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ON THE SCHRÖDINGER HEAT KERNEL
IN HORN-SHAPED DOMAINS

BY

GABRIELE GRILLO (Torino)

Abstract. We prove pointwise lower bounds for the heat kernel of Schrödinger semi-
groups on Euclidean domains under Dirichlet boundary conditions. The bounds take into
account non-Gaussian corrections for the kernel due to the geometry of the domain. The
results are applied to prove a general lower bound for the Schrödinger heat kernel in
horn-shaped domains without assuming intrinsic ultracontractivity for the free heat semi-
group.

1. Introduction. The Dirichlet Laplacian ∆D on a proper, open and
connected domain D ⊂ Rn is the unique nonpositive, self-adjoint operator
such that −∆D is associated to the closure of the quadratic form

Q0(f) =
�

D

|∇f |2 dx, f ∈ C∞c (D).

The one-parameter semigroup T0,t = exp[t∆D] is called the free heat semi-
group on D. We shall refer to the jointly continuous, strictly positive integral
kernel K0(t, x, y) as the free heat kernel in D. Given a nonnegative measur-
able function V : D → Rn, the corresponding Schrödinger operator H with
Dirichlet boundary conditions is the unique nonnegative, self-adjoint oper-
ator associated to the closure of the quadratic form

Q(f) =
�

D

(|∇f |2 + V |f |2) dx, f ∈ C∞c (D).

The one-parameter semigroup Tt associated to the Schrödinger operator H,
called the Schrödinger semigroup relative to the potential V , also admits a
strictly positive, jointly continuous integral kernel, denoted by K(t, x, y).

The aim of this note is to prove a general lower bound for K, by using
a technique introduced in [10], and to apply it to the case in which D is a
planar horn-shaped region. This means that D is of the form

(1.1) D = Df = {x ≡ (x1, x2) ∈ R2 : x1 > 1, |x2| < f(x1)},
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where f is a piecewise continuous, strictly positive bounded function on
[1,∞). The term “horn-shaped” should be reserved to the case in which
f is nonincreasing, but that assumption will not always be really nec-
essary. Also, we shall not assume in general that f(x1) → 0 as x1 →
∞. The proof will not make any use of the fact that the domain is two-
dimensional, but we keep on studying this case for the sake of notational
simplicity.

The problem of obtaining bounds for the eigenfunctions of the Dirichlet
Laplacian in horn-shaped regions has been dealt with in [2], [3], [12]. Our
techniques here are sufficiently general to discuss Schrödinger operators as
well.

To motivate further our results, we discuss first the behaviour of the free
Dirichlet heat kernel K0 in proper subdomains of Rn. It should differ from
the free Gaussian kernel on Rn,

K̃(t, x, y) =
1√

4πtn
e−|x−y|

2/(4πt), x, y ∈ Rn, t > 0,

essentially in two aspects (see [5], [6]). First, the geometry of the domain
should be taken into account so that, in particular K0(t, x, y)→ 0 as any of
the spatial variable approaches ∂D (at least in sufficiently regular domains).
Second, the long-time behaviour ofK0 need to be related both to the spectral
properties of ∆D and, again, to the geometry of D.

In fact, let us suppose that the free heat semigroup T0,t is intrinsically
ultracontractive (IU for short) in the sense of Davies and Simon ([7]). Then
the bottom of the L2 spectrum of −∆D is positive and is a simple eigenvalue,
whose normalized eigenfunction is denoted by ψ0. It is then known that its
kernel K0 satisfies the following bounds for any ε > 0 and for any t ≥ T ,
provided T = T (ε) is sufficiently large:

(1− ε)e−E0tψ0(x)ψ0(y) ≤ K0(t, x, y) ≤ (1 + ε)e−E0tψ0(x)ψ0(y).

A necessary condition for intrinsic ultracontractivity to hold is that the
generator of the corresponding semigroup has compact resolvent, and hence,
purely discrete spectrum. This rules out, in the case of the heat semigroup,
all domains in which d(x, ∂D) does not tend to zero as |x| → ∞. But
if this condition is instead satisfied, intrinsic ultracontractivity is satisfied
under suitable regularity assumptions on ∂D (see [1], [3], [4], [8]), and in [3],
even a geometric characterization of intrinsic ultracontractivity for the heat
semigroup on planar horn-shaped domains is given. A general lower bound
([1]) for the ground state eigenfunction (valid without any assumption on
the domain) then shows that, for t sufficiently large and D a domain with
sufficiently regular boundary,

(1.2) K0(t, x, y) ≥ C1e
−E0te−C2HD(x,x0)e−C2HD(y,x0),
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where x0 ∈ D is fixed and HD (see [18]) is the quasi-hyperbolic metric of D,
an analogue of the usual hyperbolic metric on the half-plane or on the unit
ball, defined by

HD(x, y) := inf
γ

�

γ

1

d(γ(s), ∂D)
ds,

where s is arclength and the infimum is taken along rectifiable curves join-
ing x to y and whose support is in D. In fact this follows by combining
inequalities (1.8) and (2.6) of [1].

To introduce our result, we should comment first that the principle of not
feeling the boundary [17] shows that the short-time behaviour is of Gaussian
nature [11], [13], [15], [16]. Moreover, a general upper bound under some
regularity condition on ∂D has been given in [4], and some regularity has
necessarily to be assumed for an upper bound similar to (1.2) to hold, since
otherwise the heat kernel need not even approach zero as the spatial vari-
ables approach the boundary. We are therefore led to wonder whether a
lower bound similar to (1.2) holds without assuming intrinsic ultracontrac-
tivity, or even any regularity condition on the boundary, at least for suffi-
ciently large times (since the short-time behaviour is well understood). This
cannot be true in general, because time exponential decay of the heat ker-
nel does not occur, e.g., for domains with infinite inradius (i.e. such that
sup d(x, ∂D) = ∞). However our result will show that the heat kernel of
Schrödinger operators in a large class of horn-shaped domains satisfies a
lower bound which, when V = 0, is entirely similar to (1.2). This will be
proved under a very minimal assumption, certainly true when f is nonin-
creasing. It is perhaps surprising that essentially no additional regularity
condition on the defining function f has to be assumed.

In our bounds only the numerical value of constants can be improved. In
fact one should compare (1.2) with the formula (3.6) below: the latter gives,
when V = 0 and the assumptions of Theorem 3.1 hold, a bound of the form
K0(t, x, y) ≥ e−Ate−B(KD(x0,x)+KD(x0,y)) for suitable constants and x0, x, y
belonging to the x1-axis.

2. A general lower bound. We shall prove here the following general
result.

Theorem 2.1. Let V be a nonnegative locally bounded measurable func-
tion on a proper , open and connected domain D ⊂ Rn and define, for all
ε ∈ (0, 1),

Vε(x) := sup
y∈B(x,εd(x))

V (x),

where d(x) := d(x, ∂D). Let moreover γ : [0, t] → D be a rectifiable path in
D joining x, y ∈ D. Define
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(2.1) k := sup
s∈[0,t]

d(x) ∧ d(y)

d(γ(s))
,

Set finally , for any fixed p > 1,

Wε(x) :=
c1

d(x)2
+ Vε(x),

where c1 = αnp(1 + k)2/ε2, αn being the ground state eigenvalue of the
Dirichlet Laplacian on the unit ball of Rn. Then, whenever

(2.2) t ≥ t0(x, y) := A(d(x) ∧ d(y))(2|x− y|+ ε(d(x) ∧ d(y))),

for some A > 0 one has

(2.3) K(t, x, y) ≥ C(A)

[d(x) ∧ d(y)]n
exp

[
−

t�

0

Wε(γ(u)) du− c2

t�

0

|γ̇(u)|2 du
]
,

where c2 = 1/2 + pε2/[8(p− 1)].

Proof. Recall that (cf. [14])

K0(t, x, y) = Pt,x,y(Xs ∈ D ∀s ∈ [0, t]),

where Pt,x,y is conditional Wiener measure andXs = X
(t,x,y)
s is the Brownian

bridge starting from x at time s = 0 and arriving at y at time s = t. The
Feynman–Kac formula ([14]) then gives

K(t, x, y) = E
(D)
t,x,y(e

− � t0 V (Xu) du),

Et,x,y denoting conditional Wiener measure and the superscript indicating
that the expectation is taken with respect to paths which stay in D for all
times s ∈ [0, t]. To see this, start from the usual Feynman–Kac formula

(e−tHf)(x) = E(D)
x (e− � t0 V (Zu) duf(Zt)),

where Ex denotes expectation with respect to Wiener measure and Zu is
a standard Brownian motion starting at x, and notice that, by taking into
account the disintegration property of the Wiener measure in terms of con-
ditional Wiener measures,

K(t, x, y) = (e−tHδy)(x) = E(D)
x (e− � t0 V (Zu) duδy(Zt))

=
�

Ω
(D)
x

e− � t0 V (Zu) duδy(Zt) dPx

=
�

Ω
(D)
t,x,z×D

e− � t0 V (X
(t,x,z)
u ) duδy(X

(t,x,z)
t ) dPt,x,z dz

=
�

Ω
(D)
t,x,y

e− � t0 V (Xu) du dPt,x,y,



SCHRÖDINGER HEAT KERNEL 149

where Ωx and Ωt,x,y denote the sets of Brownian and, respectively, condi-
tional Brownian paths, while Px and Pt,x,z denote the corresponding Wiener
and conditional Wiener measures. Again the superscript “(D)” above indi-
cates that we are integrating over paths which stay in D for all times.

We next recall some results of [10] in order to prove a lower bound on
the conditional Wiener measure of a suitable set of paths. Fix from now on
an arbitrary t > 0, and denote by Γδ the set of those paths ω such that

|ω(s)− γ(s)| ≤ δd(γ(s)) ∀s ∈ [0, t].

Then, applying (2.9) of [10] and assuming without loss of generality that
d(y) ≤ d(x), we obtain

(2.4) Px(Γδ) ≤ cm(B(y, δd(y)))Pt,x,y(Γε),

where P x is Wiener measure starting at x and ε, δ are related by the equation
ε = δ + δ′k, δ′ being a positive number such that ε < 1. Incidentally, we
notice that it is necessary that δ′ ≥ δ for (2.9) of [10] to hold. Next notice
that by (2.3) and (2.6) of [10] one has

(2.5) Px(Γδ) ≥ exp

[
−αnp
δ2

t�

0

ds

d(γ(s))2
−
(

1

2
+

δ2p

2(p− 1)

) t�

0

|γ̇(s)|2 ds
]
,

where we have also used the fact that |∇d| ≤ 1, and we also corrected here a
misprint in (2.6) of [10] where an incorrect factor (p− 1)2 must be changed
to p−1. Finally we fix ε < 1 in (2.4) and choose δ′ = δ so that δ = ε/(1+k)
to conclude, by (2.5), that

Pt,x,y(γε) ≥
Ckn

[d(x) ∧ d(y)]n
exp

[
−αnp(1 + k)2

ε2

t�

0

ds

d(γ(s))2
(2.6)

−
(

1

2
+

ε2p

2(1 + k)2(p− 1)

) t�

0

|γ̇(s)|2 ds
]

≥ C

[d(x) ∧ d(y)]n
exp

[
−αnp(1 + k)2

ε2

t�

0

ds

d(γ(s))2

−
(

1

2
+

ε2p

8(p− 1)

) t�

0

|γ̇(s)|2 ds
]

for all positive t and for some positive C = C(A), where we have used the
fact that k ≥ 1 in the last step.

In fact, it is remarked in [10] that the factor [d(x) ∧ d(y)]−n is irrele-
vant, in the sense that it can be omitted by possibly changing the values of
c1, c2.
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We use these facts as follows. For all ε ∈ (0, 1) define the following sets
of conditional Wiener paths:

Γε := {X : |Xs − γ(s)| < εd(γ(s)) ∀s},
and let Vε be as in the statement. Then

K(t, x, y) = E
(D)
t,x,y(e

− � t0 V (Xu) du) =
�

Ω
(D)
t,x,y

e− � t0 V (Xu) du dPt,x,y

≥
�

Γε

e− � t0 V (Xu)du dPt,x,y ≥ e− � t0 Vε(γ(u)) duPt,x,y(Γε)

=
C

[d(x) ∧ d(y)]n

× exp

[
−
t�

0

(
c1

d(γ(u))2
+ Vε(γ(u))

)
du− c2

t�

0

|γ̇(u)|2 du
]

=
C

[d(x) ∧ d(y)]n
exp

[
−
t�

0

Wε(γ(u)) du− c2

t�

0

|γ̇(u)|2 du
]
.

Remark 2.2. If the domain is sufficiently regular, one can investigate
the conclusion of the theorem as in [4, Sec. 3], and using the properties of the
quasi-hyperbolic metric [18] on the domain. A path minimizing the exponent
on the right hand side of (2.3) exists for all x, y, and the corresponding k in
(2.1) can be chosen to be independent of x, y.

3. Horn-shaped regions. In this section we shall consider planar horn-
shaped regions Df ⊂ R2 of the following form:

(3.1) D = Df = {x ≡ (x1, x2) ∈ R2 : x1 > 1, |x2| < f(x1)},
where f is a piecewise continuous, strictly positive bounded function on
[1,∞). We shall apply the results of the previous section to the present
context. The theorem below will deal, for simplicity, with the heat kernel
K(t, x, y) when x, y belong to the x1-axis, but similar results can be proved
for all x, y. Again we mention that our results can be seen as a generaliza-
tion of [3], [12] which investigate the behaviour of the eigenfunctions of the
Dirichlet Laplacian on horn-shaped domains.

We shall need some further notation. First, we identify each point be-
longing to the x1-axis with its nonvanishing component. Then we define

(3.2) k̃ = sup
1≤x≤z≤y

d(x) ∧ d(y)

d(z)

provided the quantity above is finite, where x, z, y belong to the x1-axis. Next
we notice that the constant c1 in Theorem 2.1 depends upon the constant k
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defined in (2.1), and hence upon the choice of the path γ considered there.
Therefore, the effective potential Wε depends on γ as well. We shall mark
by a tilde the values of quantities depending on k when k is replaced by

the path-independent quantity k̃ defined in (3.2). In particular c̃1 the value

of the constant c1 when k = k̃, and W̃ε the value of the effective potential

Wε when c1 = c̃1. Notice in particular that c̃1, W̃ε are path-independent
quantities.

Theorem 3.1. Let Df be a horn-shaped planar domain with f satisfying
the previous assumptions and V be a nonnegative locally bounded measurable
function. Assume that x, y belong to the x1-axis with x, y ≥ 2 (identifying
such points with their nonvanishing components).

• If f ∈ L1(1,∞) and is nonincreasing and if Vε(·, 0) ∈ L1(1,∞) for
some ε ∈ (0, 1), then for all t ≥ c, where c is a suitable positive constant
depending on f , V and on the choices of ε and p in Theorem 2.1,

(3.3) K(t, x, y) ≥ c3 exp
[
−c4t− c5

( x�

2

√
W̃ε(u, 0) du+

y�

2

√
W̃ε(u, 0) du

)]

for suitable positive constants c3, c4, c5. If f is not decreasing the same bound

holds provided the constant k̃ defined in (3.2) is finite, whenever t ≥ t0(x, y)∨
c, t0 being as in Theorem 2.1 and c being as above.

• If f and Vε are not necessarily integrable but k̃ is finite, then the bound
(3.3) also holds, but for times t ≥ t0(x, y)∨ (ε1S(2, x) + ε2S(2, y)) for some
fixed ε1, ε2 > 0, and where now c3 depends upon ε1, ε2 and diverges as any
of them approaches zero. Here we have defined , for any a < b lying on the
x1-axis,

S(a, b) =
√
c2

b�

a

1√
W̃ε(u, 0)

du.

Proof. We shall use the bound (2.3) relative to suitable paths lying on

the x1-axis, replacing k with k̃: this is possible since by construction the

quantity k corresponding to the paths chosen is not larger than k̃, and c1 is
increasing as a function of k, whereas c2 is independent of k.

As concerns the first part we first notice that, since f is integrable, so is
the function d(t) = d((t, 0), ∂D) by definition of distance from the boundary,

and hence W̃ε(·, 0) is integrable as well, because of the numerical inequality

1√
α+ β

≤ 2√
α

+
2√
β
.

Given two points a < b on the x1-axis, consider a path γ going from a
to b in time T > 0 and staying on the x1-axis for all times. Consider the
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reparametrization defined by the condition

(3.4) γ̇(s) =

√
W̃ε(γ(s))/c2,

where, with a slight abuse of notation, γ(s) is one-dimensional and W̃ε(γ(s))

= W̃ε(γ(s), 0).
Therefore, the reparametrized path γ̂ has a parameter running over the

interval [0, S(a, b)], where S(a, b) is defined as in the second part of the
statement. Given x, y as in the statement and an arbitrary point z < x ∧ y
on the x1-axis, notice that the assumption on f implies that

a(x, y, z) := S(z, y) + S(z, x)

is bounded as a function of all its variables. Choose c larger than 2
√
c2||f ||1

+ 1. We can consider a path γ on the x1-axis running first from x to z = 2
and satisfying condition (3.4) with the opposite sign, then staying at z for
a time

t1 := t−√c2

x�

2

1√
W̃ε(u, 0)

du−√c2

y�

2

1√
W̃ε(u, 0)

du,

which can be taken to be comparable to t, uniformly in x, y, possibly by
changing c, and finally running from z to y and satisfying (3.4) again. The
resulting bound is (3.3). In fact the term appearing in the denominator of

(2.3), with the choice k = k̃, can be absorbed by the exponential factor,
possibly by changing the values of the constants c1, c2 (as stated in Remark
2.2) but in the present situation it is certainly irrelevant since the inradius
Inr(Df ) is finite because f is bounded. The exponential time decay is given
by the contribution of the part of the path γ chosen above which stays at
z = 2 for a time comparable with t.

To complete the proof of the first assertion we need to show that t0 in
Theorem 2.1 is a bounded function under the assumption that f is nonin-
creasing. In fact, it suffices to show that xf(x) is bounded on [1,∞), by the
definition of t0 and since Df has finite inradius. To show this, suppose by
contradiction that for all n ∈ N there exists a sequence {xn,k}k tending to
∞ as k → ∞ and such that f(xn,k) > n/xn,k. Define a sequence {x′n}n as
follows: x′1 = x1,1, x′n = xn,kn where kn is chosen so that 1−x′n−1/x

′
n > 1/2.

Then, since f is nonincreasing,
∞�

1

f(x) dx ≥
∞∑

n=2

f(x′n)(x′n − x′n−1) ≥
∞∑

n=2

n

(
1− x′n−1

x′n

)
=∞.

If f is not necessarily integrable, we first consider any path from z to
w with z < w, lying on the x1-axis and joining the two points in time t.
Consider the path γ̂ which is obtained from γ by the reparametrization (3.4).
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Then γ̂ joins z to w in time S(z, w). The path γ̌(s) = γ̌z,w(s) defined by

γ̌(s) := γ̂

(
sS(z, w)

t

)

thus joins z to w in time t. An explicit calculation shows that

(3.5)

t�

0

(|γ̌′(s)|2 + c2W̃ε(γ̌(s))) ds

=

S(z,w)�

0

(
S(z, w)

t
|γ̂′(s)|2 +

c2t

S(x, y)
W̃ε(γ̂(s), 0)

)
ds

=

(
S(z, w)√
c2 t

+
c

3/2
2 t

S(z, w)

) S(z,w)�

0

√
W̃ε(γ̃(s), 0) |γ̃′(s)| ds

=

(
S(z, w)√
c2 t

+
c

3/2
2 t

S(z, w)

) w�

z

√
W̃ε(u, 0) du.

Suppose that t > ε1S(2, x) + ε2S(2, y) for some fixed constants ε1, ε2. Then
consider a path γ which is obtained by first going from x to z = 2 in time

ε1S(2, x) along a path γ̌
(1)
2,x defined as above, then staying at z = 2 for

time t− (ε1S(2, x) + ε2S(2, y)) and finally running from z = 2 to y in time

ε2S(2, y) along a path γ̌
(2)
2,y defined as above. Theorem 2.1 and (3.5) thus

imply the assertion.

Corollary 3.2. Let Df be as in (3.1), with the assumptions on f made
after that formula and assuming in addition f to be nonincreasing and in-
tegrable. Then there exist c3, c4, c5 > 0 such that for any x, y ≥ 2 belonging
to the x1-axis, the free Dirichlet heat kernel K0 in Df satisfies the bound

(3.6) K0(t, x, y) ≥ c3 exp[−c4t− c5(HDf (x, 2) +HDf (y, 2))]

for any t ≥ c, where c is a constant depending on f and on the choice of ε
and p in Theorem 2.1. If f is integrable but not necessarily nonincreasing ,
the same bound holds for t ≥ t0(x, y)∨c, t0 being as in Theorem 2.1, provided

the constant k̃ defined in (3.2) is finite. If f is not necessarily integrable but

k̃ is finite then the bound is valid for t ≥ t0(x, y)∨ (ε1S0(2, x) + ε2S0(2, y)),
where for b < a we have defined

S0(b, a) =

a�

b

d(u) du.

Proof. It suffices to notice that the terms in the exponential factor ap-
pearing in Theorem 3.1 coincide with the quasi-hyperbolic distance
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HDf (x, y) := inf
γ

�

γ

ds

d(γ(s))

between the corresponding points, s being arclength and the infimum be-
ing taken over all rectifiable paths joining x to y ([18]), because of the
reparametrization made and by the structure of the domain Df .

Remark 3.3. • One could make the assumption that there exists c > 0
such that for all x ≥ 2 belonging to the x1-axis, d(x) ≥ cf(x). A sufficient
condition for this to hold is that f is differentiable and f ′(x)→ 0 as x→∞.
All quantities involving d(x), including the quasi-hyperbolic distance, could
then be estimated, under that assumption, by replacing d(x) with f(x).
• The results have been stated for notational simplicity in dimension

d = 2 but identical results also hold in higher dimensions.
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[2] R. Bañuelos and B. Davis, Sharp estimates for Dirichlet eigenfunctions in horn-
shaped regions, Comm. Math. Phys. 150 (1992), 209–215; Erratum, ibid. 162 (1994),
215–216.

[3] —, —, A geometrical characterization of intrinsic ultracontractivity for planar do-
mains with boundaries given by the graph of functions, Indiana Univ. Math. J. 49
(1992), 885–913.

[4] F. Cipriani and G. Grillo, Pointwise properties of eigenfunctions and heat kernels
of Dirichlet–Schrödinger operators, Potential Anal. 8 (1998), 101–126.

[5] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989.
[6] —, Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. 55 (1997),

105–125.
[7] E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger

operators and Dirichlet Laplacians, J. Funct. Anal. 59 (1984), 335–395.
[8] B. Davis, Intrinsic ultracontractivity and the Dirichlet Laplacian, ibid. 100 (1991),

162–180.
[9] G. Grillo, Lower bounds for the Dirichlet heat kernel, Quart. J. Math. Oxford Ser.

(2) 48 (1997), 203–211.
[10] —, Off-diagonal bounds of non-Gaussian type for the Dirichlet heat kernel, J. Lon-

don Math. Soc. 62 (2000), 599–612.
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