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ON SOME PROPERTIES OF SQUARES OF SIERPIŃSKI SETS

BY

ANDRZEJ NOWIK (Gdańsk)

Abstract. We investigate some geometrical properties of squares of special Sierpiński
sets. In particular, we prove that (under CH) there exists a Sierpiński set S and a function
p: S → S such that the images of the graph of this function under π′(〈x, y〉) = x− y and
π′′(〈x, y〉) = x+ y are both Lusin sets.

1. Notations and definitions. Let πx, πy: R2 → R denote the projec-
tions on the first and second axis, respectively.

Define π′, π′′: R2 → R and τ : R2 → R2 by

π′(〈x, y〉) = x− y, π′′(〈x, y〉) = x+ y, τ(〈x, y〉) = 〈x− y, x+ y〉.
Notice that

τ ◦ τ(〈x, y〉) = 〈−2y, 2x〉, π′ ◦ τ(〈x, y〉) = −2y, π′′ ◦ τ(〈x, y〉) = 2x.

For A ⊆ R set
X (A) = (R× A) ∪ (A× R),

and for X ⊆ R× R and a ∈ R define

(X)a = {y ∈ R : 〈a, y〉 ∈ X}, (X)a = {x ∈ R : 〈x, a〉 ∈ X}.
Let N andMGR denote the σ-ideals of measure zero sets and meager sets,
respectively. We say that an uncountable X is a Lusin set (Sierpiński set ,
respectively) if ∀Y ∈MGR (resp. ∀Y ∈N ) |X ∩ Y | ≤ ω0.

A set X ⊆ Rn is said to be a universal measure zero set (X ∈ UMZ) if
every continuous (i.e. vanishing on singletons) finite, non-negative, count-
ably additive measure defined on Borel subsets of Rn assigns X outer mea-
sure 0.

We will use the following terminology and notation from the theory of
small subsets of the real line. For every X ⊆ R we write X ∈ RN iff for
each Borel set B ⊆ R2 such that ∀x∈R (B)x ∈ N we have

⋃
x∈X(B)x 6= R.

Notice that every Sierpiński set belongs to the class RN; this result is due
to J. Pawlikowski (see [P]).
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2. Introduction. From now on we shall identify a function with its
graph. In [C], Cox showed, answering a question in [G], that (under CH)
there exists a Sierpiński set S ⊆ R such that there exists a bijection p: S → S
which is a universal measure zero set (on the plane). Moreover, p−1 = p.
It is natural to ask whether we can find a Sierpiński set S and a bijection
p: S → S such that the image of p under the rotation τ of the plane is
a subset of a product of two UMZ sets, or a subset of a product of two
strong measure zero sets, or two Lusin sets. And if the answer is yes, is this
property of the Sierpiński set S stronger than the property considered by
Cox?

The aim of this paper is to give an answer to these and other questions.

3. Squares of Sierpiński sets. Let us start with the following lemma
due to I. Recław (1):

Lemma 3.1 (Recław, private communication). Suppose that N ∈N and
M ∈MGR. Then X (N) ∪ τ [X (M)] 6= R2.

Proof. Without loss of generality we can assume that M =
⋃
m∈ω Fm,

where the Fm are closed nowhere dense. It suffices to find

〈x0, y0〉 6∈ (N × R) ∪ τ [R×M ] ∪ τ [M × R] ∪ (R×N).

Since 〈x0, y0〉 6∈ τ [M × R] is equivalent to x0 + y0 6∈ 2M , and 〈x0, y0〉 6∈
τ [R ×M ] is equivalent to y0 − x0 6∈ 2M , we have to find x0, y0 ∈ R such
that x0, y0 6∈ N and x0 + y0, x0 − y0 6∈M . This condition can be written in
the following form:

y0 6∈ N, x0 6∈ N ∪ (M − y0) ∪ (M + y0).

We will prove that the set {y ∈ R : N ∪ (M − y) ∪ (M + y) = R} has
measure zero. Choose an arbitrary perfect set D ⊆ R \ N such that for
every open set W ⊆ R with W ∩D 6= ∅ we have W ∩D 6∈ N . Let (Dn)n∈ω
be an enumeration of open basic subsets of D. We will use the following
claim:

Claim 3.2. Let E be a meager set and G be a Borel set such that G 6∈ N .
Then the set {t : G+ t ⊆ E} has measure zero.

Proof. Set Z = {t : G + t ⊆ E}. Suppose on the contrary that Z 6∈ N .
Then by the classical theorem of Steinhaus the set Z + G would contain
an interval (a, b) and hence (a, b) ⊆ Z + G ⊆ E; therefore E would not be
meager, which is the desired contradiction.

(1) I would like to thank Professor Ireneusz Recław for his kind permission to include
his result.
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Hence we obtain

{y : D ∩ [(M − y) ∪ (M + y)] ∈ MGR(D)}
=

⋂

n,m∈ω
{y : Dn 6⊆ (Fm − y)} ∩ {y : Dn 6⊆ (Fm + y)},

and this last set is of full measure. This proves that {y : D ⊆ (M − y) ∪
(M + y)} has measure zero. Since D ∩N = ∅, this finishes the proof.

Note that Lemma 3.1 can be easily strengthened to the following:

Lemma 3.3. Suppose that M ∈ MGR(R) and N ∈ N (R) and let
Y 6∈ N . Then there exist x0, y0 ∈ R such that x0 + y0 6∈ M , x0 − y0 6∈ M ,
x0 6∈ N and y0 ∈ Y .

Proof. We only sketch the proof. As in the previous proof, the set
{y : N ∪(M−y)∪(M+y) = R} is of measure zero. Choose y0 ∈ Y such that
N ∪ (M − y0) ∪ (M + y0) 6= R. Next, choose x0 6∈ N ∪ (M − y0) ∪ (M + y0)
to complete the proof.

However, we have not been able to prove (or disprove) the following
strengthening of Lemma 3.1.

Problem 3.4. Is it true that for every perfect set P ⊆ R of positive
measure and for every M ∈ MGR(P ) and N ∈ N there exists 〈x, y〉 ∈
(P \M)2 such that 〈x, y〉 6∈ τ [X (N)]?

Moreover, we have not been able to solve the following version of the
previous problem. Let C denote the Cantor ternary set.

Problem 3.5. Is it true that for every M ∈ MGR(C) and N ∈ N there
exists 〈x, y〉 ∈ (C \M)2 such that 〈x, y〉 6∈ τ [X (N)]?

Lemma 3.1 motivated us to introduce here the following notion:

Definition 3.6. Let F ⊆ P (R) be an arbitrary collection of subsets
of the real line (not necessarily an ideal). We say that F has the STRIC
(stripes covering) property if for any sets X,Y ∈ F we have

X (X) ∪ τ [X (Y )] 6= R2.

Thus we can reformulate Lemma 3.1 as follows:

Lemma 3.7. The family N ∪MGR has the STRIC property.

Suppose that θ ∈ [0, π). By πθ: R2 → R we denote the projection on
the x-axis in direction θ. If F ⊆ P (R) then we define the following cardinal
coefficient:

STRIC(F) = min
{
|Θ| : Θ⊆ [0, π)∧∃F :Θ→FF is 1-1∧

⋃

θ∈Θ
π−1
θ (F (θ)) =R2

}
.
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Problem 3.8. Suppose that 〈θi, µi ∈ [0, π) : i ∈ ω〉, where θi 6= µi, and
let M ∈MGR and N ∈ N . Is it true that⋃

i∈ω
π−1
θi

(M) ∪
⋃

i∈ω
π−1
µi (N) 6= R2?

If the answer is positive then we can ask what is STRIC(N ∪MGR).

Theorem 3.9. Assume CH. There exists a Sierpiński set S ⊆ R and
a bijection p: S → S such that π′[p] and π′′[p] are Lusin sets. Moreover ,
p−1 = p.

Proof. Let 〈Mξ : ξ ∈ ω1〉 be an enumeration of all Fσ meager subsets of
R and let 〈Nξ : ξ ∈ ω1〉 be an enumeration of all Gδ measure zero subsets
of R. At stage ξ we assume that all xµ, yµ ∈ R for µ < ξ have been chosen.
Choose

〈xξ, yξ〉 6∈ X
( ⋃

µ<ξ

Nµ ∪ {xµ, yµ : µ < ξ}
)

∪ τ
[
X
( ⋃

µ<ξ

Mµ ∪ −Mµ

2
∪ {0} ∪

{
xµ
2
,
yµ
2

: µ < ξ

})]
.

Notice that this is possible by Lemma 3.1. Finally, let S = {xξ, yξ : ξ < ω1}.
Now define a bijection p: S → S by

p(s) =
{
xξ if s = yξ for some ξ < ω1,

yξ if s = xξ for some ξ < ω1.

By construction, S is a Sierpiński set. To show that π′[p] and π′′[p] are Lusin
sets, it suffices to check that

π′(〈xξ, yξ〉), π′(〈yξ, xξ〉), π′′(〈xξ, yξ〉) 6∈Mµ for ξ > µ,

i.e. xξ − yξ, yξ − xξ, xξ + yξ 6∈ Mµ for ξ > µ. But this follows immedi-
ately from the definition of 〈xξ, yξ〉, since 〈xξ, yξ〉 6∈ τ [X ((Mµ ∪ −Mµ)/2)],
i.e. τ−1(xξ, yξ) 6∈ X ((Mµ ∪ −Mµ)/2), and therefore (yξ − xξ)/2 6∈ Mµ/2,
(yξ − xξ)/2 6∈ −Mµ/2 and (xξ + yξ)/2 6∈Mµ/2.

We will show the following theorem.

Theorem 3.10. Assume CH. Let Y ⊆ R be such that Y 6∈ N . Then
there exists a Sierpiński set S and a function p: S → Y such that π′[p] and
π′′[p] are Lusin sets.

Proof. Let (Mθ)θ∈ω1 and (Nθ)θ∈ω1 be enumerations of all Fσ meager sub-
sets and of all Gδ, measure zero subsets of R, respectively. From Lemma 3.3
it follows that there exist xθ, yθ such that

• xθ + yθ, xθ − yθ 6∈
⋃

α<θ

Mα ∪ {xα + yα, xα − yα},
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• xθ, yθ 6∈
⋃

α<θ

Nα ∪ {xα + yα, xα − yα},

• yθ ∈ Y .
Set S = {xθ : θ < ω1}. It is obvious that S is a Sierpiński set. Define
p = {〈xθ, yθ〉 : θ ∈ ω1}. Obviously p: S → Y . Since π′[p] = {xθ−yθ : θ ∈ ω1}
and π′′[p] = {xθ + yθ : θ ∈ ω1}, both are Lusin sets.

Following [C] let us recall the following notions. We say that H ⊆ R2 is
symmetric provided that ∀〈x,y〉∈H 〈y, x〉 ∈ H. The lines {〈x, x〉 : x ∈ R} and
{〈x, 1− x〉 : x ∈ R} are denoted by l1 and l2, respectively.

We denote by % the projection onto l2 defined by %(〈x, y〉) = 〈x − y,
1− x+ y〉. Notice that πx ◦ % = π′.

Recall a lemma from [C] but relativised to a perfect set.

Lemma 3.11. Let P ⊆ R be a perfect set. Suppose that µ is a finite
measure on R2. Then there exists a symmetric subset H of R2 such that

• µ(H) = 0.
• There exists a Gδ subset h ⊆ %(P ×{0}), dense in %(P ×{0}) and such

that %−1(h) ⊆ H.

Proof. Similar to the proof of the Lemma from [C].

In the next theorem we modify the construction of a Sierpiński set S and
a function p: S → S having universal measure zero (given in the Theorem
from [C]) to obtain the additional property that there is no function r: S →
S such that π′[r] and π′′[r] are Lusin sets.

Theorem 3.12. Assume CH. Suppose that M ∈ MGR is such that
R \M ∈ N and 0 ∈ M . Then there exist a Sierpiński set S ⊆ R and a
bijection p: S → S such that

• p is a universal measure zero set ,
• τ [S2] ⊆M2.

In particular , there is no function r: S → S such that π′[r] and π′′[r] are
Lusin sets. Moreover , we can assume that p = p−1.

Proof. Let P ⊆ M ∩ (−M) be a perfect set such that −P = P . Let
〈Gα : α < ω1〉 be an enumeration of all Gδ measure zero subsets of R.
Inductively we construct (analogously to [C]) {〈xα, yα〉 : α < ω1} ⊂ R2. Let
〈µα : α < ω1〉 be an enumeration of all finite Borel measures on R2. For each
α < ω1 choose a symmetric subset Hα ⊆ R2 as in Lemma 3.11. At stage
θ we assume that all points {〈xα, yα〉 : α < θ} have been chosen. Choose
〈xθ, yθ〉 such that
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〈xθ, yθ〉 ∈
⋂

α≤θ
Hα,(1)

〈xθ, yθ〉 6∈ π−1
x

( ⋃

α≤θ
Gα ∪ {xα, yα : α < θ}

)
(2)

∪ π−1
y

( ⋃

α≤θ
Gα ∪ {xα, yα : α < θ}

)
,

〈xθ, yθ〉 ∈ (M∗θ )2,(3)

where M∗θ =
⋂
α<θ(M −xα)∩ (M − yα)∩ (xα−M)∩ (yα−M)∩ (M +xα)∩

(M + yα) , and

(4) xθ, yθ ∈M/2,

(5) 〈xθ, yθ〉 ∈ H∗ ∩H∗∗,
where H∗ = {〈x, y〉 : x+ y ∈M} and H∗∗ = {〈x, y〉 : x− y, y − x ∈M}. To
see that such a choice can be made, we first pick a line k ⊆ ⋂α≤θHα ∩H∗∗
parallel to l1, and then we pick a 〈xθ, yθ〉 on this line.

As in Theorem 3.9, set S = {xα, yα : α < ω1} and define a bijection
p: S → S by {

p(xξ) = yξ,

p(yξ) = xξ.

Standard calculations show that τ [S2] ⊆ M2. Similarly to [C] we can
show that p is a universal measure zero set. By (2), S is a Sierpiński set.

Unfortunately, the author has not been able to solve the following prob-
lem:

Problem 3.13. Assume CH. Let M be as in our previous theorem. Does
there exist a Sierpiński set S ⊆ R and a bijection p: S → S such that
τ [S2] ⊆M2 and π′[p], π′′[p] are universal measure zero sets?

The following fact belongs to the set-theoretic folklore.

Lemma 3.14. Suppose that Q ⊆ R is a perfect set and µ is a continuous
Borel measure. Suppose that p: X → S (where X ⊆ Q and S is a Sierpiński
set) is a function with a UMZ graph. Then there exists a Borel set B∗ ⊆ R2

such that
p ⊆ B∗, ∀y∈R µ[(B∗)y ∩Q] = 0.

Proof. Since p ∈ UMZ, there exists a Borel set B ⊆ R2 such that p ⊆ B
and (Q × R) ∩ B is of measure zero with respect to the product measure
µ⊗ λ, where λ is the Lebesgue measure on R. By the Fubini theorem there
exists a measure zero Gδ set G ⊆ R such that ∀y∈R\G µ((B)y ∩ Q) = 0.
Since S is a Sierpiński set, we have |S ∩ G| ≤ ω. Let H ⊆ Q be such
that ∀y∈G∩S (p)y ∩ Q ⊆ H, µ(H) = 0 and H is a Gδ set. Define B∗ =
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[B \ (R×G)]∪ (H ×G). Obviously B∗ is a Borel set. Moreover, p ⊆ B∗ and
∀y∈R µ[(B∗)y ∩Q] = 0.

We will prove the following simple observation.

Observation 3.15. Suppose that S ⊆ R is a Sierpiński set , X ⊆ R and
there exists a UMZ function p: X → S. Then X is a totally imperfect set ,
i.e. a set with no perfect subset.

Proof. Suppose that there exists p: X → S such that p ∈ UMZ. Let
Q ⊆ R be any perfect set. Without loss of generality we may assume thatQ is
homeomorphic to the Cantor set. Let µ denote the Lebesgue measure defined
on Q. By Lemma 3.14 we can find B∗ ⊆ R2 such that ∀y∈R µ[(B∗)(y)∩Q] = 0
and p ⊆ B∗.

Since S is a Sierpiński set, S ∈ RN . Therefore
⋃
y∈S (B∗)y ∩ Q 6= Q,

hence Q 6⊆ ⋃y∈S (B∗)y. Thus Q 6⊆ ⋃y∈S(p)y, hence Q 6⊆ X. This proves
that X is a totally imperfect set.

On the other hand for some class of small sets (under CH) (in particular,
for Sierpiński sets) there always exists a Sierpiński set such that no p: S → S
is UMZ. Notice that Cox’s argument to prove that (under CH) there exists
a Sierpiński set S such that no p: S → S is UMZ involves Borel sets with
all sections of measure zero. In the next theorem we modify Cox’s argument
using RN sets.

Theorem 3.16. Assume CH. Suppose that S is a Sierpiński set. Then
there exists a Sierpiński set S1 such that |S1| = 2ω and no p: S1 → S is
UMZ.

Proof. Suppose that (Bθ)θ<ω1 is an enumeration of all Borel sets B ⊆ R2

such that ∀y∈R (B)y ∈ N . Let (Gθ)θ∈ω1 be any enumeration of allGδ measure
zero subsets of R. We will construct by transfinite induction a sequence
(xθ)θ∈ω1 . At stage θ we choose

xθ 6∈
⋃

α<θ

Gα ∪ {xα : α < θ} ∪
( ⋃

α<θ

Bα

)−1
[S],

where B−1[Y ] = {x : ∃y∈Y 〈x, y〉 ∈ B}. The choice of xθ is possible, since
∀y∈R (

⋃
α<θ Bα)y ∈ N and therefore (

⋃
α<θ Bα)−1[S] 6∈ co-N , by the fact

that S ∈ RN , since S is a Sierpiński set. Next, define S1 = {xθ : θ ∈ ω1}. It is
easy to see that S1 is a Sierpiński set. Moreover, suppose that p: S1 → S has
universal measure zero graph. By Lemma 3.14 (applied to Q = R and µ = λ,
the Lebesgue measure on R) we can find a θ < ω1 such that p ⊆ Bθ. Next,
S1 = p−1[S] ⊆ B−1

θ [S], and therefore xθ 6∈ S1, which is a contradiction.

Problem 3.17. Can we assume in the previous theorem that S is only
an RN set?
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Theorem 3.18. Assume CH. Then there exists a Sierpiński set S ⊆ R
such that there exists a UMZ function p: S → S but there is no function
r: S → S such that π′[r], π′′[r] ∈ UMZ.

Proof. We construct S by induction. Let (µθ)θ∈ω be an enumeration of
all continuous measures defined on all Borel subsets of R2. For each θ ∈ ω1 let
Hθ be a dense Gδ subset of R such that µθ((π′)−1[Hθ]) = 0 and −Hθ = Hθ.
Such a set exists by Cox’s Lemma from [C]. Let (Gθ)θ<ω1 be an enumeration
of all Gδ measure zero subsets of R.

Assume that we have chosen xµ, yµ for µ < θ. First choose tθ ∈⋂
µ≤θHµ \ {0}. Next, choose xθ such that

{xθ, xθ − tθ} ∩ {xµ, yµ : µ < θ} = ∅,(6)

{xθ, xθ − tθ} ∩
⋃

µ<θ

Gµ = ∅,(7)

(xθ + {xµ, yµ : µ < θ}) ∩Gθ = ∅,(8)

{2xθ, 2xθ − tθ} ∩Gθ = ∅,(9)

{xθ, xθ − tθ} ∩
⋃

µ<θ

(Gµ − xµ) = ∅.(10)

Define yθ = xθ − tθ and S = {xθ, yθ : θ < ω1}. It follows immediately from
(6) and (7) that S is a Sierpiński set.

Define
p = {〈xθ, yθ〉 : θ < ω1} ∪ {〈yθ, xθ〉 : θ < ω1}.

It is easy to observe that p: S → S. Let θ ∈ ω1. Then for each µ > θ
we have xµ − yµ = tµ ∈ Hθ, hence 〈xµ, yµ〉 ∈ (π′)−1(Hθ). Thus
µθ({〈xµ, yµ〉 : µ > θ}) = 0 and therefore µθ({〈xα, yα〉 : α < ω1}) = 0. Since
−tµ ∈ Hθ, the same argument shows that µθ({〈yα, xα〉 : α < ω1}) = 0,
therefore µθ(p) = 0.

By way of contradiction suppose that there is p̂: S → S such that
π′[p̂ ], π′′[p̂ ] ∈ UMZ. In particular, π′′[p̂ ] ∈ N , so π′′[p̂ ] ⊆ Gθ for some
θ < ω1. Hence xθ + p̂(xθ) ∈ Gθ. We will consider three cases.

Case 1: p̂(xθ) ∈ {xµ, yµ} for some µ < θ. Then (xθ+{xµ, yµ})∩Gθ 6= ∅,
contrary to (8).

Case 2: p̂(xθ) ∈ {xθ, yθ}. Then 2xθ ∈ Gθ or 2xθ − tθ ∈ Gθ, contrary
to (9).

Case 3: p̂(xθ) ∈ {xµ, yµ} for some µ > θ. Then (xθ+{xµ, yµ})∩Gθ 6= ∅,
contrary to (10). Thus π′′[p̂ ] 6∈ N , which gives the required property of S.

Acknowledgments. I am greatly indebted to Professor Ireneusz Rec-
ław for several stimulating discussions and for providing the proof of Lem-
ma 3.1.
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