. E 66 (2002), 0360105.
- P.-H. Chavanis, J. Sommeria and R. Robert, Statistical mechanics of two-dimensional vortices and collisionless stellar systems, Astrophys. J. 471 (1996), 385–399.
- [9] C. J. van Duijn, I. A. Guerra and M. A. Peletier, *Global existence conditions for a non-local problem arising in statistical mechanics*, Adv. Diff. Equations, submitted.
- [10] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425–447.
- T. Nadzieja and A. Raczyński, A singular radially symmetric problem in electrolytes theory, Appl. Math. (Warsaw) 25 (1998), 101–112.
- [12] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

Centrum voor Wiskunde en Informatica	Institute of Mathematics
PO Box 94079	University of Zielona Góra
1090 GB Amsterdam, The Netherlands	Szafrana 4a
E-mail: ignague@yahoo.com	65-516 Zielona Góra, Poland
	E-mail: T.Nadzieja@im.uz.zgora.pl

Received 5 May 2003; revised 17 June 2003

(4339)