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CONVERGENCE TO STATIONARY SOLUTIONS
IN A MODEL OF SELF-GRAVITATING SYSTEMS

BY
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Abstract. We study convergence of solutions to stationary states in an astrophysical
model of evolution of clouds of self-gravitating particles.

1. Introduction. In this paper we study asymptotic properties of solu-
tions of the system introduced in [8], [7] for describing the temporal evolution
of the density u(x, t) ≥ 0 and the uniform-in-space temperature ϑ(t) > 0
of a cloud of self-gravitating particles confined to a bounded subdomain
Ω ⊂ Rd, d = 2, 3.

This system consists of the continuity equation

ut(x, t) = div{ϑ(t)∇u(x, t) + u(x, t)∇ϕ(x, t)} in Ω × R+,(1)

coupled with the Poisson equation

∆ϕ(x, t) = u(x, t) in Ω × R+,(2)

which gives the relation between the gravitational potential ϕ(x, t) and the
distribution of mass u(x, t).

The equations (1)–(2) are supplemented with the no-flux boundary con-
dition

(ϑ(t)∇u+ u∇ϕ) · ~ν = 0 on ∂Ω × R+,(3)

and the initial data

u(x, 0) = u0(x) ≥ 0 in Ω.(4)

Here ~ν denotes the exterior normal vector to ∂Ω.
Without loss of generality, we assume that the total mass of the particles

is equal to one: �

Ω

u(x, t) dx =
�

Ω

u0(x) dx = 1.(5)

The potential ϕ satisfies either the Dirichlet condition

ϕ(x, t) = 0 for x ∈ ∂Ω(6)
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or the physically acceptable “free” condition

ϕ = Ed ? u,(7)

where Ed is the fundamental solution of the Laplacian in Rd.
The total energy E is the sum of the thermal energy � Ω ϑ(t)u(x, t) dx

and the potential energy 1
2 � Ω u(x, t)ϕ(x, t) dx. For simplicity, we set all the

physical constants to be one. In our case � Ω u(x, t) dx = 1, hence the energy
E takes the form

E = ϑ(t) +
1
2

�

Ω

u(x, t)ϕ(x, t) dx.(8)

Its conservation permits one to determine the temperature ϑ(t), uniform
in Ω.

For a given energy level E , (1)–(8) is problem PE for the unknown quan-
tities u, ϕ, ϑ. Below we consider PE in the ball; in this case there is no
qualitative difference between the conditions (6) and (7).

The problem of existence and uniqueness of solutions of the problem PE
for d = 2, 3 was studied in [6] and [9]. For u0 ∈ L2(Ω) the local existence
and uniqueness of solution was proved. The existence of global-in-time so-
lutions was obtained in [6] for d = 2, and in [9] for the three-dimensional
radially symmetric case under some assumptions on the initial density and
temperature. The solutions of the model under consideration may exhibit
finite time blow-up for large initial data [6], [9]. The structure of the set of
stationary solutions of the problem PE was investigated in [1] and [5].

Our aim is to prove that for some initial distribution of mass u0 and
initial temperature ϑ0 (or fixed energy E), the solution converges to the
unique stationary state.

2. Radially symmetric solutions. We consider radially symmetric
solutions of the system (1)–(8) in the unit ball Ω = {x ∈ Rd : |x| ≤ 1},
d = 2, 3. Hence, we may assume

ϕ(x, t) = 0 for |x| = 1.(9)

Following [2] we write the problem PE in terms of the integrated density

Q(r, t) :=
�

Br(0)

u(x, t) dx for r ∈ (0, 1] and t ∈ [0, T ), T ≤ ∞.

Let σd denote the area of the unit sphere in Rd. Rescaling t := (d/σd)t and
ϑ := dσdϑ, we obtain as in [9] (cf. also [2]), for Q(y, t) := Q(r, t) with y = rd,
the equation

Qt = y2−2/dϑ(t)Qyy +QQy(10)

for (y, t) ∈ DT = {(y, t) : y ∈ (0, 1), t ∈ (0, T )}.
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Using the variable Q we transform the energy relation (8) into the form

E = ϑ(t)− 1
2

1�

0

Q2(y, t)y2/d−2 dy,(11)

where E := dσdE .
The equation (10) is supplemented with the boundary conditions

Q(0, t) = 0, Q(1, t) = 1, for t ∈ [0, T ),(12)

and the initial data

Q(y, 0) = Q0(y) :=
�

Br(0)

u0(x) dx.(13)

The equation (10), boundary conditions (12), initial data (13) and a
given total energy (11) define the problem QE .

Formally, the transformation of PE to QE allows us to consider densities
u from L1, which was not possible in the framework of the L2 theory used
in [6], [9]. In our case, we stress that the problem QE plays only an auxiliary
role, i.e. each solution Q we take into account comes from a density u. Here,
remember that Qy = (σd/d)u.

We prove our main result:

Theorem 2.1. Assume that the initial data Q0 and the energy E are
chosen so that

(a) the stationary solution Qs, ϑs of the problem QE is unique,
(b) the problem QE has a global solution Q(y, t), ϑ(t) with the uniformly

bounded derivative Qy,
(c) the temperature ϑ(t) satisfies 0 < c ≤ ϑ(t) ≤ C <∞.

Then Q(y, t) tends to Qs uniformly on [0, 1] and ϑ(t) converges to ϑs as
t→∞.

Proof. The idea of the proof comes from [11], where a simpler case of
electrically repulsing particles has been considered.

We introduce the entropy functional W for the problem QE by

W (t) :=
1�

0

Qy logQy dy − logϑ.(14)

Note that W (t) is well defined and bounded from below for the solutions
satisfying the conditions (b) and (c).

Observing that

W ′(t) =
1�

0

(Qt)y(logQy + 1) dy − ϑt
ϑ
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and integrating by parts we get

W ′(t) = −
1�

0

Qt
Qyy
Qy

dy − ϑt
ϑ

= −
1�

0

Qt

(
Qyy
Qy

+
1
ϑ
Qy2/d−2

)
dy(15)

= −
1�

0

Q2
t

Qyϑ
y2/d−2 dy ≤ 0.

Hence W is the Lyapunov functional for the problem QE .
Since W is bounded from below, there exists a sequence tm → ∞ such

that W ′(tm)→ 0 as m→∞. We prove that Q(y, tm) tends to the stationary
solution. Set
(16) A(y, tm)

:=
y�

0

Qt(v, tm) dv =
y�

0

(v2−2/dϑ(t)Qyy(v, t) +Q(v, t)Qy(v, t)) dv.

Integrating by parts we have

A(y, tm) = y2−2/dϑ(tm)Qy(y, tm)−
(

2− 2
d

)
y1−2/dϑ(tm)Q(y, tm)

+
(

2− 2
d

)(
1− 2

d

) y�

0

v−2/dϑ(tm)Q(v, tm) dv +
1
2
Q2(y, tm).

It follows from our assumptions imposed on Qy and ϑ that
1�

0

Q2
t

Qyϑ
y2/d−2 dy ≥ C

y�

0

|Qt| dy

for some C > 0. Hence
W ′(tm) ≤ −C|A(y, tm)|.(17)

Thus A(y, tm) tends to 0 as m→∞. The family Q(·, tm) is compact in C0

topology and ϑ(tm) is bounded, so we may assume that Q(·, tm) → Q(·)
uniformly on [0, 1] and ϑ(tm) converges to ϑ. Again, from A(y, tm)→ 0, we
conclude that Qy(·, tm) converges almost uniformly on (0, 1] to Qy, and Q
satisfies

y2−2/dϑQy −
(

2− 2
d

)
y1−2/dϑQ

+
(

2− 2
d

)(
1− 2

d

) y�

0

v−2/dϑQ(v) dv +
1
2
Q

2
(y) = 0.

Differentiating the above formula with respect to y we see that y2−2/dϑQyy+
QQy = 0, so Q, ϑ is the unique stationary solution Qs, ϑs of the problemQE .

Now we assume that {sm} is an arbitrary sequence which goes to ∞.
Since W (t) is bounded, there exists a sequence {tm} such that |tm−sm| → 0,
W ′(tm) → 0 and |W (tm) −W (sm)| → 0 as m → ∞. We may assume that
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the whole sequence Q(·, sm) tends to Q1, and as we proved above Q(·, tm)
goes to Qs. We have to show that Q1 = Qs. From (15) we get

|W (tm)−W (sm)| =
1�

0

tm�

sm

Q2
t

Qyϑ
y2/d−2 dt dy → 0 as m→∞.(18)

We derive from (18) that � 1
0 � tmsm |Qt| dt dy → 0, hence

1�

0

|Q(y, sm)−Q(y, tm)| dy ≤
1�

0

sm�

tm

|Qt| dt dy → 0.

Thus, Q1 = Qs. From the energy equation (11) we conclude that ϑ→ ϑs as
t→∞.

Now our aim is to show that for some values of the energy E and the
initial data Q0 the assumptions of Theorem 2.1 are satisfied.

Lemma 2.2. For sufficiently large energy E there exists a unique station-
ary solution Qs, ϑs of the problem QE .

Proof. We introduce the new function Q := Qs/ϑs which satisfies the
equation

y2−2/dQyy +QQy = 0 for y ∈ (0, 1),(19)

and the boundary conditions

Q(0) = 0, Q(1) = 1/ϑs.(20)

For d = 2 the problem (19)–(20) is integrable, and the unique solution is

Q(y) =
2Cy

1 + Cy
, where C =

1
2ϑs − 1

, ϑs > 1/2.

To obtain the uniqueness of a stationary solution of the problem QE observe
that the energy of Q,

E(ϑs) = κϑs − 1
2

1/(2ϑs−1)�

0

(
2v

1 + v

)2 1
v
dv,

is an increasing function of ϑs and limϑs→∞ E(ϑs) = ∞, limϑs→1/2 E(ϑs) =
−∞.

The three-dimensional case is more complicated. For the proof we intro-
duce the new variables [2]

v = 9y2/3Qy, w = 3y−1/3Q, y = e3τ .

A simple computation shows that v, w satisfy the system of equations

v′ = (2− w)v, w′ = v − w,(21)

where the prime denotes d/dτ . The boundary data (20) take the form
w(−∞) = 0, w(0) = 1/θs. There is a unique trajectory (v, w) of (21) with
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w ≥ 0 which satisfies these boundary conditions (cf. an analogous reasoning
in [2]).
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To finish the proof note that for sufficiently large ϑs the energy of the
unique solution,

E(ϑs) = ϑs −
0�

−∞
w2(τ)eτ dτ,

is an increasing function of ϑs.

Lemma 2.3. For sufficiently large E and bounded Q′0 the temperature
satisfies

0 < c ≤ ϑ(t) ≤ C <∞ for t > 0.(22)

Proof. The estimate from below for ϑ was proved in [9, Proposition 5.4]
for the radially symmetric case and in [6, Lemma 2.1] for general domains.
The estimate from above valid for any initial data is specific to the system in
two-dimensional bounded domains [6, Lemma 2.2]. In the three-dimensional
situation, [9, Theorem 5.5] states that for bounded Q′0 and sufficiently large
energy E the inequalities (22) are satisfied.

In the next result we provide a class of initial data for the problem QE
which gives a bound for Qy uniform in time.

Lemma 2.4. If Q′0 < Q0/y for y ∈ (0, 1], then the solution Q,ϑ of the
problem QE satisfies

Qy ≤ Q/y in DT .
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Proof. Denote by b the auxiliary quantity b(y, t) := Q(y, t)/y. It is easy
to show that

bt = ϑy2−2/dbyy + (2ϑy1−2/d + yb)by + b2.(23)

Following the ideas of [10], we define w := yQy −Q, which satisfies

wt = y1−2/dϑwyy +
(
by −

2
d
ϑ

)
wy + (yby + b)w.

To apply the maximum principle [12, Lemma 2.1] we should check that
w(0, t) ≤ 0, w(y, 0) ≤ 0, w(1, t) ≤ 0 and yby+b is a bounded function on DT .
The first two inequalities follow from the assumptions on Q0 and Q (recall
that Q is the integrated density). To prove w(1, t) ≤ 0, note that b(y, t) > 1
for y < 1. In fact, b(1, t) = 1 and (b(y, 0))′ = (Q0(y)/y)′ < 0. Hence, b(·, t)
is a decreasing function for t ∈ (0, δ), 0 < δ < T . Thus, 1 < b(0, t). It is
easy to check that the constant function equal to 1 is a subsolution of (23)
on [0, 1]× [0, δ). The strong maximum principle implies that b(y, δ) > 1 for
y < 1. Thus 1 is a subsolution on DT .

Applying the Hopf maximum principle we find that by(1, t) = Qy −Q =
w(1, t) < 0. Since the initial data (Q0)′ = u0σd/d is bounded, by the theorem
on the regularity of solutions of parabolic systems (cf. [3, Theorem 2]) we
get the local bound on yby + b = Qy = uσd/d.

Now we prove the existence of initial data which guarantee the existence
of global solutions with bounded Qy and the temperature ϑ. We begin with
the three-dimensional case. It was shown in [9, Theorem 5.5] that if (Q0)′

is bounded, the initial temperature ϑ0 is sufficiently large and there exists
B > 0 such that

Q0(y) ≤ y(1 +B)
y1/3 +B

,

then there exists a global solution Q, ϑ which satisfies

Q(y, t) ≤ y(1 +B)
y2/3 +B

, 0 < c < ϑ < C.(24)

Obviously, we can also assume that (Q0)′ ≤ Q0/y, and if the initial temper-
ature is sufficiently large, we can guarantee that the energy E is as large as
we wish.

For example Q0(y) = y, i.e. u0(x) = 3π/4, and ϑ � 1 satisfy the as-
sumptions of Theorem 2.1.

In the proof of the existence of Q satisfying (24) the following auxiliary
lemmas are used.

Lemma 2.5 ([9, Proposition 5.3]). Suppose Qi, i = 1, 2, is a solution of
the problem
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Qit = y1−2/dϑi(t)Qyy +QQy,

Qi(y, 0) = Qi0, Qi(0, t) = 0, Qi(1, t) = 1,
(25)

with a fixed continuous ϑi(t) > δ > 0. If ϑ1(t) ≤ ϑ2(t), Q1
0 ≥ Q2

0, and either
Q1
y or Q2

y is bounded , then Q1 ≥ Q2.

Lemma 2.6 ([9, Proposition 5.4]). Let Q, ϑ be a solution of QE with the
initial data Q0, ϑ0. Then

ϑ(t) ≥ ϑ0 exp
(
−

1�

0

Q′0 logQ′0
)
.

These lemmas together with Lemma 2.4 guarantee the existence of initial
data satisfying the assumptions of Theorem 2.1 in the two-dimensional case.

Remark. In fact, [9, Propositions 5.3 and 5.4] was proved for d = 3,
but it is easy to check that the arguments used in the proofs work for all
d > 1.

Lemma 2.7. Let d = 2. There exist initial data Q0 and ϑ0 such that the
solution Q(y, t) of QE is global in time and satisfies

Q(y, t) ≤ Ay

y2 +B
for some positive constants A,B.(26)

Proof. Consider the auxiliary problem

qt = yϑ̃qyy + qqy, q(0, t) = 0, q(1, t) = 1, q(y, 0) = q0(y)(27)

with a given constant ϑ̃ > 1/(8π). Putting τ = tϑ̃, q = ϑ̃q, we transform
(27) into the problem

qτ = yqyy + qqy,

q(0, τ) = 0, q(1, τ) = 1/ϑ̃, q(y, 0) = q0(y)/ϑ̃ =: q0(y).
(28)

It follows from [4, Theorem 1(ii)] that if q′0(y) ≤ AB/(y + B)2 for some
A < 8π, B > 0, B(8 − A/π) ≥ 16, and q0(y) ≥ yk/ϑ̃ for some k ≥ 1, then
the problem (28) has a solution q such that qy is uniformly bounded and
q(y, τ) ≤ Cy/(y2 +B) (cf. the proof of [4, Theorem 1]). Hence

q(y, t) ≤ Ay

y2 +B
,

where A = ϑ̃C.
Now we choose the initial data Q0, ϑ0 such that ϑ(t) ≥ 1/(8π) (cf.

Lemma 2.6). It follows from the comparison principle (Lemma 2.5) that the
solution Q(y, t) of (10)–(13) satisfies the estimates

Q(y, t) ≤ q(y, t) ≤ Ay

y2 +B
.
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Using Lemmas 2.7 and 2.4 we are able to construct the initial data which
guarantee the existence of global solutions converging to the stationary state,
for example for d = 2, Q0(y) = y and ϑ0 > 1/(8π) will do.
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