VOL. 98

2003

NO. 2

STABLE FAMILIES OF ANALYTIC SETS

BҮ

PANDELIS DODOS (Athens)

Abstract. We give a different proof of the well-known fact that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic. Our approach is based on the Kunen–Martin theorem.

1. Introduction and notations. It is well known that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic (see [1], [2], [3] and [5]). In [1], this (and in fact a much stronger) result is proved but the proof heavily depends on the Axiom of Choice. In [2], [3] and [5], the proofs are effective but the arguments are more complicated. In this note we give a short proof by using the Kunen–Martin theorem.

NOTATIONS. In what follows X and Y will be uncountable Polish spaces. By \mathcal{N} we denote the Baire space. If $A \subseteq X \times Y$ and $U \subseteq Y$ is an arbitrary open set, we put

$$A(U) = \operatorname{proj}_X \{ A \cap (X \times U) \}.$$

All the other notations we use are standard (for more information we refer to [4]).

2. Stable families of analytic sets. Departing from standard terminology, we make the following definition.

DEFINITION 1. A family $\mathcal{F} = (A_i)_{i \in I}$ of analytic subsets of X will be called *stable* if for every $J \subseteq I$ the set $\bigcup_{i \in J} A_i$ is an analytic subset of X.

Clearly any subfamily of a stable family is stable. Furthermore any countable family of analytic sets is stable. There exist however uncountable stable families of analytic sets.

EXAMPLE 1. Let $A \subset X$ be an analytic non-Borel set. By a classical result of Sierpiński (see [4, p. 201]), there exists a transfinite sequence $(B_{\xi})_{\xi < \omega_1}$ of Borel sets such that $A = \bigcup_{\xi < \omega_1} B_{\xi}$. Clearly we may assume that

²⁰⁰⁰ Mathematics Subject Classification: Primary 03E15.

the sequence $(B_{\xi})_{\xi < \omega_1}$ is increasing. As A is not Borel, there exists $\Lambda \subseteq \omega_1$ uncountable such that $B_{\xi} \subsetneqq B_{\zeta}$ for every $\xi, \zeta \in \Lambda$ with $\xi < \zeta$. Then the family $\mathcal{F} = (B_{\xi})_{\xi \in \Lambda}$ is an uncountable stable family of mutually different analytic sets (note that the members of \mathcal{F} are actually Borel sets).

DEFINITION 2. A family $\mathcal{F} = (A_i)_{i \in I}$ of subsets of X is said to have the *point-finite intersection property* (abbreviated as p.f.i.p.) if for every $x \in X$, the set $I_x = \{i \in I : x \in A_i\}$ is finite.

As before, any subfamily of a family with the point-finite intersection property has the point-finite intersection property. We will show that stable families of analytic sets with the p.f.i.p. are necessarily countable. First a couple of lemmas. The one that follows is elementary.

LEMMA 3. Let X and Y be Polish spaces. If $A \in \mathbf{\Pi}_1^1(X)$ and $U \subseteq Y$ is open, then $A \times U \in \mathbf{\Pi}_1^1(X \times Y)$.

LEMMA 4. Let X and Y be Polish spaces. Assume that $A \subseteq X \times Y$ has closed sections (i.e. for every $x \in X$, the set $A_x = \{y \in Y : (x, y) \in A\}$ is closed) and moreover for every $U \subseteq Y$ open the set A(U) is analytic. Then A is also analytic.

Proof. Let $\mathcal{B} = (V_n)_n$ be a countable base for Y. Observe that $(x, y) \notin A$ if and only if there exists a basic open subset V_n of Y such that $x \notin A(V_n)$ and $y \in V_n$. It follows that

$$(X \times Y) \setminus A = \bigcup_n (X \setminus A(V_n)) \times V_n$$

and so, by Lemma 3, A is analytic.

We have the following stability result.

LEMMA 5. Let $\mathcal{F} = (A_i)_{i \in I}$ be a stable family of analytic subsets of X with the point-finite intersection property. Then for every Polish space Y and every family $(B_i)_{i \in I}$ of analytic subsets of Y, the set

$$A = \bigcup_{i \in I} \left(A_i \times B_i \right)$$

is an analytic subset of $X \times Y$.

Proof. Let $\mathcal{F} = (A_i)_{i \in I}$ and $(B_i)_{i \in I}$ as above. As every B_i is analytic, there exists $C_i \subseteq Y \times \mathcal{N}$ closed such that $B_i = \operatorname{proj}_Y C_i$. Define $\widetilde{A} \subseteq X \times Y \times \mathcal{N}$ by

$$\widetilde{A} = \bigcup_{i \in I} \left(A_i \times C_i \right).$$

Clearly $A = \operatorname{proj}_{X \times Y} \widetilde{A}$. Note that for every $x \in X$ the section

$$\widetilde{A}_x = \{(y, z) \in Y \times \mathcal{N} : (x, y, z) \in \widetilde{A}\}$$

is exactly the set $\bigcup_{i \in I_x} C_i$. As the family \mathcal{F} has the point-finite intersection property, for every $x \in X$ the section \widetilde{A}_x of \widetilde{A} is closed. Observe that for every $U \subseteq Y \times \mathcal{N}$ open, we have

$$\widetilde{A}(U) = \operatorname{proj}_X \{ \widetilde{A} \cap (X \times U) \}$$

= $\{ x \in X : \exists i \in I_x \text{ such that } C_i \cap U \neq \emptyset \}$
= $\bigcup \{ A_i : C_i \cap U \neq \emptyset \}.$

It follows directly from the stability of the family that $\widetilde{A}(U)$ is analytic. By Lemma 4, \widetilde{A} is an analytic subset of $X \times Y \times \mathcal{N}$. Hence so is A.

Let \prec be a strict well-founded binary relation on X. By recursion, we define the rank function $\rho_{\prec} : X \to \text{Ord}$ as follows. We set $\rho_{\prec}(x) = 0$ if x is minimal, otherwise we set $\rho_{\prec}(x) = \sup\{\rho_{\prec}(x) + 1 : x \in X\}$. Finally we define the rank of \prec to be $\rho(\prec) = \sup\{\rho_{\prec}(x) + 1 : x \in X\}$. We will need the following boundedness principle of analytic well-founded relations due to Kunen and Martin (see [4] or [6]).

THEOREM 6. Let \prec be a strict well-founded relation and assume that \prec is analytic (as a subset of $X \times X$). Then $\varrho(\prec)$ is countable.

LEMMA 7. Let $\mathcal{F} = (A_i)_{i \in I}$ be a stable family of mutually disjoint analytic subsets of X. Then \mathcal{F} is countable.

Proof. Assume that \mathcal{F} is not countable. Pick an uncountable subfamily \mathcal{F}' of \mathcal{F} with $|\mathcal{F}'| = \aleph_1$ and let $\mathcal{F}' = (A_{\xi})_{\xi < \omega_1}$ be a well-ordering of \mathcal{F}' . Clearly \mathcal{F}' remains stable. As the sets A_{ξ} are pairwise disjoint let $\phi : \bigcup_{\xi < \omega_1} A_{\xi} \to \text{Ord}$, where $\phi(x)$ is the unique ξ such that $x \in A_{\xi}$. Define the binary relation \prec by

$$x \prec y \Leftrightarrow \phi(x) < \phi(y).$$

Clearly \prec is well-founded and strict. Moreover note that \prec , as a subset of $X \times X$, is the set

$$\bigcup_{\xi < \omega_1} (A_\xi \times B_\xi),$$

where $B_{\xi} = \bigcup_{\zeta > \xi} A_{\zeta}$. From the stability of \mathcal{F}' , we see that the sets B_{ξ} are analytic subsets of X for every $\xi < \omega_1$. As \mathcal{F}' is stable and has the p.f.i.p., by Lemma 5 we deduce that \prec is a Σ_1^1 relation. By Theorem 6, $\varrho(\prec)$ must be countable and we derive a contradiction.

Finally we have the following.

THEOREM 8. Let \mathcal{F} be a stable family of analytic sets with the pointfinite intersection property. Then \mathcal{F} is countable. *Proof.* Assume not. Let \mathcal{F}' be as in Lemma 7. Let Y be an arbitrary uncountable Polish space and let $(y_{\xi})_{\xi < \omega_1}$ be a transfinite sequence of distinct members of Y. For every $\xi < \omega_1$, set $L_{\xi} = A_{\xi} \times \{y_{\xi}\}$. Clearly every L_{ξ} is an analytic subset of $X \times Y$ and moreover $L_{\xi} \cap L_{\zeta} = \emptyset$ if $\xi \neq \zeta$. As the family (and every subfamily of) \mathcal{F}' is stable and has the p.f.i.p., by Lemma 5, for every $G \subseteq \omega_1$ the set

$$\bigcup_{\xi \in G} (A_{\xi} \times \{y_{\xi}\}) = \bigcup_{\xi \in G} L_{\xi}$$

is an analytic subset of $X \times Y$. It follows that the family $\mathcal{L} = (L_{\xi})_{\xi < \omega_1}$ is a stable family of mutually disjoint analytic subsets of $X \times Y$. By Lemma 7, the family \mathcal{L} must be countable and again we derive a contradiction.

A corollary of Theorem 8 is the following (see [7]).

COROLLARY 9. Let X be a Polish space, Y a metrizable space and $A \in \Sigma_1^1(X)$. Let also $f : A \to Y$ be a Borel measurable function. Then f(A) is separable.

Proof. Assume not. Let $C \subseteq f(A)$ be an uncountable closed discrete set with $|C| > \aleph_0$. For every $y \in C$, put $A_y = f^{-1}(\{y\})$. Then $\mathcal{F} = (A_y)_{y \in C}$ is a stable family of mutually disjoint analytic subsets of X. By Theorem 8, \mathcal{F} must be countable and we derive a contradiction.

REMARK 1. Say that a family $\mathcal{F} = (A_i)_{i \in I}$ has the point-countable intersection property if for every $x \in X$ the set $I_x = \{i \in I : x \in A_i\}$ is countable. One can easily see that Theorem 8 is not valid for stable families with the point-countable intersection property. For instance let $(A_{\xi})_{\xi < \omega_1}$ be a strictly decreasing transfinite sequence of analytic sets with $\bigcap_{\xi < \omega_1} A_{\xi} = \emptyset$. As the sequence is decreasing, the family $\mathcal{F} = (A_{\xi})_{\xi < \omega_1}$ is stable. Moreover note that for every $x \in X$ there exists $\xi < \omega_1$ such that $x \notin A_{\zeta}$ for every $\zeta > \xi$ (for if not there would exist an $x \in X$ such that $x \in A_{\xi}$ for every $\xi < \omega_1$, that is, $x \in \bigcap_{\xi < \omega_1} A_{\xi}$). Hence the family \mathcal{F} is an uncountable stable family of analytic sets with the point-countable intersection property.

Acknowledgments. I would like to thank the anonymous referee for his comments which substantially improved the presentation of the paper.

REFERENCES

- J. Brzuchowski, J. Cichoń, E. Grzegorek and C. Ryll-Nardzewski, On the existence of nonmeasurable unions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 447–448.
- [2] A. Emeryk, R. Frankiewicz and W. Kulpa, *Remarks on Kuratowski's theorem on meager sets*, ibid. 27 (1979), 493–498.
- R. W. Hansell, Borel measurable mappings for non-separable metric spaces, Trans. Amer. Math. Soc. 161 (1971), 145–169.

- [4] A. S. Kechris, *Classical Descriptive Set Theory*, Grad. Texts in Math. 156, Springer, 1995.
- J. Kaniewski and R. Pol, Borel measurable selectors for compact-valued mappings in the non-separable case, Bull. Acad. Polon. Sci. Sér. Sci. Math. 23 (1975), 1043–1050.
- [6] Y. N. Moschovakis, *Descriptive Set Theory*, North-Holland, Amsterdam, 1980.
- [7] S. M. Srivastava, A Course on Borel Sets, Grad. Texts in Math. 180, Springer, 1998.

National Technical University of Athens Department of Mathematics Zografou Campus 157 80 Athens, Greece E-mail: pdodos@math.ntua.gr

> Received 14 February 2003; revised 25 November 2003

(4312)