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ON TOPOLOGICAL PROPERTIES OF THE SPACES OF
DARBOUX BAIRE 1 FUNCTIONS AND BOUNDED DERIVATIVES
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Abstract. We investigate the topological structure of the space DB1 of bounded
Darboux Baire 1 functions on [0, 1] with the metric of uniform convergence and with the
p∗-topology. We also investigate some properties of the set ∆ of bounded derivatives.

The class DB1 of bounded Darboux Baire 1 functions on [0, 1] contains
subclasses of functions important for differentiation theory such as deriva-
tives. For that reason many mathematicians have investigated this class. In
[2], [8], [3] “typical” properties in this class were considered, where a prop-
erty Φ is called typical in DB1 if the class of all functions satisfying Φ is
residual in DB1. Therefore, the topological structure of DB1 is worth inves-
tigating, and this is one of the purposes of this article. First we shall consider
some properties of the set ∆ of all bounded derivatives on [0, 1]. One of these
properties (superporosity at each point of DB1) plays an important role in
further considerations connected with DB1.

We apply the classical terminology and notation. We adopt the following
definition of a Darboux function ([9], [5]):

A function F : X → Y (where X, Y are topological spaces) is called a
Darboux function if F (C) is a connected set for each connected set C ⊂ X.

By R, Q, N, I we denote the sets of real numbers, rational numbers,
natural numbers, and the segment [0, 1] respectively. The symbol m1 stands
for the Lebesgue measure on the real line. By Cf (resp. Df ) we denote the
set of all points of continuity (resp. discontinuity) of a function f : X → Y .
For x0 ∈ Y , we denote by constx0 : X → Y the constantly x0 function.

A subset L ⊂ X is called an arc if there exists a homeomorphism h from
I onto L. The elements h(0) and h(1) are called the endpoints of L. The arc
with endpoints a and b is denoted by L(a, b).

We say that a set A ⊂ I is bilaterally c-dense in itself if cardA∩(x, x+δ)
= cardA ∩ (x− δ, x) = c for all x ∈ A and δ > 0.
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By D (resp. B1) we denote the set of bounded Darboux (resp. Baire 1)
functions f : I→ R. By % we denote the metric of uniform convergence.

We say that a function f : I→ R satisfies the Young condition if

• for every x ∈ (0, 1) there exist sequences xn ↘ x and yn ↗ x such that
both f(xn) and f(yn) converge to f(x),
• there exists a sequence xn ↘ 0 such that f(xn) converges to f(0),
• there exists a sequence yn ↗ 1 such that f(yn) converges to f(1).

We say that A ⊂ X is a stationary set for the class F of functions from
X to Y provided that, for each f ∈ F , if f is constant on A, then f must
be constant on the whole domain.

If (X, d) is a metric space, then we denote by B(x,R) the open ball
with center at x and radius r > 0. Let M ⊂ X, x ∈ X, R > 0. Then
γ(x,R,M) denotes the supremum of the set of all r > 0 for which there
exists z ∈ X such that B(z, r) ⊂ B(x,R) \M . The set M is called porous
at x if lim supR→0+ γ(x,R,M)/R > 0. We say that E ⊂ X is superporous
at x ∈ X if E ∪F is porous at x whenever F is porous at x. A set G ⊂ X is
said to be p-open if X \G is superporous at each point of G. The system of
all superporous sets at x forms an ideal. Therefore the system of all p-open
sets forms a topology, called the p-topology ([12]). A set H ⊂ X is said to
be p∗-open if H = G\N , where G is p-open and N is p-meager. The system
of all p∗-open sets forms a topology, called the p∗-topology. Clearly the p∗-
topology is stronger than the p-topology, and the p-topology is stronger than
the topology generated by the metric d ([12]).

The notion of an abstract density topology (in the category sense) is
understood as in [6].

It is known that ∆ ⊂ DB1 ([1], [10]). It is easy to see that card(∆) =
card(DB1) = c. But it turns out that ∆ is a “small” subset of DB1 in the
topological sense. To prove this we need two lemmas.

First from [7, Theorem 1.1.9(3) and Corollary 1.7.12] we infer

Lemma 1. If f : [a, b] → R (a < b) is a Darboux (resp. Baire 1)
function, then for every α ∈ R, the functions f∗ = max(f, constα) and
f∗ = min(f, constα) are Darboux (resp. Baire 1) functions.

Let {ai}i∈K (K = {1, . . . , n}) be a finite increasing sequence of real
numbers from an interval (a, b). Put F1 = [a, a1], Fi = [ai−1, ai] for i ∈
K \ {1, n}, Fn = [an−1, b]. Obviously the family {Fi}i∈K is a closed covering
of [a, b].

It is easy to check

Lemma 2. Let {Fi}i∈K be the sequence of sets defined above and let fi :
Fi → R, where i ∈ K, be a family of compatible Darboux (resp. Baire 1)
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functions. Then the common extension f = 5i∈Kfi is a Darboux (resp.
Baire 1) function.

Theorem 3. The set∆ is superporous at each point of the space (DB1, %).

Proof. Let f ∈ DB1 and let Φ ⊂ DB1 be porous at f . Let R > 0. Put
r′1 = γ(f,R, Φ)/2 > 0. Then there exist r1 > r′1 and g ∈ DB1 such that

B(g, r1) ⊂ B(f,R) \ Φ.(1)

We shall show that there exists h ∈ DB1 such that

B(h, r1/8) ⊂ B(g, r1) \∆.(2)

Since g ∈ B1, there exists a point x0 ∈ (0, 1) of continuity of g. Conse-
quently, there exists δ > 0 such that [x0 − δ, x0 + δ] ⊂ (0, 1) and

g([x0 − δ, x0 + δ]) ⊂ (g(x0)− r1/4, g(x0) + r1/4).

Let Cδ ⊂ (x0 − δ/2, x0 + δ/2) be a bilaterally c-dense in itself Fσ set of
null Lebesgue measure. Then ([1, Theorem II.2.4]) there exists a Darboux
Baire 1 function s : [x0 − δ/2, x0 + δ/2] → I such that s(x) = 0 for x 6∈ Cδ
and 0 < s(x) ≤ 1 for x ∈ Cδ.

Fix α ∈ (0, 1] ∩ s(Cδ). Put s1(x) = min(1, α−1s(x)) for x ∈ [x0 − δ/2,
x0 + δ/2]. Obviously s1 : [x0 − δ/2, x0 + δ/2] → I is a bounded Darboux
Baire 1 function ([1, Theorem II.3.2] and Lemma 1). Note that 1 ∈ s1(Cδ).

We define a function µ : [x0 − δ/2, x0 + δ/2]→ R as follows:

µ(x) =
r1

4
s1(x) + g(x0).

Then µ : [x0 − δ/2, x0 + δ/2]→ [g(x0), g(x0) + r1/4] is a bounded Darboux
Baire 1 function ([1, Theorem II.3.2]). Note that r1/4 + g(x0) ∈ µ(Cδ).

We define a function h : I→ R as follows:

h(x) =





g(x) if x ∈ I \ (x0 − δ, x0 + δ),

l1(x) if x ∈ [x0 − δ, x0 − δ/2],

µ(x) if x ∈ [x0 − δ/2, x0 + δ/2],

l2(x) if x ∈ [x0 + δ/2, x0 + δ],

where l1 and l2 are linear functions such that l1(x0 − δ) = g(x0 − δ),
l1(x0 − δ/2) = g(x0), l2(x0 + δ) = g(x0 + δ) and l2(x0 + δ/2) = g(x0).
Then h ∈ DB1 (Lemma 2). Note that r1/4 + g(x0) ∈ h(Cδ).

Notice that %(h, g) ≤ r1/2, so

B(h, r1/8) ⊂ B(g, r1).(3)

Now, assume that there exists a function ξ ∈ B(h, r1/8) ∩∆. Then

(x0 − δ/2, x0 + δ/2) \ Cδ ⊂ ξ−1((−∞, g(x0) + r1/8)).(4)
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Let z0 ∈ Cδ be such that h(z0) = r1/4 + g(x0). Hence ξ(z0) > g(x0) + r1/8.
Therefore z0 ∈ ξ−1((g(x0) + r1/8,∞)) ∩ Cδ. Let U0 ⊂ (x0 − δ/2, x0 + δ/2)
be a unilateral neighbourhoood of z0. Note that by (4),

U0 ∩ ξ−1((g(x0) + r1/8,∞)) ⊂ Cδ,
so

m1(U0 ∩ ξ−1((g(x0) + r1/8,∞))) ≤ m1(Cδ) = 0.

Thus ξ 6∈M2, which contradicts the fact that ∆⊂M2 (1). Hence B(h, r1/8)
∩∆ = ∅. This equality and (3) finish the proof of (2). From (1) and (2) we
infer that

γ(f,R,∆ ∪ Φ) ≥ r1/8.

Therefore

lim sup
R→0+

γ(f,R,∆ ∪ Φ)
R

≥ 1
8
> 0.

It is easy to observe that ∆ is a nowhere dense and perfect subset of
DB1. So its topological structure is similar to that of the Cantor set. There
are several constructions of Darboux functions from [0, 1] to R in which the
Cantor set plays an important role. This suggests that ∆ can play a similar
role in constructions of Darboux functions from DB1 to R. It turns out that
in some cases we can obtain analogous results (Theorem 4), in others it is
impossible (Corollary 6).

Theorem 4. There exists a Darboux function F : DB1 → R such that
DF = ∆ and F (B(g, ε) ∩∆) = R for any g ∈ ∆ and ε > 0.

Proof. In R we define an equivalence relation ? in the following way:
x ? y ⇔ x − y ∈ Q. Denote by E the set of equivalence classes of this
relation and let ξ : E → R be a bijection. Define a function χ : R → R by
χ(x) = ξ([x]?). Then χ is a Darboux function such that χ((a, b)) = R for all
a < b. Let ϕ(x) = (1/x) sin(1/x) for x ∈ (0,∞). We define F : DB1 → R by

F (f) =

{
χ(f(0)) if f ∈ ∆,
ϕ(%∆(f)) if f ∈ DB1 \∆.

First we shall show that

F is a Darboux function.(5)

Let C ⊂ DB1 be a connected set. Consider the following three cases.

Case 1: C ⊂ ∆. Suppose that F (C) is disconnected. Then there exist
r1 < r0 < r2 and f1, f2 ∈ C such that F (f1) = r1, F (f2) = r2 and F (f) 6= r0

(1) A function f : I→ R is said to be of classM2 if for each a ∈ R the set E = {x ∈ I :
f(x) > a} is either empty or an Fσ and m1(E ∩ (x− δ, x)) > 0 and m1(E ∩ (x, x+ δ)) > 0
for each x ∈ E and each δ > 0. Zahorski proved that every bounded derivative is of class
M2 ([10]).
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for each f ∈ C. Consequently, there exists E? ∈ E such that ξ(E?) = r0.
Then

f(0) 6∈ E? for each f ∈ C.(6)

As r1 6=r2, we have F (f1) 6=F (f2). Then [f1(0)]? 6=[f2(0)]?, so f1(0) 6=f2(0).
Let, for instance, f1(0) < f2(0). Then there exists y? ∈ E? ∩ (f1(0), f2(0)).
By (6),

C = {f ∈ C : f(0) < y?} ∪ {f ∈ C : f(0) > y?},
where the sets {f ∈ C : f(0) < y?} and {f ∈ C : f(0) > y?} are nonempty
(they contain f1, f2 respectively) and separated, which contradicts the con-
nectedness of C.

Case 2: C ⊂ DB1 \ ∆. If %∆(C) is a singleton, so is F (C). In the
opposite case, let r1 = inf{r > 0 : ∃f∈C %∆(f) = r} and r2 = sup{r > 0 :
∃f∈C %∆(f) = r}. It is evident that r1 6= r2 and r1 ≥ 0, r2 > 0. Note that
(by the conectedness of C)

∀r∈(r1,r2) C ∩ {f ∈ DB1 : %∆(f) = r} 6= ∅.
Consider the following subcases:

(a) ∀f∈C (%∆(f) 6= r1 ∧ %∆(f) 6= r2). Then F (C) = ϕ((r1, r2)) is con-
nected because ϕ is continuous on (0,∞).

(b) (∀f∈C %∆(f) 6= r1) ∧ (∃f0∈C %∆(f0) = r2). Then F (C) = ϕ((r1, r2])
is connected.

(c) (∃f0∈C %∆(f0) = r1) ∧ (∀f∈C %∆(f) 6= r2). Since f0 ∈ C ⊂ DB1 \∆
and ∆ is a closed set, we have r1 = %∆(f0) > 0. Hence [r1, r2) ⊂ (0,∞) and
F (C) = ϕ([r1, r2)) is connected.

(d) (∃f0∈C %∆(f0) = r1) ∧ (∃f0∈C %∆(f0) = r2). As in (c) we can show
that [r1, r2] ⊂ (0,∞). Hence F (C) = ϕ([r1, r2]) is connected.

Case 3: C∩∆ 6= ∅ and C\∆ 6= ∅. Then there exists a function f̂ ∈ C\∆.
Let r̂ = %∆(f̂) > 0. Since C is connected, we have

∀r∈(0,r̂) C ∩ {f ∈ DB1 : %∆(f) = r} 6= ∅.
Hence F (C) ⊃ ϕ((0, r̂)) = R and F (C) = R is connected. This ends the
proof of (5).

Now we shall show that

∀g∈∆ ∀ε>0 F (K(g, ε) ∩∆) = R.(7)

Indeed, if g ∈ ∆ and ε > 0, then

F (K(g, ε) ∩∆) ⊃ F ({g + α : α ∈ (−ε, ε)}) = χ((g(0)− ε, g(0) + ε)) = R.

It is easy to see that DB1 \ ∆ ⊂ CF . From (7) we infer that ∆ ⊂ DF , so
DF = ∆, which ends the proof.
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It is known that for each perfect set P ⊂ I there exists a bounded
Darboux Baire 1 function h : I → R such that h vanishes off P but does
not vanish identically ([1, Theorem II.2.4]). This fact leads to the question:
Does there exist a Darboux function F : DB1 → R which vanishes off ∆ but
does not vanish identically? The answer is negative (Corollary 6).

The above question is connected with the theory of stationary sets. It
is known that E is a stationary set for the family of Darboux functions
f : I→ R if and only if card(I \E) < c ([1, Theorem XII.1.1]). But it turns
out that for the family of real Darboux functions defined on DB1 (with the
metric of uniform convergence) this characterization of stationary sets fails.

Theorem 5. In the space (DB1, %) the set ∆′ = DB1 \∆ is stationary
for the class of real Darboux functions.

Proof. Let F : DB1 → R be a Darboux function such that F (∆′) = {α0}
(where α0 ∈ R). Let g ∈ ∆. To prove the theorem it is sufficient to construct
an arc L = L(g, h) such that L \ {g} ⊂ ∆′.

Since g ∈ B1, there exists a point x0 ∈ (0, 1) of continuity of g. For r ∈ I
we define tr : I→ R in the following way:

tr(x) =

{
g(x0) + r if x = x0,

g(x) + r sin 1
x−x0

if x ∈ I \ {x0}.
Obviously, tr (r ∈ I) is a bounded Baire 1 function. It is not difficult to see
that it satisfies the Young condition, so it is a Darboux function ([1]). Hence
tr ∈ DB1 for r ∈ I.

Note that tr = g + dr (r ∈ I), where

dr(x) =

{
r if x = x0,

r sin 1
x−x0

if x ∈ I \ {x0}.
We shall prove that

dr 6∈ ∆ for r ∈ (0, 1].(8)

Indeed, for a fixed r∗ ∈ (0, 1], define k : I→ R by

k(x) =

{
0 if x = x0,

r∗(x− x0)2 cos 1
x−x0

if x ∈ I \ {x0}.
Then

k′(x) =

{
0 if x = x0,

2r∗(x− x0) cos 1
x−x0

+ r∗ sin 1
x−x0

if x ∈ I \ {x0}.
Consider a function h : I→ R defined by

h(x) =

{
0 if x = x0,

2r∗(x− x0) cos 1
x−x0

if x ∈ I \ {x0}.
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Then h is continuous and bounded on I, so h ∈ ∆. Therefore also f =
k′ − h ∈ ∆. Hence dr∗ 6∈ ∆, because the difference

dr∗(x)− f(x) =

{
r∗ if x = x0,

0 if x ∈ I \ {x0},
is not a derivative (it does not have the Darboux property). In this way we
have proved condition (8).

Since dr = tr − g for r ∈ (0, 1] and g ∈ ∆, it follows that tr is not a
derivative for each r ∈ (0, 1].

Note that for any r1, r2 ∈ I,
%(tr1, tr2) = |r1 − r2|.(9)

Therefore the function ζ : I → {tr : r ∈ I} given by ζ(r) = tr is a homeo-
morphism. Hence L = {tr : r ∈ I} is an arc in DB1 such that L = L(g, t1)
and L \ {g} = {tr : r ∈ (0, 1]} ⊂ ∆′.

Corollary 6. There does not exist a Darboux function F : DB1 → R
which is zero for t ∈ ∆′, but not identically zero.

Now we shall investigate the topological structure of the space DB1 with
the metric of uniform convergence and the p∗-topology.

It is easy to see that (DB1, %) is a Baire space. So from [12, Theorem 2],
we infer

Corollary 7. The p∗-topology is an abstract density topology (in the
category sense) on (DB1, %).

Obviously (DB1, %) is a perfectly normal space. For the p∗-topology we
have

Theorem 8. (DB1, p
∗) is a Hausdorff space but it is not regular.

Proof. Since the p∗-topology is stronger than the %-topology ([12]), we
deduce that (DB1, p

∗) is a Hausdorff space.
Suppose that (DB1, p

∗) is a regular space. For q ∈ Q put

Aq = {f ∈ DB1 : f(0) = q}, F =
⋃

q∈Q
Aq.

Obviously F ⊂ DB1. Note that

F is %-meager.(10)

To see this, it suffices to prove that Aq is %-nowhere dense for each q ∈ Q.
So fix q0 ∈ Q and let B(g, ε) be an arbitrary open ball in (DB1, %). We shall
show that there exists a %-open set U ⊂ B(g, ε) \ Aq0 . If B(g, ε) ∩ Aq0 = ∅,
we obviously put U = B(g, ε). Hence, we may assume that there exists
f0 ∈ B(g, ε) ∩ Aq0 . Put δ = ε − %(g, f0) > 0 and U = B(f0 + δ/2, δ/4).
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Clearly U ⊂ B(g, ε). If h ∈ U , then h(0) > q0 + δ/4. Hence h 6∈ Aq0 , so
U ∩ Aq0 = ∅. The proof of (10) is thus finished. Hence ([12, Theorem 2])

F is p∗-closed.

Now we shall show that

F is %-dense.(11)

Indeed, let B(g, ε) be an arbitrary open ball in DB1. Let q∗ ∈ (g(0)− ε,
g(0) + ε) ∩ Q. Put h∗(x) = g(x) − g(0) + q∗ for x ∈ I. Clearly h∗ ∈ DB1
([1, Theorem II.3.2]) and h∗(0) = q∗ ∈ Q, so h∗ ∈ Aq∗ ⊂ F. Of course
%(g, h∗) < ε, so h∗ ∈ B(g, ε). Hence F ∩B(g, ε) 6= ∅, which proves (11).

Now, let f∗ ∈ DB1 \ F . Since (DB1, p
∗) is (by assumption) a regular

space, there exist p∗-open and disjoint sets U1, U2 such that F ⊂ U1 and
f∗ ∈ U2. Then ([12, Theorem 2])

U1 = H1 \N1, U2 = H2 \N2,

where H1, H2 are p-open and N1, N2 are p-meager.
From U1 ∩ U2 = ∅ we conclude that (H1 ∩ H2) \ (N1 ∪ N2) = ∅. Since

(DB1, %) (and hence (DB1, p), see e.g. [12]) is a Baire space, we deduce that
H1 ∩H2 = ∅. Therefore

F ⊂ U1 ⊂ H1 ⊂ DB1 \H2.

Since H2 is a p-open set, we conclude that F is porous at f ∗ (in the space
(DB1, %)). This contradicts (11).

In the proof of Theorem 5 we have constructed an arc in DB1. This leads
to the question: Are the spaces considered arcwise connected? Theorems 9
and 12 give an answer to this question.

Theorem 9. The space (DB1, %) is arcwise connected.

Proof. Let f1, f2 ∈ DB1 and f1 6= f2. Consider the following cases:

Case 1: f1 = const0 or f2 = const0. Assume, for instance, that f1 =
const0. Put L = {af2 : a ∈ I}. Then L is an arc in (DB1, %) such that
L = L(f1, f2).

Case 2: f1 6= const0 and f2 6= const0. Then there are two possibilities:

• There exists r∗ ∈ R such that f1 = r∗f2. Since f1 6= f2, we have
r∗ 6= 1. Assume, for instance, that r∗ > 1 (the other case is similar). Put
L = {af2 : a ∈ [1, r∗]}. Then L is an arc in (DB1, %) such that L = L(f2, f1).
• There is no r ∈ R such that f1 = rf2. Put L1 = {af1 : a ∈ I}

and L2 = {af2 : a ∈ I}. Then L1 and L2 are arcs in (DB1, %) such that
L1 = L(const0, f1), L2 = L(const0, f2) and L1∩L2 = {const0}. Thus L1∪L2

is an arc in (DB1, %) such that L1 ∪ L2 = L(f1, f2).
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Lemma 10. For each f ∈ DB1 and each r > 0, there exist arcs L1, L2, L3
in the space (DB1, %) contained in B(f, r) such that Li ∩ Lj = {f} for
i, j ∈ {1, 2, 3}, i 6= j.

Proof. Let f ∈ DB1 and let r > 0. Consider the following cases:

• f is not a constant function. Put M = sup{|f(x)| : x ∈ I} > 0.
Then L1 = {f + a : a ∈ [0, r/2]}, L2 = {f + a : a ∈ [−r/2, 0]} and
L3 = {af : a ∈ [1, 1 + r/(2M)]} satisfy the required conditions.
• f is a constant function. Put L1 = {f +a : a ∈ [0, r/2]}, L2 = {f +a :

a ∈ [−r/2, 0]} and L3 = {la : a ∈ [0, r/2]}, where la(x) = ax+ f(x), x ∈ I.
Then L1, L2 and L3 satisfy the required conditions.

Lemma 11. Let X be an arbitrary set and let T and T ′ be two topologies
on X such that T ⊂ T ′ and (X, T ) is a Hausdorff space. Then, if L is an
arc in (X, T ′), it is also an arc in (X, T ).

Theorem 12. The space (DB1, p
∗) is not arcwise connected. Moreover ,

there exists no arc in (DB1, p
∗).

Proof. Suppose that there exists an arc L in (DB1, p
∗). From Lemma 11,

we infer that L is an arc in (DB1, %). Now we show that

L has empty interior in (DB1, %).(12)

Indeed, suppose that there exists an open ball B(f, r) ⊂ L. By Lemma
10 there exist arcs L1, L2, L3 in (DB1, %), contained in B(f, r), such that
Li ∩Lj = {f} for i 6= j. Then L1, L2, L3 are arcs in (L, %). It is not difficult
to check that this is impossible.

Clearly L is %-closed. Hence (by (12)) L is %-nowhere dense, so L is %-
meager. Then each subset of L is p∗-closed. It follows that L is disconnected
in (DB1, p

∗), which contradicts the fact that L is an arc.
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