COLLOQUIUM MATHEMATICUM

FACTORIZATION OF MATRICES ASSOCIATED WITH CLASSES OF ARITHMETICAL FUNCTIONS

BY
SHAOFANG HONG (Chengdu and Haifa)

Abstract

Let f be an arithmetical function. A set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ of n distinct positive integers is called multiple closed if $y \in S$ whenever $x|y| \operatorname{lcm}(S)$ for any $x \in S$, where $\operatorname{lcm}(S)$ is the least common multiple of all elements in S. We show that for any multiple closed set S and for any divisor chain S (i.e. $x_{1}|\ldots| x_{n}$), if f is a completely multiplicative function such that $(f * \mu)(d)$ is a nonzero integer whenever $d \mid \operatorname{lcm}(S)$, then the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ having f evaluated at the greatest common divisor $\left(x_{i}, x_{j}\right)$ of x_{i} and x_{j} as its i, j-entry divides the matrix $\left(f\left[x_{i}, x_{j}\right]\right)$ having f evaluated at the least common multiple $\left[x_{i}, x_{j}\right]$ of x_{i} and x_{j} as its i, j-entry in the $\operatorname{ring} M_{n}(\mathbb{Z})$ of $n \times n$ matrices over the integers. But such a factorization is no longer true if f is multiplicative.

1. Introduction. Let n be a positive integer and let $((i, j))$ be the $n \times n$ matrix having the greatest common divisor (i, j) of i and j as its (i, j)-entry. In 1876, H. J. S. Smith [17] published his celebrated results by showing that the determinant of the $n \times n$ matrix $((i, j))$ is the product $\prod_{k=1}^{n} \varphi(k)$, where φ is Euler's totient function. Let f be an arithmetical function. For any positive integers x and y, we let $f(x, y)$ and $f[x, y]$ denote, for brevity, $f((x, y))$ and $f([x, y])$, respectively. Here $[x, y]$ means the least common multiple of x and y. Smith also proved that if f is an arithmetical function and $(f(i, j))$ is the $n \times n$ matrix having f evaluated at the greatest common divisor (i, j) of i and j as its (i, j)-entry, then $\operatorname{det}(f(i, j))=\prod_{k=1}^{n}(f * \mu)(k)$, where μ is the Möbius function and $f * \mu$ is the Dirichlet convolution of f and μ. In 1972, Apostol [2] extended Smith's result. In 1988, McCarthy [16] generalized Smith's and Apostol's results to the class of even functions $(\bmod r)$. In 1993, Bourque and Ligh [6] extended the results of Smith, Apostol, and McCarthy. In 1999, Hong [9] improved the lower bounds for the determinants of the matrices considered by Bourque and Ligh [6]. In 2002, Hong [11] generalized the results

[^0]of Smith, Apostol, McCarthy, Bourque and Ligh to certain classes of arithmetical functions.

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers. Denote by $\left(f\left(x_{i}, x_{j}\right)\right)$ the $n \times n$ matrix having f evaluated at the greatest common divisor $\left(x_{i}, x_{j}\right)$ of x_{i} and x_{j} as its i, j-entry, and by $\left(f\left[x_{i}, x_{j}\right]\right)$ the $n \times n$ matrix having f evaluated at the least common multiple $\left[x_{i}, x_{j}\right]$ of x_{i} and x_{j} as its i, j-entry. The set S is said to be factor closed if it contains every divisor of x for any $x \in S$. From Bourque and Ligh's result [7, Theorem 4], we can see that if S is a factor closed set and f is a multiplicative function such that $f \in \mathcal{L}_{S}$, where \mathcal{L}_{S} is the class of arithmetical functions defined by

$$
\mathcal{L}_{S}:=\left\{f:(f * \mu)(d) \in \mathbb{Z}^{*} \text { whenever } d \mid \operatorname{lcm}(S)\right\}
$$

where $\mathbb{Z}^{*}:=\mathbb{Z} \backslash\{0\}$ denotes the set of nonzero integers and $\operatorname{lcm}(S)$ means the least common multiple of all elements in S, then the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ divides the matrix $\left(f\left[x_{i}, x_{j}\right]\right)$ in the ring $M_{n}(\mathbb{Z})$ of $n \times n$ matrices over the integers. Observe that the condition $f \in \mathcal{L}_{S}$ of [7, Theorem 4] was stated as $f \in \mathcal{T}_{S}:=\left\{f:(f * \mu)(x) \in \mathbb{Z}^{*}\right.$ for any $\left.x \in S\right\}$. In fact, we can easily show that if S is factor closed and f is multiplicative, then $f \in \mathcal{L}_{S}$ if and only if $f \in \mathcal{T}_{S}$.

Many generalizations of Smith's result in various directions have been published $[2-14,16]$. Our main interest in the present paper is in the divisibility of the matrix $\left(f\left[x_{i}, x_{j}\right]\right)$ by $\left(f\left(x_{i}, x_{j}\right)\right)$. We introduce the following concept: The set S is said to be multiple closed if $y \in S$ whenever $x|y| \operatorname{lcm}(S)$ for any $x \in S$. For example, $S=\{2,3,6,10,15,30\}$ is multiple closed. It is obvious that if S is multiple closed, then $\max (S)=\operatorname{lcm}(S)$ and so $x \mid \max (S)$ for any $x \in S$, where $\max (S)$ denotes the largest element in S. We have the following natural and interesting question.

Problem 1.1. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a multiple closed set and let f be a multiplicative function such that $f \in \mathcal{L}_{S}$. Does the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ divide $\left(f\left[x_{i}, x_{j}\right]\right)$ in the ring $M_{n}(\mathbb{Z})$?

In this paper, we will associate a class \mathcal{C}_{S} of arithmetical functions with any set S of distinct positive integers (see Definition 4.1 below; note that $\left.\mathcal{L}_{S} \subseteq \mathcal{C}_{S}\right)$ and show that for $f \in \mathcal{C}_{S}$ the matrices $\left(f\left(x_{i}, x_{j}\right)\right)$ and $\left(f\left[x_{i}, x_{j}\right]\right)$ are integral. We find, surprisingly, that the answer to Problem 1.1 is negative. We will construct a counterexample in Section 2. However, for f completely multiplicative, the answer is affirmative (see Theorem 4.5 below).

The set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is said to be a divisor chain if $x_{i} \mid x_{j}$ for all $1 \leq i \leq j \leq n$. We will show that for any arithmetical function $f \in \mathcal{C}_{S}$ such that there exists an integer z_{i} satisfying $f\left(x_{i}\right)=z_{i} f\left(x_{1}\right)$ for all $2 \leq i \leq n$, if S is a divisor chain, then the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ divides $\left(f\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$. As a corollary, we show that for any completely multiplicative function f
with $f \in \mathcal{C}_{S}$, if S is a divisor chain, then $\left(f\left(x_{i}, x_{j}\right)\right)$ divides $\left(f\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$. But such a factorization is no longer true if f is just multiplicative.

Throughout this paper, given any set S of distinct positive integers let $m=\operatorname{lcm}(S)$. Then $m=\max (S)$ if S is multiple closed. We let \mathbb{Z} and \mathbb{Z}^{+} denote the sets of integers and of positive integers, respectively. As usual, for $x \in \mathbb{Z}^{+}$and a prime p, let $v_{p}(x)$ denote the p-adic valuation of x, i.e. $v_{p}(x)$ is the largest integer such that $p^{v_{p}(x)}$ divides x.
2. A counterexample to Problem 1.1. In this section, we give an example to show that the answer to Problem 1.1 is negative. Define

$$
\begin{equation*}
S=\{6,8,12,24\} \tag{1}
\end{equation*}
$$

Then S is clearly multiple closed. Note that it is not factor closed. For any $x \in \mathbb{Z}^{+}$, let $\sigma(x)$ denote the sum of the positive divisors of x. It is well known that σ is multiplicative but not completely multiplicative. The equality $(\sigma * \mu)(x)=x$ implies $\sigma \in \mathcal{L}_{S}$. One can easily calculate that the product $\left(\sigma\left[x_{i}, x_{j}\right]\right) \cdot\left(\sigma\left(x_{i}, x_{j}\right)\right)^{-1}$ does not lie in $M_{4}(\mathbb{Z})$. So the 4×4 matrix $\left(\sigma\left(x_{i}, x_{j}\right)\right)$ does not divide $\left(\sigma\left[x_{i}, x_{j}\right]\right)$ in $M_{4}(\mathbb{Z})$. This answers negatively Problem 1.1.
3. Inverse of $\left(f\left(x_{i}, x_{j}\right)\right)$. In 1993, Bourque and Ligh gave a formula for the inverse of the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ when S is factor closed as follows.

Lemma 3.1 ([5]). Let f be an arithmetical function and $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be factor closed. If $(f * \mu)(x) \neq 0$ for all $x \in S$, then $\left(f\left(x_{i}, x_{j}\right)\right)^{-1}=\left(a_{i j}\right)$, where

$$
a_{i j}=\sum_{\substack{x_{i}\left|x_{l} \\ x_{j}\right| x_{l}}} \frac{\mu\left(\frac{x_{l}}{x_{i}}\right) \mu\left(\frac{x_{l}}{x_{j}}\right)}{(f * \mu)\left(x_{l}\right)} .
$$

In what follows we calculate the inverse of the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ when S is a multiple closed set. First we need the following definition.

Definition $3.2([13])$. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers. Then the reciprocal set of S, denoted by $m S^{-1}$, is defined by $m S^{-1}=\left\{m / x_{1}, \ldots, m / x_{n}\right\}$.

Lemma 3.3. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers. Then S is multiple closed if and only if the reciprocal set $m S^{-1}$ is factor closed.

Proof. Assume that S is multiple closed. For any given $1 \leq i \leq n$, let $d \left\lvert\, \frac{m}{x_{i}}\right.$. One then deduces that $x_{i}\left|\frac{m}{d}\right| m$. Since S is multiple closed, there exists a $1 \leq j \leq n$ such that $m / d=x_{j}$. So $d=m / x_{j}$. That is, $d \in m S^{-1}$. Hence $m S^{-1}$ is factor closed. The converse is proved similarly.

Consequently, we can give the following structure theorem.
Lemma 3.4. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers. Let f be a completely multiplicative function such that $f(m) \neq 0$. Then

$$
\begin{aligned}
\left(f\left(x_{i}, x_{j}\right)\right)= & \frac{1}{f(m)} \cdot \operatorname{diag}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \\
& \cdot\left(f\left(\frac{m}{x_{i}}, \frac{m}{x_{j}}\right)\right) \cdot \operatorname{diag}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

Proof. First we have

$$
\left(x_{i}, x_{j}\right)=\frac{m}{\left[\frac{m}{x_{i}}, \frac{m}{x_{j}}\right]}=\frac{m \cdot\left(\frac{m}{x_{i}}, \frac{m}{x_{j}}\right)}{\frac{m}{x_{i}} \cdot \frac{m}{x_{j}}}=\frac{x_{i} x_{j}}{m} \cdot\left(\frac{m}{x_{i}}, \frac{m}{x_{j}}\right)
$$

Since f is completely multiplicative and $f(m) \neq 0$, it follows that

$$
f\left(x_{i}, x_{j}\right)=\frac{f\left(x_{i}\right) f\left(x_{j}\right)}{f(m)} \cdot f\left(\frac{m}{x_{i}}, \frac{m}{x_{j}}\right)
$$

Therefore the result follows immediately.
REMARK 1. Lemma 3.4 is not true if f is not completely multiplicative.
Now we can give the main result of this section, which will be needed in the next section.

Theorem 3.5. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be multiple closed and f a completely multiplicative function such that $f(m) \neq 0$ and $(f * \mu)(d) \neq 0$ for any divisor d of m. Then $\left(f\left(x_{i}, x_{j}\right)\right)^{-1}=\left(b_{i j}\right)$, where

$$
b_{i j}=\frac{f(m)}{f\left(x_{i}\right) f\left(x_{j}\right)} \sum_{x_{l} \mid\left(x_{i}, x_{j}\right)} \frac{\mu\left(\frac{x_{i}}{x_{l}}\right) \mu\left(\frac{x_{j}}{x_{l}}\right)}{(f * \mu)\left(\frac{m}{x_{l}}\right)}
$$

Proof. Define a set $T=\left\{y_{1}, \ldots, y_{n}\right\}$ as follows: $x_{i} y_{i}=m$ for all $1 \leq$ $i \leq n$. Then $T=m S^{-1}$. Since S is multiple closed, T is factor closed by Lemma 3.3. On the other hand, by Lemma 3.1 we have

$$
\begin{equation*}
\left(\left(f\left(y_{i}, y_{j}\right)\right)^{-1}\right)_{i j}=\sum_{\substack{y_{i}\left|y_{l} \\ y_{j}\right| y_{l}}} \frac{\mu\left(\frac{y_{l}}{y_{i}}\right) \mu\left(\frac{y_{l}}{y_{j}}\right)}{(f * \mu)\left(y_{l}\right)} \tag{2}
\end{equation*}
$$

Let $\Lambda=\operatorname{diag}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Since f is a completely multiplicative function such that $f(m) \neq 0$ and each x_{i} divides m, it follows that $f\left(x_{i}\right) \neq 0$ for all $1 \leq i \leq n$. It then follows from Lemma 3.4 and (2) that

$$
\begin{aligned}
b_{i j} & =\left(f(m) \cdot \Lambda^{-1} \cdot\left(f\left(y_{i}, y_{j}\right)\right)^{-1} \cdot \Lambda^{-1}\right)_{i j} \\
& =\frac{f(m)}{f\left(x_{i}\right) f\left(x_{j}\right)} \cdot\left(\left(f\left(y_{i}, y_{j}\right)\right)^{-1}\right)_{i j} \\
& =\frac{f(m)}{f\left(x_{i}\right) f\left(x_{j}\right)} \cdot \sum_{\substack{y_{i}\left|y_{l} \\
y_{j}\right| y_{l}}} \frac{\mu\left(\frac{y_{l}}{y_{i}}\right) \mu\left(\frac{y_{l}}{y_{j}}\right)}{(f * \mu)\left(y_{l}\right)} \\
& =\frac{f(m)}{f\left(x_{i}\right) f\left(x_{j}\right)} \cdot \sum_{x_{l} \mid x_{i}} \frac{\mu\left(\frac{x_{i}}{x_{l}}\right) \mu\left(\frac{x_{j}}{x_{l}}\right)}{(f * \mu)\left(\frac{m}{x_{l}}\right)}
\end{aligned}
$$

as desired.
4. The multiple closed case. In this section we will first associate a class \mathcal{C}_{S} of arithmetical functions with any set S of distinct positive integers and show that for $f \in \mathcal{C}_{S}$ the matrices $\left(f\left(x_{i}, x_{j}\right)\right)$ and $\left(f\left[x_{i}, x_{j}\right]\right)$ are integral.

Definition 4.1. Given any set S of distinct positive integers define the class of arithmetical functions $\mathcal{C}_{S}=\{f:(f * \mu)(d) \in \mathbb{Z}$ whenever $d \mid m\}$.

Clearly $\mathcal{L}_{S} \subset \mathcal{C}_{S}$. Therefore \mathcal{C}_{S} is not empty.
Lemma 4.2. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers and $f \in \mathcal{C}_{S}$. Then each of the following is true:
(i) For every divisor d of $m, f(d)$ is an integer.
(ii) The matrices $\left(f\left(x_{i}, x_{j}\right)\right)$ and $\left(f\left[x_{i}, x_{j}\right]\right)$ are integral matrices of order n.

Proof. This lemma is a simple consequence of the Möbius inversion formula.

Now let $f, g \in \mathcal{C}_{S}$ and $d_{1} \mid m$. Then $f\left(d_{1}\right) \in \mathbb{Z}$ by Lemma 4.2(i). This implies that $((f * g) * \mu)(d)=\sum_{d_{1} \mid d} f\left(d_{1}\right)(g * \mu)\left(d / d_{1}\right) \in \mathbb{Z}$ whenever $d \mid m$. Therefore $f * g \in \mathcal{C}_{S}$ and thus the class \mathcal{C}_{S} is closed with respect to Dirichlet convolution.

Next we prove two lemmas on completely multiplicative functions.
Lemma 4.3. Let b be a positive integer. If f is a completely multiplicative function, then for every $a \geq 2$ at which f does not vanish, we have

$$
g(a):=\sum_{d \mid a} \frac{\mu(d)}{f(d) f(b, a / d)}=\frac{(f * \mu)(a)}{f(a) f(a, b)} \cdot \delta_{a, b}
$$

where

$$
\delta_{a, b}= \begin{cases}0 & \text { if } v_{p}(a) \leq v_{p}(b) \text { for some prime } p \mid a \\ 1 & \text { if } v_{p}(a)>v_{p}(b) \text { for all primes } p \mid a\end{cases}
$$

Proof. Since $g(x y)=g(x) g(y)$ for all co-prime integers x, y at which f does not vanish, it suffices to establish the assertion in the case of $a=p^{r}$ with p prime, $r \in \mathbb{Z}^{+}, f(a)=f(p)^{r} \neq 0$. Then

$$
g\left(p^{r}\right)=\frac{1}{f\left(b, p^{r}\right)}-\frac{1}{f(p) f\left(b, p^{r-1}\right)}
$$

If $v_{p}(b) \geq v_{p}(a)$, then $p^{r} \mid b$, thus $f\left(b, p^{r}\right)=f(p)^{r}$ and $f\left(b, p^{r-1}\right)=f(p)^{r-1}$, implying $g\left(p^{r}\right)=0$. If $v_{p}(b)<v_{p}(a)$, then $f\left(b, p^{r}\right)=f\left(b, p^{r-1}\right)$, and since f is completely multiplicative we deduce

$$
g\left(p^{r}\right)=\frac{1-1 / f(p)}{f\left(b, p^{r}\right)}=\frac{f\left(p^{r}\right)(1-1 / f(p))}{f\left(p^{r}\right) f\left(b, p^{r}\right)}=\frac{(f * \mu)\left(p^{r}\right)}{f\left(p^{r}\right) f\left(b, p^{r}\right)}
$$

as required.
Lemma 4.4. Let f be a completely multiplicative function. Let x, y, z $\in \mathbb{Z}^{+}$be such that $[x, y] \mid z$. Then $f(x, y) f(z)=f(x) f(y) f(z / x, z / y)$.

Proof. Since $x \mid z$ and $y \mid z$, we have $(x, y) z=x y(z / x, z / y)$. But f is completely multiplicative, and so the result follows immediately.

Since $\mathcal{L}_{S} \subset \mathcal{C}_{S}$, it follows immediately from Lemma 4.2 (ii) that for any set S and any $f \in \mathcal{L}_{S}$, we have $\left(f\left(x_{i}, x_{j}\right)\right) \in M_{n}(\mathbb{Z})$ and $\left(f\left[x_{i}, x_{j}\right]\right) \in M_{n}(\mathbb{Z})$, so we can consider the divisibility of the two matrices in the ring $M_{n}(\mathbb{Z})$. Now we are in a position to give the first main result of this paper.

Theorem 4.5. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a multiple closed set. Let f be a completely multiplicative function such that $f(m) \neq 0$ and $f \in \mathcal{L}_{S}$. Then the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ divides $\left(f\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$.

Proof. Since $f(m) \neq 0$ and f is completely multiplicative, it follows that $f(d) \neq 0$ for any divisor d of m. Let $C=\left(f\left[x_{i}, x_{j}\right]\right) \cdot\left(f\left(x_{i}, x_{j}\right)\right)^{-1}$. Write $C=\left(c_{i j}\right)$. Clearly we need to show $c_{i j} \in \mathbb{Z}$ for all $1 \leq i, j \leq n$. By Theorem 3.5, for $1 \leq i, j \leq n$ we have

$$
\begin{align*}
c_{i j} & =\sum_{k=1}^{n} f\left[x_{i}, x_{k}\right] \cdot \frac{f(m)}{f\left(x_{k}\right) f\left(x_{j}\right)} \sum_{\substack{x_{l}\left|x_{k} \\
x_{l}\right| x_{j}}} \frac{\mu\left(\frac{x_{k}}{x_{l}}\right) \mu\left(\frac{x_{j}}{x_{l}}\right)}{(f * \mu)\left(\frac{m}{x_{l}}\right)} \tag{3}\\
& =\frac{1}{f\left(x_{j}\right)} \sum_{x_{l} \mid x_{j}} \frac{\mu\left(\frac{x_{j}}{x_{l}}\right)}{(f * \mu)\left(\frac{m}{x_{l}}\right)} \sum_{x_{l} \mid x_{k}} \frac{f(m)}{f\left(x_{k}\right)} \cdot f\left[x_{i}, x_{k}\right] \cdot \mu\left(\frac{x_{k}}{x_{l}}\right) \\
& =\frac{f\left(x_{i}\right)}{f\left(x_{j}\right)} \sum_{x_{l} \mid x_{j}} \frac{\mu\left(\frac{x_{j}}{x_{l}}\right)}{(f * \mu)\left(\frac{m}{x_{l}}\right)} \sum_{x_{l} \mid x_{k}} \frac{f(m)}{f\left(x_{i}, x_{k}\right)} \cdot \mu\left(\frac{x_{k}}{x_{l}}\right) .
\end{align*}
$$

Fix l with $1 \leq l \leq n$ and $x_{l} \mid x_{j}$. For $x_{l} \mid x_{k}$, let $d=x_{k} / x_{l}$. Since $x_{k} \mid m$, we
deduce $d \left\lvert\, \frac{m}{x_{l}}\right.$. So by Lemma 4.4 we have

$$
\begin{align*}
& \sum_{x_{l} \mid x_{k}} \frac{f(m)}{f\left(x_{i}, x_{k}\right)} \cdot \mu\left(\frac{x_{k}}{x_{l}}\right)=\sum_{d \left\lvert\, \frac{m}{x_{l}}\right.} \frac{f(m)}{f\left(x_{i}, d x_{l}\right)} \cdot \mu(d) \tag{4}\\
& =\sum_{d \left\lvert\, \frac{m}{x_{l}}\right.} \frac{(f(m))^{2}}{f\left(x_{i}\right) f\left(x_{l}\right)} \cdot \frac{\mu(d)}{f(d) f\left(\frac{m}{x_{i}}, \frac{m}{d x_{l}}\right)}=\frac{(f(m))^{2}}{f\left(x_{i}\right) f\left(x_{l}\right)} \sum_{d \left\lvert\, \frac{m}{x_{l}}\right.} \frac{\mu(d)}{f(d) f\left(\frac{m}{x_{i}}, \frac{m / x_{l}}{d}\right)} .
\end{align*}
$$

Since f is completely multiplicative, by Lemma 4.3 applied to the last sum in (4), it follows from (3) and (4) and Lemma 4.4 that

$$
\begin{aligned}
c_{i j} & =\frac{f\left(x_{i}\right)}{f\left(x_{j}\right)} \sum_{x_{l} \mid x_{j}} \frac{\mu\left(\frac{x_{j}}{x_{l}}\right)}{(f * \mu)\left(\frac{m}{x_{l}}\right)} \cdot \frac{(f(m))^{2}}{f\left(x_{i}\right) f\left(x_{l}\right)} \cdot \frac{f\left(x_{l}\right) \cdot(f * \mu)\left(\frac{m}{x_{l}}\right)}{f(m) f\left(\frac{m}{x_{i}}, \frac{m}{x_{l}}\right)} \cdot \delta_{l, i}^{\prime} \\
& =\frac{f\left(x_{i}\right)}{f\left(x_{j}\right)} \sum_{x_{l} \mid x_{j}} \frac{f\left(x_{l}\right)}{f\left(x_{i}, x_{l}\right)} \cdot \mu\left(\frac{x_{j}}{x_{l}}\right) \cdot \delta_{l, i}^{\prime}
\end{aligned}
$$

where

$$
\delta_{l, i}^{\prime}:=\delta_{m / x_{l}, m / x_{i}}= \begin{cases}0 & \text { if } v_{p}\left(\frac{m}{x_{l}}\right) \leq v_{p}\left(\frac{m}{x_{i}}\right) \text { for some prime } p \left\lvert\, \frac{m}{x_{l}}\right., \\ 1 & \text { if } v_{p}\left(\frac{m}{x_{l}}\right)>v_{p}\left(\frac{m}{x_{i}}\right) \text { for all primes } p \left\lvert\, \frac{m}{x_{l}} .\right.\end{cases}
$$

Obviously the terms corresponding to x_{l} for which x_{j} / x_{l} is not square-free vanish. Define an index set I_{j} as follows:

$$
I_{j}=\left\{l: 1 \leq l \leq n, x_{l}<x_{j}, x_{l} \mid x_{j} \text { and } x_{j} / x_{l} \text { is square-free }\right\}
$$

Then

$$
\begin{equation*}
c_{i j}=\frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{j}\right)} \cdot \delta_{j, i}^{\prime}+\sum_{l \in I_{j}} \frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{l}\right)} \cdot \frac{f\left(x_{l}\right)}{f\left(x_{j}\right)} \cdot \mu\left(\frac{x_{j}}{x_{l}}\right) \cdot \delta_{l, i}^{\prime} \tag{5}
\end{equation*}
$$

Assume first that $I_{j}=\emptyset$. Then $c_{i j}=\frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{j}\right)} \cdot \delta_{j, i}^{\prime}$. But $\frac{x_{i}}{\left(x_{i}, x_{j}\right)}\left|x_{i}\right| m$. It follows from Lemma 4.2(i) that $f\left(x_{i}\right) / f\left(x_{i}, x_{j}\right)=f\left(x_{i} /\left(x_{i}, x_{j}\right)\right) \in \mathbb{Z}$. So $c_{i j} \in \mathbb{Z}$ as desired. Now assume that $I_{j} \neq \emptyset$. Let
$I_{j}^{\prime}=\left\{l \in I_{j}: v_{p}\left(x_{i}\right)=v_{p}\left(\left(x_{i}, x_{l}\right)\right)\right.$ for some prime divisor p of $\left.x_{j} / x_{l}\right\}$,
$I_{j}^{\prime \prime}=\left\{l \in I_{j}: v_{p}\left(x_{i}\right)>v_{p}\left(\left(x_{i}, x_{l}\right)\right)\right.$ for all prime divisors p of $\left.x_{j} / x_{l}\right\}$.
Then $I_{j}^{\prime} \cap I_{j}^{\prime \prime}=\emptyset$ and $I_{j}=I_{j}^{\prime} \cup I_{j}^{\prime \prime}$. It follows from (5) that

$$
\begin{align*}
c_{i j}= & \frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{j}\right)} \cdot \delta_{j, i}^{\prime}+\sum_{l \in I_{j}^{\prime}} \frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{l}\right)} \cdot \frac{f\left(x_{l}\right)}{f\left(x_{j}\right)} \cdot \mu\left(\frac{x_{j}}{x_{l}}\right) \cdot \delta_{l, i}^{\prime} \tag{6}\\
& +\sum_{l \in I_{j}^{\prime \prime}} \frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{l}\right)} \cdot \frac{f\left(x_{l}\right)}{f\left(x_{j}\right)} \cdot \mu\left(\frac{x_{j}}{x_{l}}\right) \cdot \delta_{l, i}^{\prime} .
\end{align*}
$$

We claim that $\delta_{l, i}^{\prime}=0$ for $l \in I_{j}^{\prime}$. In fact, if $l \in I_{j}^{\prime}$, then there exists a prime divisor p of x_{j} / x_{l} such that $v_{p}\left(x_{i}\right)=v_{p}\left(\left(x_{i}, x_{l}\right)\right)$. Hence $v_{p}\left(x_{i}\right) \leq$ $v_{p}\left(x_{l}\right)$. This implies that $v_{p}\left(m / x_{i}\right) \geq v_{p}\left(m / x_{l}\right)$. It follows that $\delta_{l, i}^{\prime}=0$, proving the claim. Then from (6) we deduce

$$
\begin{equation*}
c_{i j}=\frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{j}\right)} \cdot \delta_{j, i}^{\prime}+\sum_{l \in I_{j}^{\prime \prime}} \frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{l}\right)} \cdot \frac{f\left(x_{l}\right)}{f\left(x_{j}\right)} \cdot \mu\left(\frac{x_{j}}{x_{l}}\right) \cdot \delta_{l, i}^{\prime} \tag{7}
\end{equation*}
$$

Now let $l \in I_{j}^{\prime \prime}$. Let p be any prime divisor of x_{j} / x_{l}. Then $v_{p}\left(x_{i}\right)>$ $v_{p}\left(\left(x_{i}, x_{l}\right)\right)$. Hence $v_{p}\left(x_{i} /\left(x_{i}, x_{l}\right)\right) \geq 1$. On the other hand, since x_{j} / x_{l} is square-free, $v_{p}\left(x_{j} / x_{l}\right)=1$. Therefore

$$
\begin{equation*}
v_{p}\left(\frac{x_{i}}{\left(x_{i}, x_{l}\right)} \cdot \frac{x_{l}}{x_{j}}\right) \geq 0 \tag{8}
\end{equation*}
$$

By the arbitrariness of $p,(8)$ implies that the rational number $\frac{x_{i}}{\left(x_{i}, x_{l}\right)} \cdot \frac{x_{l}}{x_{j}}$ has no primes in its denominator, i.e. $\frac{x_{i}}{\left(x_{i}, x_{l}\right)} \cdot \frac{x_{l}}{x_{j}} \in \mathbb{Z}$. Since f is a completely multiplicative function with $f \in \mathcal{L}_{S}$ and $\frac{x_{i}}{\left(x_{i}, x_{l}\right)} \cdot \frac{x_{l}}{x_{j}}$ is a factor of m, by Lemma 4.2(i) we have $\frac{f\left(x_{i}\right)}{f\left(x_{i}, x_{l}\right)} \cdot \frac{f\left(x_{l}\right)}{f\left(x_{j}\right)} \in \mathbb{Z}$. It then follows from (7) that $c_{i j} \in \mathbb{Z}$. Thus $C \in M_{n}(\mathbb{Z})$ and this concludes the proof of Theorem 4.5.

Example 4.6. To illustrate Theorem 4.5 , let S be as in (1) and let λ be the Liouville function which is defined for positive integers x by $\lambda(x)=$ $(-1)^{\alpha_{1}+\ldots+\alpha_{t}}$ if $x=p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}}$, where p_{1}, \ldots, p_{t} are distinct prime numbers and $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{Z}^{+}$. Then λ is a completely multiplicative function. It is easy to show that for any $x \in \mathbb{Z}^{+},(\lambda * \mu)(x)=\lambda(x) \cdot 2^{\nu(x)}$, where $\nu(x)$ denotes the number of distinct prime factors of x. Hence $\lambda \in \mathcal{L}_{S}$ and $\lambda(m) \neq 0$. Let $D=\left(\left[x_{i}, x_{j}\right]\right) \cdot\left(\left(x_{i}, x_{j}\right)\right)^{-1}$ and $E=\left(\lambda\left[x_{i}, x_{j}\right]\right) \cdot\left(\lambda\left(x_{i}, x_{j}\right)\right)^{-1}$. We can easily check that D and E lie in $M_{4}(\mathbb{Z})$. Therefore $\left(\left(x_{i}, x_{j}\right)\right) \mid\left(\left[x_{i}, x_{j}\right]\right)$ and $\left(\lambda\left(x_{i}, x_{j}\right)\right) \mid\left(\lambda\left[x_{i}, x_{j}\right]\right)$ in $M_{4}(\mathbb{Z})$.

Corollary 4.7. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a multiple closed set. Let f be a completely multiplicative function such that $f(m) \neq 0$ and $f \in \mathcal{L}_{S}$. Then the matrix $\left((-1)^{i+j} \cdot f\left(x_{i}, x_{j}\right)\right)$ divides $\left((-1)^{i+j} \cdot f\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$.

Proof. Let Γ be the $n \times n$ diagonal matrix with the diagonal elements $(-1)^{i}, i=1, \ldots, n$. Let $F=\Gamma \cdot C \cdot \Gamma$, where C is as in the proof of Theorem 4.5. It follows from Theorem 4.5 that $F \in M_{n}(\mathbb{Z})$. We can easily check that $\left((-1)^{i+j} \cdot f\left[x_{i}, x_{j}\right]\right)=F \cdot\left((-1)^{i+j} \cdot f\left(x_{i}, x_{j}\right)\right)$. So the result follows immediately.

Remark 2. Corollary 4.7 is not true if f is not completely multiplicative.

Furthermore, from Theorem 4.5, letting $f(n)=n^{\varepsilon}$ gives the following consequence.

Corollary 4.8. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a multiple closed set and let ε be a positive integer. Then the matrix $\left(\left(x_{i}, x_{j}\right)^{\varepsilon}\right)$ divides $\left(\left[x_{i}, x_{j}\right]^{\varepsilon}\right)$ in $M_{n}(\mathbb{Z})$.

In particular, we have the following consequence.
Corollary 4.9. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a multiple closed set. Then the $G C D$ matrix $\left(\left(x_{i}, x_{j}\right)\right)$ divides the LCM matrix $\left(\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$.
5. The divisor chain case. By Lemma 4.2 (ii), for any set S and for any $f \in \mathcal{L}_{S}$, the matrices $\left(f\left(x_{i}, x_{j}\right)\right)$ and $\left(f\left[x_{i}, x_{j}\right]\right)$ are integral. In this section, we consider the divisor chain case. Now we prove the second main result of this paper.

Theorem 5.1. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a divisor chain and $f \in \mathcal{C}_{S}$. If there exists an integer z_{i} such that $f\left(x_{i}\right)=z_{i} f\left(x_{1}\right)$ for all $2 \leq i \leq n$, then the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ divides $\left(f\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$.

Proof. First it follows from Lemma 4.2(ii) together with $f \in \mathcal{C}_{S}$ that the matrices $\left(f\left(x_{i}, x_{j}\right)\right)$ and $\left(f\left[x_{i}, x_{j}\right]\right)$ are integral. Since S is a divisor chain, $m=x_{n}$. For $1 \leq i \leq j \leq n$, since $x_{i} \mid x_{j}$, we have $f\left(x_{i}, x_{j}\right)=f\left(x_{i}\right)$ and $f\left[x_{i}, x_{j}\right]=f\left(x_{j}\right)$. If $f\left(x_{1}\right)=0$, from the assumption we then deduce $f\left(x_{i}\right)=0$ for all $2 \leq i \leq n$. So $\left(f\left(x_{i}, x_{j}\right)\right)=\left(f\left[x_{i}, x_{j}\right]\right)=O_{n, n}$, the zero matrix of order n. Now let $f\left(x_{1}\right) \neq 0$. Define an $n \times n$ matrix G as follows:

$$
G=\left(\begin{array}{crrrrr}
0 & 0 & 0 & \ldots & 0 & 1 \\
f\left(x_{2}\right) / f\left(x_{1}\right) & -1 & 0 & \ldots & 0 & 1 \\
f\left(x_{3}\right) / f\left(x_{1}\right) & 0 & -1 & \ldots & 0 & 1 \\
\ldots & \ldots \ldots \ldots & \ldots \ldots & \ldots \ldots & \ldots \\
f\left(x_{n-1}\right) / f\left(x_{1}\right) & 0 & 0 & \ldots & -1 & 1 \\
f\left(x_{n}\right) / f\left(x_{1}\right) & 0 & 0 & \ldots & 0 & 0
\end{array}\right) .
$$

By assumption we have $f\left(x_{i}\right) / f\left(x_{1}\right) \in \mathbb{Z}$ for $2 \leq i \leq n$. Thus $G \in M_{n}(\mathbb{Z})$. On the other hand, we can easily check that

$$
G \cdot\left(f\left(x_{i}, x_{j}\right)\right)=\left(f\left[x_{i}, x_{j}\right]\right) .
$$

Therefore the result in this case follows immediately.
Corollary 5.2. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a divisor chain and $f \in \mathcal{C}_{S}$. If there exists an integer z_{i} such that $f\left(x_{i}\right)=z_{i} f\left(x_{1}\right)$ for all $2 \leq i \leq n$, then the matrix $\left((-1)^{i+j} \cdot f\left(x_{i}, x_{j}\right)\right)$ divides $\left((-1)^{i+j} \cdot f\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$.

Corollary 5.3. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a divisor chain and f a completely multiplicative function such that $f \in \mathcal{C}_{S}$. Then the matrix $\left(f\left(x_{i}, x_{j}\right)\right)$ divides $\left(f\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$.

Proof. Since f is completely multiplicative, we have $f\left(x_{i}\right)=f\left(x_{1}\right) f\left(x_{i} / x_{1}\right)$ for $2 \leq i \leq n$. Since $f \in \mathcal{C}_{S}$, Lemma 4.2(i) together with the fact $\left.\frac{x_{i}}{x_{1}} \right\rvert\, m$
implies $f\left(x_{i} / x_{1}\right) \in \mathbb{Z}$. So Corollary 5.3 follows immediately from Theorem 5.1.

Remark 3. Corollary 5.3 is no longer true if f is just multiplicative. For instance, let $S=\{3,9\}$. Then S is clearly a divisor chain. We calculate $\left(\sigma\left[x_{i}, x_{j}\right]\right) \cdot\left(\sigma\left(x_{i}, x_{j}\right)\right)^{-1}=\left(\begin{array}{cc}4 & 13 \\ 13 & 13\end{array}\right) \cdot\left(\begin{array}{cc}\frac{13}{36} & -\frac{1}{9} \\ -\frac{1}{9} & \frac{1}{9}\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ \frac{13}{4} & 0\end{array}\right) \notin M_{2}(\mathbb{Z})$.
So $\left(\sigma\left(x_{i}, x_{j}\right)\right) \nmid\left(\sigma\left[x_{i}, x_{j}\right]\right)$ in $M_{2}(\mathbb{Z})$.
Corollary 5.4. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a divisor chain and f a completely multiplicative function such that $f \in \mathcal{C}_{S}$. Then the matrix $\left((-1)^{i+j}\right.$. $\left.f\left(x_{i}, x_{j}\right)\right)$ divides $\left((-1)^{i+j} \cdot f\left[x_{i}, x_{j}\right]\right)$ in the ring $M_{n}(\mathbb{Z})$.

Remark 4. Corollary 5.4 is not true if f is not completely multiplicative.

Picking $f(n)=n^{\varepsilon}$, we can immediately deduce from Corollary 5.3 that the following result is true.

Corollary 5.5. Let ε be a positive integer and let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a divisor chain. Then the matrix $\left(\left(x_{i}, x_{j}\right)^{\varepsilon}\right)$ divides $\left(\left[x_{i}, x_{j}\right]^{\varepsilon}\right)$ in the ring $M_{n}(\mathbb{Z})$.

Remark 5. If we take $\varepsilon=1$, then Corollary 5.5 becomes the result mentioned in [12] without proof. Note that by using and developing the method of [10], we proved [12] that there is a gcd-closed set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ (i.e. $\left(x_{i}, x_{j}\right) \in S$ for all $\left.1 \leq i, j \leq n\right)$ such that the GCD matrix $\left(\left(x_{i}, x_{j}\right)\right)$ does not divide the LCM matrix $\left(\left[x_{i}, x_{j}\right]\right)$ in $M_{n}(\mathbb{Z})$.

Acknowledgments. The author would like to thank Professor Władysław Narkiewicz and the anonymous referee for their careful reading of the manuscript and very helpful comments which improved greatly the presentation.

REFERENCES

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] —, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41 (1972), 281-293.
[3] S. Beslin, Reciprocal GCD matrices and LCM matrices, Fibonacci Quart. 29 (1991), 271-274.
[4] S. Beslin and S. Ligh, Another generalization of Smith's determinant, Bull. Austral. Math. Soc. 40 (1989), 413-415.
[5] K. Bourque and S. Ligh, Matrices associated with arithmetical functions, Linear and Multilinear Algebra 34 (1993), 261-267.
[6] -, 一, Matrices associated with classes of arithmetical functions, J. Number Theory 45 (1993), 367-376.
[7] K. Bourque and S. Ligh, Matrices associated with classes of multiplicative functions, Linear Algebra Appl. 216 (1995), 267-275.
[8] P. Haukkanen and J. Sillanpaa, Some analogues of Smith's determinant, Linear and Multilinear Algebra 41 (1996), 233-244.
[9] S. F. Hong, Lower bounds for determinants of matrices associated with classes of arithmetical functions, ibid. 45 (1999), 349-358.
[10] -, On the Bourque-Ligh conjecture of least common multiple matrices, J. Algebra 218 (1999), 216-228.
[11] -, Gcd-closed sets and determinants of matrices associated with arithmetical functions, Acta Arith. 101 (2002), 321-332.
[12] -, On the factorization of LCM matrices on gcd-closed sets, Linear Algebra Appl. 345 (2002), 225-233.
[13] - , Notes on power LCM matrices, to appear in Acta Arith.
[14] S. Ligh, Generalized Smith's determinant, Linear and Multilinear Algebra 22 (1988), 305-306.
[15] P. J. McCarthy, Introduction to Arithmetical Functions, Springer, New York, 1986.
[16] -, A generalization of Smith's determinant, Canad. Math. Bull. 29 (1988), 109-113.
[17] H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-1876), 208-212.

Mathematical College
Sichuan University
Chengdu 610064
P.R. China

E-mail: s-f.hong@163.net hongsf02@yahoo.com

Department of Mathematics
Technion-Israel Institute of Technology
Haifa 32000, Israel

Received 13 June 2003;
revised 30 September 2003

[^0]: 2000 Mathematics Subject Classification: Primary 11C20, 11A25.
 Key words and phrases: factorization, multiplicative function, completely multiplicative function, multiple-closed set, divisor chain.

 Supported partially by an NNSF of China (Grant No. 10101015) and the Lady Davis Fellowship at the Technion.

