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ON STABLE CURRENTS IN
POSITIVELY PINCHED CURVED HYPERSURFACES

BY

JINTANG LI (Xiammen)

Abstract. Let Mn (n ≥ 3) be an n-dimensional complete hypersurface in a real
space form N(c) (c ≥ 0). We prove that if the sectional curvature KM of M satisfies the
following pinching condition: c + δ < KM ≤ c + 1, where δ = 1

5 for n ≥ 4 and δ = 1
4

for n = 3, then there are no stable currents (or stable varifolds) in M . This is a positive
answer to the well-known conjecture of Lawson and Simons.

1. Introduction. The following conjecture is well known:

Conjecture. There are no stable currents (or stable varifolds) in a
compact, simply connected 1

4 -pinched Riemannian manifold.

In connection with this conjecture, Y. B. Shen and Q. He proved the
following:

Theorem A ([3]). Let N(c) be a real space form with constant sectional
curvature c (c ≥ 0) and M ↪→ N(c) be an n-dimensional (n ≥ 3) complete
hypersurface immersed in N(c). If the sectional curvature KM of M satisfies
the following pinching condition:

c+ δ < KM ≤ c+ 1,

where δ = 1
5 for n ≥ 7, δ = 1

4 for n = 5, 6 and δ = 1
3 for n = 3, 4, then there

are no stable currents (or stable varifolds) in M .

In this paper, we prove the following theorem which is a positive answer
to the above conjecture on complete pinched hypersurfaces immersed in a
real space form.

Theorem. Let N(c) be a real space form with constant sectional cur-
vature c (c ≥ 0) and M ↪→ N(c) be an n-dimensional (n ≥ 3) complete
hypersurface immersed in N(c). If the sectional curvature KM of M satis-
fies the following pinching condition:

c+ δ < KM ≤ c+ 1,

2000 Mathematics Subject Classification: Primary 53C42; Secondary 58A25.
Key words and phrases: currents, hypersurfaces, stable.

[79]



80 J. T. LI

where δ = 1
5 for n ≥ 4 and δ = 1

4 for n = 3, then there are no stable currents
(or stable varifolds) in M .

2. Preliminaries. From now on we make use of the following conven-
tion on ranges of indices unless otherwise stated:

1 ≤ α, β, . . . ≤ n; 1 ≤ i, j, . . . ≤ p; p+ 1 ≤ r, s, . . . ≤ n.
The following proposition is well known from [1]:

Proposition 2.1. Let N(c) be a real space form with constant sectional
curvature c (c ≥ 0) and M ↪→ N(c) an n-dimensional compact submanifold
with the second fundamental form B in N(c). If for any point x ∈ M and
any local orthonormal frame field {ei, er} at x ∈M ,

(2.2) F (n, p) =
∑

i,r

{2‖B(ei, er)‖2 − 〈B(ei, ei), B(er, er)〉} < p(n− p)c,

where 0 < p < n, then there are no stable p-currents (or stable p-varifolds)
in M .

Let x ∈M be an arbitrary point and let {λα} be the principal curvatures
of M corresponding to the principal direction vectors {eα} which form an
orthonormal basis at x. For any local orthonormal frame field {eα} at x ∈M ,
there is an orthogonal matrix (aβα) such that

(2.3) eα =
∑

β

aβαeβ .

In the following, all calculations will be made at x. It can be seen from (2.2)
and (2.3) that

(2.4) F (n, p) =
∑

α,i,r

(λαaαi a
α
r )2 − F1 − F2,

where

F1 =
∑

α6=β
λαλβ

{(∑

i

aαi a
β
i

)2
+
(∑

r

aαr a
β
r

)2}
,(2.5)

F2 =
∑

α6=β
i,r

λαλβ(aαi a
β
r )2.(2.6)

We may always assume that at x ∈M ,

(2.7) 0 < λ1 ≤ λ2 ≤ . . . ≤ λn.
We need the following lemma:

Lemma 2.2.
F1 ≥ 2λ1

∑

α6=1
i,r

λα(aαi a
α
r )2 + 2λ1λ2

∑

i,r

(a1
i a

1
r)

2.
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Proof. By using (2.7) and the fact that the matrix (aβα) is orthogonal,
we have

(2.8)
∑

β 6=1

λ1λβ

{(∑

i

a1
i a
β
i

)2
+
(∑

r

a1
ra
β
r

)2}

≥
∑

β 6=1

λ1λ2

{(∑

i

a1
i a
β
i

)2
+
(∑

r

a1
ra
β
r

)2}
= 2λ1λ2

∑

i,r

(a1
i a

1
r)

2.

For all α 6= 1,

(2.9)
∑

β 6=α
λαλβ

{(∑

i

aαi a
β
i

)2
+
(∑

r

aαr a
β
r

)2}

≥
∑

β 6=α
λ1λα

{(∑

i

aαi a
β
i

)2
+
(∑

r

aαr a
β
r

)2}
= 2λ1λα

∑

i,r

(aαi a
α
r )2.

The assertion follows from (2.5), (2.8) and (2.9) immediately.

Lemma 2.3.

F2 ≥
n− 1
n

{
λ1λ2 + λ1

∑

α6=1

λα

}
− λ1λ2

∑

i,r

(a1
i a

1
r)

2 − λ1

∑

α6=1
i,r

λα(aαi a
α
r )2.

Proof. For all α 6= 1, we have
∑

β 6=α
i,r

λαλβ(aαi a
β
r )2 ≥

∑

β 6=α
i,r

λαλ1(aαi a
β
r )2(2.10)

= λ1λα(n− p)
∑

i

(aαi )2 − λ1λα
∑

i,r

(aαi a
α
r )2,

and
∑

β 6=1
i,r

λ1λβ(a1
i a
β
r )2 ≥ λ1λ2

∑

β 6=1
i,r

(a1
i a
β
r )2(2.11)

= λ1λ2(n− p)
∑

i

(a1
i )

2 − λ1λ2

∑

i,r

(a1
i a

1
r)

2.

It follows from (2.6), (2.10) and (2.11) that

F2 ≥ (n− p)
{
λ1λ2

∑

i

(a1
i )

2 + λ1

∑

α6=1
i

λα(aαi )2
}

(2.12)

− λ1λ2

∑

i,r

(a1
i a

1
r)

2 − λ1

∑

α6=1
i,r

λα(aαi a
α
r )2.
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On the other hand, we also have, for all β 6= 1,
∑

α6=β
i,r

λαλβ(aαi a
β
r )2 ≥ λ1λβp

∑

r

(aβr )2 − λ1λβ
∑

i,r

(aβi a
β
r )2,(2.13)

∑

α6=1
i,r

λαλ1(aαi a
1
r)

2 ≥ λ1λ2p
∑

r

(a1
r)

2 − λ1λ2

∑

i,r

(a1
i a

1
r)

2.(2.14)

Substituting (2.13) and (2.14) into (2.6),we get

F2 ≥ p
{
λ1λ2

∑

r

(a1
r)

2 + λ1

∑

β 6=1
r

λβ(aβr )2
}

(2.15)

− λ1λ2

∑

i,r

(a1
i a

1
r)

2 − λ1

∑

β 6=1
i,r

λβ(aβi a
β
r )2.

By (2.12)×p+(2.15)×(n− p), we obtain

F2 ≥
p(n− p)

n

{
λ1λ2 + λ1

∑

α6=1

λα

}

− λ1λ2

∑

i,r

(a1
i a

1
r)

2 − λ1

∑

α6=1
i,r

λα(aαi a
α
r )2.

Lemma 2.4.

F (n, p) ≤ −n− 1
n

λ1λ2 +
1
4

∑

α6=1

(
λ2
α −

5n− 4
n

λ1λα

)
.

Proof. By (2.4) and Lemmas 2.2 and 2.3, we have

F (n, p) ≤ − n− 1
n

{
λ1λ2 + λ1

∑

α6=1

λα

}
+
∑

i,r

(λ2
1 − λ1λ2)(a1

i a
1
r)

2(2.16)

+
∑

α6=1
i,r

(λ2
α − λ1λα)(aαi a

α
r )2.

Since the matrix (aβα) is orthogonal, we obtain

(2.17)
∑

i,r

(aαi a
α
r )2 ≤ 1

4

[∑

i

(aαi )2 +
∑

r

(aαr )2
]2

=
1
4
, ∀α.

From (2.16) and (2.17), the conclusion follows.

Lemma 2.5 ([3]). If ε2 = δ, then

(1) λα > ε for α 6= 1,
(2) λα ≤ 1 for α 6= n,
(3) λn < ε−1 and λ1 > ε2 if n ≥ 3.
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3. Proof of the Theorem. The proof is divided into two cases.

The first case. Suppose that λ1 < ε. Since ε < λn < ε−1, we consider six
subcases separately.

Subcase (1):
2
√

5
5ε
≤ λn <

1
ε
.

By (2.7) and the Gauss equation, we have

(3.1) λ1 ≥ ε2λn ≥
2
√

5
5

ε.

It can be seen from (3.1) that

(3.2)
5n− 4

2n
λ1 ≥

1
2

(
1
λn

+
ε2

λ1

)
.

For α 6= 1, n, we think of λ2
α − 5n−4

n λ1λα as a function of λα. By (3.2) we
obtain

(3.3) λ2
α −

5n− 4
n

λ1λα ≤
ε4

λ2
1
− 5n− 4

n
ε2.

Using (2.7), (3.3) and Lemma 2.4, we get

F (n, p) ≤ − n− 1
n

ε2 +
1
4
λ2
n −

5n− 4
4n

λ1λn(3.4)

+
1
4

∑

α6=1,n

{
ε4

λ2
1
− 5n− 4

n
ε2
}
≤ 1

4nλ2
1
f(λ1),

where

(3.5) f(λ1) =
nλ2

1

ε2 −
5n− 4
ε

λ3
1 − (5n2 − 10n+ 4)ε2λ2

1 + n(n− 2)ε4.

When λ1 ∈
[ 2
√

5
5 ε, ε

)
, f(λ1) is a decreasing function, so we have

(3.6) F (n, p) ≤ 1
4nλ2

1

{
4
5
n− 8

25

√
5(5n− 4)ε2

− 4
5

(5n2 − 10n+ 4)ε4 + n(n− 2)ε4
}
< 0.

Subcase (2):

√
15

5ε
≤ λn <

2
√

5
5ε

.

It is easy to see that

(3.7) λ1 ≥ ε2λn ≥
√

15
5

ε,

and hence

(3.8)
5n− 4

2n
λ1 ≥

1
2

(
1
λn

+
ε2

λ1

)
.
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From (2.7), (3.8) and Lemma 2.4, we obtain

(3.9) F (n, p)

≤ 1
4nλ2

1
{nλ2

nλ
2
1− (5n− 4)λ3

1λn− (5n2−10n+ 4)ε2λ2
1 +n(n− 2)ε4}

≤ 1
4nλ2

1
g(λ1),

where

(3.10) g(λ1) =
4n
5ε2λ

2
1−

2
√

5
5ε

(5n−4)λ3
1−(5n2−10n+4)ε2λ2

1+n(n−2)ε4.

When λ1 ∈ [
√

15
5 ε, ε), g(λ1) is a decreasing function,so we have

(3.11) F (n, p) ≤ 1
4nλ2

1

{
12
25
n− 6

√
3

25
(5n− 4)ε2

− 3
5

(5n2 − 10n+ 4)ε4 + n(n− 2)ε4
}
< 0.

Subcase (3):
x

ε
≤ λn <

√
15

5ε
, where x =

√
2

2
for n ≥ 4, x =

√
66

11
for

n = 3.
Obviously, the following inequality holds:

(3.12) λ1 ≥ ε2λn ≥ xε,
so we have

(3.13)
5n− 4

2n
λ1 ≥

1
2

(
1
λn

+
ε2

λ1

)
.

By (2.7), (3.13) and Lemma 2.4, we obtain

F (n, p) ≤ 1
4nλ2

1
{nλ2

1λ
2
n − (5n− 4)λ3

1λn(3.14)

− (5n2 − 10n+ 4)ε2λ2
1 + n(n− 2)ε4}

≤ 1
4nλ2

1
h(λ1),

where

h(λ1) =
3

5ε2 nλ
2
1 −
√

15
5ε

(5n− 4)λ3
1(3.15)

− (5n2 − 10n+ 4)ε2λ2
1 + n(n− 2)ε4.

When λ1 ∈ [xε, ε), h(λ1) is a decreasing function, so we have
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(3.16) F (n, p) ≤ 1
4nλ2

1

{
3
5
nx2 −

√
15
5

x3(5n− 4)ε2

− [(5x2 − 1)n2 − (10x2 − 2)n+ 4x2]ε4
}
< 0.

Subcase (4):
√

2 ≤ λn <
x

ε
, where x =

√
2

2
for n ≥ 4 or x =

√
66

11
for

n = 3.
From (2.7) and Lemma 2.4, we obtain

F (n, p) ≤ − n− 1
n

ε2 +
1
4
λ2
n −

5n− 4
4n

ε2λn(3.17)

+
1
4

∑

α6=1,n

{
1
λ2
n

− 5n− 4
n

ε2
}
< 0.

Subcase (5): 1 ≤ λn <
√

2.
Similarly, we have

(3.18) F (n, p) ≤ {nλ4
n − (5n2 − 5n)ε2λ2

n + n(n− 2)} < 0.

Subcase (6): ε < λn < 1.
Obviously,

(3.19) F (n, p)< −n−1
n

ε2 +
1
4

∑

α6=1

(
1− 5n− 4

n
ε2
)

=
n−1

4
(1− 5ε2)≤ 0.

The second case. Suppose that λ1 ≥ ε. By Lemma 2.4 and 2.5, we have

F (n, p) ≤ − n− 1
n

λ2ε+
1
4

∑

α6=1

(
λ2
α −

5n− 4
n

ελα

)
(3.20)

=
(

1
4
λ2

2 −
9n− 8

4n
λ2ε

)
+
(

1
4
λ2
n −

5n− 4
4n

ελn

)

+
1
4

∑

α6=1,2,n

(
λα −

5n− 4
n

ε

)
λα

≤
(

1
4
ε2 − 9n− 8

4n
ε2
)

+
(

1
4ε2 −

5n− 4
4n

)
< 0.

In summary, F (n, p) < 0 at any point x ∈ M and any local orthonormal
frame field {eα} at x ∈ M . By Proposition 2.1, the Theorem is proved
completely.

Acknowledgements. The author wishes to thank the referee for his
close reading of the first draft of this paper which led to various improve-
ments.



86 J. T. LI

REFERENCES

[1] H. B. Lawson and J. Simons, On stable currents and their applications to global
problems in real and complex geometry , Ann. of Math. 98 (1973), 427–450.

[2] H. Z. Li, Some nonexistence theorems on stable minimal submanifolds, Colloq. Math.
73 (1997), 1–13.

[3] Y. B. Shen and Q. He, On stable currents and positively curved hypersurfaces, Proc.
Amer. Math. Soc. 129 (2001), 237–246.

Department of Mathematics
Xiammen University
361005 Xiammen
Fujian, P.R. China
E-mail: dli66@xmu.edu.cn

Received 16 May 2003;
revised 3 September 2003 (4346)


