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FACTORIZATION OF MATRICES ASSOCIATED WITH
CLASSES OF ARITHMETICAL FUNCTIONS

BY

SHAOFANG HONG (Chengdu and Haifa)

Abstract. Let f be an arithmetical function. A set S = {z1,...,zn} of n distinct
positive integers is called multiple closed if y € S whenever z |y |lcm(S) for any = € S,
where lem(S) is the least common multiple of all elements in S. We show that for any
multiple closed set S and for any divisor chain S (i.e. z1| ... |zn), if f is a completely
multiplicative function such that (f % u)(d) is a nonzero integer whenever d|lcm(S), then
the matrix (f(z;,x;)) having f evaluated at the greatest common divisor (x;,z;) of z; and
x; as its 4, j-entry divides the matrix (f[x;,z;]) having f evaluated at the least common
multiple [z;,z;] of x; and z; as its ¢, j-entry in the ring My (Z) of n x n matrices over the
integers. But such a factorization is no longer true if f is multiplicative.

1. Introduction. Let n be a positive integer and let ((¢,7)) be the
n X n matrix having the greatest common divisor (¢,7) of ¢ and j as its
(,7)-entry. In 1876, H. J. S. Smith [17] published his celebrated results
by showing that the determinant of the n x n matrix ((7,7)) is the prod-
uct [T_, ¢(k), where ¢ is Euler’s totient function. Let f be an arithmeti-
cal function. For any positive integers = and y, we let f(z,y) and f[x,y]
denote, for brevity, f((z,y)) and f([z,y]), respectively. Here [z,y] means
the least common multiple of z and y. Smith also proved that if f is an
arithmetical function and (f(i,7)) is the n x n matrix having f evalu-
ated at the greatest common divisor (7,7) of i and j as its (i,7)-entry,
then det(f(4,7)) = [1i—,(f * p)(k), where p is the Mdbius function and
f = w is the Dirichlet convolution of f and p. In 1972, Apostol [2] extended
Smith’s result. In 1988, McCarthy [16] generalized Smith’s and Apostol’s
results to the class of even functions (mod r). In 1993, Bourque and Ligh
[6] extended the results of Smith, Apostol, and McCarthy. In 1999, Hong
[9] improved the lower bounds for the determinants of the matrices consid-
ered by Bourque and Ligh [6]. In 2002, Hong [11] generalized the results
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of Smith, Apostol, McCarthy, Bourque and Ligh to certain classes of arith-
metical functions.

Let S = {x1,...,2,} be a set of n distinct positive integers. Denote by
(f(xi,x;)) the n x n matrix having f evaluated at the greatest common
divisor (z;,z;) of x; and x; as its i, j-entry, and by (f[z;,z;]) the n x n
matrix having f evaluated at the least common multiple [z;, z;] of x; and
x; as its ¢, j-entry. The set S is said to be factor closed if it contains every
divisor of x for any x € S. From Bourque and Ligh’s result [7, Theorem 4],
we can see that if S is a factor closed set and f is a multiplicative function
such that f € Lg, where Lg is the class of arithmetical functions defined by

Ls:={f:(f*u)(d) €Z" whenever d|lem(S5)},

where Z* := Z\{0} denotes the set of nonzero integers and lem(S) means
the least common multiple of all elements in .S, then the matrix (f(z;,z;))
divides the matrix (f[z;, x;]) in the ring M,,(Z) of n x n matrices over the
integers. Observe that the condition f € Lg of [7, Theorem 4] was stated as
feZs:={f:(fxp)(zx) € Z* for any x € S}. In fact, we can easily show
that if S is factor closed and f is multiplicative, then f € Lg if and only if
fels.

Many generalizations of Smith’s result in various directions have been
published [2-14, 16]. Our main interest in the present paper is in the divisi-
bility of the matrix (f[z;, x;]) by (f(zi, z;)). We introduce the following con-
cept: The set S is said to be multiple closed if y € S whenever x|y |lem(S)
for any = € S. For example, S = {2,3,6,10,15,30} is multiple closed. It is
obvious that if S is multiple closed, then max(.S) = lem(S) and so x | max(.S)
for any x € S, where max(S) denotes the largest element in S. We have the
following natural and interesting question.

PrROBLEM 1.1. Let S = {z1,...,z,} be a multiple closed set and let f

be a multiplicative function such that f € Lg. Does the matrix (f(z;,x;))
divide (f[x;, x;]) in the ring M, (Z)?

In this paper, we will associate a class Cg of arithmetical functions with
any set S of distinct positive integers (see Definition 4.1 below; note that
Ls C Cg) and show that for f € Cg the matrices (f(z;,z;)) and (f[z;, x;])
are integral. We find, surprisingly, that the answer to Problem 1.1 is negative.
We will construct a counterexample in Section 2. However, for f completely
multiplicative, the answer is affirmative (see Theorem 4.5 below).

The set S = {z1,...,2,} is said to be a divisor chain if z; |z; for all
1 <4 < j <n. We will show that for any arithmetical function f € Cg such
that there exists an integer z; satisfying f(x;) = z;f(z1) for all 2 <i < n, if
S is a divisor chain, then the matrix (f(x;,z;)) divides (f[z;, z;]) in M, (Z).
As a corollary, we show that for any completely multiplicative function f
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with f € Cg, if S is a divisor chain, then (f(x;,z;)) divides (f[z;,z;]) in
M, (Z). But such a factorization is no longer true if f is just multiplicative.

Throughout this paper, given any set S of distinct positive integers let
m = lem(S). Then m = max(S) if S is multiple closed. We let Z and Z™
denote the sets of integers and of positive integers, respectively. As usual,
for x € Z* and a prime p, let v,(z) denote the p-adic valuation of z, i.e.
v,(z) is the largest integer such that p?»(*) divides z.

2. A counterexample to Problem 1.1. In this section, we give an
example to show that the answer to Problem 1.1 is negative. Define

(1) S ={6,8,12,24}.

Then S is clearly multiple closed. Note that it is not factor closed. For
any z € Z*, let o(x) denote the sum of the positive divisors of z. It is
well known that o is multiplicative but not completely multiplicative. The
equality (o * p)(z) = x implies 0 € Lg. One can easily calculate that the
product (o[x;, z;]) - (o(zs,2;)) " does not lie in My(Z). So the 4 x 4 matrix
(0(x;,x;)) does not divide (o[x;,z;]) in My(Z). This answers negatively
Problem 1.1.

3. Inverse of (f(z;,z;)). In 1993, Bourque and Ligh gave a formula
for the inverse of the matrix (f(x;,2;)) when S is factor closed as follows.

LEMMA 3.1 ([5]). Let f be an arithmetical function and S = {x1,...,x,}
be factor closed. If (f * u)(z) # 0 for all x € S, then (f(zi,z;))" " = (asj),
where

Jn(3)

_Z f*,UJUUz.

x]|zl

In what follows we calculate the inverse of the matrix (f(z;,z;)) when
S is a multiple closed set. First we need the following definition.

DEFINITION 3.2 ([13]). Let S = {z1,...,2z,} be a set of n distinct posi-

tive integers. Then the reciprocal set of S, denoted by mS~1!, is defined by
mS—t={m/x1,...,m/z,}.
LEMMA 3.3. Let S ={x1,...,x,} be a set of n distinct positive integers.

Then S is multiple closed if and only if the reciprocal set mS™"' is factor
closed.

Proof. Assume that S is multiple closed. For any given 1 < ¢ < n, let
d| 2.+ One then deduces that x; | % |m. Since S is multiple closed, there
exists a 1 < j < n such that m/d = z;. So d = m/x;. That is, d € mS~!.
Hence mS~1 is factor closed. The converse is proved similarly. =
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Consequently, we can give the following structure theorem.

LEMMA 3.4. Let S = {x1,...,x,} be a set of n distinct positive integers.
Let f be a completely multiplicative function such that f(m) # 0. Then

(i) = ﬁ - diag(f(z1), . ., f(zn))

. ( (E ﬁ)) diag(f(z1), ., f(@n)).

ﬂ .

xi7:17j

Since f is completely multiplicative and f(m) # 0, it follows that
f() f () .f(m @)
f(m) ;|

Therefore the result follows immediately. m

f(xi’l‘j) =

REMARK 1. Lemma 3.4 is not true if f is not completely multiplicative.

Now we can give the main result of this section, which will be needed in
the next section.

THEOREM 3.5. Let S = {z1,...,z,} be multiple closed and f a com-
pletely multiplicative function such that f(m) # 0 and (f*p)(d) # 0 for any
divisor d of m. Then (f(z;,2;))~" = (bij), where

_ fm) u(z) ()
%= TR 2= Gam(E)

zi|(zi,25)

Proof. Define a set T = {y1,...,yn} as follows: z;y; = m for all 1 <
i < n. Then T = mS~!. Since S is multiple closed, T is factor closed by
Lemma 3.3. On the other hand, by Lemma 3.1 we have

N
@) ((F(ir i) ™)is = Z| T mm)

Let A = diag(f(x1),..., f(z,)). Since f is a completely multiplicative func-
tion such that f(m) # 0 and each z; divides m, it follows that f(x;) # 0 for
all 1 < ¢ < n. It then follows from Lemma 3.4 and (2) that
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bij = (f(m)- A7 - (flyi ;)" - A7)y

__fm) 1y

- f(ml)f(xj) ((f(ylayj)) )U

Cfm) = rGRGE)

[l f(xy) yzyl (f = p)(w)
Yily

_fm) o mE)e(E)

BRI RETIC
x|

as desired. m

4. The multiple closed case. In this section we will first associate a
class Cg of arithmetical functions with any set S of distinct positive integers
and show that for f € Cg the matrices (f(x;,x;)) and (f[z;, z;]) are integral.

DEFINITION 4.1. Given any set S of distinct positive integers define the
class of arithmetical functions Cs = {f : (f * u)(d) € Z whenever d|m}.

Clearly Lg C Cg. Therefore Cg is not empty.

LEMMA 4.2. Let S ={x1,...,x,} be a set of n distinct positive integers
and f € Cg. Then each of the following is true:

(i) For every divisor d of m, f(d) is an integer.
(ii) The matrices (f(zi,x;)) and (f[zi, x;]) are integral matrices of or-
der n.

Proof. This lemma is a simple consequence of the Mobius inversion for-
mula. m

Now let f,g € Cs and dy |m. Then f(dy) € Z by Lemma 4.2(i). This
implies that ((f * g) * p)(d) = >_ 4,4 f(d1)(g * p)(d/d1) € Z whenever d|m
Therefore f*g € Cs and thus the class Cg is closed with respect to Dirichlet
convolution.

Next we prove two lemmas on completely multiplicative functions.

LEMMA 4.3. Let b be a positive integer. If f is a completely multiplicative
function, then for every a > 2 at which f does not vanish, we have

(f *p)(a)
Zf ba/d = @ flab) "

where
5. { 0 ifvp(a) < wy(b) for some prime p|a
“* 71 if vp(a) > vp(b) for all primes p|a
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Proof. Since g(xy) = g(x)g(y) for all co-prime integers x,y at which f
does not vanish, it suffices to establish the assertion in the case of a = p”
with p prime, r € Z", f(a) = f(p)" # 0. Then

1 _ 1
f.pm)  fl)f(bpt)
If v,(b) > wvp(a), then p" | b, thus f(b,p") = f(p)” and f(b,p"~ ") = f(p)" ",
implying g(p") = 0. If v,(b) < vy(a), then f(b,p") = f(b,p"'), and since f
is completely multiplicative we deduce
) = 1= 1/fp) _ fe)A=1/f(p) _ (f*pw)®")
f(b,p") f@) f(b,p) @) f(bp)
as required. m

g(p") =

LEMMA 4.4. Let f be a completely multiplicative function. Let x,y,z
€ Z7 be such that [z, y]|z. Then f(z,y)f(2) = f(x)f(y)f(z/z,z/y).

Proof. Since = |z and y|z, we have (z,y)z = zy(z/x,z/y). But f is
completely multiplicative, and so the result follows immediately. m

Since Lg C Cg, it follows immediately from Lemma 4.2(ii) that for any
set S and any f € Lg, we have (f(z;,z;)) € My (Z) and (f[z;, z;]) € M,(Z),
so we can consider the divisibility of the two matrices in the ring M, (Z).
Now we are in a position to give the first main result of this paper.

THEOREM 4.5. Let S = {x1,...,x,} be a multiple closed set. Let f be
a completely multiplicative function such that f(m) # 0 and f € Lg. Then
the matriz (f(x;,x;)) divides (f[x;, z;]) in My (Z).

Proof. Since f(m) # 0 and f is completely multiplicative, it follows
that f(d) # 0 for any divisor d of m. Let C = (f[zs,z;]) - (f(wi,z;)) "
Write C' = (¢;;). Clearly we need to show ¢;; € Z for all 1 < 4,5 < n. By
Theorem 3.5, for 1 < 4,5 < n we have

Tk Ty

N ] M) n(5)e(E)
(3) zj_kzz:lf[ i k] f(ﬂfk)f(xy) Z (f*'u)(xml)

zl|zk
T \mj

Z fil?k; flzi, g - H<z_’;>

ml|xk

T
Z f:rl,:rk ' (!E_l)

ml|x

1
- flx )Z (f
_f(ffi)
_f($]) Z(

Fix [ with 1 <[ <n and ;| ;. For x; |z, let d = x/z;. Since x| m, we

u

f*u
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deduce d| Z*. So by Lemma 4.4 we have

f(m)
) Zk f(zi o) (!El) Z f( Ilfz,dib“l #(d)
m))? d m))? d
:Zf(f( )° M() _ (f(m)) 3 p1(d)

() F@F G g)  Te)fl) T2 fa)f (e, =)

Since f is completely multiplicative, by Lemma 4.3 applied to the last sum
in (4), it follows from (3) and (4) and Lemma 4.4 that

Tj

_ () Z p(2)  (fm)> fl) - (fxp) ()
(

-0,

9T ) 2 Gem(E) i) o =)
- f(zy) w%:x] fzi ) M<$l> s

where

61/,7; = 6m/wl,m/zi = {

Obviously the terms corresponding to x; for which z;/x; is not square-free
vanish. Define an index set I; as follows:

0 if vp(xml) < vp(%) for some prime p| 2

1 1fvp( )>vp( )forallprlmesp\m

I ={l:1<1<n, 2y <zj, x;|z; and x;/z; is square-free}.
Then
f( l) (:E]) /
5 Cii = ———— ;+ . . A ) i
( ) ! f($zax] j Z f xlaxl (l‘]) a L b

lel;

Assume first that I; = (. Then ¢;; = f(fx(_x;)v) &% ;- But (mz—x) | z; | m.
[ZE] CRAav)

It follows from Lemma 4.2(i) that f(z;)/f(x:, z;) = f(zi/(xi, ;) € Z. So
¢ij € Z as desired. Now assume that I; # (). Let

I ={l € Ij : vy(x;) = vp((;,21)) for some prime divisor p of x;/x;},
I ={l € I : vy(x;) > vp((xi,2;)) for all prime divisors p of z;/x;}.
Then I} NI} =0 and I; = I; UI7. Tt follows from (5) that
f= f (1) <%> /
6 i = Y : cu( =L o,
( ) ! f('rwmj ]7 Z f muxl .73]) a 9 b

lEI’

* Z f 26 20) g; <$> O

lery
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We claim that §;; = 0 for [ € I]. In fact, if | € I}, then there exists
a prime divisor p of x;/z; such that v,(z;) = vp((zi, 2;)). Hence vy(z;) <
vp(x7). This implies that v,(m/x;) > vy(m/z;). It follows that ¢;, = 0,
proving the claim. Then from (6) we deduce 7

- f( xl) L /
(7) Cij = f($i,$' J7 i + Z f zi,x1)  fla) M(;Z) '5l,i-

J lEI”

Now let | € I]. Let p be any prime divisor of x;/x;. Then vy(z;) >
vp((xi,2;)). Hence vp(z;/(zi,2;)) > 1. On the other hand, since z;/xz; is
square-free, v, (x;/x;) = 1. Therefore

(8) Up((xj;l) : Z) > 0.

By the arbitrariness of p, (8) implies that the rational number

(zi,my) x4

i . 2L ¢ 7. Since f is a completely

Zi,T1) a:J
multiplicative function with f € Lg and

has no primes in its denominator, i.e. 0

(z ) - 2L is a factor of m, by
J

Lemma 4.2(i) we have f{m(i;)l) : }C&’)) € Z. It then follows from (7) that
¢ij € Z. Thus C € M, (Z) and this concludes the proof of Theorem 4.5. m

EXAMPLE 4.6. To illustrate Theorem 4.5, let S be as in (1) and let A
be the Liouville function which is defined for positive integers = by A(z) =
(—1)oatFoe if g = pi* . p*t, where py,...,p; are distinct prime numbers
and aq,...,a; € ZT. Then ) is a completely multiplicative function. It is
easy to show that for any z € Z+, (A\xpu)(x) = A(x)-2¥(®), where v(z) denotes
the number of distinct prime factors of xz. Hence A € Lg and A(m) # 0.
Let D = ([z;,24]) - (@i, ;)" and E = (A[z4,2,]) - (Mxi,2;)) 7. We can
easily check that D and F lie in My(Z). Therefore ((x;,z;)) | ([xs,x;]) and
(A(@i, z5)) | (A, z;5]) in My(Z).

COROLLARY 4.7. Let S ={x1,...,x,} be a multiple closed set. Let f be
a completely multiplicative function such that f(m) # 0 and f € Lg. Then
the matriz ((=1)9 - f(z;,25)) divides ((—1)"7 - flx;, z;]) in M, (Z).

Proof. Let I' be the n x n diagonal matrix with the diagonal elements
(-1),,i=1,...,n. Let F =TI -C-T, where C is as in the proof of Theo-
rem 4.5. It follows from Theorem 4.5 that F' € M,,(Z). We can easily check
that ((—=1)""7 - flz;,z5]) = F - ((=1)"" - f(z4,24)). So the result follows
immediately. =

REMARK 2. Corollary 4.7 is not true if f is not completely multiplica-
tive.

Furthermore, from Theorem 4.5, letting f(n) = n® gives the following
consequence.
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COROLLARY 4.8. Let S ={x1,...,x,} be a multiple closed set and let &
be a positive integer. Then the matriz ((z;, x;)°) divides ([x;,z;]%) in M, (Z).

In particular, we have the following consequence.

COROLLARY 4.9. Let S = {z1,...,z,} be a multiple closed set. Then
the GCD matriz ((x;,x;)) divides the LCM matriz ([x;, z;]) in My (Z).

5. The divisor chain case. By Lemma 4.2(ii), for any set S and for
any f € Lg, the matrices (f(x;,z;)) and (f[z;, x;]) are integral. In this
section, we consider the divisor chain case. Now we prove the second main
result of this paper.

THEOREM 5.1. Let S = {x1,...,z,} be a divisor chain and f € Cg. If
there exists an integer z; such that f(x;) = zf(x1) for all 2 < i < n, then
the matriz (f(x;,x;)) divides (f[z;, z;]) in M,(Z).

Proof. First it follows from Lemma 4.2(ii) together with f € Cg that
the matrices (f(z;,x;)) and (f[x;,z;]) are integral. Since S is a divisor
chain, m = z,,. For 1 < i < j < n, since z; | zj, we have f(z;,z;) = f(z;)
and flz;, z;] = f(x;). If f(z1) = 0, from the assumption we then deduce
f(x;) =0 for all 2 < ¢ < n. So (f(xs,z;)) = (flxs,z;]) = Onn, the zero
matrix of order n. Now let f(z1) # 0. Define an n x n matrix G as follows:

0 0o 0 ... 01
f(ﬂj‘n_l)/f(ibl) 0 o ... =1 1
fzn)/f(x1) 0 0 ... 00

By assumption we have f(z;)/f(x1) € Z for 2 < i < n. Thus G € M, (Z).
On the other hand, we can easily check that

G- (f(xi,2;)) = (flzi, z5]).
Therefore the result in this case follows immediately. m
COROLLARY 5.2. Let S = {x1,...,x,} be a divisor chain and f € Cg.

If there exists an integer z; such that f(z;) = z;f(x1) for all2 <i < n, then
the matriz ((=1)9 - f(zy,25)) divides ((—1)"7 - flx;, z;]) in M, (Z).

COROLLARY 5.3. Let S ={x1,...,z,} be a divisor chain and f a com-
pletely multiplicative function such that f € Cs. Then the matriz (f(x;,x;))
dwides (f[x;, x;]) in My(Z).

Proof. Since f is completely multiplicative, we have f(x;)= f(x1) f(zi/z1)
for 2 < i < n. Since f € Cg, Lemma 4.2(i) together with the fact ;”—1 m
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implies f(z;/x1) € Z. So Corollary 5.3 follows immediately from Theo-
rem 5.1. m

REMARK 3. Corollary 5.3 is no longer true if f is just multiplicative. For
instance, let S = {3,9}. Then S is clearly a divisor chain. We calculate

o) e = (1 B) (5 )= (5 3)#mm
So (o(zi, xj)) 1 (o[, z;]) in My(Z).

COROLLARY 5.4. Let S ={x1,...,z,} be a divisor chain and f a com-
pletely multiplicative function such that f € Cs. Then the matriz ((—1)*+7 .
[z, 25)) divides ((—1)"7 - fla;, z;]) in the ring M, (Z).

REMARK 4. Corollary 5.4 is not true if f is not completely multiplica-
tive.

9

Picking f(n) = n®, we can immediately deduce from Corollary 5.3 that
the following result is true.

COROLLARY 5.5. Let € be a positive integer and let S = {x1,...,z,} be
a diwvisor chain. Then the matriz ((x;,x;)°) divides ([z;,z;]°) in the ring
M, (Z).

REMARK 5. If we take ¢ = 1, then Corollary 5.5 becomes the result
mentioned in [12] without proof. Note that by using and developing the
method of [10], we proved [12] that there is a gcd-closed set S = {z1,...,xn}
(i.e. (zj,zj) € S for all 1 < i,j < n) such that the GCD matrix ((z;,z;))
does not divide the LCM matrix ([z;, z;]) in M,,(Z).
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