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Abstract. Let Γ be a finite-dimensional hereditary basic algebra. We consider the
radical radΓ as a Γ -bimodule. It is known that there exists a quasi-hereditary algebra A
such that the category of matrices over radΓ is equivalent to the category of ∆-filtered
A-modules F(A,∆). In this note we determine the quasi-hereditary algebra A and prove
certain properties of its module category.

1. Introduction. Recently it was observed in [BH2, Theorem 1.1] that
matrices over upper triangular bimodules are closely related to ∆-filtered
modules over quasi-hereditary algebras. To be more precise let Γ be a finite-
dimensional directed algebra over some field k and letB be an upper triangu-
lar bimodule over Γ . In particular, the radical of a directed finite-dimensional
algebra and all its subbimodules are upper triangular. For any bimodule B
one can define the category of matrices matB over B. Then there exists a
quasi-hereditary algebra A such that the category matB and the category
F(A,∆) of ∆-filtered A-modules are equivalent as exact categories. If we
assume A to be basic, then it is unique up to isomorphism. Note that matB
has a natural exact structure and F(A,∆) is an exact category as an ex-
tension closed full subcategory of a module category (for more details we
refer to Section 2). Quasi-hereditary algebras are very well understood and
the category of ∆-filtered modules has many nice properties (see e.g. [DR]
and [R2]). The results in this note are motivated by these results and our
previous work on actions of algebraic groups, where we use particular cases
of the results in Theorem 1.1.

In this note we consider a finite-dimensional hereditary basic algebra Γ
over an algebraically closed field k. We assume for simplicity that we have
a fixed isomorphism Γ ' kQ with the path algebra of the unique quiver Q.
Thus Q is a finite quiver without oriented cycles. The aim of this note is to
consider the radical bimodule B = radΓ . In this situation we can describe
the corresponding quasi-hereditary algebra A explicitly as follows. Let Q be
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the double of Q. The vertices Q0 of Q are just the vertices Q0 of Q. The set
of arrows Q1 of Q consists of the arrows Q1 of Q and the formal opposite
arrows Q∗1 of Q. For any arrow α in Q we denote its opposite by α∗. Thus
the starting vertex s(α∗) of α∗ equals the terminal vertex t(α) of α and
t(α∗) = s(α). Further, for any arrow α in Q we consider an element rα in
the path algebra of the double quiver kQ; note that the algebra kQ is not
finite-dimensional if Q1 is non-empty. We define

rα = α∗α−
∑

β∈Q1 : t(β)=s(α)

ββ∗.

Then we define the algebraA(Q) as the quotient of kQ by the ideal generated
by all elements rα, where α runs through the arrows in Q, and all elements
α∗β for all pairs (α, β) of arrows in Q with α 6= β and t(α) = t(β). Note that
Γ and Γ op are both subalgebras and quotient algebras ofA(Q). In particular,
we can consider any Γ -module and any Γ op-module as an A-module, and
we can restrict an A(Q)-module to Γ and Γ op.

Theorem 1.1. (1) The category of ∆-filtered A(Q)-modules (see 2.3 be-
low) is equivalent to the category of matrices over the radical bimodule radΓ
over Γ .

(2) For an A(Q)-module M the following conditions are equivalent :

(a) M admits a ∆-filtration,
(b) M has projective dimension at most one, and
(c) M is projective as a Γ -module.

We prove the theorem in Section 4. For the directed quiver of type A
part (1) was already used in [HR] and part (2) was already proven in [BHRR,
Lemma 1]. For unexplained terminology we refer to Section 2.

We note that the algebra A(Q) already appears in [D] in a different
context. In Section 2 we start with basic notation on matrices and quasi-
hereditary algebras and recall some results of [D] we use in this note. In the
last section we mention several generalizations and further consequences.
For unexplained terminology on matrices over bimodules we refer to [BH2]
whereas our basic reference on quasi-hereditary algebras is [DR]. For fur-
ther basic results on quivers and matrices over bimodules we mention [R1]
and [GR].

Note that in the definition of a quasi-hereditary algebra A there appears
a certain order on the vertices of the quiver of A. In our previous work
[HR], [BH1] and [BH2] we considered the opposite order to the traditional
one in [DR] and [BHRR], since it is better adapted to actions of algebraic
groups. Here we also use the first convention and follow closely the approach
in [BH2].
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2. Basic notation

2.1. Quivers and finite-dimensional algebras. Let Q be a finite quiver
and Γ the path algebra of Q. The radical radΓ of Γ is generated by the
arrows Q1 of Q. For any arrow α we denote by s(α) its starting vertex and
by t(α) its terminal vertex. We denote the idempotent corresponding to the
trivial path i, for i a vertex in Q, by ei. Further, let A be a finite-dimensional
basic algebra. Then A ' kQ/I for some admissible ideal I and some finite
quiver Q (here Q can have cycles). We denote by modA the category of
finitely generated left A-modules, by {PA(i)}i∈Q0 a set of representatives
of the indecomposable projective modules in modA and by {S(i)}i∈Q0 a
set of representatives of the simple left A-modules. We denote the category
of projective A-modules by projA. This category is equivalent to its full
subcategory consisting of objects of the form

⊕
i∈Q0

PA(i) ⊗Mi for finite-
dimensional vector spaces Mi (tensor products are always taken over k).
Let B be a bimodule over A. Such a bimodule admits a decomposition
B =

⊕
eiBej as a vector space. It is convenient to consider this bimodule B

as a biadditive bifunctor

(projA)op × projA → mod k

which is contravariant in the first argument and covariant in the second
argument. For projective modules

P =
⊕

i∈Q0

PA(i)⊗Mi and Q =
⊕

i∈Q0

PA(i)⊗Ni

one can define the functor B directly as

B(P,Q) :=
⊕

i,j∈Q0

M∗i ⊗ eiBej ⊗Nj .

For more details we also refer to [BH3, Section 3].

2.2. Matrices over bimodules. Let Γ be a finite-dimensional directed al-
gebra and B be a Γ -bimodule (in this part Γ is not necessarily hereditary).
The category of matrices over B consists of objects (P, f), where P is a
projective Γ -module and f is an element of B(P,P ), where we consider B
as a functor over the category of projective Γ -modules projΓ . A morphism
between two objects (P, f) and (P ′, f ′) is an element g in Hom(P,P ′) sat-
isfying f ′g = gf . In [BH3, Section 3] we gave a description of an equivalent
category in terms of vector spaces and linear maps. This is used in Section 4,
where we finally prove Theorem 1. We restrict to our main interest: Γ is the
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path algebra of the quiver Q and B is the radical of Γ . We denote the vector
space with basis the set of paths starting in i and ending in j by W (i, j).
Then the category of matrices over B is equivalent to the following category:
the objects are tuples (Mi, φ)i∈Q0 , where Mi is a finite-dimensional vector
space for each i ∈ Q0 and φ = (φi,j)i,j∈Q0 with φi,j ∈M∗i ⊗W (j, i)⊗Mj for
i < j. So we can consider φi,j as a map

φi,j : Mi →Mj ⊗W (j, i).

2.3. Quasi-hereditary algebras. Let A be a finite-dimensional basic al-
gebra and assume we have chosen a total order on the vertices Q0 of the
quiver of A. One can define modules ∆(i) as follows:

∆(i) := PA(i)/Im
(⊕

j<i

HomA(PA(j), PA(i))⊗ PA(j)→ PA(i)
)
.

By definition, anA-moduleM admits a ∆-filtration if there exists a sequence
of submodules

M = Mt ⊃Mt−1 ⊃ . . . ⊃M1 ⊃M0 = {0}
with Mi/Mi−1 isomorphic to some module ∆(j) for j in Q0. The algebra
A together with the chosen order on Q0 is called quasi-hereditary if each
projective module PA(i) admits a ∆-filtration and the endomorphism ring
of each ∆(i) is isomorphic to k.

The following lemma was shown in [D] (where the opposite orientation
is used).

Lemma 2.1. The algebra A(Q) is quasi-hereditary for any order of Q0
satisfying s(α) < t(α) for each arrow α in Q. Moreover , any two such
orders define equivalent quasi-hereditary algebras, that is, the categories of
∆-filtered modules coincide.

Moreover, there exists a basis of A(Q) consisting of paths uv∗, where u
is a path in Q, v∗ is a path in Qop, and the starting point s(u) of u coincides
with the terminal point t(v∗) of v∗ (we write paths from right to left).
It is obvious from the relations that these elements generate the algebra
A(Q). Moreover, from the dimension formula for A(Q) in [D, Section 1,
Corollary (3)], we conclude that these elements already form a basis ofA(Q).
In particular, for any vertex i we have an exact sequence

0→
⊕

α∈Q1 : t(α)=i

PA(Q)(s(α))→ PA(Q)(i)→ ∆(i)→ 0,

where the component with index α of the first map is just multiplication
by α∗, viewed as an element of A. Consequently, ∆(i) is projective precisely
when i is a source in Q.
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Lemma 2.2. Consider a map

δ :
⊕

i∈Q0

PA(Q)(i)
ai →

⊕

j∈Q0

PA(Q)(j)
bj ,

where each component PA(Q)(i) → PA(Q)(j) of δ is given by multiplication
with an element in the radical of Γ and not all exponents ai are zero. Then
δ is not injective.

Proof. Let i0 be a maximal element in Q0 (with respect to the chosen
order) with ai0 6= 0. We restrict δ to some direct summand PA(Q)(i0). It
is sufficient to show that this restriction is not injective. Consider a basis
element wu of PA(Q)(i0) as above of maximal length. Such an element will
be annihilated by right multiplication with any element in the radical of Γ ,
which shows that δ is not injective.

The following properties of the algebra A(Q) can be easily checked. The
first one follows from the lemma above and part (2) since the global dimen-
sion of Γ is one. Part (2) follows from the results in [D]. Finally (3) follows
from the definition.

Lemma 2.3. (1) The global dimension of A(Q) is at most two.
(2) The module ∆(i) is isomorphic to PΓ (i).
(3) For a source i in Q the module ∆(i) is isomorphic to PA(Q)(i).

2.4. Koszul algebras. A finite-dimensional hereditary algebra is graded
by the length of paths. If we consider a homogeneous ideal J in the path
algebra of a quiver Q then the factor algebra kQ/J is a graded algebra.
Note that A(Q) is graded, since all relations are quadratic. Such a graded
finite-dimensional algebra is called a Koszul algebra if each simple A-module
S(i) admits a minimal projective resolution

. . .→ P j(i)→ . . .→ P 1(i)→ P 0(i)→ S(i)→ 0,

where each component of each differential is given by multiplication with an
element of degree one (such a resolution is also called linear, cf. e.g. [GMRS]).

3. Some properties of F(A,∆). In this section we prove some basic
results. These results are used for the proof of our principal result in Sec-
tion 3, and they might be of independent interest. From now on the quiver
Q is fixed, Γ is the path algebra of Q and A equals A(Q).

Lemma 3.1. A Γ -module M has projective dimension 2 over A precisely
when it is not a projective Γ -module.

Proof. Consider a minimal projective resolution of M as a Γ -module

0→
⊕

i∈I
∆(i)

f→
⊕

j∈J
∆(j)→M → 0
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and assume I is non-empty, that is, M is not projective. Note that f is
given by a matrix consisting of elements in the radical of Γ . Consequently,

f induces a homomorphism of the projective A-modules f :
⊕

i∈I PA(i)
f→⊕

j∈J PA(j) that is not injective (Lemma 2.2). On the other hand, a minimal
projective resolution of M over A starts with

⊕

i∈I
PA(i)⊕ P 0 (f,∗)−→

⊕

j∈J
PA(j)→M,

for some homomorphism ∗ : P 0 → ⊕
j∈J PA(j). Consequently, (f, ∗) is

not injective. Thus M is of projective dimension 2. Conversely, if M is a
projective Γ -module, then it is a direct sum of copies of the modules ∆(i).
Thus, it is of projective dimension at most one, since the modules ∆(i)
admit a short projective resolution (see Section 2).

Lemma 3.2. Let M be an A-module of projective dimension at most one.

(1) Let U be a submodule of M . Then U has projective dimension at
most one.

(2) The natural map HomA(∆(i),M)⊗∆(i)→M is injective.
(3) Let i be a source in Q and let U be the submodule HomA(∆(i),M)⊗

∆(i) of M according to (2). Then U is a projective A-module, the quo-
tient M/U is of projective dimension at most one and Hom(∆(i),M/U) =
Hom(PA(i),M/U) = 0. Moreover , the module M/U is of projective dimen-
sion at most one over A/AeiA.

Proof. If M is of projective dimension at most one, then Ext2
A(M,S) = 0

for all A-modules S. We consider the exact sequence

0→ U →M →M/U → 0

and obtain an exact sequence

Ext1
A(U, S)→ Ext2

A(M/U,S)→ Ext2
A(M,S) = 0→ Ext2

A(U, S)→ 0,

since the global dimension of A is two. This shows (1).
We consider the image U of HomA(∆(i),M) ⊗ ∆(i) in M . Thus U is

a Γ -module and of projective dimension one over A by (1). Consequently,
U is a projective Γ -module by Lemma 3.1 and U is isomorphic to a direct
sum of copies of ∆(i). Since EndA(∆(i)) = k assertion (2) follows.

Note that PA(i) = ∆(i) for any source i in Q. Thus Ext1
A(U, S) = 0

for any A-module S. Consequently, Ext2
A(M/U,S) = 0 for any A-module S

and M/U is of projective dimension at most one. We apply Hom(∆(i),−)
to the exact sequence

0→ HomA(∆(i),M)⊗∆(i)→M →M/U → 0
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and obtain an exact sequence

0→ HomA(∆(i),M)⊗ k → HomA(∆(i),M)→ HomA(∆(i),M/U) = 0.

Thus, M/U is an A/AeiA-module. To proceed, we take a minimal projective
resolution

0→ P 1 → P 0 →M/U → 0

of M/U as an A-module. Since HomA(∆(i),M/U) = 0 the projective mod-
ule P 0 does not contain ∆(i) = PA(i) as a direct summand. If we apply
Hom(PA(i),−) to the projective resolution above we obtain

HomA(PA(i), P 1) = HomA(PA(i), P 0).

Any projective A/AeiA-module is a quotient of a projective A-module; if
we take direct sums we get projective modules

Rl = P l/Im(Hom(PA(i), P l)⊗ PA(i)→ P l)

for l = 0, 1. Consequently,

0→ R1 → R0 →M/U → 0

is a projective resolution of M/U as an A/AeiA-module.

4. Proof of Theorem 1.1. We start with part (1). First we give an
idea of the proof: one may consider a ∆-filtered module M as a projective
Γ -module together with linear maps M(α∗) corresponding to the opposite
arrows α∗ for α in Q. Thus, each ∆-filtered module is isomorphic as Γ -
module to

⊕
i Vi ⊗ PΓ (i). It is easy to see from the defining relations of A

that the module M as an A-module is already determined by the restriction
of the maps M(α∗) to Vt(α) and each choice of these restrictions defines an
A-module structure on M . So we can define a category C equivalent to the
category of ∆-filtered A modules. Moreover, we can consider the restricted
maps as elements in a bimodule over the path algebra of Γ . It is easy to
see that this bimodule is the radical bimodule of Γ . Thus we finally get the
desired equivalence. The details of the proof can be found below.

First we introduce the category C. This category is defined analogously
to the category of flags introduced in [HR] and [BH1] (see also [BH3, Sec-
tion 6]). First we fix the quiver Q and denote by t the number of vertices
in Q. Further we identify Q0 with the natural numbers {1, . . . , t} so that
the order is preserved. An object in C of dimension vector d = (d1, . . . , dt)
consists of vector spaces Vi of dimension di and certain linear maps φα for
any α in Q. We consider linear maps

φα : Vt(α) →
⊕

i≤s(α)

Vi ⊗W (i, s(α))
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for α an arrow in Q. An object in C is a tuple (V, φ) = (Vi, φα)i∈Q0, α∈Q1 .
A morphism f : (V, φ)→ (U,ψ) in C consists of linear maps

fi : Vi →
⊕

j

Uj ⊗W (j, i) for any i = 1, . . . , t,

such that f commutes with the maps φα and ψα in a natural way as follows:
We extend the linear maps φα to linear maps

Φγ :
⊕

j≤t(γ)

Vj ⊗W (j, t(γ))→
⊕

i≤s(γ)

Vi ⊗W (i, s(γ))

defining Φγ(v ⊗ w) :=
∑

α : t(α)=i φα(v) ⊗ uα for any path w = γu and any
vector v in Vi. For a path w not of this form we define Φγ(v ⊗ w) := 0.
Analogously we extend the maps ψ to maps Ψ . Then the maps Φ = (Φγ),
Ψ = (Ψγ) and f = (fi) have to commute as follows:

⊕
j Vj ⊗W (j, t(γ))

⊕
i Vi ⊗W (i, s(γ))

⊕
l,j Ul ⊗W (l, j)⊗W (j, t(γ))

⊕
k,i Uk ⊗W (k, i)⊗W (i, s(γ))

⊕
l Ul ⊗W (l, t(γ))

⊕
k Uk ⊗W (k, s(γ)),

⊕
j fj⊗id

��

Φγ //

⊕
i fi⊗id

��

⊕
idU⊗h

��

⊕
idU⊗h′

��Ψγ //

where the linear maps h and h′ are the natural composition maps for paths.
Note that we define morphisms in C so that they coincide with morphisms
for ∆-filtered modules in A-mod, if we identify the objects in both cate-
gories (Lemma 4.2). To be more precise we describe the category C also
in a different way. We can identify an A-module M together with a fixed
isomorphism M '⊕Vi⊗P (i) (as Γ -modules) with an object in C, since it
determines linear maps φα in an obvious way. Moreover, such a module M
admits a ∆-filtration. Consequently, the category of ∆-filtered A-modules
is a subcategory of C. We show in Lemma 4.2 that both categories are also
equivalent.

There exists a natural exact structure in C: a sequence of objects and
morphisms in C is exact if the corresponding maps on the vector spaces
Vi are exact for each vertex i in Q. This is equivalent to saying that the
corresponding sequence of A-modules is exact. A simple object in C is one
with dimVi = 1 for one vertex i and Vj = 0 for the remaining ones. We
denote such a simple object by PC(i).

We define a functor F : C → mat radΓ . Let (V, φ) be an object in C.
Note that radΓ has a basis consisting of the non-trivial paths in Q. Thus
radΓ =

⊕
i<jW (i, j). For any projective object

⊕t
i=1 PΓ (i)⊗ Vi in Γ -mod
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an element b in radΓ (
⊕t

i=1 PΓ (i)⊗ Vi,
⊕t

i=1 PΓ (i)⊗ Vi) consists of a set of
elements bi,j in Hom(Vi, Vj)⊗W (j, i).

We define the matrix F ((V, φ)) = (
⊕

i PΓ (i)⊗Vi, b), where b is an element
corresponding to φ as follows. Remember that W (j, i) is naturally isomor-
phic to the direct sum of the vector spaces W (j, s(α)), where the sum is
taken over all α with t(α) = i. Thus we can decompose bi =

⊕
j bi,j into el-

ements (bi)α in
⊕

j Hom(Vi, Vj)⊗W (j, s(α)), since bi =
⊕

t(α)=i(bi)α. Then
we define (bi)α := φα. The map F defined on objects becomes a functor in
a natural way, and it is fully faithful by definition. Moreover, F is obviously
an exact functor. Thus we have already proven the following lemma.

Lemma 4.1. The functor F : C → mat radΓ is an equivalence of exact
categories. The image of the simple object PC(i) is the simple object (PΓ (i), 0)
in mat radΓ .

We also define a functor G : C → modA. Let (V, φ) be an object in C.
First we define a projective Γ -module M just by M :=

⊕
i∈Q0

PΓ (i)⊗V (i).
We can define an A-module structure on M by specifying linear maps

M(β) :
⊕

V (i)⊗W (i, s(β))→
⊕

V (j)⊗W (j, t(β)) for β in Q∗1

satisfying the desired relations. Then all these maps are uniquely determined
by the component

ψβ := M(β)|V (s(β)) : V (s(β)) = V (s(β))⊗W (s(β), s(β))

→
⊕

j

V (j)⊗W (j, t(β))

for i in Q0, and any choice of linear maps ψβ defines an A-module structure
on M . Here we use the relations in A: since M(α) is injective the maps
M(β∗) determine the map M(α∗) in the relation rα, and conversely, any
choice of the maps ψ defines a representation M . Given a matrix (V, φ) we
define ψα∗ := φα. This way G becomes a fully faithful functor. Since any
A-module M is uniquely determined by the linear maps M(β∗) and the
restriction M |Γ , and M is ∆-filtered precisely when M |Γ is projective, the
functor G is also dense. Moreover G is exact by definition.

Lemma 4.2. The functor G : C → modA induces an exact equivalence
between C and F(A,∆). Moreover , the image of the simple object PC(i) is
the standard module ∆(i).

Proof of Theorem 1.1. (1) Using the two lemmata above we obtain an
equivalence between mat radΓ and F(A,∆) (the equivalence satisfies the
conditions of [BH2, Theorem 1.1]).

(2) We prove (a) is equivalent to (b). Since the projective dimension of
any module ∆(i) is at most one it is sufficient to show that any module
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with projective dimension at most one admits a ∆-filtration. First we note
that part (3) of Lemma 3.2 shows the claim via induction on the number
of vertices of Q: if M/U admits a ∆-filtration then so does M . Since M/U
is an A/AeiA-module of projective dimension at most one and A/AeiA is
isomorphic to the quasi-hereditary algebra A(Q \ {i}) corresponding to the
radical of the path algebra k(Q \ {i}), where Q \ {i} is the quiver obtained
from Q by deleting the source i and all arrows starting in i, we can apply
our induction hypothesis to A(Q \ {i}).

Finally, since the global dimension of A is 2, the equivalence between (a)
and (c) follows from Lemma 3.1.

5. Generalizations. Finally, in this section we mention several gener-
alizations and further properties of the quasi-hereditary algebra A.

Proposition 5.1. The algebra A is a Koszul algebra.

Proof. The simple module SA(i) admits a short resolution with projec-
tive Γ -modules

0→
⊕

α∈Q1 : s(α)=i

PΓ (t(α))→ PΓ (i)→ SA(i)→ 0.

Moreover, the module PΓ (i) is isomorphic to ∆(i) and the latter admits a
short projective resolution as an A-module

0→
⊕

α∈Q1 : t(α)=i

PA(Q)(s(α))→ PA(Q)(i)→ ∆(i)→ 0.

Combining both resolutions we get a double complex. The total complex of
this double complex is a projective resolution

0→
⊕

α∈Q1 : s(α)=i

⊕

β∈Q1 : t(β)=t(α)

PA(Q)(s(β))→
⊕

α∈Q1 : t(α)=i

PA(Q)(s(α))

⊕
⊕

α∈Q1 : s(α)=i

PA(Q)(t(α))→ PA(Q)(i)→ SA(i)→ 0.

This resolution is linear and, consequently, A is Koszul.

A first generalization concerns the powers of the radical bimodule. Let
Bl := radl Γ be the lth power of the radical of Γ . Then one can describe in
a similar way the corresponding quasi-hereditary algebra Al so that matBl

and F(Al,∆) are equivalent categories. Instead of the quiver Q we consider
the quiver Ql. Its vertices are the same as for Q. It consists of arrows α
for each arrow α in Q, and for any path u = α1 . . . αl of length l in Q of
an arrow β(u) with s(β(u)) = t(u) and t(β(u)) = s(u). Obviously, kQl is a
subalgebra of kQ. Let R be the ideal in kQ so that A = kQ/R. Then we
obtain

Al = kQl/(R ∩ kQl).
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The algebra Al is also Koszul and it has properties similar to A, but a
precise description is much more technical. Finally we note that even more
general subbimodules of radΓ can be handled if one combines our results
with those in [BH3].
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