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ON TOPOLOGICAL PROPERTIES OF THE SPACES OF
DARBOUX BAIRE 1 FUNCTIONS AND BOUNDED DERIVATIVES

BY

BOZENA SWIATEK (Lédz)

Abstract. We investigate the topological structure of the space DB; of bounded
Darboux Baire 1 functions on [0, 1] with the metric of uniform convergence and with the
p*-topology. We also investigate some properties of the set A of bounded derivatives.

The class DB; of bounded Darboux Baire 1 functions on [0, 1] contains
subclasses of functions important for differentiation theory such as deriva-
tives. For that reason many mathematicians have investigated this class. In
2], [8], [3] “typical” properties in this class were considered, where a prop-
erty @ is called typical in DB if the class of all functions satisfying @ is
residual in DB;. Therefore, the topological structure of DBy is worth inves-
tigating, and this is one of the purposes of this article. First we shall consider
some properties of the set A of all bounded derivatives on [0, 1]. One of these
properties (superporosity at each point of DB;) plays an important role in
further considerations connected with DB;.

We apply the classical terminology and notation. We adopt the following
definition of a Darboux function ([9], [5]):

A function F : X — Y (where X, Y are topological spaces) is called a
Darbouzx function if F(C) is a connected set for each connected set C C X.

By R, Q, N, T we denote the sets of real numbers, rational numbers,
natural numbers, and the segment [0, 1] respectively. The symbol m; stands
for the Lebesgue measure on the real line. By Cy (resp. Dy) we denote the
set of all points of continuity (resp. discontinuity) of a function f : X — Y.
For zy € Y, we denote by const,, : X — Y the constantly xo function.

A subset L C X is called an arc if there exists a homeomorphism A from
I onto L. The elements h(0) and h(1) are called the endpoints of L. The arc
with endpoints a and b is denoted by L(a,b).

We say that a set A C [ is bilaterally c-dense in itself if card AN (z, x+6)
=cardAN(z —d,z) =cforall z € A and § > 0.
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By D (resp. B1) we denote the set of bounded Darboux (resp. Baire 1)
functions f : I — R. By ¢ we denote the metric of uniform convergence.
We say that a function f : I — R satisfies the Young condition if

e for every x € (0,1) there exist sequences x,, \, x and ¥y, " x such that
both f(zy) and f(y,) converge to f(x),

e there exists a sequence x,, \, 0 such that f(z,) converges to f(0),

e there exists a sequence y, /" 1 such that f(y,) converges to f(1).

We say that A C X is a stationary set for the class F of functions from
X to Y provided that, for each f € F, if f is constant on A, then f must
be constant on the whole domain.

If (X,d) is a metric space, then we denote by B(x,R) the open ball
with center at x and radius » > 0. Let M C X, x € X, R > 0. Then
~v(x, R, M) denotes the supremum of the set of all » > 0 for which there
exists z € X such that B(z,7) C B(z,R) \ M. The set M is called porous
at z if limsupp_,o+ v(z, R, M)/R > 0. We say that E C X is superporous
at ¢ € X if EUF is porous at x whenever F' is porous at . A set G C X is
said to be p-open if X \ G is superporous at each point of G. The system of
all superporous sets at x forms an ideal. Therefore the system of all p-open
sets forms a topology, called the p-topology ([12]). A set H C X is said to
be p*-open if H = G\ N, where G is p-open and N is p-meager. The system
of all p*-open sets forms a topology, called the p*-topology. Clearly the p*-
topology is stronger than the p-topology, and the p-topology is stronger than
the topology generated by the metric d ([12]).

The notion of an abstract density topology (in the category sense) is
understood as in [6].

It is known that A C DB; ([1], [10]). It is easy to see that card(A) =
card(DB;) = c. But it turns out that A is a “small” subset of DB; in the
topological sense. To prove this we need two lemmas.

First from [7, Theorem 1.1.9(3) and Corollary 1.7.12] we infer

LEmMA 1. If f : [a,b] — R (a < b) is a Darbour (resp. Baire 1)
function, then for every a € R, the functions f* = max(f,const,) and
f« = min(f, consty) are Darboux (resp. Baire 1) functions. m

Let {a;}icx (K = {1,...,n}) be a finite increasing sequence of real
numbers from an interval (a,b). Put Fy = [a,a1], F; = [ai—1,a] for i €
K\{1,n}, F,, = [an—1,b]. Obviously the family {F;}ick is a closed covering
of [a, b].

It is easy to check

LEMMA 2. Let {F;}icx be the sequence of sets defined above and let f; :
F; — R, where i € K, be a family of compatible Darboux (resp. Baire 1)
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functions. Then the common extension f = <Jicx fi is a Darboux (resp.
Baire 1) function. m

THEOREM 3. The set A is superporous at each point of the space (DB, ).

Proof. Let f € DBy and let @ C DB; be porous at f. Let R > 0. Put
i =~(f, R,®)/2 > 0. Then there exist r1 > r| and g € DBy such that

We shall show that there exists h € DB; such that
(2) B(h,T1/8) C B(g7rl)\A

Since g € Bj, there exists a point zo € (0,1) of continuity of g. Conse-
quently, there exists § > 0 such that [xg — d,z9 + 0] C (0,1) and

9([zo — 6,20 +6]) C (g9(w0) —71/4, 9(w0) 4+ 71/4).
Let Cs C (xg — 0/2,29 + §/2) be a bilaterally c-dense in itself F, set of
null Lebesgue measure. Then ([1, Theorem I1.2.4]) there exists a Darboux
Baire 1 function s : [xg — 0/2, 29 + /2] — 1 such that s(z) =0 for x ¢ Cs
and 0 < s(z) <1 for z € Cs.

Fix a € (0,1] N s(Cs). Put s1(z) = min(1,a ts(x)) for z € [zg — §/2,
xo + 6/2]. Obviously s1 : [zg — /2,20 + 6/2] — 1 is a bounded Darboux
Baire 1 function ([1, Theorem II.3.2] and Lemma 1). Note that 1 € s1(Cp).

We define a function p : [xg — 0/2,20 + §/2] — R as follows:

1
pla) = —psi(x) + g(zo).
Then p : [zg — /2,20 + /2] — [g(x0), g(z0) + 71/4] is a bounded Darboux
Baire 1 function ([1, Theorem II.3.2]). Note that r1/4 4+ g(zo) € pu(Cs).
We define a function h : I — R as follows:

g(x) ifxzel\ (xg—d,z0+9),
ll(l‘) if x € [SUD — 0,10 — (5/2],

h(z) = .
p(z) ifxe|rg—0/2,2040/2],
lg(l‘) if x € [560%—5/2,560—}-5},
where [; and [y are linear functions such that ly(zg — 0) = g(xo — 9),

11(33‘0 - 5/2) = g(l‘o), lz(ﬂl‘o + 5) = g($0 + 5) and ZQ(ZIT() + 5/2) = g(l‘o).
Then h € DBy (Lemma 2). Note that r1/4 + g(z¢) € h(Cs).
Notice that o(h, g) < r1/2, so

(3) B(hv’rl/8) CB(g,T1)~
Now, assume that there exists a function & € B(h,71/8) N A. Then
(4) (x0 — 6/2,20 +0/2) \ C5 C € ((—00, g(wo) + 71/8)).
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Let zp € Cs be such that h(zg) = r1/4 + g(x0). Hence &(z0) > g(zo) + 71/8.
Therefore 2o € £ ((g(z0) + 71/8,00)) N Cs. Let Uy C (zo — 6/2,70 + 5/2)
be a unilateral neighbourhoood of zy. Note that by (4),
Uo N & ((g(wo) +71/8,00)) C Cs,
SO
m1(Uo M€ ((g(z0) +11/8,00))) < ma(Cs) = 0.
Thus & ¢ Mo, which contradicts the fact that AC Ms (1). Hence B(h,r1/8)
N A = (). This equality and (3) finish the proof of (2). From (1) and (2) we
infer that
v(f,R,AU®) > r1/8.
Therefore RAUG )
U
1lm Sup ’7(f7 Y ) 2 _
R—0+ R 8
It is easy to observe that A is a nowhere dense and perfect subset of
DB;. So its topological structure is similar to that of the Cantor set. There
are several constructions of Darboux functions from [0, 1] to R in which the
Cantor set plays an important role. This suggests that A can play a similar
role in constructions of Darboux functions from DB; to R. It turns out that
in some cases we can obtain analogous results (Theorem 4), in others it is
impossible (Corollary 6).

>0 m

THEOREM 4. There exists a Darbouzx function F : DB1 — R such that
Dp = A and F(B(g,e)NA) =R for any g € A and € > 0.

Proof. In R we define an equivalence relation x in the following way:
rxy < x—y € Q. Denote by £ the set of equivalence classes of this
relation and let £ : £ — R be a bijection. Define a function x : R — R by
x(x) = &([x]«). Then x is a Darboux function such that x((a,b)) = R for all
a <b. Let p(z) = (1/x)sin(1/z) for x € (0,00). We define F' : DB; — R by

) = { x(f0) i fea,
eloa(f)) if feDBi\ A
First we shall show that
(5) F' is a Darboux function.
Let C' C DB be a connected set. Consider the following three cases.
CASE 1: C C A. Suppose that F(C) is disconnected. Then there exist
r1 < rog<rgand fi, fo € C such that F(f1) =r1, F(f2) =raand F(f) #ro

(*) A function f : T — R is said to be of class M if for each a € Rtheset F = {z € T:
f(x) > a} is either empty or an F, and mi(EN(z—§,z)) > 0 and m1(E N (z,x+46)) >0
for each z € E and each ¢ > 0. Zahorski proved that every bounded derivative is of class

M ([10]).
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for each f € C. Consequently, there exists E* € £ such that £(E*) = ro.
Then

(6) f(0) ¢ E*  for each f € C.
As 11771, we have F(f1)# F(f2). Then [f1(0)].#[f2(0)]x, so f1(0) # f2(0).
Let, for instance, f1(0) < f2(0). Then there exists y* € E* N (f1(0), f2(0)).
By (6),

C={feC:f0) <y tu{feC: f(0)>y"}
where the sets {f € C': f(0) < y*} and {f € C : f(0) > y*} are nonempty

(they contain f1, fo respectively) and separated, which contradicts the con-
nectedness of C.

CASE 2: C C DB; \ A. If pa(C) is a singleton, so is F(C). In the
opposite case, let 71 = inf{r > 0: Iycc 0a(f) = 7} and 7o = sup{r > 0:
Jrec 0a(f) = r}. It is evident that ry # 75 and r; > 0, 72 > 0. Note that
(by the conectedness of C')

vre(ﬁ,rz) an {f € DB; : QA(f) = 7’} # 0.

Consider the following subcases:

(a) Vrec (0a(f) # m1 A oalf) #

r2).
nected because ¢ is continuous on (0, 00).
(b) (Vsec 0a(f) # 1) A Bpoec 0a(f°

is connected.

(¢) 3pec 0alfo) =11) AN (Viec 0a(f) # r2). Since fo € C C DB\ A
and A is a closed set, we have r1 = pa(fo) > 0. Hence [r1,72) C (0,00) and
F(C) = ¢([r1,72)) is connected.

(d) Bpoec 0al(fo) =7r1) A (3pocc 0A(f°%) = r2). As in (c) we can show
that [r1,72] C (0,00). Hence F(C) = ¢([r1,72]) is connected.

Case 3: CNA # () and C\A # ). Then there exists a function feC\A.
Let 7 = pa(f) > 0. Since C' is connected, we have

Vecop) CNA{fE€DB:oalf)=r}#0.

Hence F(C) D ¢((0,7)) = R and F(C) = R is connected. This ends the
proof of (5).
Now we shall show that

(7) Vgea Veso  F(K(g,e)NA)
Indeed, if g € A and € > 0, then
F(K(g,e)NA) D F({g+a:ace(—¢¢)}) =x((g(0) —€,9(0) +¢)) =R.

It is easy to see that DBy \ A C Cp. From (7) we infer that A C Dp, so
Dp = A, which ends the proof. =

Then F(C) = ¢((r1,r2)) is con-

) =rg). Then F(C) = ¢((r1,72])

R.
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It is known that for each perfect set P C I there exists a bounded
Darboux Baire 1 function h : I — R such that h vanishes off P but does
not vanish identically ([1, Theorem II.2.4]). This fact leads to the question:
Does there exist a Darboux function F' : DB; — R which vanishes off A but
does not vanish identically? The answer is negative (Corollary 6).

The above question is connected with the theory of stationary sets. It
is known that E is a stationary set for the family of Darboux functions
f:I— Rif and only if card(I'\ E) < ¢ ([1, Theorem XII.1.1]). But it turns
out that for the family of real Darboux functions defined on DB; (with the
metric of uniform convergence) this characterization of stationary sets fails.

THEOREM 5. In the space (DB, o) the set A" = DBy \ A is stationary
for the class of real Darbouz functions.

Proof. Let F : DB; — R be a Darboux function such that F'(A’) = {ao}
(where ap € R). Let g € A. To prove the theorem it is sufficient to construct
an arc L = L(g,h) such that L\ {g} C A"

Since g € By, there exists a point xg € (0, 1) of continuity of g. For r € I
we define ¢, : [ — R in the following way:

b(2) g(zo) + 7 if z = o,
) = . .
g(x) + rsin — = ifx e I\ {=o}.

r—x
Obviously, ¢, (r € I) is a bounded Baire 1 function. It is not difficult to see
that it satisfies the Young condition, so it is a Darboux function ([1]). Hence
t, € DBy for r € 1.
Note that t, = g +d, (r € I), where

r if x = x,
dy(z) = { L

if x eI\ {xo}.
We shall prove that

() d. ¢ A forre (0,1].
Indeed, for a fixed r* € (0, 1], define k : I — R by

0 if x = xo,
k‘(ZC) - * 2 1 :
r(z —x0)”cos ;== if x € I\ {zo}.

Then
0 if x = xg,
K (x) = { 1 1

2r*(x — x0) cos ;== +r*sin .= if z € I\ {zo}.

Consider a function h : I — R defined by

0 if x = o,
h(z) = \ L.
2r*(x — x0) cos ;= if z € I\ {zo}.




DARBOUX BAIRE 1 FUNCTIONS 47

Then h is continuous and bounded on I, so h € A. Therefore also f =
kK —h € A. Hence d,~ ¢ A, because the difference

B r* if x = xo,
dr*(:l?)—f(lf)_{ 0 if:L‘EH\{xO}’

is not a derivative (it does not have the Darboux property). In this way we
have proved condition (8).

Since d, = t, — g for r € (0,1] and g € A, it follows that ¢, is not a
derivative for each r € (0, 1].

Note that for any rq1,7ro € I,

(9) Q(tT‘lvt’r'Q) - ‘7’1 - TQ‘-
Therefore the function ¢ : I — {¢, : € I} given by ((r) = t, is a homeo-

morphism. Hence L = {t, : r € [} is an arc in DBy such that L = L(g, 1)
and L\ {g} ={t, :r€(0,1]} C A’ u

COROLLARY 6. There does not exist a Darboux function F' : DBy — R
which is zero for t € A', but not identically zero. m

Now we shall investigate the topological structure of the space DB; with
the metric of uniform convergence and the p*-topology.

It is easy to see that (DB, o) is a Baire space. So from [12, Theorem 2],
we infer

COROLLARY 7. The p*-topology is an abstract density topology (in the
category sense) on (DB, 0). =

Obviously (DB, ) is a perfectly normal space. For the p*-topology we
have

THEOREM 8. (DBi,p*) is a Hausdorff space but it is not regular.

Proof. Since the p*-topology is stronger than the p-topology ([12]), we
deduce that (DBy,p*) is a Hausdorff space.
Suppose that (DB, p*) is a regular space. For ¢ € Q put

Ag={f €DB;: f(0) =g}, F:UAq-
q€Q
Obviously F' C DB;. Note that

(10) F is p-meager.

To see this, it suffices to prove that A, is p-nowhere dense for each ¢ € Q.
So fix qo € Q and let B(g,¢) be an arbitrary open ball in (DB, 0). We shall
show that there exists a p-open set U C B(g,¢) \ Aq,- If B(g,e) N Ay, =0,
we obviously put U = B(g,¢). Hence, we may assume that there exists
fo € B(g,e) N Ag,. Put 6 = € —0(g, fo) > 0 and U = B(fo + 0/2,0/4).
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Clearly U C B(g,¢). If h € U, then h(0) > qo + §/4. Hence h ¢ Ay, so
U N Ay = 0. The proof of (10) is thus finished. Hence ([12, Theorem 2])

F is p*-closed.
Now we shall show that
(11) F is p-dense.

Indeed, let B(g,¢) be an arbitrary open ball in DB;. Let ¢* € (¢g(0) — ¢,
g9(0) +¢) N Q. Put h*(z) = g(x) — g(0) + ¢* for z € 1. Clearly h* € DB
([1, Theorem IL.3.2]) and h*(0) = ¢* € Q, so h* € A, C F. Of course
o(g,h*) < e,so h* € B(g,e). Hence F'N B(g,e) # 0, which proves (11).

Now, let f* € DBy \ F. Since (DBy,p*) is (by assumption) a regular
space, there exist p*-open and disjoint sets Uj, Uy such that F' C U; and
f* € Us. Then ([12, Theorem 2])

U =H;\Ni, U;=H\No,

where Hi, Ho are p-open and N, Ny are p-meager.

From U; N Uy = () we conclude that (Hy; N Hs) \ (N1 U No) = . Since
(DB, o) (and hence (DB, p), see e.g. [12]) is a Baire space, we deduce that
H; N Hy = (. Therefore

F cU, C H C DB\ Hs.

Since Hj is a p-open set, we conclude that F'is porous at f* (in the space
(DB, 0)). This contradicts (11). m

In the proof of Theorem 5 we have constructed an arc in DB;. This leads
to the question: Are the spaces considered arcwise connected? Theorems 9
and 12 give an answer to this question.

THEOREM 9. The space (DBy, 0) is arcwise connected.
Proof. Let f1, fo € DBy and f; # fo. Consider the following cases:

CASE 1: f; = constg or fo = constg. Assume, for instance, that f; =
constg. Put L = {afs : a € I}. Then L is an arc in (DB, ) such that

L= L(flv f2)
CASE 2: f1 # constg and fo # constg. Then there are two possibilities:

e There exists " € R such that f; = r*fa. Since fi # fo, we have
r* # 1. Assume, for instance, that r* > 1 (the other case is similar). Put
L ={afs:a€[l,r*]}. Then L is an arc in (DB, g) such that L = L( fa, f1).

e There is no r € R such that f; = rfs. Put Ly = {af1 : a € I}
and Ly = {afy : a € I}. Then L; and Lg are arcs in (DBj, ) such that
Ly = L(consty, f1), Ly = L(constg, f2) and L1NLy = {constg}. Thus L; ULy
is an arc in (DB, p) such that Ly U Ly = L(f1, f2). =
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LEMMA 10. For each f € DBy and each r > 0, there exist arcs Ly, Lo, L3
in the space (DB1,0) contained in B(f,r) such that Ly N L; = {f} for

i,je{1,2,3},i# .
Proof. Let f € DBy and let » > 0. Consider the following cases:

e [ is not a constant function. Put M = sup{|f(z)| : z € I} > 0.
Then L1 = {f+a : a € [0,7/2]}, Ls = {f +a : a € [-r/2,0]} and
Lz ={af:a€[l,1+7r/(2M)]} satisfy the required conditions.

e f is a constant function. Put L1 = {f+a:a € [0,7/2]}, Lo ={f+a:
a € [-r/2,0]} and L3 = {l, : a € [0,7/2]}, where lo(z) = ax + f(z), z € L.
Then Ly, Ly and L3 satisfy the required conditions.

LEMMA 11. Let X be an arbitrary set and let T and T’ be two topologies
on X such that T C T' and (X,T) is a Hausdorff space. Then, if L is an
arc in (X,7T"), it is also an arc in (X,7). m

THEOREM 12. The space (DB, p*) is not arcwise connected. Moreover,
there exists no arc in (DBy1,p*).

Proof. Suppose that there exists an arc L in (DB1, p*). From Lemma 11,
we infer that L is an arc in (DB, ). Now we show that

(12) L has empty interior in (DB, p).

Indeed, suppose that there exists an open ball B(f,r) C L. By Lemma
10 there exist arcs Lq, Lo, L3 in (DBy, 0), contained in B(f,r), such that
LinL;={f} fori# j. Then Ly, Lo, L3 are arcs in (L, p). It is not difficult
to check that this is impossible.

Clearly L is p-closed. Hence (by (12)) L is g-nowhere dense, so L is p-
meager. Then each subset of L is p*-closed. It follows that L is disconnected
in (DBy, p*), which contradicts the fact that L is an arc. m
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