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ORDINARY CONVERGENCE FOLLOWS FROM
STATISTICAL SUMMABILITY (C, 1) IN THE CASE

OF SLOWLY DECREASING OR OSCILLATING SEQUENCES

BY

FERENC MÓRICZ (Szeged)

Abstract. Schmidt’s Tauberian theorem says that if a sequence (xk) of real numbers
is slowly decreasing and limn→∞(1/n)

∑n
k=1 xk = L, then limk→∞ xk = L. The notion

of slow decrease includes Hardy’s two-sided as well as Landau’s one-sided Tauberian con-
ditions as special cases. We show that ordinary summability (C, 1) can be replaced by
the weaker assumption of statistical summability (C, 1) in Schmidt’s theorem. Two recent
theorems of Fridy and Khan are also corollaries of our Theorems 1 and 2. In the Appendix,
we present a new proof of Vijayaraghavan’s lemma under less restrictive conditions, which
may be useful in other contexts.

1. Introduction. We begin with some historical remarks. The term
“statistical convergence” first appeared in [2] by Fast, where he attributed
this concept to Hugo Steinhaus. More exactly, Henry Fast has recently ex-
plained to the referee of our paper in an e-mail message that actually he
had heard about this concept from Steinhaus, but in fact it was Antoni
Zygmund who proved theorems on the statistical convergence of Fourier se-
ries in the first edition of his book “Trigonometric Series” in 1935, where he
used the term “almost convergence” in place of statistical convergence. (See
[11, Vol. 2, pp. 181 and 188].)

A sequence (xk : k = 1, 2, . . .) of complex numbers is said to be statis-
tically convergent if there exists a complex number L such that for every
ε > 0 we have

(1.1) lim
n→∞

n−1|{k ≤ n : |xk − L| > ε}| = 0,

where by k ≤ n we mean that k = 1, . . . , n, and by |S| we denote the number
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of elements in the set S of positive integers. Clearly, L in (1.1) is uniquely
determined. In symbols, we write st-limxk = L.

Basic results on statistical convergence may be found in [2, 3, 9].
A sequence (xk) is said to be statistically summable (C, 1) to L whenever

st-limσn = L, where

(1.2) σn :=
1
n

n∑

k=1

xk, n = 1, 2, . . . ,

is the first arithmetic mean, also called the Cesàro mean (of first order).
We recall that a sequence (xk) of real numbers is said to be slowly de-

creasing according to Schmidt [8] if

(1.3) lim
λ→1+

lim inf
n→∞

min
n<k≤λn

(xk − xn) ≥ 0.

Since the function

(1.4) f(λ) := lim inf
n→∞

min
n<k≤λn

(xk − xn), λ > 1,

is clearly decreasing in λ on the interval (1,∞), the right-hand limit in (1.3)
exists and can be equivalently replaced by supλ>1.

It is easy to see that (1.3) is satisfied if and only if for every ε > 0 there
exist n0 = n0(ε) and λ0 = λ0(ε) > 1, as close to 1 as we wish, such that

(1.5) xk − xn ≥ −ε whenever n0 ≤ n < k ≤ λ0n.

We recall that Hardy [6, pp. 124–125] defined the notion of slow decrease
by the requirement that

(1.6) lim inf
j→∞

(xkj − xnj ) ≥ 0

whenever

(1.7) nj →∞, 1 < kj/nj → 1 as j →∞.
We claim that definition (1.3) and (1.6) & (1.7) are equivalent. First, as-

sume that the sequence (xk) satisfies (1.3). If (1.7) holds for some sequences
{kj} and {nj} of positive integers, then for every λ > 1, the inequalities
nj < kj ≤ λnj are satisfied for every large enough j. By (1.5), for every
ε > 0 we have

lim inf
j→∞

(xkj − xnj ) ≥ −ε,

which proves (1.6).
Second, assume that the sequence (xk) satisfies (1.6) for all sequences

{kj} and {nj} of positive integers as in (1.7). We prove (1.3) indirectly.
Namely, if (1.3) is not satisfied, then there exists some ε0 > 0 such that for
all λ > 1 and m ≥ 1 there exist integers k and n for which

m ≤ n < k ≤ λn, xk − xn < −ε0.
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In particular, let m1 := 1 and λ1 := 2; then there exist k1 and n1 such that

m1 ≤ n1 < k1 ≤ λ1n1, xk1 − xn1 < −ε0.

We proceed by induction. If 1 ≤ n1 < k1 < · · · < nj−1 < kj−1 have been
defined, then let mj := kj−1 +1 and λj := (j+1)/j; then there exist kj and
nj such that

mj ≤ nj < kj ≤ λjnj , xkj − xnj < −ε0, j = 1, 2, . . . .

Clearly, (1.7) is satisfied, while (1.6) is not. This contradiction proves (1.3).
We note that definitions (1.3) and (1.6) & (1.7) of slow decrease resem-

ble the equivalent definitions of continuity of a function at a point of the
definition domain, given by Cauchy (in terms of neighbourhoods with radii
ε and δ) and by Heine (in terms of sequences tending to the given point and
function value, respectively).

One more remark is appropriate here. A sequence (xk) of real numbers
may be said to be slowly increasing if

(1.8) lim
λ→1+

lim sup
n→∞

max
n<k≤λn

(xk − xn) ≤ 0.

Clearly, (xk) is slowly increasing if and only if (−xk : k = 1, 2, . . .) is slowly
decreasing. In particular, the right-hand limit in (1.8) can be equivalently
replaced by infλ>1.

We recall that a sequence (xk) of complex numbers is said to be slowly
oscillating if

(1.9) lim
λ→1+

lim sup
n→∞

max
n<k≤λn

|xk − xn| = 0.

Again, the right-hand limit in (1.9) can be equivalently replaced by infλ>1.
It is easy to see that (1.9) is satisfied if and only if for every ε > 0 there

exist n0 = n0(ε) and λ0 = λ0(ε) > 1, as close to 1 as we wish, such that

(1.10) |xk − xn| ≤ ε whenever n0 ≤ n < k ≤ λ0n.

We note that Hardy [6, pp. 124–125] defined the notion of slow oscillation
by the requirement

(1.11) lim
j→∞

(xkj − xnj ) = 0

whenever the conditions in (1.7) are satisfied. The equivalence of definitions
(1.9) and (1.11) & (1.7) can be justified exactly in the same way as in the
case of slow decrease.

It is plain that a sequence (xk) of real numbers is slowly oscillating if
and only if (xk) is both slowly decreasing and slowly increasing.

It is well known that if a sequence (xk) of complex numbers satisfies
Hardy’s two-sided Tauberian condition (see [5] and also [6, p. 121]):

(1.12) k|xk − xk−1| ≤ H for some H and every k,
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then (xk) is slowly oscillating. Furthermore, if a sequence (xk) of real num-
bers satisfies Landau’s one-sided Tauberian condition (see [7] and also
[6, p. 121]):

(1.13) k(xk − xk−1) ≥ −H for some H > 0 and every k,

then (xk) is slowly decreasing.

2. Main results. The main results of the present paper are summarized
in the following two theorems.

Theorem 1. If a sequence (xk) of real numbers is statistically summable
(C, 1) to some L and slowly decreasing , then (xk) converges to L.

Theorem 2.3 in [4] by Fridy and Khan (under Landau’s one sided Taube-
rian condition) is a corollary of Theorem 1.

Theorem 2. If a sequence (xk) of complex numbers is statistically sum-
mable (C, 1) to some L and slowly oscillating , then (xk) converges to L.

Theorem 2.1 in [4] by Fridy and Khan (under Hardy’s two-sided Taube-
rian condition) is a corollary of Theorem 2.

3. Auxiliary results

Lemma 1. Let (xk) be a sequence of real numbers. Condition (1.3) of
slow decrease is equivalent to

(3.1) lim
λ→1−

lim inf
n→∞

min
λn≤k<n

(xn − xk) ≥ 0.

Proof. We consider the following extension of the function f(λ) defined
in (1.4):

f(λ) := lim inf
n→∞

min
λn≤k<n

(xn − xk), 0 < λ < 1.

Given an arbitrary λ > 1, by (1.4) there exists an increasing sequence
(np : p = 1, 2, . . .) of natural numbers such that

f(λ) = lim
p→∞

min
np<k≤λnp

(xk − xnp).

Let us choose a sequence (kp : p = 1, 2, . . .) of integers such that

xkp − xnp = min
np<k≤λnp

(xk − xnp), np < kp ≤ λnp, p = 1, 2, . . . .

Since
np < kp ≤ λnp is equivalent to (1/λ)kp ≤ np < kp,

kp →∞ as p→∞, and

min
(1/λ)kp≤n<kp

(xkp − xn) ≤ xkp − xnp ,
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it follows immediately that

f(1/λ) ≤ lim inf
p→∞

min
(1/λ)kp≤n<kp

(xkp − xn)

≤ lim
p→∞

(xkp − xnp) = f(λ), λ > 1.

The converse inequality

f(1/λ) ≤ f(λ), 0 < λ < 1,

can be deduced in an analogous way. Thus, we conclude that

(3.2) f(1/λ) = f(λ) for every 0 < λ <∞, λ 6= 1.

Now, the equivalence of (1.3) and (3.1) is a trivial consequence of (3.2).

Lemma 2. Let (xk) be a sequence of complex numbers. Condition (1.9)
of slow oscillation is equivalent to

(3.3) lim
λ→1−

lim sup
n→∞

max
λn≤k<n

|xn − xk| = 0.

The proof runs along the same lines as that of Lemma 1. We omit the
details.

Lemma 3 (see [1, Lemma 4]). Let (xk) be a sequence of real numbers. If
there exist a positive integer m0 and a real number λ > 1 such that

(3.4) xn − xk ≥ −1 for all m0 ≤ k < n ≤ λk,
then the sequence

1
n

n∑

k=1

(xn − xk), n = 1, 2, . . . ,

is bounded below.

We note that Armitage and Maddox [1] stated Lemma 3 above for slowly
decreasing sequences, but in their proof they actually made use of condition
(3.4), while relying on a key lemma of Vijayaraghavan (see [10, Lemma 6]).
In Lemma 8 in the Appendix, we present a new proof of Vijayaraghavan’s
lemma under our less restrictive conditions.

Lemma 4. Let (xk) be a sequence of complex numbers. If there exist a
positive integer m0 and a real number λ > 1 such that

(3.5) |xn − xk| ≤ 1 for all m0 ≤ k < n ≤ λk,
then the sequence

(3.6)
1
n

n∑

k=1

|xn − xk|, n = 1, 2, . . . ,

is bounded.
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Proof. The proof of Lemma 4 is modelled after that of [1, Lemma 4]. By
Lemma 9 in the Appendix, there exists a constant B such that

(3.7) |xn − xk| ≤ B log(n/k) for all 1 ≤ k ≤ n/λ.
By (3.5) and (3.7), for n ≥ λm0 we can estimate as follows:

n∑

k=1

|xn − xk| =
{[n/λ]∑

k=1

+
n∑

k=1+[n/λ]

}
|xn − xk|

≤ B
[n/λ]∑

k=1

log(n/k) + (n− [n/λ])

≤ B
n∑

k=1

log(n/k) + n = B
{
n logn−

n∑

k=2

log k
}

+ n

≤ B
{
n log n−

n�

1

log u du
}

+ n = (B + 1)n, n ≥ λm0,

where [·] means the integral part (of a real number) and where we used the
elementary fact that

log k >
k�

k−1

log u du, k = 2, 3, . . . , n.

This proves the boundedness of sequence (3.6).

We note that in the proofs of Theorems 1 and 2 in Section 4 we shall only
use weaker versions of Lemmas 3 and 4. However, we think that Lemmas 3
and 4 in the above formulation may be useful in other contexts.

The next auxiliary result is the so-called decomposition theorem due to
Fridy [3].

Lemma 5 (see [3, Theorem 1]). If (xk) is statistically convergent to
some L, then there exists a sequence (yk) which is convergent (in the or-
dinary sense) to L and

(3.8) lim
n→∞

1
n
|{k ≤ n : yk 6= xk}| = 0.

Finally, we sharpen [5, Theorem 2.2] by replacing Landau’s one-sided
Tauberian condition by the weaker condition of slow decrease.

Lemma 6. Let (xk) be a sequence of real numbers. If (xk) is statistically
convergent to some L and slowly decreasing , then (xk) is convergent to L.

Proof. We start with the decomposition theorem (see Lemma 5). Let
1 ≤ l1 < l2 < · · · be the subsequence of those indices k for which yk = xk.
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Then setting n := lm in (3.8) gives
1
lm
|{k ≤ lm : yk = xk}| =

m

lm
→ 1 as m→∞.

Consequently, it follows that

(3.9) lim
m→∞

lm+1

lm
= lim
m→∞

(
lm+1

m+ 1
· m+ 1

m
· m
lm

)
= 1.

By the definition of the subsequence (lm) (cf. (3.8)), we have

(3.10) lim
m→∞

xlm = lim
m→∞

ylm = L.

By (1.3), for every ε > 0 there exists λ = λ(ε) > 1 such that

(3.11) lim inf
n→∞

min
n<k≤λn

(xk − xn) ≥ −ε.

By (3.9), we have lm+1 < λlm for every large enough m, whence

min
lm<k<lm+1

(xk − xlm) ≥ min
lm<k≤λlm

(xk − xlm).

By (3.11), we find that

(3.12) lim inf
m→∞

min
lm<k<lm+1

(xk − xlm) ≥ −ε.

Since ε > 0 is arbitrary, it follows that

lim inf
m→∞

min
lm<k<lm+1

(xk − xlm) ≥ 0.

Taking into account that

min
lm<k<lm+1

xk = min
lm<k<lm+1

(xk − xlm) + xlm ,

by (3.10) we conclude that

(3.13) lim inf
m→∞

min
lm<k<lm+1

xk ≥ L.
On the other hand, by Lemma 1, for every ε > 0 there exists λ = λ(ε) < 1

such that

(3.14) lim inf
n→∞

min
λn≤k<n

(xn − xk) ≥ −ε.
Since for every large enough m, we have

min
lm<k<lm+1

(xlm+1 − xk) ≥ min
λlm+1≤k<lm+1

(xlm+1 − xk),

by (3.14) we conclude that

lim inf
m→∞

min
lm<k<lm+1

(xlm+1 − xk) ≥ −ε.

As ε > 0 is arbitrary, it follows that

lim inf
m→∞

min
lm<k<lm+1

(xlm+1 − xk) ≥ 0.
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Taking into account that

min
lm<k<lm+1

(−xk) = min
lm<k<lm+1

(xlm+1 − xk)− xlm+1 ,

by (3.10) we find that

lim inf
m→∞

min
lm<k<lm+1

(−xk) ≥ −L,

which is equivalent to

(3.15) lim sup
m→∞

max
lm<k<lm+1

xk ≤ L.

Combining (3.13) and (3.15) yields

L ≤ lim inf
m→∞

min
lm<k<lm+1

xk ≤ lim sup
m→∞

max
lm<k<lm+1

xk ≤ L,

which together with (3.10) shows that the whole sequence (xk) is convergent
to L.

Lemma 7. Let (xk) be a sequence of complex numbers. If (xk) is statis-
tically convergent to some L and slowly oscillating , then (xk) is convergent
to L.

Proof. It is similar to (and even simpler than) the proof of Lemma 6.
Again, we start with the decomposition theorem, consider the subsequence
1 ≤ l1 < l2 < · · · of those indices k for which yk = xk, and have (3.9)
and (3.10).

This time, by (1.9), for every ε > 0 there exists λ = λ(ε) > 1 such that

(3.16) lim sup
n→∞

max
n<k≤λn

|xk − xn| ≤ ε.

Analogously to (3.11) and (3.12), by (3.9) and (3.16), we conclude that

lim sup
m→∞

max
lm<k<lm+1

|xk − xlm | ≤ ε.

Since ε > 0 is arbitrary, it follows that

(3.17) lim
m→∞

max
lm<k<lm+1

|xk − xlm | = 0.

Combining (3.10) and (3.17) implies that the whole sequence (xk) is con-
vergent to L.

We note that if Lemmas 6 and 7 were true under the weaker assumptions
of Lemmas 3 and 4, respectively, then we could prove stronger versions of
Theorems 1 and 2.

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. First, we prove that if the sequence (xk) of real
numbers is slowly decreasing, then so is the sequence (σn) of the first arith-
metic means. To this end, let ε > 0 be given. By the slow decrease of (xk),
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there exist n0 = n0(ε) and λ0 = λ0(ε) > 1, as close to 1 as we wish, such
that (1.5) is satisfied.

Let n0 ≤ n < k ≤ λ0n. Then by (1.2) we obtain

σk − σn = −k − n
kn

n∑

j=1

xj +
1
k

k∑

j=n+1

xj(4.1)

=
k − n
kn

n∑

j=1

(xn − xj) +
1
k

k∑

j=n+1

(xj − xn).

By Lemma 3, there exists a positive constant B such that

1
n

n∑

j=1

(xn − xj) ≥ −B, n = 1, 2, . . . .

Using this inequality and (1.5), we may estimate the right-hand side in (4.1)
as follows:

(4.2) σk − σn ≥
k − n
k

(−B) +
1
k

(k − n)(−ε) = −
(

1− n

k

)
(B + ε).

Since for n < k ≤ λ0n and λ0 > 1, we have

(4.3) 1− n

k
≤ 1− 1

λ0
< λ0 − 1,

it follows from (4.2) that

σk − σn ≥ −(λ0 − 1)(B + ε) ≥ −ε, n0 ≤ n < k < λ0n,

provided that

(4.4) 1 < λ0 ≤ 1 + ε/(B + ε).

This proves that the sequence (σn) is also slowly decreasing.
By assumption, the sequence (σn) is statistically convergent to L. Con-

sequently, by Lemma 6, (σn) is convergent to L in the ordinary sense. Ap-
plying Schmidt’s classical Tauberian theorem (see [8]) yields the ordinary
convergence of the sequence (xk) itself.

Proof of Theorem 2. First, we prove that if (xk) is slowly oscillating,
then so is (σn). Let ε > 0 be given. By the slow oscillation of (xk), there
exist n0 = n0(ε) and λ0 = λ0(ε) > 1, as close to 1 as we wish, such that
(1.10) is satisfied.

Let n0 ≤ n < k ≤ λ0n. Then by (4.1) we have

|σk − σn| ≤
k − n
kn

n∑

j=1

|xn − xj |+
1
k

k∑

j=n+1

|xj − xn|.

By Lemma 4, there exists a constant B such that
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1
n

n∑

j=1

|xn − xj | ≤ B, n = 1, 2, . . . .

Similarly to (4.2) and (4.3), this time we conclude that

|σk − σn| ≤
(

1− n

k

)
(B + ε) < (λ0 − 1)(B + ε) < ε, n0 ≤ n < k ≤ λ0n,

provided (4.4) is satisfied. This proves that (σn) is also slowly oscillating.
By assumption, the sequence (σn) is statistically convergent to L. Conse-

quently, by Lemma 7, (σn) is convergent to L in the ordinary sense. Applying
Schmidt’s classical Tauberian theorem yields the ordinary convergence of the
sequence (xk) itself.

5. Appendix. Our goal is to give a new, more constructive proof of
Vijayaraghavan’s lemma (see [10, Lemma 6]), which plays a crucial role,
via Lemma 3, in the proof of our Theorem 1. In addition, we prove Vija-
yaraghavan’s lemma under the less restrictive condition (3.4) instead of the
condition of slow decrease.

Lemma 8. Let (xk) be a sequence of real numbers. If there exist a positive
integer m0 and a real number λ > 1 such that condition (3.4) is satisfied ,
then there exists a positive constant B such that

(5.1) xn − xk ≥ −B log(n/k) for all 1 ≤ k ≤ n/λ.
Proof. Without loss of generality, we may assume that

(5.2) m0 ≥ 2λ/(λ− 1).

Given n > m0, set n0 := n and define

(5.3) np := 1 + [np−1/λ], p = 1, . . . , q,

where q is determined by the condition

(5.4) nq+1 ≤ m0 < nq.

It follows from (5.2) and (5.3) that

np < np−1 < λnp, p = 1, . . . , q + 1,

and that (3.4) applies for each difference xnp−1 − xnp .
Fix k such that 1 ≤ k ≤ n/λ. First, we consider the case m0 ≤ k ≤ n/λ.

Then

(5.5) np+1 ≤ k < np for some 1 ≤ p ≤ q.
By (3.4), we estimate as follows:

xn − xk = (xn − xn1) + (xn1 − xn2) + · · ·+ (xnp−1 − xnp)(5.6)

+ (xnp − xk) ≥ −p− 1.
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By (5.3), we have

n1 ≤ 1 +
n

λ
, n2 ≤ 1 +

n1

λ
≤ 1 +

1
λ

+
n

λ2 , . . . ,

np ≤ 1 +
1
λ

+
1
λ2 + · · ·+ 1

λp−1 +
n

λp
<

λ

λ− 1
+

n

λp
.

By this, (5.2) and (5.5), we conclude that

1
2
λp ≤ λp

(
1− λ

(λ− 1)m0

)
≤ λp

(
1− λ

(λ− 1)np

)
<

n

np
<
n

k
,

whence it follows that

(5.7) p ≤ 1
log λ

log
2n
k
, np+1 ≤ k < np, 1 ≤ p ≤ q.

Combining (5.6) and (5.7) gives

(5.8) xn − xk ≥ −1− 1
log λ

log
2n
k
, m0 ≤ k ≤ n/λ.

Second, we consider the case 1 ≤ k < m0. Again, by (3.4), we have
(cf. (5.6))

xn − xk = (xn − xn1) + (xn1 − xn2) + · · ·+ (xnq − xm0)(5.9)

+ (xm0 − xk) ≥ −q − 1 + c,

where

(5.10) c := min{0, min
1≤k<m0

(xm0 − xk)}.

Similarly to (5.7), this time we find that

(5.11) q ≤ 1
log λ

log
2n
k
, 1 ≤ k < m0.

Combining (5.9) and (5.11) gives

(5.12) xn − xk ≥ −1 + c− 1
log λ

log
2n
k
, 1 ≤ k < m0.

Since c ≤ 0 in (5.10), it follows from (5.8) and (5.12) that in either case
we have

xn − xk ≥ −1 + c− log 2
log λ

− log(n/k)
log λ

(5.13)

≥ −B log(n/k), 1 ≤ k ≤ n/λ,
provided

(5.14) −1 + c− log 2
log λ

≥ −
(
B − 1

log λ

)
log

n

k
.
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Now, this is the case if we define B as follows:

(5.15) B :=
1

log λ

(
2− c+

log 2
log λ

)
.

In fact, by this choice of B we have

−1 + c− log 2
log λ

= −
(
B − 1

log λ

)
log λ ≥ −

(
B − 1

log λ

)
log

n

k
,

where the equality is due to (5.15), while the inequality is due to the fact
that λ ≤ n/k for all 1 ≤ k ≤ n/λ.

To sum up, (5.13) holds with the choice (5.15) for B (which is clearly
positive). This completes the proof of Lemma 8.

The next lemma is new. It plays a crucial role in the proof of Lemma 4,
which is of vital importance in the proof of our Theorem 2.

Lemma 9. Let (xk) be a sequence of complex numbers. If there exist a
positive integer m0 and a real number λ > 1 such that condition (3.5) is
satisfied , then there exists a constant B such that

(5.16) |xn − xk| ≤ B log(n/k) for all 1 ≤ k ≤ n/λ.
Proof. Again, we may assume that m0 is large enough to satisfy (5.2).

Given n > m0, by (5.3) we define n0 := n > n1 > n2 > · · · > nq >
m0 ≥ nq+1.

Fix k such that 1 ≤ k ≤ n/λ. In case m0 ≤ k ≤ n/λ, let p be defined
by (5.5). Taking into account (3.5), this time (5.6) is of the form

|xn − xk| ≤ |xn − xn1 |+ |xn1 − xn2 |+ · · ·+ |xnp−1 − xnp |+ |xnp − xk|
≤ p+ 1,

where p is estimated in (5.7), while (5.8) is of the form

(5.17) |xn − xk| ≤ 1 +
1

log λ
log

2n
k
, m0 ≤ k ≤ n/λ.

In case 1 ≤ k < m0, (5.9) takes the form

|xn − xk| ≤ |xn − xn1 |+ |xn1 − xn2 |+ · · ·+ |xnq − xm0 |+ |xm0 − xk|
≤ q + 1 + c,

again due to (3.5), where this time

c := max
1≤k<m0

|xm0 − xk|

and q is estimated in (5.11). In place of (5.12), now we have

(5.18) |xn − xk| ≤ 1 + c+
1

log λ
log

2n
k
, 1 ≤ k < m0.
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Finally, we define (cf. (5.15))

B :=
1

log λ

(
2 + c+

log 2
log λ

)

and (5.16) follows from (5.17) and (5.18) similarly to the way (5.1) followed
from (5.8) and (5.12) in the proof of Lemma 8.

Acknowledgments. We express our thanks to the referee for providing
us with the historical remarks in the first paragraph of the introduction.
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