COLLOQUIUM MATHEMATICUM

HAUSDORFF DIMENSION OF
 A FRACTAL INTERPOLATION FUNCTION

BY

GUANTIE DENG (Beijing)

Abstract

We obtain a lower bound for the Hausdorff dimension of the graph of a fractal interpolation function with interpolation points $\left\{\left(i / N, y_{i}\right): i=0,1, \ldots, N\right\}$.

1. Introduction. Let $N>1$ be an integer, $c \in(0,1)$, and $\left\{y_{0}, y_{1}, \ldots, y_{N}\right\}$ be real numbers, where $y_{0}=y_{N}=0$. Let $S_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}(i \in M=$ $\{0,1, \ldots, N-1\}$) denote the iterated function system (briefly, IFS) defined by

$$
S_{i} \vec{x}=\vec{x} T_{i}+\vec{y}_{i}, \quad \vec{x} \in \mathbb{R}^{2},
$$

which are two-dimensional affine transformations, where

$$
\vec{y}_{i}=\left(i / N, y_{i}\right), \quad 0 \leq i \leq N, \quad T_{i}=\left(\begin{array}{cc}
1 / N & a_{i} \\
0 & c
\end{array}\right), \quad i \in M,
$$

and the a_{i} are determined by the conditions

$$
\begin{equation*}
S_{i} \vec{y}_{0}=\vec{y}_{i}, \quad S_{i} \vec{y}_{N}=\vec{y}_{i+1}, \quad i \in M . \tag{1}
\end{equation*}
$$

yielding $a_{i}=y_{i+1}-y_{i}$.
Barnsley ([1]) has showed that if $N c>1$, then there is a unique nonempty compact set $G \subset[0,1] \times \mathbb{R}$ such that

$$
\begin{equation*}
G=\bigcup_{i=0}^{N-1} S_{i}(G) \tag{2}
\end{equation*}
$$

and G is the graph of a continuous function $f:[0,1] \rightarrow \mathbb{R}$ which interpolates the data $\left\{\left(i / N, y_{i}\right): i=0,1, \ldots, N\right\}$. That is,

$$
\begin{equation*}
G=G(f,[0,1])=\{(x, f(x)): x \in[0,1]\}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
f(i / N)=y_{i} \quad \text { for } i=0,1, \ldots, N . \tag{4}
\end{equation*}
$$

2000 Mathematics Subject Classification: 28A78, 28A80.
Key words and phrases: fractal, Hausdorff dimension, interpolation.
Supported by the National Natural Science Foundation of China No. 10371011 and 10071005.

The set G is called the attractor for the IFS $\left\{S_{i}: i \in M\right\}$, and the function f is called a fractal interpolation function (briefly, FIF) corresponding to the data $\left\{\left(i / N, y_{i}\right): 0 \leq i \leq N\right\}$. The function f can be constructed by the following method: Let $f_{0}(x) \equiv 0$, and define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by induction as follows:

$$
\begin{equation*}
\left(\frac{i+x}{N}, f_{n+1}\left(\frac{i+x}{N}\right)\right)=S_{i}\left(x, f_{n}(x)\right), \quad i \in M, x \in[0,1] \tag{5}
\end{equation*}
$$

Then f_{n} is continuous and piecewise linear on $[0,1]$, since

$$
\begin{gathered}
S_{i_{1}} \ldots S_{i_{n}}(x, y)=(x, y) T_{i_{n}} \ldots T_{i_{1}}+\vec{y}_{i_{n}} T_{i_{n-1}} \ldots T_{i_{1}}+\ldots+\vec{y}_{i_{2}} T_{i_{1}}+\vec{y}_{i_{1}} \\
=\left(\left(0 . i_{1} \ldots i_{n}\right)_{N}+N^{-n} x, d\left(i_{1}, \ldots, i_{n}\right) x+c^{n} y+e\left(i_{1}, \ldots, i_{n}\right)\right)
\end{gathered}
$$

$$
i_{1}, \ldots, i_{n} \in M
$$

where

$$
\left(0 . i_{1} i_{2} \ldots i_{n}\right)_{N}=\frac{i_{1}}{N}+\frac{i_{2}}{N^{2}}+\ldots+\frac{i_{n}}{N^{n}}
$$

is an N-adic rational number, and

$$
\begin{aligned}
d\left(i_{1}, \ldots, i_{n}\right) & =c^{n-1} a_{i_{n}}+N^{-1} d\left(i_{1}, \ldots, i_{n-1}\right) \\
& =c^{n-1} a_{i_{n}}+N^{-1} c^{n-2} a_{i_{n-1}}+\ldots+N^{-(n-1)} a_{i_{1}} \\
e\left(i_{1}, \ldots, i_{n}\right) & =c^{n-1} y_{i_{n}}+N^{-1} i_{n} d\left(i_{1}, \ldots, i_{n-1}\right)+e\left(i_{1}, \ldots, i_{n-1}\right) \\
e\left(i_{1}\right) & =y_{i_{1}}
\end{aligned}
$$

Moreover,

$$
\begin{gathered}
f_{n}(i / N)=y_{i} \\
f_{n}\left(\left(0 . i_{1} \ldots i_{n}\right)_{N}+N^{-n} x\right)=d\left(i_{1}, \ldots, i_{n}\right) x+e\left(i_{1}, \ldots, i_{n}\right) \\
x \in[0,1], i_{1}, \ldots, i_{n} \in M \\
f_{n}\left(\left(0 . i_{1} \ldots i_{n}\right)_{N}+N^{-n} x\right)-f_{n-1}\left(\left(0 . i_{1} \ldots i_{n}\right)_{N}+N^{-n} x\right) \\
=c^{n-1}\left(a_{i_{n}} x+y_{i_{n}}\right), \quad x \in[0,1], i_{1}, \ldots, i_{n} \in M
\end{gathered}
$$

and

$$
\begin{equation*}
\left|f_{n}(x)-f_{n-1}(x)\right| \leq A_{1} c^{n-1} \tag{6}
\end{equation*}
$$

where $A_{1}=\max \left\{\left|y_{0}\right|,\left|y_{1}\right|, \ldots,\left|y_{N}\right|\right\}$. Let

$$
f(x)=\sum_{n=1}^{\infty}\left(f_{n}(x)-f_{n-1}(x)\right)
$$

Then $\left\{f_{n}\right\}$ converges uniformly to f, so f is continuous on $[0,1]$; moreover, f satisfies (4) and

$$
\begin{gather*}
\left|f(x)-f_{n}(x)\right| \leq A_{1} c^{n}(1-c)^{-1} \tag{7}\\
S_{i}(x, f(x))=\left(\frac{x+i}{N}, f\left(\frac{x+i}{N}\right)\right) \tag{8}
\end{gather*}
$$

so (2) and (3) hold. The function f is therefore a FIF corresponding to the data $\left\{\left(i / N, y_{i}\right): 0 \leq x \leq N\right\}$.

For $G=G(f,[0,1])$, Barnsley has proved that if $N c>1$, the box dimension of G is $2+(\log c)(\log N)^{-1}$. Since the box dimension is not less than the Hausdorff dimension $\operatorname{dim}_{H} G([2])$, it is important to give a lower bound on the Hausdorff dimension. In this paper, a lower bound of the Hausdorff dimension of the graph of the FIF above is obtained. In particular, a lower bound on the Hausdorff dimension of the graph of the Weierstrass function is given.

Theorem. Let real numbers $y_{0}, y_{1}, \ldots, y_{N}, c$ and N satisfy

$$
\begin{equation*}
y_{0}=y_{N}=0, \quad 0<c<1, \quad 0<\beta \leq \alpha, \quad N c>1+\frac{\alpha}{\beta} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha & =\max \left\{\left|y_{i+1}-y_{i}\right|: 0 \leq i \leq N-1\right\} \\
\beta & =\min \left\{\left|y_{i+1}-y_{i}\right|: 0 \leq i \leq N-1\right\} \\
2 \gamma & =\max \left\{\left|y_{i+1}+y_{i}-y_{j+1}-y_{j}\right|: i, j \in M\right\} \\
\delta & =\frac{1}{N c}\left(\beta-\frac{\alpha}{c N-1}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
2+\frac{\log c}{\log N} \geq \operatorname{dim}_{\mathrm{H}} G \geq 1+\left(1+\frac{\log c}{\log N}\right) \frac{\log \left(m N^{-1}\right)}{\log c} \tag{10}
\end{equation*}
$$

for the graph $G=G(f,[0,1])$ of the fractal interpolation function f such that (2)-(4) hold, where $m=\min \left\{N, N_{1}\right\}$, and N_{1} is the minimal positive integer not less than $1+(\alpha+\gamma) \delta^{-1}$.

Remark 1. Since the Hausdorff dimension of the graph of a continuous function is not less than 1, we can suppose, in the proof of the Theorem, that $m=N_{1}<N$.

Remark 2. If N is an even integer, $0<c<1, N c>2, y_{i}=2^{-1}\left(1-(-1)^{i}\right)$ $(0 \leq i \leq N)$, then

$$
\alpha=\beta=1, \quad \gamma=0, \quad \delta=\frac{c N-2}{c N(c N-1)}
$$

and N_{1} is the minimal positive integer not less than $1+\delta^{-1}=\frac{(c N)^{2}-2}{c N-1}$. The Weierstrass function

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c^{n} g\left(2^{-1} N^{n+1} x\right) \tag{11}
\end{equation*}
$$

satisfies (4) and (8), so (2) and (3) hold, where g is a continuous periodic function with period 1 and $g(x)=1-|2 x-1|$ on $[0,1]$. So (11) is a FIF
corresponding to the data $\left.\left\{i / N,\left(1-(-1)^{i}\right) / 2\right): 0 \leq i \leq N\right\}$, and we obtain the following corollary:

Corollary. The inequalities (10) hold for the graph $G=G(f,[0,1])$ of the Weierstrass function f defined by (11).

Remark 3. In the Corollary, if $c=N^{s-2}$ and $2>s>1+\log 4 / \log N$, then

$$
s \geq \operatorname{dim}_{\mathrm{H}} G \geq s-\frac{s-1}{2-s} \frac{4}{N^{s-1} \log N}
$$

which is an improvement of a result in [2].
2. Proof of the Theorem and Corollary. To prove the Theorem, we first give some notations: Let $E \subset \mathbb{R}$ be a Lebesgue measurable set, $|E|$ its Lebesgue measure, and let $G(f, E)$ denote the graph of f on E. Let $I=[a, b]$ be an interval with mid-point $O(I)=2^{-1}(a+b)$. Let

$$
I\left(i_{1}, \ldots, i_{n}\right)=\left[\left(0 . i_{1} \ldots i_{n}\right)_{N},\left(0 . i_{1} \ldots i_{n-1}\left(1+i_{n}\right)\right)_{N}\right]
$$

denote an N-adic rational interval, where $i_{1}, \ldots, i_{n} \in M$. Let $\operatorname{sign} x$ denote the sign of $x,[x]$ the integer part of x, and ${ }^{\#} F$ the cardinality of the set F.

Proof of the Theorem. First, we can suppose that $m<N$ (see Remark 1). For any $i_{1}, \ldots, i_{n} \in M$, we have

$$
\begin{equation*}
N c^{n} \delta<d\left(i_{1}, \ldots, i_{n}\right) \operatorname{sign} a_{i_{n}}<\frac{\alpha c^{n} N}{N c-1} \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
& f_{n+1}\left(O\left(I\left(i_{1}, \ldots, i_{n}, i^{\prime}\right)\right)\right)-f_{n+1}\left(O\left(I\left(i_{1}, \ldots, i_{n}, i\right)\right)\right) \tag{13}\\
& \quad=2^{-1} c^{n}\left(y_{i^{\prime}+1}+y_{i^{\prime}}-y_{i+1}-y_{i}\right)+N^{-1}\left(i^{\prime}-i\right) d\left(i_{1}, \ldots, i_{n}\right)
\end{align*}
$$

Let

$$
N_{i}= \begin{cases}0 & \text { if } a_{i}>0 \\ N-1 & \text { if } a_{i}<0\end{cases}
$$

Since $y_{0}=y_{N}=0$, we obtain

$$
\begin{gathered}
y_{N_{i}+1}+y_{N_{i}}-a_{N_{i}} \operatorname{sign} a_{i}=0 \\
y_{N-N_{i}}+y_{N-1-N_{i}}-a_{N-1-N_{i}} \operatorname{sign} a_{i}=0
\end{gathered}
$$

and, by (13),

$$
\begin{aligned}
\inf f_{n+1}\left(I\left(i_{1}, \ldots, i_{n}, i\right)\right)- & \inf f_{n}\left(I\left(i_{1}, \ldots, i_{n}\right)\right) \\
= & N^{-1}\left(\left|i-N_{i_{n}}\right|+1 / 2\right)\left|d\left(i_{1}, \ldots, i_{n}\right)\right| \\
& +2^{-1} c^{n}\left(y_{i+1}+y_{i}\right)-2^{-1}\left|d\left(i_{1}, \ldots, i_{n}, i\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
\sup f_{n+1}\left(I\left(i_{1}, \ldots, i_{n}, i\right)\right) & -\sup f_{n}\left(I\left(i_{1}, \ldots, i_{n}\right)\right) \\
= & -N^{-1}\left(\left|i-N+1+N_{i_{n}}\right|+1 / 2\right)\left|d\left(i_{1}, \ldots, i_{n}\right)\right| \\
& +2^{-1} c^{n}\left(y_{i+1}+y_{i}\right)+2^{-1}\left|d\left(i_{1}, \ldots, i_{n}, i\right)\right|
\end{aligned}
$$

Therefore, for $i_{1}^{\prime}, \ldots, i_{i_{n}}^{\prime}, i^{\prime}, i_{1}, \ldots, i_{n}, i \in M$,

$$
\begin{aligned}
& \inf f_{n+1}\left(I\left(i_{1}^{\prime}, \ldots, i_{n}^{\prime}, i^{\prime}\right)\right)-\sup f_{n+1}\left(I\left(i_{1}, \ldots, i_{n}, i\right)\right) \\
& \geq \\
& \geq \inf f_{n}\left(I\left(i_{1}^{\prime}, \ldots, i_{n}^{\prime}\right)\right)-\sup f_{n}\left(I\left(i_{1}, \ldots, i_{n}\right)\right) \\
& \quad+N^{-1}\left(\left|i^{\prime}-N_{i_{n}^{\prime}}\right|+\left|i-N+1+N_{i_{n}}\right|\right) c^{n} \delta-c^{n}(\gamma+\alpha)
\end{aligned}
$$

so, for $k \geq 1$, if $i, i+k m \in M$,

$$
\begin{align*}
\inf f_{n+1}\left(I \left(i_{1}, \ldots, i_{n},\right.\right. & \left.\left.N_{i_{n}}+(i+k m) \operatorname{sign} a_{i_{n}}\right)\right) \tag{14}\\
& \quad-\sup f_{n+1}\left(I\left(i_{1}, \ldots, i_{n}, N_{i_{n}}+i \operatorname{sign} a_{i_{n}}\right)\right) \\
> & c^{n}((k m-1) \delta-(\gamma+\alpha)) \geq 0 .
\end{align*}
$$

If

$$
\begin{equation*}
\inf f_{n}\left(I\left(i_{1}^{\prime}, \ldots, i_{n}^{\prime}\right)\right)-\sup f_{n}\left(I\left(i_{1}, \ldots, i_{n}\right)\right) \geq 0 \tag{15}
\end{equation*}
$$

and

$$
\left|i^{\prime}-N_{i_{n}^{\prime}}\right|+\left|i-N+1+N_{i_{n}}\right| \geq m-1
$$

then

$$
\begin{align*}
& \inf f_{n+1}\left(I\left(i_{1}^{\prime}, \ldots, i_{n}^{\prime}, i^{\prime}\right)\right)-\sup f_{n+1}\left(I\left(i_{1}, \ldots, i_{n}, i\right)\right) \tag{16}\\
& \quad>\left(\left|i^{\prime}-N_{i_{n}^{\prime}}\right|+\left|i-N+1+N_{i_{n}}\right|\right) c^{n} \delta-c^{n}(\gamma+\alpha) \geq 0
\end{align*}
$$

Let

$$
\begin{aligned}
& F\left(i_{1}, \ldots, i_{n}, p_{1}, b\right) \\
& =\left\{i_{n+1}:([0,1] \times\{b\}) \cap G\left(f_{n+1}, I\left(i_{1}, \ldots, i_{n}, i_{n+1}\right)\right) \neq \emptyset\right. \\
& \\
& \left.\quad i_{n+1}=N_{i_{n}}+\left(p_{1}+k m\right) \operatorname{sign} a_{i_{n}}, k=0,1, \ldots, k_{1}\right\}
\end{aligned}
$$

for $i_{1}, \ldots, i_{n} \in M, 0 \leq p_{1} \leq m-1, b \in \mathbb{R}$, where $k_{1}=\left[\left(N-p_{1}-1\right) m^{-1}\right]$. Then, by (14),

$$
\# F\left(i_{1}, \ldots, i_{n}, p_{1}, b\right) \leq 1
$$

and so

$$
\begin{aligned}
\#\left\{i_{n+1}:([0,1] \times \times\{b\}) \cap G\left(f_{n+1},\right.\right. & \left.\left.I\left(i_{1}, \ldots, i_{n}, i_{n+1}\right)\right) \neq \emptyset\right\} \\
& =\left(\bigcup_{p_{1}=0}^{m-1} F\left(i_{1}, \ldots, i_{n}, p_{1}, b\right)\right) \leq m .
\end{aligned}
$$

Similarly, let

$$
\begin{aligned}
& F\left(i_{1}, \ldots, i_{n}, p_{1}, p_{2}, b\right) \\
&=\left\{\left(i_{n+1}, i_{n+2}\right):\right.([0,1] \times\{b\}) \cap G\left(f_{n+2}, I\left(i_{1}, \ldots, i_{n}, i_{n+1}, i_{n+2}\right)\right) \neq \emptyset \\
& i_{n+1}=N_{i_{n}}+\left(p_{1}+k m\right) \operatorname{sign} a_{i_{n}} \\
& i_{n+2}=N_{i_{n+1}}+\left(p_{2}(k)+j m\right) \operatorname{sign} a_{i_{n+1}} \\
&\left.k, j=0,1, \ldots, k_{1}\right\}
\end{aligned}
$$

for $i_{1}, \ldots, i_{n} \in M, 0 \leq p_{1}, p_{2} \leq m-1, b \in \mathbb{R}$, where

$$
p_{2}(0)=p_{2}, \quad p_{2}(k+1)=N-1-\left(p_{2}(k)+k_{1} m\right)
$$

Then, by (14)-(16),

$$
\# F\left(i_{1}, \ldots, i_{n}, p_{1}, p_{2}, b\right) \leq 1
$$

and so

$$
\begin{aligned}
\#\left\{\left(i_{n+1}, i_{n+2}\right):([0,1] \times \times\{b\}) \cap G\right. & \left.\left(f_{n+2}, I\left(i_{1}, \ldots, i_{n}, i_{n+1}, i_{n+2}\right)\right) \neq \emptyset\right\} \\
& =\left(\bigcup_{p_{1}, p_{2}=0}^{m-1} F\left(i_{1}, i_{2}, \ldots, i_{n}, p_{1}, b\right)\right) \leq m^{2}
\end{aligned}
$$

By induction,

$$
\#\left\{\left(i_{n+1}, \ldots, i_{n+l}\right):([0,1] \times\{b\}) \cap G\left(f_{n+l}, I\left(i_{1}, \ldots, i_{n+l}\right)\right) \neq \emptyset\right\} \leq m^{l}
$$

Let

$$
P(a, b, \varepsilon)=\{x \in[0,1]:(x, f(x)) \in([a, a+\varepsilon] \times[b, b+\varepsilon]) \cap G(f,[0,1])\}
$$

for $\varepsilon \in\left(0, N^{-1}\right), a \in[0,1-\varepsilon], b \in \mathbb{R}$. Suppose that

$$
N^{-n-1}<\varepsilon \leq N^{-n}, \quad N^{-n-1}<c^{n+l} \leq N^{-n}, \quad a \in I\left(i_{1}, \ldots, i_{n}\right)
$$

Then, for $x \in P(a, b, \varepsilon)$, we have

$$
\begin{gathered}
x \in I\left(i_{1}, \ldots, i_{n-1}, i_{n}\right) \cup I\left(i_{1}, \ldots, i_{n-1}, 1+i_{n}\right) \\
\left|f_{n+l}(x)-b\right| \leq \varepsilon+A_{1}(1-c)^{-1} c^{n+l} \leq\left(1+A_{1}(1-c)^{-1}\right) N^{-n}=A_{2} N^{-n}
\end{gathered}
$$

Since

$$
\left|f_{n+l}\left(I\left(i_{1}, \ldots, i_{n+l}\right)\right)\right|=\left|d\left(i_{1}, \ldots, i_{n+l}\right)\right| \geq c^{n+l} N \delta \geq N^{-n} \delta
$$

it is clear that if $x \in P(a, b, \varepsilon) \cap I\left(i_{1}, \ldots, i_{n+l}\right)$, then

$$
T \cap G\left(f_{n+l}, I\left(i_{1}, \ldots, i_{n+l}\right) \neq \emptyset\right.
$$

where

$$
T=\bigcup_{p=-k_{2}}^{k_{2}}[0,1] \times\left\{b+p \delta N^{-n}\right\}, \quad k_{2}=\left[2+A_{2} \delta^{-1}\right]
$$

Since

$$
\begin{array}{r}
\#\left\{I: T \cap G\left(f_{n+l}, I\right) \neq \emptyset, I=I\left(i_{1}, \ldots, i_{n-1}, i_{n}, \ldots, i_{n+l}\right)\right. \\
\left.i_{n}, \ldots, i_{n+l} \in M\right\} \leq A_{3} m^{l}
\end{array}
$$

where $A_{3}=2 N\left(2 k_{2}+1\right)+N$, we obtain

$$
|P(a, b, \varepsilon)| \leq A_{3} m^{l} N^{-n-l} \leq A_{3} N^{s} \varepsilon^{s}
$$

where

$$
s=\frac{\log m}{\log N}+\frac{\log \left(m N^{-1}\right)}{\log c}=1+\left(1+\frac{\log c}{\log N}\right) \frac{\log \left(m N^{-1}\right)}{\log c}
$$

Frostman's Lemma in [3] implies that (10) holds. This completes the proof of the Theorem.

Proof of the Corollary. Since the Weierstrass function f satisfies

$$
f\left(\frac{i+x}{N}\right)=(-1)^{i}+\frac{1-(-1)^{i}}{2}+c f(x)
$$

for $0 \leq i \leq N-1, x \in[0,1]$, it follows that (4) and (8) hold for $y_{i}=$ $2^{-1}\left(1+(-1)^{i}\right)$, so (2) and (3) hold, and the inequalities (10) hold. This completes the proof of the Corollary.

REFERENCES

[1] M. Barnsley, Fractals Everywhere, Academic Press, London, 1988.
[2] K. J. Falconer, Fractal Geometry - Mathematical Foundations and Applications, Wiley, New York, 1990.
[3] J.-P. Kahane, Some Random Series of Functions, 2nd ed., Cambridge Univ. Press, London, 1985.

Department of Mathematics
Beijing Normal University
100875 Beijing, P.R. China
E-mail: denggt@bnu.edu.cn

Received 28 September 2001; revised 15 April 2004

