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FACTORIZATION OF MATRICES ASSOCIATED WITH
CLASSES OF ARITHMETICAL FUNCTIONS

BY

SHAOFANG HONG (Chengdu and Haifa)

Abstract. Let f be an arithmetical function. A set S = {x1, . . . , xn} of n distinct
positive integers is called multiple closed if y ∈ S whenever x | y | lcm(S) for any x ∈ S,
where lcm(S) is the least common multiple of all elements in S. We show that for any
multiple closed set S and for any divisor chain S (i.e. x1 | . . . |xn), if f is a completely
multiplicative function such that (f ∗ µ)(d) is a nonzero integer whenever d | lcm(S), then
the matrix (f(xi, xj)) having f evaluated at the greatest common divisor (xi, xj) of xi and
xj as its i, j-entry divides the matrix (f [xi, xj ]) having f evaluated at the least common
multiple [xi, xj ] of xi and xj as its i, j-entry in the ring Mn(Z) of n×n matrices over the
integers. But such a factorization is no longer true if f is multiplicative.

1. Introduction. Let n be a positive integer and let ((i, j)) be the
n × n matrix having the greatest common divisor (i, j) of i and j as its
(i, j)-entry. In 1876, H. J. S. Smith [17] published his celebrated results
by showing that the determinant of the n × n matrix ((i, j)) is the prod-
uct

∏n
k=1 ϕ(k), where ϕ is Euler’s totient function. Let f be an arithmeti-

cal function. For any positive integers x and y, we let f(x, y) and f [x, y]
denote, for brevity, f((x, y)) and f([x, y]), respectively. Here [x, y] means
the least common multiple of x and y. Smith also proved that if f is an
arithmetical function and (f(i, j)) is the n × n matrix having f evalu-
ated at the greatest common divisor (i, j) of i and j as its (i, j)-entry,
then det(f(i, j)) =

∏n
k=1(f ∗ µ)(k), where µ is the Möbius function and

f ∗ µ is the Dirichlet convolution of f and µ. In 1972, Apostol [2] extended
Smith’s result. In 1988, McCarthy [16] generalized Smith’s and Apostol’s
results to the class of even functions (mod r). In 1993, Bourque and Ligh
[6] extended the results of Smith, Apostol, and McCarthy. In 1999, Hong
[9] improved the lower bounds for the determinants of the matrices consid-
ered by Bourque and Ligh [6]. In 2002, Hong [11] generalized the results
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of Smith, Apostol, McCarthy, Bourque and Ligh to certain classes of arith-
metical functions.

Let S = {x1, . . . , xn} be a set of n distinct positive integers. Denote by
(f(xi, xj)) the n × n matrix having f evaluated at the greatest common
divisor (xi, xj) of xi and xj as its i, j-entry, and by (f [xi, xj ]) the n × n
matrix having f evaluated at the least common multiple [xi, xj ] of xi and
xj as its i, j-entry. The set S is said to be factor closed if it contains every
divisor of x for any x ∈ S. From Bourque and Ligh’s result [7, Theorem 4],
we can see that if S is a factor closed set and f is a multiplicative function
such that f ∈ LS , where LS is the class of arithmetical functions defined by

LS := {f : (f ∗ µ)(d) ∈ Z∗ whenever d | lcm(S)},
where Z∗ := Z\{0} denotes the set of nonzero integers and lcm(S) means
the least common multiple of all elements in S, then the matrix (f(xi, xj))
divides the matrix (f [xi, xj ]) in the ring Mn(Z) of n × n matrices over the
integers. Observe that the condition f ∈ LS of [7, Theorem 4] was stated as
f ∈ TS := {f : (f ∗ µ)(x) ∈ Z∗ for any x ∈ S}. In fact, we can easily show
that if S is factor closed and f is multiplicative, then f ∈ LS if and only if
f ∈ TS .

Many generalizations of Smith’s result in various directions have been
published [2–14, 16]. Our main interest in the present paper is in the divisi-
bility of the matrix (f [xi, xj ]) by (f(xi, xj)). We introduce the following con-
cept: The set S is said to be multiple closed if y ∈ S whenever x | y | lcm(S)
for any x ∈ S. For example, S = {2, 3, 6, 10, 15, 30} is multiple closed. It is
obvious that if S is multiple closed, then max(S) = lcm(S) and so x |max(S)
for any x ∈ S, where max(S) denotes the largest element in S. We have the
following natural and interesting question.

Problem 1.1. Let S = {x1, . . . , xn} be a multiple closed set and let f
be a multiplicative function such that f ∈ LS . Does the matrix (f(xi, xj))
divide (f [xi, xj ]) in the ring Mn(Z)?

In this paper, we will associate a class CS of arithmetical functions with
any set S of distinct positive integers (see Definition 4.1 below; note that
LS ⊆ CS) and show that for f ∈ CS the matrices (f(xi, xj)) and (f [xi, xj ])
are integral. We find, surprisingly, that the answer to Problem 1.1 is negative.
We will construct a counterexample in Section 2. However, for f completely
multiplicative, the answer is affirmative (see Theorem 4.5 below).

The set S = {x1, . . . , xn} is said to be a divisor chain if xi |xj for all
1 ≤ i ≤ j ≤ n. We will show that for any arithmetical function f ∈ CS such
that there exists an integer zi satisfying f(xi) = zif(x1) for all 2 ≤ i ≤ n, if
S is a divisor chain, then the matrix (f(xi, xj)) divides (f [xi, xj ]) in Mn(Z).
As a corollary, we show that for any completely multiplicative function f
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with f ∈ CS , if S is a divisor chain, then (f(xi, xj)) divides (f [xi, xj ]) in
Mn(Z). But such a factorization is no longer true if f is just multiplicative.

Throughout this paper, given any set S of distinct positive integers let
m = lcm(S). Then m = max(S) if S is multiple closed. We let Z and Z+

denote the sets of integers and of positive integers, respectively. As usual,
for x ∈ Z+ and a prime p, let vp(x) denote the p-adic valuation of x, i.e.
vp(x) is the largest integer such that pvp(x) divides x.

2. A counterexample to Problem 1.1. In this section, we give an
example to show that the answer to Problem 1.1 is negative. Define

(1) S = {6, 8, 12, 24}.
Then S is clearly multiple closed. Note that it is not factor closed. For
any x ∈ Z+, let σ(x) denote the sum of the positive divisors of x. It is
well known that σ is multiplicative but not completely multiplicative. The
equality (σ ∗ µ)(x) = x implies σ ∈ LS . One can easily calculate that the
product (σ[xi, xj ]) · (σ(xi, xj))−1 does not lie in M4(Z). So the 4× 4 matrix
(σ(xi, xj)) does not divide (σ[xi, xj ]) in M4(Z). This answers negatively
Problem 1.1.

3. Inverse of (f(xi, xj)). In 1993, Bourque and Ligh gave a formula
for the inverse of the matrix (f(xi, xj)) when S is factor closed as follows.

Lemma 3.1 ([5]). Let f be an arithmetical function and S = {x1, . . . , xn}
be factor closed. If (f ∗ µ)(x) 6= 0 for all x ∈ S, then (f(xi, xj))−1 = (aij),
where

aij =
∑

xi|xl
xj |xl

µ
(
xl
xi

)
µ
(
xl
xj

)

(f ∗ µ)(xl)
.

In what follows we calculate the inverse of the matrix (f(xi, xj)) when
S is a multiple closed set. First we need the following definition.

Definition 3.2 ([13]). Let S = {x1, . . . , xn} be a set of n distinct posi-
tive integers. Then the reciprocal set of S, denoted by mS−1, is defined by
mS−1 = {m/x1, . . . ,m/xn}.

Lemma 3.3. Let S = {x1, . . . , xn} be a set of n distinct positive integers.
Then S is multiple closed if and only if the reciprocal set mS−1 is factor
closed.

Proof. Assume that S is multiple closed. For any given 1 ≤ i ≤ n, let
d | mxi . One then deduces that xi | md |m. Since S is multiple closed, there
exists a 1 ≤ j ≤ n such that m/d = xj . So d = m/xj . That is, d ∈ mS−1.
Hence mS−1 is factor closed. The converse is proved similarly.
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Consequently, we can give the following structure theorem.

Lemma 3.4. Let S = {x1, . . . , xn} be a set of n distinct positive integers.
Let f be a completely multiplicative function such that f(m) 6= 0. Then

(f(xi, xj)) =
1

f(m)
· diag(f(x1), . . . , f(xn))

·
(
f

(
m

xi
,
m

xj

))
· diag(f(x1), . . . , f(xn)).

Proof. First we have

(xi, xj) =
m[

m
xi
, mxj

] =
m ·

(
m
xi
, mxj

)

m
xi
· mxj

=
xixj
m
·
(
m

xi
,
m

xj

)
.

Since f is completely multiplicative and f(m) 6= 0, it follows that

f(xi, xj) =
f(xi)f(xj)
f(m)

· f
(
m

xi
,
m

xj

)
.

Therefore the result follows immediately.

Remark 1. Lemma 3.4 is not true if f is not completely multiplicative.

Now we can give the main result of this section, which will be needed in
the next section.

Theorem 3.5. Let S = {x1, . . . , xn} be multiple closed and f a com-
pletely multiplicative function such that f(m) 6= 0 and (f ∗µ)(d) 6= 0 for any
divisor d of m. Then (f(xi, xj))−1 = (bij), where

bij =
f(m)

f(xi)f(xj)

∑

xl|(xi,xj)

µ
(
xi
xl

)
µ
(xj
xl

)

(f ∗ µ)
(
m
xl

) .

Proof. Define a set T = {y1, . . . , yn} as follows: xiyi = m for all 1 ≤
i ≤ n. Then T = mS−1. Since S is multiple closed, T is factor closed by
Lemma 3.3. On the other hand, by Lemma 3.1 we have

(2) ((f(yi, yj))−1)ij =
∑

yi|yl
yj |yl

µ
(
yl
yi

)
µ
(
yl
yj

)

(f ∗ µ)(yl)
.

Let Λ = diag(f(x1), . . . , f(xn)). Since f is a completely multiplicative func-
tion such that f(m) 6= 0 and each xi divides m, it follows that f(xi) 6= 0 for
all 1 ≤ i ≤ n. It then follows from Lemma 3.4 and (2) that
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bij = (f(m) · Λ−1 · (f(yi, yj))−1 · Λ−1)ij

=
f(m)

f(xi)f(xj)
· ((f(yi, yj))−1)ij

=
f(m)

f(xi)f(xj)
·
∑

yi|yl
yj |yl

µ
(
yl
yi

)
µ
(
yl
yj

)

(f ∗ µ)(yl)

=
f(m)

f(xi)f(xj)
·
∑

xl|xi
xl|xj

µ
(
xi
xl

)
µ
(xj
xl

)

(f ∗ µ)
(
m
xl

)

as desired.

4. The multiple closed case. In this section we will first associate a
class CS of arithmetical functions with any set S of distinct positive integers
and show that for f ∈ CS the matrices (f(xi, xj)) and (f [xi, xj ]) are integral.

Definition 4.1. Given any set S of distinct positive integers define the
class of arithmetical functions CS = {f : (f ∗ µ)(d) ∈ Z whenever d |m}.

Clearly LS ⊂ CS . Therefore CS is not empty.

Lemma 4.2. Let S = {x1, . . . , xn} be a set of n distinct positive integers
and f ∈ CS. Then each of the following is true:

(i) For every divisor d of m, f(d) is an integer.
(ii) The matrices (f(xi, xj)) and (f [xi, xj ]) are integral matrices of or-

der n.

Proof. This lemma is a simple consequence of the Möbius inversion for-
mula.

Now let f, g ∈ CS and d1 |m. Then f(d1) ∈ Z by Lemma 4.2(i). This
implies that ((f ∗ g) ∗ µ)(d) =

∑
d1|d f(d1)(g ∗ µ)(d/d1) ∈ Z whenever d |m.

Therefore f ∗g ∈ CS and thus the class CS is closed with respect to Dirichlet
convolution.

Next we prove two lemmas on completely multiplicative functions.

Lemma 4.3. Let b be a positive integer. If f is a completely multiplicative
function, then for every a ≥ 2 at which f does not vanish, we have

g(a) :=
∑

d|a

µ(d)
f(d)f(b, a/d)

=
(f ∗ µ)(a)
f(a)f(a, b)

· δa,b,

where

δa,b =
{

0 if vp(a) ≤ vp(b) for some prime p | a,

1 if vp(a) > vp(b) for all primes p | a.
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Proof. Since g(xy) = g(x)g(y) for all co-prime integers x, y at which f
does not vanish, it suffices to establish the assertion in the case of a = pr

with p prime, r ∈ Z+, f(a) = f(p)r 6= 0. Then

g(pr) =
1

f(b, pr)
− 1
f(p)f(b, pr−1)

.

If vp(b) ≥ vp(a), then pr | b, thus f(b, pr) = f(p)r and f(b, pr−1) = f(p)r−1,
implying g(pr) = 0. If vp(b) < vp(a), then f(b, pr) = f(b, pr−1), and since f
is completely multiplicative we deduce

g(pr) =
1− 1/f(p)
f(b, pr)

=
f(pr)(1− 1/f(p))
f(pr)f(b, pr)

=
(f ∗ µ)(pr)
f(pr)f(b, pr)

as required.

Lemma 4.4. Let f be a completely multiplicative function. Let x, y, z
∈ Z+ be such that [x, y] | z. Then f(x, y)f(z) = f(x)f(y)f(z/x, z/y).

Proof. Since x | z and y | z, we have (x, y)z = xy(z/x, z/y). But f is
completely multiplicative, and so the result follows immediately.

Since LS ⊂ CS , it follows immediately from Lemma 4.2(ii) that for any
set S and any f ∈ LS , we have (f(xi, xj)) ∈Mn(Z) and (f [xi, xj ]) ∈Mn(Z),
so we can consider the divisibility of the two matrices in the ring Mn(Z).
Now we are in a position to give the first main result of this paper.

Theorem 4.5. Let S = {x1, . . . , xn} be a multiple closed set. Let f be
a completely multiplicative function such that f(m) 6= 0 and f ∈ LS . Then
the matrix (f(xi, xj)) divides (f [xi, xj ]) in Mn(Z).

Proof. Since f(m) 6= 0 and f is completely multiplicative, it follows
that f(d) 6= 0 for any divisor d of m. Let C = (f [xi, xj ]) · (f(xi, xj))−1.
Write C = (cij). Clearly we need to show cij ∈ Z for all 1 ≤ i, j ≤ n. By
Theorem 3.5, for 1 ≤ i, j ≤ n we have

cij =
n∑

k=1

f [xi, xk] · f(m)
f(xk)f(xj)

∑

xl|xk
xl|xj

µ
(
xk
xl

)
µ
(xj
xl

)

(f ∗ µ)
(
m
xl

)(3)

=
1

f(xj)

∑

xl|xj

µ
(xj
xl

)

(f ∗ µ)
(
m
xl

)
∑

xl|xk

f(m)
f(xk)

· f [xi, xk] · µ
(
xk
xl

)

=
f(xi)
f(xj)

∑

xl|xj

µ
(xj
xl

)

(f ∗ µ)
(
m
xl

)
∑

xl|xk

f(m)
f(xi, xk)

· µ
(
xk
xl

)
.

Fix l with 1 ≤ l ≤ n and xl |xj . For xl |xk, let d = xk/xl. Since xk |m, we
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deduce d | mxl . So by Lemma 4.4 we have

(4)
∑

xl|xk

f(m)
f(xi, xk)

· µ
(
xk
xl

)
=
∑

d|mxl

f(m)
f(xi, dxl)

· µ(d)

=
∑

d|mxl

(f(m))2

f(xi)f(xl)
· µ(d)
f(d)f

(
m
xi
, mdxl

) =
(f(m))2

f(xi)f(xl)

∑

d|mxl

µ(d)

f(d)f
(
m
xi
, m/xld

) .

Since f is completely multiplicative, by Lemma 4.3 applied to the last sum
in (4), it follows from (3) and (4) and Lemma 4.4 that

cij =
f(xi)
f(xj)

∑

xl|xj

µ
(xj
xl

)

(f ∗ µ)
(
m
xl

) · (f(m))2

f(xi)f(xl)
·
f(xl) · (f ∗ µ)

(
m
xl

)

f(m)f
(
m
xi
, mxl

) · δ′l,i

=
f(xi)
f(xj)

∑

xl|xj

f(xl)
f(xi, xl)

· µ
(
xj
xl

)
· δ′l,i,

where

δ′l,i := δm/xl,m/xi =

{
0 if vp

(
m
xl

)
≤ vp

(
m
xi

)
for some prime p | mxl ,

1 if vp
(
m
xl

)
> vp

(
m
xi

)
for all primes p | mxl .

Obviously the terms corresponding to xl for which xj/xl is not square-free
vanish. Define an index set Ij as follows:

Ij = {l : 1 ≤ l ≤ n, xl < xj , xl |xj and xj/xl is square-free}.
Then

(5) cij =
f(xi)

f(xi, xj)
· δ′j,i +

∑

l∈Ij

f(xi)
f(xi, xl)

· f(xl)
f(xj)

· µ
(
xj
xl

)
· δ′l,i.

Assume first that Ij = ∅. Then cij = f(xi)
f(xi,xj)

· δ′j,i. But xi
(xi,xj)

|xi |m.

It follows from Lemma 4.2(i) that f(xi)/f(xi, xj) = f(xi/(xi, xj)) ∈ Z. So
cij ∈ Z as desired. Now assume that Ij 6= ∅. Let

I ′j = {l ∈ Ij : vp(xi) = vp((xi, xl)) for some prime divisor p of xj/xl},
I ′′j = {l ∈ Ij : vp(xi) > vp((xi, xl)) for all prime divisors p of xj/xl}.

Then I ′j ∩ I ′′j = ∅ and Ij = I ′j ∪ I ′′j . It follows from (5) that

cij =
f(xi)

f(xi, xj)
· δ′j,i +

∑

l∈I′j

f(xi)
f(xi, xl)

· f(xl)
f(xj)

· µ
(
xj
xl

)
· δ′l,i(6)

+
∑

l∈I′′j

f(xi)
f(xi, xl)

· f(xl)
f(xj)

· µ
(
xj
xl

)
· δ′l,i.
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We claim that δ′l,i = 0 for l ∈ I ′j . In fact, if l ∈ I ′j , then there exists
a prime divisor p of xj/xl such that vp(xi) = vp((xi, xl)). Hence vp(xi) ≤
vp(xl). This implies that vp(m/xi) ≥ vp(m/xl). It follows that δ′l,i = 0,
proving the claim. Then from (6) we deduce

(7) cij =
f(xi)

f(xi, xj)
· δ′j,i +

∑

l∈I′′j

f(xi)
f(xi, xl)

· f(xl)
f(xj)

· µ
(
xj
xl

)
· δ′l,i.

Now let l ∈ I ′′j . Let p be any prime divisor of xj/xl. Then vp(xi) >
vp((xi, xl)). Hence vp(xi/(xi, xl)) ≥ 1. On the other hand, since xj/xl is
square-free, vp(xj/xl) = 1. Therefore

(8) vp

(
xi

(xi, xl)
· xl
xj

)
≥ 0.

By the arbitrariness of p, (8) implies that the rational number xi
(xi,xl)

· xlxj
has no primes in its denominator, i.e. xi

(xi,xl)
· xlxj ∈ Z. Since f is a completely

multiplicative function with f ∈ LS and xi
(xi,xl)

· xlxj is a factor of m, by

Lemma 4.2(i) we have f(xi)
f(xi,xl)

· f(xl)
f(xj)

∈ Z. It then follows from (7) that
cij ∈ Z. Thus C ∈Mn(Z) and this concludes the proof of Theorem 4.5.

Example 4.6. To illustrate Theorem 4.5, let S be as in (1) and let λ
be the Liouville function which is defined for positive integers x by λ(x) =
(−1)α1+...+αt if x = pα1

1 . . . pαtt , where p1, . . . , pt are distinct prime numbers
and α1, . . . , αt ∈ Z+. Then λ is a completely multiplicative function. It is
easy to show that for any x ∈ Z+, (λ∗µ)(x) = λ(x)·2ν(x), where ν(x) denotes
the number of distinct prime factors of x. Hence λ ∈ LS and λ(m) 6= 0.
Let D = ([xi, xj ]) · ((xi, xj))−1 and E = (λ[xi, xj ]) · (λ(xi, xj))−1. We can
easily check that D and E lie in M4(Z). Therefore ((xi, xj)) | ([xi, xj ]) and
(λ(xi, xj)) | (λ[xi, xj ]) in M4(Z).

Corollary 4.7. Let S = {x1, . . . , xn} be a multiple closed set. Let f be
a completely multiplicative function such that f(m) 6= 0 and f ∈ LS . Then
the matrix ((−1)i+j · f(xi, xj)) divides ((−1)i+j · f [xi, xj ]) in Mn(Z).

Proof. Let Γ be the n × n diagonal matrix with the diagonal elements
(−1)i, i = 1, . . . , n. Let F = Γ · C · Γ, where C is as in the proof of Theo-
rem 4.5. It follows from Theorem 4.5 that F ∈Mn(Z). We can easily check
that ((−1)i+j · f [xi, xj ]) = F · ((−1)i+j · f(xi, xj)). So the result follows
immediately.

Remark 2. Corollary 4.7 is not true if f is not completely multiplica-
tive.

Furthermore, from Theorem 4.5, letting f(n) = nε gives the following
consequence.
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Corollary 4.8. Let S = {x1, . . . , xn} be a multiple closed set and let ε
be a positive integer. Then the matrix ((xi, xj)ε) divides ([xi, xj ]ε) in Mn(Z).

In particular, we have the following consequence.

Corollary 4.9. Let S = {x1, . . . , xn} be a multiple closed set. Then
the GCD matrix ((xi, xj)) divides the LCM matrix ([xi, xj ]) in Mn(Z).

5. The divisor chain case. By Lemma 4.2(ii), for any set S and for
any f ∈ LS , the matrices (f(xi, xj)) and (f [xi, xj ]) are integral. In this
section, we consider the divisor chain case. Now we prove the second main
result of this paper.

Theorem 5.1. Let S = {x1, . . . , xn} be a divisor chain and f ∈ CS. If
there exists an integer zi such that f(xi) = zif(x1) for all 2 ≤ i ≤ n, then
the matrix (f(xi, xj)) divides (f [xi, xj ]) in Mn(Z).

Proof. First it follows from Lemma 4.2(ii) together with f ∈ CS that
the matrices (f(xi, xj)) and (f [xi, xj ]) are integral. Since S is a divisor
chain, m = xn. For 1 ≤ i ≤ j ≤ n, since xi |xj , we have f(xi, xj) = f(xi)
and f [xi, xj ] = f(xj). If f(x1) = 0, from the assumption we then deduce
f(xi) = 0 for all 2 ≤ i ≤ n. So (f(xi, xj)) = (f [xi, xj ]) = On,n, the zero
matrix of order n. Now let f(x1) 6= 0. Define an n× n matrix G as follows:

G =




0 0 0 . . . 0 1
f(x2)/f(x1) −1 0 . . . 0 1
f(x3)/f(x1) 0 −1 . . . 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f(xn−1)/f(x1) 0 0 . . . −1 1
f(xn)/f(x1) 0 0 . . . 0 0



.

By assumption we have f(xi)/f(x1) ∈ Z for 2 ≤ i ≤ n. Thus G ∈ Mn(Z).
On the other hand, we can easily check that

G · (f(xi, xj)) = (f [xi, xj ]).

Therefore the result in this case follows immediately.

Corollary 5.2. Let S = {x1, . . . , xn} be a divisor chain and f ∈ CS.
If there exists an integer zi such that f(xi) = zif(x1) for all 2 ≤ i ≤ n, then
the matrix ((−1)i+j · f(xi, xj)) divides ((−1)i+j · f [xi, xj ]) in Mn(Z).

Corollary 5.3. Let S = {x1, . . . , xn} be a divisor chain and f a com-
pletely multiplicative function such that f ∈ CS. Then the matrix (f(xi, xj))
divides (f [xi, xj ]) in Mn(Z).

Proof. Since f is completely multiplicative, we have f(xi)=f(x1)f(xi/x1)
for 2 ≤ i ≤ n. Since f ∈ CS , Lemma 4.2(i) together with the fact xi

x1
|m
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implies f(xi/x1) ∈ Z. So Corollary 5.3 follows immediately from Theo-
rem 5.1.

Remark 3. Corollary 5.3 is no longer true if f is just multiplicative. For
instance, let S = {3, 9}. Then S is clearly a divisor chain. We calculate

(σ[xi, xj ]) · (σ(xi, xj))−1 =
(

4 13
13 13

)
·
( 13

36 − 1
9

− 1
9

1
9

)
=
(

0 1
13
4 0

)
6∈M2(Z).

So (σ(xi, xj)) - (σ[xi, xj ]) in M2(Z).

Corollary 5.4. Let S = {x1, . . . , xn} be a divisor chain and f a com-
pletely multiplicative function such that f ∈ CS. Then the matrix ((−1)i+j ·
f(xi, xj)) divides ((−1)i+j · f [xi, xj ]) in the ring Mn(Z).

Remark 4. Corollary 5.4 is not true if f is not completely multiplica-
tive.

Picking f(n) = nε, we can immediately deduce from Corollary 5.3 that
the following result is true.

Corollary 5.5. Let ε be a positive integer and let S = {x1, . . . , xn} be
a divisor chain. Then the matrix ((xi, xj)ε) divides ([xi, xj ]ε) in the ring
Mn(Z).

Remark 5. If we take ε = 1, then Corollary 5.5 becomes the result
mentioned in [12] without proof. Note that by using and developing the
method of [10], we proved [12] that there is a gcd-closed set S = {x1, . . . , xn}
(i.e. (xi, xj) ∈ S for all 1 ≤ i, j ≤ n) such that the GCD matrix ((xi, xj))
does not divide the LCM matrix ([xi, xj ]) in Mn(Z).
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