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ON THE IRREDUCIBILITY OF
0, 1-POLYNOMIALS OF THE FORM f(x)xn + g(x)

BY

MICHAEL FILASETA and MANTON MATTHEWS, JR. (Columbia, SC)

Abstract. If f(x) and g(x) are relatively prime polynomials in Z[x] satisfying certain
conditions arising from a theorem of Capelli and if n is an integer > N for some sufficiently
large N , then the non-reciprocal part of f(x)xn + g(x) is either identically ±1 or is
irreducible over the rationals. This result follows from work of Schinzel in 1965. We show
here that under the conditions that f(x) and g(x) are relatively prime 0, 1-polynomials
(so each coefficient is either 0 or 1) and f(0) = g(0) = 1, one can take N = deg g +
2 max{deg f,deg g}.

1. Introduction. For f(x) ∈ C[x] with f(x) 6≡ 0, we define f̃(x) =
xdeg ff(1/x). The polynomial f̃ is called the reciprocal of f(x). The constant
term of f̃ is always non-zero. If the constant term of f is non-zero, then
deg f̃ = deg f and the reciprocal of f̃ is f . If α 6= 0 is a root of f , then 1/α
is a root of f̃ . If f(x) = g(x)h(x) with g(x) and h(x) in C[x], then f̃ = g̃h̃.
If f = ±f̃ , then f is called reciprocal. If f is not reciprocal, we say that f is
non-reciprocal. If f is reciprocal and α is a root of f , then 1/α is a root of f .
The product of reciprocal polynomials is reciprocal so that a non-reciprocal
polynomial must have a non-reciprocal irreducible factor. For f(x) ∈ Z[x],
we refer to the non-reciprocal part of f(x) as the polynomial f(x) removed of
its irreducible reciprocal factors in Z[x] having a positive leading coefficient.
For example, the non-reciprocal part of 3(−x + 1)x(x2 + 2) is −x(x2 + 2)
(the irreducible reciprocal factors 3 and x− 1 have been removed from the
polynomial 3(−x+ 1)x(x2 + 2)).

In [2], Filaseta, Ford, and Konyagin established the following result.

Theorem 1. Let f(x) and g(x) be in Z[x] with f(0) 6= 0, g(0) 6= 0, and
gcdZ(f(x), g(x)) = 1. Let r1 and r2 denote the number of non-zero terms in
f(x) and g(x), respectively. If n ≥ n0, where

n0 = n0(f, g) = max{2× 52N−1, 2 max{deg f,deg g}(5N−1 + 1/4)}
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and
N = 2 ‖f‖2 + 2 ‖g‖2 + 2r1 + 2r2 − 7,

then the non-reciprocal part of f(x)xn + g(x) is irreducible or identically 1
or −1 unless one of the following holds:

(i) The polynomial −f(x)g(x) is a pth power for some prime p divid-
ing n.

(ii) For either ε = 1 or ε = −1, one of εf(x) and εg(x) is a 4th power ,
the other is 4 times a 4th power , and n is divisible by 4.

The work in [2] was motivated by work of Schinzel [3, 4] where a similar
result is obtained without an explicit estimate on n0 (though the methods
there do allow for such an estimate).

Theorem 1 is an assertion about the irreducibility of the non-reciprocal
part of F (x) = f(x)xn+g(x). If the non-reciprocal part of F (x) is irreducible
and gcd(F, F̃ ) = 1, then F (x) is irreducible. Thus, the above result can be
combined with an analysis of gcd(F, F̃ ) to determine information about the
irreducibility of F (x).

We remark that the bound n0 cannot be replaced by a bound that is
independent of the size of the coefficients of f and g. To see this, consider
an arbitrary integer k > 1 and observe that f(x) = 1 and g(x) = x− 2k − 2
imply that the non-reciprocal part of F (x) = f(x)xn + g(x) is reducible for
n = k (since x − 2 is a factor of F (x) and the quotient F (x)/(x − 2) is
non-reciprocal). Since k is arbitrary, the remark follows.

In this paper, we obtain a result similar to Theorem 1 but restricted to
0, 1-polynomials f(x) and g(x), that is, polynomials f(x) and g(x) with each
coefficient either 0 or 1. In this case, it is not difficult to check that neither
(i) nor (ii) can hold.

Theorem 2. Let f(x) and g(x) be relatively prime 0, 1-polynomials with
f(0) = g(0) = 1. If

n > deg g + 2 max{deg f,deg g},(1)

then the non-reciprocal part of f(x)xn + g(x) is irreducible or identically 1.

An interesting aspect of the proof given here is that Theorem 1, even
without an explicit value for n0, will play a crucial role in establishing the
bound given in Theorem 2.

2. Proof of Theorem 2. To prove Theorem 2, we make use of the
following result that can be found in [1].

Lemma 1. Let f(x) be a 0, 1-polynomial with f(0) = 1. Then the non-
reciprocal part of f(x) is reducible if and only if there exists w(x) satisfying
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w(x) 6= f(x), w(x) 6= f̃(x), ww̃ = f f̃ , and w(x) is a 0, 1-polynomial with
the same number of non-zero terms as f(x).

Assume (1) holds for some integer n and that the non-reciprocal part of
f(x)xn + g(x) is reducible. Let w(x) be the 0, 1-polynomial that exists by
Lemma 1 with f(x) replaced there by f(x)xn + g(x). In particular,

w(x) 6= f(x)xn + g(x) and w(x) 6= g̃(x)xn+deg f−deg g + f̃(x)(2)

and
w(x)w̃(x) = (f(x)xn + g(x))(g̃(x)xn+deg f−deg g + f̃(x)).(3)

First, consider the case that deg f ≥ deg g. Write w(x) in the form a(x)xn+
b(x) where a(x) and b(x) are 0, 1-polynomials with b(0) = 1 (by (3)) and
deg b(x) < n. Also, (3) implies that deg a(x) = deg f(x) (so that w(x) and
f(x)xn + g(x) have the same degree). Applying (3) again, we obtain

f(x)g̃(x)x2n+deg f−deg g + f(x)f̃(x)xn + g(x)g̃(x)xn+deg f−deg g + f̃(x)g(x)

= (f(x)xn + g(x))(g̃(x)xn+deg f−deg g + f̃(x))

= (a(x)xn + b(x))(̃b(x)xn+deg a−deg b + ã(x))

= a(x)̃b(x)x2n+deg a−deg b+a(x)ã(x)xn+b(x)̃b(x)xn+deg a−deg b+ã(x)b(x).

The significance of working with 0, 1-polynomials here is that there is no
cancellation of terms above. In particular, the expression ã(x)b(x) on the
right contains a term with degree equal to deg b(x), which is < n, and every
term of degree < n on the left also has degree ≤ deg f + deg g. Hence,
deg b(x) ≤ deg f + deg g.

We now consider the case that deg f < deg g. The somewhat disguised
idea will be to work instead with the reciprocal of f(x)xn+g(x) and proceed
as in the case of deg f ≥ deg g. For this purpose, we define k = n+ deg f −
deg g and write w(x) in the form a(x)xk + b(x) where now a(x) and b(x) are
0, 1-polynomials with b(0) = 1, deg b(x) < k, and deg a(x) = n+deg f−k =
deg g. Instead of the equations above, we use

f(x)g̃(x)x2k+deg g−deg f + f(x)f̃(x)xk+deg g−deg f + g(x)g̃(x)xk + f̃(x)g(x)

= f(x)g̃(x)x2n+deg f−deg g+f(x)f̃(x)xn+g(x)g̃(x)xn+deg f−deg g+f̃(x)g(x)

= (f(x)xn + g(x))(g̃(x)xn+deg f−deg g + f̃(x))

= (a(x)xk + b(x))(̃b(x)xk+deg a−deg b + ã(x))

= a(x)̃b(x)x2k+deg a−deg b+a(x)ã(x)xk+b(x)̃b(x)xk+deg a−deg b+ã(x)b(x).

Arguing as before, a term of degree deg b(x) appears on the right and the
only terms of degree< k on the left have degree≤ deg f+deg g, so deg b(x) ≤
deg f + deg g.
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Thus, in both of the cases deg f ≥ deg g and deg f < deg g, we deduce
that w(x) is of the form a(x)xm + b(x) where deg b(x) ≤ deg f + deg g
and where either m = n and deg a = deg f or m = n + deg f − deg g
and deg a = deg g. In both cases, m + deg a = n + deg f . Inequality (1)
implies that the product ã(x)b(x) consists of terms of degree < m (for
either choice of m) and, hence, corresponds to terms in f̃(x)g(x) on the
left-hand sides above of degree ≤ deg f + deg g. Therefore, ã(x)b(x) has
degree ≤ deg f + deg g. From (1), we deduce that each of the exponents m
and m+ deg a− deg b is > deg f + deg g. It follows that

f̃(x)g(x) = ã(x)b(x).

The possibility that a(0) = 0 exists. We consider a non-negative integer l
such that a(x) = a0(x)xl where a0(x) is a 0, 1-polynomial with a0(0) = 1.
Then ã = ã0 and deg a = l+deg ã. Since ã(x)b(x) has degree deg f+deg g, we
have deg a− l+deg b = deg f+deg g so that deg b = l−deg a+deg f+deg g.
We use this to make further comparisons of exponents. For example, to see
that the terms in a(x)̃b(x)x2m+deg a−deg b have degrees exceeding the degrees
of the terms in b(x)̃b(x)xm+deg a−deg b, we can justify instead that

m+ l > 2(l − deg a+ deg f + deg g).

For the latter, we want m > l + 2(deg f + deg g − deg a), which follows
from (1). By comparing coefficients in this manner, we deduce

f(x)g̃(x)x2n+deg f−deg g = a(x)̃b(x)x2m+deg a−deg b

and, consequently,

f(x)f̃(x)xn + g(x)g̃(x)xn+deg f−deg g = a(x)ã(x)xm + b(x)̃b(x)xm+deg a−deg b.

Recall that n is a fixed integer satisfying (1) for which the non-reciprocal
part of f(x)xn + g(x) is reducible. We now consider an arbitrary positive
integer n′ satisfying (1) and set m′ = n′ if deg f ≥ deg g and m′ = n′ +
deg f − deg g if deg f < deg g. Thus, if n′ = n, then m′ = m. We use the
polynomials a(x) and b(x) constructed above (corresponding to the case
n′ = n). Multiplying both sides of the equations above by a suitable power
of x, we obtain

f(x)g̃(x)x2n′+deg f−deg g = a(x)̃b(x)x2m′+deg a−deg b

and

f(x)f̃(x)xn
′
+ g(x)g̃(x)xn

′+deg f−deg g

= a(x)ã(x)xm
′
+ b(x)̃b(x)xm

′+deg a−deg b.

Hence,

(f(x)xn
′
+ g(x))(g̃(x)xn

′+deg f−deg g + f̃(x))

= f(x)g̃(x)x2n′+deg f−deg g+f(x)f̃(x)xn
′
+g(x)g̃(x)xn

′+deg f−deg g+ f̃(x)g(x)
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= a(x)̃b(x)x2m′+deg a−deg b + a(x)ã(x)xm
′

+ b(x)̃b(x)xm
′+deg a−deg b + ã(x)b(x)

= (a(x)xm
′
+ b(x))(̃b(x)xm

′+deg a−deg b + ã(x)).

We consider n′ sufficiently large with at least n′ ≥ n0(f, g), where n0(f, g)
is defined in Theorem 1. Since F (x) = f(x)xn

′
+g(x) is a 0, 1-polynomial, we

deduce from Theorem 1 that the non-reciprocal part of F (x) is irreducible
or identically 1. On the other hand, the polynomial W (x) = a(x)xm

′
+ b(x)

satisfies WW̃ = FF̃ and W (x) is a 0, 1-polynomial containing the same
number of non-zero terms as F (x). By Lemma 1, either W (x) = F (x) or
W (x) = F̃ (x). If W (x) = F (x), then

a(x)xm
′
+ b(x) = f(x)xn

′
+ g(x).

If m′ = n′, then a(x) = f(x) and b(x) = g(x), contradicting (2). If m′ 6=
n′, then m′ = n′ + deg f − deg g, deg g > deg f , a(x) = f(x)xdeg g−deg f ,
and b(x) = g(x), contradicting (2). Similarly, W (x) = F̃ (x) leads to a
contradiction to (2). It follows that our assumption that n exists satisfying
(1) and such that the non-reciprocal part of f(x)xn + g(x) is reducible is
incorrect. The theorem follows.
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