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MONOTONICITY OF GENERALIZED WEIGHTED MEAN VALUES

BY

ALFRED WITKOWSKI (Bydgoszcz)

Abstract. The author gives a new simple proof of monotonicity of the generalized

extended mean values )
st dﬂ) /(s—7)

§rrdu

M(r,s) = (
introduced by F. Qi.

Means and inequalities for them have a long history and rich litera-
ture. The basic inequality between the geometric and arithmetic means has
been proved in many ways. More than fifty proofs can be found in [1].
The generalizations go in different directions. The power (or Holder) mean
M(r) = ((z" +y")/2)Y", r # 0, M(0) = \/zy = G(,y), has been extended
to the weighted power means

M(r) = (Zpiag/sz‘)l/T’
M(0) = exp (sz’ai logai/ZPi)7

and further to the weighted integral means where sums are replaced by
integrals. The monotonicity of M (r) has been proved in many ways (see
[1, 3, 6, 10]).

Another family of means arises from the logarithmic mean L(z,y) =
(z —y)/(logz —logy) by putting

0.0 = (

(1)

yP — 2P 1/(p—1)
ply — ﬂf)) ’
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Y 1/(y—x)
S()(CU,y) :L(xay)a Sl(xay) =e <_>
(see Galvani [2]).
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Stolarsky [9] extended this family to the two-parameter extended mean
values defined by

s s 1/(5—7")
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- J = _ 0 _ 0
(2) E(ﬁ&%y) == <7" logy — log$> ) T(J,‘ y) 7é , S 5

ey far )W) e = s (e —y) £ 0,
/Ty, r=s=0,z—y#0,

x, T =y.

Leach and Sholander [4, 5] have shown that E is increasing in all variables.
In 1998 Qi [7] extended these notions by defining the generalized weighted
mean values M as follows:

BOr @
<Sy O f7(t) ) ; r # s,
(3) M(r,s) =M(r,s;x,y) = ,
Xp<8xp(t)fr(t) log /(t) dt) .
L fryde ) ’

where p and f are positive, integrable functions. Obviously M (r,0) is the
weighted power mean (1) and M (r—1,s—1) = E(r,s) forp = 1 and f(t) =

Qi [8] proved that for continuous p and f, M is increasing in p and s.
He has also shown in [7] that if f is monotone then M is of the same
monotonicity in x and y.

In this note we extend and generalize these results by showing that the
monotonicity of M(r,s) is a straightforward consequence of the Cauchy—
Schwarz inequality and holds also in case of integrable functions. We also
show that monotonicity of f is a necessary and sufficient condition for M to
be monotone in x and y. We believe that our proofs are also simpler than
the original reasoning.

THEOREM 1. Let f : X — R be a measurable, positive function on a

measure space (X, p) and
SX fs d,u 1/(s—r) 7&
Sx frdp 7 e

91 d

Then M 1is increasing in both r and s.

(4) M(Tv 3) =
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Proof. Let I(r) = /" dp. The Cauchy—Schwarz inequality applied to
f5/2 and /2 gives

I(T;S)smm,

which shows that log I is convex in the sense of Jensen, hence being contin-
uous, it is convex.

Let us now recall the following property of convex functions: If A is
convex then the function g(x,y) = h(x) — h(y)/(x — y), = # y, is increasing
in both variables. This property applied to logI shows that log M (r, s) is
increasing for s # r. As M is continuous, the monotonicity extends to the
whole plane of parameters (r,s). =

THEOREM 2. If p, f : [a,b] — R are continuous and positive then the

following conditions are equivalent:

(i) the function f is increasing (decreasing, respectively).
(ii) for every r,s the function M(r,s;z,y) is increasing (decreasing, re-
spectively) in x and y.
Proof. As in the proof of Theorem 1 it is easier to consider monotonicity
of log M. For r # s we have

dlogM s )L ) ) —p(@)f"(z)
) e =0 (T - R )

)
L ((F5) — (f&)) dt

where

_ r.s T — p(m)fT+s(x)
H = H( , S5 ay) Sgp(t)fr(t) dt Sgp(t)fs(t) dt

is positive. Observe that

&)s—r _1
(6) if f(z)= min f(t) then -1 >0,
te(z,y] S—r
(M)S*T _1
(7) if f(z)= max f(t) then -1 <0.
telz,y] s—r

From (5), (6) and (7) we conclude that if f is increasing then log M is
increasing in z. Similar reasoning shows monotonicity in y, so the implication
(i)=(ii) holds.
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If f is not monotone then one can choose an interval [z, y] and =1,z €
[z,y] such that

f(z1) = min f(t) < f(y) < max f(t) = f(z2)

t€[z,y] telzy]

and from (6) and (7),
dlog M

Ox

which completes the proof in case r # s.

O0log M
(’I",S;(L‘l,y) <0< %(r,s;m,y),

To prove the case s = r it is enough to replace (s — r)—l((}c—t)))s_” _ 1)

with (log f(t) —log f(x)) in (5)—(7). = '
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