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METRIC PROJECTIONS OF CLOSED SUBSPACES OF c0

ONTO SUBSPACES OF FINITE CODIMENSION

BY

V. INDUMATHI (Pondicherry)

Abstract. Let X be a closed subspace of c0. We show that the metric projection
onto any proximinal subspace of finite codimension in X is Hausdorff metric continuous,
which, in particular, implies that it is both lower and upper Hausdorff semicontinuous.

1. Proximinal subspaces of finite codimension. Let X be a real
Banach space. Let D ⊆ X and F be a map from D into a collection of non-
empty subsets of X. If x ∈ D, the set-valued map F is lower semicontinuous
at x if given ε > 0 and z in F (x), there exists δ > 0 such that for all y in D
with ‖x−y‖ < δ, there exists w ∈ F (y) with ‖z−w‖ < ε. If δ can be chosen
independent of z in F (x) in the above definition, we say F is lower Hausdorff
semicontinuous at x. The map F is said to be lower semicontinuous (resp.
lower Hausdorff semicontinuous) on D if it is lower semicontinuous (resp.
lower Hausdorff semicontinuous) at each point x ∈ D. A continuous map
f defined on X, with f(x) in F (x) for each x in X, is called a continuous
selection of the set-valued map F .

The set-valued map F is upper Hausdorff semicontinuous at x in D if
given ε > 0, there exists δ > 0 such that

F (y) ⊆ F (x) + εBX

for all y in D ∩B(x, δ). The map F is said to be upper Hausdorff semicon-
tinuous on D if it is upper Hausdorff semicontinuous at each x ∈ D. If C(Y )
denotes the class of all bounded, closed convex subsets of Y , then C(Y ) is
a metric space with the Hausdorff metric given by

h(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

for A and B in C(Y ). If F (x) belongs to C(Y ) for all x in D ⊆ X, we say F
is Hausdorff metric continuous at x in D if the single-valued map F from D
into the metric space (C(Y ), h) is continuous. We say F is Hausdorff metric
continuous on X if it is Hausdorff metric continuous at all x in X. We make
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an easy observation connecting the three semicontinuity concepts defined
above.

Remark 1.1. Let X and Y be Banach spaces and F a set-valued map
from X into Y with F (x) in C(Y ) for all x in X. Then F is Hausdorff metric
continuous at x in X if and only if F is both lower and upper Hausdorff
semicontinuous at x.

Throughout, X denotes a real Banach space, BX the closed unit ball
of X, SX the unit sphere of X, and extBX the set of extreme points of BX .
The class of all norm attaining functionals on X is denoted by NA(X). For
a subspace Y of X, let

Y ⊥ = {f ∈ X∗ : f(x) = 0 ∀x ∈ Y }
and if x is in X, d(x, Y ) = inf{‖x− y‖ : y ∈ Y }. Further we set

DY = {x ∈ X : d(x, Y ) = 1}.
All subspaces are assumed to be closed. Let Y be a subspace of X. For

x ∈ X, let
PY (x) = {y ∈ Y : ‖x− y‖ = d(x, Y )}.

The subspace Y is said to be proximinal in X if for each x ∈ X, the set
PY (x) is non-empty. The set-valued map PY : X → 2Y is called the metric
projection onto Y . We set

QY (x) = x− PY (x) ∀x ∈ X.
We note that an easy application of the duality formula

d(x, Y ) = max{f(x) : f ∈ Y ⊥, ‖f‖ = 1}, x ∈ X,
implies that for any x ∈ DY ,

QY (x) = {y ∈ SX : f(x) = f(y) ∀f ∈ Y ⊥}.
A finite-dimensional normed linear space X is called polyhedral if BX

has only a finite number of extreme points. In this case it can be shown that
X∗ is also polyhedral and every extreme point of BX is, in fact, exposed.
There are various notions of polyhedrality for infinite-dimensional Banach
spaces (see [6]) and we use here the one given in [8] (see Definition 6.1
of [8]). We call an infinite-dimensional Banach space X polyhedral if every
finite-dimensional subspace of X is polyhedral. We refer the reader to [6]
and [8] for more details.

Proximinality and continuity properties of metric projections for sub-
spaces of finite codimension have been studied for more than 40 years.
Some sample references are [1], [2], [4], [5], [7], [9] and [12]–[21]. It is an
easy consequence of one of Garkavi’s earlier results [9] that if Y is a proxim-
inal subspace of finite codimension in a normed linear space X, then Y ⊥ is
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contained in NA(X). However, this condition is far from sufficient (see [12]
or [18]).

It was observed in [12] that for a subspace Y of finite codimension in a
Banach space X,

Y ⊥ ⊆ NA(X) and Y ⊥ polyhedral ⇒ Y is proximinal,

and if X is a subspace of c0, the above implication becomes an equivalence.
Fonf and Lindenstrauss [7] have considered spaces with property (∗)

(see also Proposition 6.11 of [8] and Example 3.5 of [13]), defined as follows.
A Banach space X has property (∗) if there exists a 1-norming subset B
of SX∗ such that no weak∗ limit point of B of norm 1 attains its norm
on BX .

Property (∗) is hereditary and spaces with property (∗) are necessarily
polyhedral. Also, it follows from the results of [10] that each polyhedral pre-
dual of l1 (in particular c0 and hence each subspace of c0) has property (∗).
In [7], the results of [12] for subspaces of c0 are extended to Banach spaces
with property (∗), and in particular it is shown that the above equivalences
hold for Banach spaces with property (∗).

Easy examples are available to show that the above equivalences do
not always hold. More sophisticated examples given in [7] show that there
are polyhedral Banach spaces X such that Y ⊥ ⊆ NA(X) does not imply
proximinality of Y , and proximinality of Y need not imply Y ⊥ is polyhedral,
for a subspace Y of finite codimension in X.

By Michael’s famous selection theorem, any lower semicontinuous map
from a Banach space X into the class of all closed convex subsets of X
has a continuous selection. However, examples are easily available (see for
instance [3]) to show that lower semicontinuity is not necessary for the ex-
istence of a continuous selection.

In the rest of this section, we assume Y is a proximinal subspace of finite
codimension of a Banach space X.

In a paper [13] subsequent to [12], it was shown that if Y ⊥ is polyhedral,
then the metric projection PY has a continuous selection. This was done by
constructing a lower semicontinuous submap of QY and an application of
Michael’s selection theorem to this submap. It can easily be verified that
this lower semicontinuous submap of QY need not equal QY , and this rela-
tively short, simple proof (see Proposition 4.5 in [13]) for the existence of a
continuous selection for PY does not seem adaptable to yield more, namely,
the lower semicontinuity of PY .

We recall that if X has property (∗) then Y ⊥ is polyhedral. A natural
question that arises in this context is whether PY is lower Hausdorff semicon-
tinuous under suitable additional assumptions onX like having property (∗).
This has been shown very recently by V. Fonf. In the special case when X
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is a closed subspace of c0, we prove the Hausdorff metric continuity of PY ,
which in particular implies the lower Hausdorff semicontinuity of PY (Theo-
rem 4.3). We observe that, in this case, by the above quoted Proposition 4.5
of [13], the weaker conclusion that PY has a continuous selection is already
known.

2. The set-valued map Qf1,...,fk . We begin with some notation and re-
marks needed in what follows. If E is a normed linear space and {f1, . . . , fn}
is a finite subset of E∗ and x ∈ BE , we set

LE(x, f1, . . . , fn) =
n⋂

i=1

{y ∈ BE : fi(y) = fi(x)}.(1)

In the rest of this section, X denotes a Banach space and Y a subspace
of finite codimension n in X. For x ∈ DY and a finite set of functionals
f1, . . . , fk in Y ⊥, we define

Qf1,...,fk(x) =
k⋂

i=1

{y ∈ BX : fi(y) = fi(x)}.

Remark 2.1. Note that Qf1,...,fk(x) always contains QY (x) and can be
an empty set. However, if Y is proximinal, then PY (x) and hence QY (x)
is non-empty and so the sets Qf1,...,fk(x) are non-empty for any finite sub-
set f1, . . . , fk of Y ⊥. If f1, . . . , fn is a basis of Y ⊥, then Qf1,...,fn = QY
irrespective of the basis f1, . . . , fn.

The following simple but useful remark is easily verified.

Remark 2.2. Let Y be proximinal. Then the following are equivalent.

(i) The metric projection PY is lower (resp. upper) Hausdorff semicon-
tinuous on X.

(ii) The mapQY is lower (resp. upper) Hausdorff semicontinuous onDY .
(iii) For each x ∈ DY , there exists a basis f1, . . . , fn of Y ⊥ such that the

set-valued map Qf1,...,fn , defined on the domain DY , is lower (resp.
upper) Hausdorff semicontinuous at x.

We emphasize that the domain of the set-valued maps Qf1,...,fk will be
assumed to be the set DY hereafter.

If f1, . . . , fk is a linearly independent subset of Y ⊥, where k > 1 and Y
is proximinal in X, we define numbers αx,k and βx,k, for x in DY , as follows:

αx,k = inf{fk(y) : y ∈ Qf1,...,fk−1(x)},
βx,k = sup{fk(y) : y ∈ Qf1,...,fk−1(x)}.

(2)
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We begin with a result on Hausdorff metric continuity of the maps
Qf1,...,fk . This is needed in the proof of the main theorem, Theorem 4.3.
The proof uses arguments very similar to that of Theorem 2.5 in [13].

Proposition 2.3. Let X be a Banach space, Y be proximinal in X and
x ∈ DY . Assume that there exists a finite subset {f1, . . . , fk+1}, 1 ≤ k < n,
of Y ⊥ such that the map Qf1,...,fk is Hausdorff metric continuous at x and
further

αx,k+1 < fk+1(x) < βx,k+1.

Then Qf1,...,fk+1 is Hausdorff metric continuous at x.

Proof. By Remark 1.1, we need to show that Qf1,...,fk+1 is both lower
and upper Hausdorff semicontinuous at x. Let

2η = min{βx,k+1 − fk+1(x), fk+1(x)− αx,k+1}.(3)

Then η > 0.
We first prove the lower Hausdorff semicontinuity. Since Qf1,...,fk is lower

Hausdorff semicontinuous at x, given ε > 0, there exists δ > 0 such that
for any z in Qf1,...,fk(x) and y in DY with ‖x − y‖ < δ, there exists w in
Qf1,...,fk(y) such that ‖z−w‖ < ηε/8. Without loss of generality we assume
that 0 < δ < ηε/8, 0 < ε < 1, and ‖fi‖ = 1 for 1 ≤ i ≤ n. Now, if y ∈ DY

and ‖x− y‖ < δ, it follows easily that

(4) βy,k+1 > βx,k+1 − η/8, αy,k+1 < αx,k+1 + η/8,

(5) αy,k+1 < fk+1(y) < βy,k+1.

Fix z ∈ Qf1,...,fk+1(x). We have to show that there exists v in Qf1,...,fk+1(y)
such that ‖z − v‖ < ε.

Since Qf1,...,fk+1(x) ⊆ Qf1,...,fk(x), there exists w in Qf1,...,fk(y) such that
‖z − w‖ < ηε/8. We have

fk+1(z) = fk+1(x), ‖w − z‖ < η/8, ‖x− y‖ < ηε/8 < η/8.

This together with (4) and (5) implies

βy,k+1 − fk+1(w) = βy,k+1 − βx,k+1 + βx,k+1 − fk+1(x)(6)

+ fk+1(x)− fk+1(z) + fk+1(z)− fk+1(w)

> 2η − (η/8 + η/8) > η.

Similarly we can show that

fk+1(w)− αy,k+1 > η.(7)

Also,

|fk+1(y)− fk+1(w)| ≤ |fk+1(w)− fk+1(z)|+ |fk+1(z)− fk+1(x)|(8)

+ |fk+1(x)− fk+1(y)|
< ηε/8 + ηε/8 = ηε/4 < η/4.
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If fk+1(w) = fk+1(y), then w ∈ Qk+1(y) and ‖w − z‖ < ε. Take v = w in
this case.

Otherwise, we slightly perturb w to get an element of Qf1,...,fk+1(y) as
follows. Note that using (6)–(8), we can get w1 in Qf1,...,fk(y) such that

|fk+1(w1)− fk+1(w)| > η,(9)

and fk+1(y) lies in between fk+1(w) and fk+1(w1). Choose 0 < λ < 1 such
that

fk+1(λw + (1− λ)w1) = fk+1(y)

and take v = λw + (1 − λ)w1. Since w and w1 are in Qf1,...,fk(y), v is in
Qf1,...,fk+1(y). Also,

(1− λ)[fk+1(w1)− fk+1(w)] = fk+1(y)− fk+1(w).

This together with (8) and (9) gives

1− λ < ηε

4η
= ε/4.

Hence
‖w − v‖ = (1− λ)‖w − w1‖ ≤ 2(1− λ) < 2ε/4 = ε/2,

‖z − v‖ ≤ ‖z − w‖+ ‖w − v‖ < ε/2 + ε/2 = ε.

We now prove the upper Hausdorff semicontinuity. Since Qf1,...,fk is up-
per Hausdorff semicontinuous at x, given ε > 0, there exists δ > 0 such that
for any y in DY with ‖x− y‖ < δ and for any w in Qf1,...,fk(y), there exists
z in Qf1,...,fk(x) such that ‖z − w‖ < ηε/8. Without loss of generality we
assume that 0 < δ < ηε/8, 0 < ε < 1, and ‖fi‖ = 1 for 1 ≤ i ≤ n. We have
to show that there exists v in Qf1,...,fk+1(x) such that ‖z − v‖ < ε.

We have

fk+1(w) = fk+1(y), ‖w − z‖ < η/8, ‖x− y‖ < ηε/8 < η/8.

Also

βx,k+1 − fk+1(y) = βx,k+1 − fk+1(x) + fk+1(x)− fk+1(y) > 2η − η/8
and so
βx,k+1−fk+1(z) = βx,k+1−fk+1(y)+fk+1(y)−fk+1(w)+fk+1(w)−fk+1(z)

> 2η − η/8− η/8 > η.

Similarly we can show that

fk+1(z)− αx,k+1 > η.

Now
|fk+1(x)− fk+1(z)| ≤ |fk+1(x)− fk+1(y)|+ |fk+1(y)− fk+1(w)|

+ |fk+1(w)− fk+1(z)|
≤ εη/8 + εη/8 = εη/4 < η/4.
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Note that we have now obtained (6)–(8) with x and z in place of y and w
respectively. Hence there exists v in Qf1,...,fk+1(x) satisfying ‖z − v‖ < ε.
This completes the proof.

3. Hausdorff metric continuity of metric projections. In this sec-
tion, we obtain a sufficient condition (Theorem 3.10) for Hausdorff metric
continuity of the metric projection onto a proximinal subspace of finite codi-
mension. We need some facts about finite-dimensional convex sets, gathered
in the remarks and propositions below.

Let E be a Banach space and C be a closed convex subset of E. Any
convex extremal subset of C is called a face of C. If f ∈ E∗, we set

JE(f) = {x ∈ SE : f(x) = ‖f‖}.
If non-empty, the closed convex subset JE(f) is a face of BE and is called
an exposed face of BE . A face need not be an exposed face.

If f1, . . . , fk are in E∗, we define inductively, for 2 ≤ i ≤ k, as in [13],

JE(f1, . . . , fi) = {x ∈ JE(f1, . . . , fi−1) : fi(x) = ki},(10)

where
ki = sup{fi(y) : y ∈ JE(f1, . . . , fi−1)}.

Also, for any f ∈ E∗, ker f denotes the kernel of f and dimA denotes
the dimension of the set A. The relative interior of a convex subset A of a
normed linear space X is the interior of A when A is considered as a subset
of the affine hull of A, and is denoted by rel.intA.

Remark 3.1. Let E be an n-dimensional normed linear space and x
belong to SE . Then it is known and easily shown that the minimal face of BE
containing x is a proper face of BE and there exists a linearly independent
subset {f1, . . . , fm} of E∗ such that F = JE(f1, . . . , fm). If x is in extBE ,
or equivalently F is a singleton, then m can be taken to be n (see Lemma 1
in [15]). If x is not an extreme point of BE , then dimF > 0 and x ∈ rel.intF
as F is the minimal face of BE containing x. Now, if F − x = A, then
A ⊆ M =

⋂m
i=1 ker fi. If dimA < dimM , we can select fm+1, . . . , fk such

that {f1, . . . , fm, fm+1, . . . , fk} is a linearly independent subset of E∗ and
L =

⋂k
i=1 ker fi is the subspace generated by the set A. Let Γx = L + x.

Then F = Γx ∩BE . We observe that zero is in the relative interior of A and
the relative interior of F coincides with the interior of F with respect to the
affine set Γx. Further,

F = JE(f1, . . . , fm) = JE(f1, . . . , fk).

In summary, if x is in SE , then there exists a linearly independent subset
{f1, . . . , fk} of E∗ such that the minimal face F of BE containing x is F =
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JE(f1, . . . , fk) (k = n if x is extreme) and x is in the interior of F with
respect to the affine set Γx, as defined above.

The set JE(f1, . . . , fk) in the above remark turns out to be a finite in-
tersection of exposed faces of BE when E is a polyhedral space.

Remark 3.2. Let E be an n-dimensional, polyhedral normed linear
space. For x in SE , we set

Ax = {f ∈ SE∗ : f(x) = 1}, Cx = {f ∈ extSE∗ : f(x) = 1}.
Since E is polyhedral, Cx is a finite set. Also,

⋂

f∈Ax
JE(f) =

⋂

f∈Cx
JE(f).

Let {fi : 1 ≤ i ≤ k} be a maximal linearly independent subset of Cx. If

L =
⋂

f∈Cx
ker f =

k⋂

i=1

ker fi, Γx = L+ x, γx = Γx ∩BE ,

then by Lemma I.5 of [7], x is in the interior of γx with respect to the affine
set Γx, or equivalently, x is in the relative interior of the convex set γx. Since
γx is an extremal subset of BE , this implies F = γx, where F is the minimal
face of BE containing x. Clearly,

F = γx =
k⋂

i=1

JE(fi).(11)

We now make the following definition.

Definition 3.3. Let Y be a proximinal subspace of codimension n in
a normed linear space X, and x an element of DY . We say x is a k-corner
point , 1 ≤ k ≤ n, with respect to a linearly independent set of functionals
f1, . . . , fk in Y ⊥ if

Qf1,...,fk(x) =
k⋂

i=1

JX(fi).

We need the following proposition (Proposition 2.4 in [13]). We present
it with a minor correction in the statement.

Proposition 3.4. Let E be an n-dimensional normed linear space, Φ
be an element of SE \ extBE , and F = JE(f1, . . . , fk) the minimal face
to which Φ belongs, for suitable linearly independent functionals f1, . . . , fk
in E∗. Then the set {f1, . . . , fk} can be expanded to a linearly independent
set {f1, . . . , fk, fk+1, . . . , fl} in E∗ such that

inf{fi(ψ) : ψ ∈ LE(Φ, f1, . . . , fi−1)}
< fi(Φ) < sup{fi(ψ) : ψ ∈ LE(Φ, f1, . . . , fi−1)}
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for all k + 1 ≤ i ≤ l and for LE(Φ, f1, . . . , fl) = {Φ}, where the sets
LE(Φ, f1, . . . , fi) are given by (1).

The lemma below shows that if the functionals f1, . . . , fk are chosen as
in Remark 3.1, then in the above proposition l = n and f1, . . . , fn are, in
fact, a basis of Y ⊥.

Lemma 3.5. Let E be an n-dimensional normed linear space, x be in
SE\extBE , and the set F and the functionals f1, . . . , fk be as in Remark 3.1.
If {fk+1, . . . , fl} is a finite subset of E∗ such that

{x} =
l⋂

i=1

{z ∈ BE : fi(z) = fi(x)}

then the set {f1, . . . , fl} is total over E.

Proof. Since x is not an extreme point of BE , dimF > 0. Let Γx de-
note the affine set x +

⋂k
i=1 ker fi. Then by Remark 3.1, there exists δ > 0

such that if z in Γx satisfies ‖x − z‖ < δ, then z ∈ F . Select any y in E
such that fi(y) = 0 for all 1 ≤ i ≤ l. We will show that y = 0. We can
assume ‖y‖ < δ. Then x + y ∈ F and hence ‖x + y‖ ≤ 1. Thus, x + y ∈⋂l
i=1{z ∈ BE : fi(z) = fi(x)} and by our assumption, y must be the zero

element.

The following proposition is an immediate consequence of Proposition 3.4
and the above lemma.

Proposition 3.6. Let E be an n-dimensional normed linear space, Φ
be in SE \ extBE , and F = JE(f1, . . . , fk) be the minimal face to which Φ
belongs, for suitable linearly independent functionals f1, . . . , fk in E∗ so that
Φ is in the interior of F with respect to the affine set Φ+

⋂k
i=1 ker fi. Then

the set {f1, . . . , fk} can be expanded to a basis {f1, . . . , fn} in E∗ such that

(12) inf{fi(ψ) : ψ ∈ LE(Φ, f1, . . . , fi−1)}
< fi(Φ) < sup{fi(ψ) : ψ ∈ LE(Φ, f1, . . . , fi−1)}

for all k + 1 ≤ i ≤ n.

Let x ∈ X. We denote by x̂ the image of x under the canonical embedding
of X into X∗∗, and let x̂|Y ⊥ denote the restriction of x̂ to Y ⊥.

Define a map CY ⊥ : X → (Y ⊥)∗ by CY ⊥(x) = x̂|Y ⊥ .

Remark 3.7. Note that for any x in X and f in Y ⊥, we have

f(x) = (CY ⊥(x))(f), CY ⊥(DY ) ⊆ S(Y ⊥)∗ .

An easily verified result of Garkavi, given in [9], says that

Y is proximinal in X ⇔ CY ⊥(BY ) = B(Y ⊥)∗ .
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Let Y be a proximinal subspace of codimension n in X, x in DY ,
Φ = CY ⊥(x) and {f1, . . . , fn} a basis of Y ⊥. Considering {f1, . . . , fn} as
a basis of (Y ⊥)∗∗, for any positive integer k with 1 < k ≤ n, select any ψ
in L(Y ⊥)∗(Φ, f1, . . . , fk−1). Now Garkavi’s condition shows that there exists
z in BX such that CY ⊥(z) = ψ. Clearly z ∈ Qf1,...,fk−1(x). Note that we
always have

CY ⊥(Qf1,...,fk−1(x)) ⊆ L(Y ⊥)∗(Φ, f1, . . . , fk−1).

By proximinality of Y , it now follows that

CY ⊥(Qf1,...,fk−1(x)) = L(Y ⊥)∗(Φ, f1, . . . , fk−1).

Hence, for 1 < k ≤ n,

αx,k = inf{ψ(fk) : ψ ∈ L(Y ⊥)∗(Φ, f1, . . . , fk−1)},
βx,k = sup{ψ(fk) : ψ ∈ L(Y ⊥)∗(Φ, f1, . . . , fk−1)},

where αx,k and βx,k are given by (2).

We need the following characterization of proximinal subspaces of finite
codimension.

Proposition 3.8 ([16, Corollary 1.2]). Let X be a normed linear space
and Y be a subspace of finite codimension n in X. Then Y is proximinal
in X if and only if for any basis {f1, . . . , fn} of Y ⊥,

JX(f1, . . . , fk) 6= ∅
and

CY ⊥(JX(f1, . . . , fk)) = J(Y ⊥)∗(f1, . . . , fk) for 1 ≤ k ≤ n.(13)

Remark 3.9. Let X be a normed linear space and Y be a proximinal
subspace of finite codimension n in X. Select any x in DY and let Φ be
CY ⊥(x). Then Φ is in S(Y ⊥)∗ .

Now assume Φ is in extB(Y ⊥)∗ . Taking E = (Y ⊥)∗ in Remark 3.1, we
obtain a basis {f1, . . . , fn} of Y ⊥ such that

{Φ} = J(Y ⊥)∗(f1, . . . , fn).

Then
L(Y ⊥)∗(Φ, f1, . . . , fn) = J(Y ⊥)∗(f1, . . . , fn),

which together with (13) gives

Qf1,...,fn(x) = QY (x) = JX(f1, . . . , fn).

If Φ is not in extB(Y ⊥)∗ then taking (Y ⊥)∗ for E in Proposition 3.6, we
get a basis {f1, . . . , fn} of Y ⊥ and a positive integer k with 1 ≤ k < n such
that

Φ ∈ J(Y ⊥)∗(f1, . . . , fk)
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and (12) holds, with (Y ⊥)∗ in place of E. Clearly,

L(Y ⊥)∗(Φ, f1, . . . , fk) = J(Y ⊥)∗(f1, . . . , fk)

and using (13) again, we have

JX(f1, . . . , fk) = Qf1,...,fk(x).

Now, by Remark 3.7,

CY ⊥(Qf1,...,fi(x)) = L(Y ⊥)∗(Φ, f1, . . . , fi) for k ≤ i ≤ n.
This together with (2) and also (12), with (Y ⊥)∗ in place of E, implies

αx,i < fi(x) = Φ(fi) < βx,i ∀i ∈ {k + 1, . . . , n}.(14)

Thus for each x in DY , there exists a basis {f1, . . . , fn} of Y ⊥ such that
either

Qf1,...,fn(x) = JX(f1, . . . , fn)

or there exists a positive integer k with 1 ≤ k < n such that

Qf1,...,fk(x) = JX(f1, . . . , fk)

and (14) holds. If further Y ⊥ is polyhedral , by Remark 3.2, the sets
JX(f1, . . . , fj) can be replaced by

⋂j
i=1 JX(fi), for j equal to n or k, in

the above two equalities.

Now we can prove the main result of this section.

Theorem 3.10. Let X be a Banach space and Y be a proximinal sub-
space of finite codimension n in X. Fix x in DY and a basis {f1, . . . , fn}
of Y ⊥ as in Remark 3.8. Assume that the map Qf1,...,fk is Hausdorff met-
ric continuous at x if k is the largest integer , less than or equal to n, that
satisfies

Qf1,...,fk(x) = JX(f1, . . . , fk).

Then QY , and hence the metric projection PY , is Hausdorff metric contin-
uous at x.

Proof. By Remarks 1.1 and 2.2, it suffices to show that the map QY ,
with domain DY , is Hausdorff metric continuous at x. If

QY (x) = Qf1,...,fn(x) = JX(f1, . . . , fn)

there is nothing to prove. Otherwise, by Remark 3.9, there exists 1 ≤ k < n
such that

Qf1,...,fk(x) = JX(f1, . . . , fk)

and (14) holds. Again by assumption, Qf1,...,fk is Hausdorff metric continu-
ous at x. Now, a repeated application of Proposition 2.4 using (14) shows
that Qf1,...,fn = QY is Hausdorff metric continuous at x.
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It is now easily verified that Definition 3.3, Remark 3.9 and Theorem 3.10
yield

Theorem 3.11. Let X be a Banach space and Y be a proximinal sub-
space of finite codimension n in X with Y ⊥ polyhedral. Assume that , when-
ever x in DY is a k-corner point with respect to a set of linearly independent
functionals f1, . . . , fk in Y ⊥, for some 1 ≤ k ≤ n, then Qf1,...,fk is Hausdorff
metric continuous at x. Then the metric projection PY is Hausdorff metric
continuous on X.

4. Subspaces of c0(N). Let N denote the set of positive integers, and
c0(N) the space of sequences of real scalars converging to zero with the usual
sup norm, denoted by ‖·‖∞. Let X be a non-trivial subspace of c0(N), and Y
a subspace of finite codimension n in X. By Y ⊥ we denote the annihilator
of Y considered as a subspace of X, that is,

Y ⊥ = {F ∈ X∗ : F (x) = 0 ∀x ∈ Y }.
In this case, we have the following result, which is a corollary to Lemma 2

and Theorem 3 of [12] (see also Theorem III.5 in [11]).

Proposition 4.1. Let X be a subspace of c0(N) and Y be a subspace
of finite codimension in X. Then

Y ⊥ ⊆ NA(X) ⇔ Y is proximinal and Y ⊥ is polyhedral.

We can now state one of the main results of this paper.

Theorem 4.2. Let X be a subspace of c0(N) and Y be a proximinal
subspace of finite codimension n in X. Assume x0 in DY is a k-corner
point for some 1 ≤ k ≤ n with respect to some linearly independent subset
{F1, . . . , Fk} of Y ⊥. Then the map QF1,...,Fk is Hausdorff metric continuous
at x0.

Before giving the rather long proof of Theorem 4.2, we observe that our
main result, given below, follows immediately from Theorem 4.2, Proposi-
tion 4.1 and Theorem 3.11.

Theorem 4.3. Let X be a subspace of c0(N) and Y be a proximinal sub-
space of finite codimension in X. Then the metric projection PY is Hausdorff
metric continuous on X.

The above theorem is to be compared with Proposition 4.5 of [13],
which says that if Y is a subspace of finite codimension in a Banach space X,
with Y ⊥ polyhedral, then the metric projection PY has a continuous selec-
tion.

We now proceed to prove Theorem 4.2. The proof is split into a number
of facts for clarity. We use the following notation in the proofs given below.
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Let Λ denote a non-empty subset of N. For x = (x(n))n≥1 in c0(N), let
xΛ denote the element of c0(N) given by

xΛ(n) =
{
x(n) if n ∈ Λ,

0 if n ∈ N \ Λ.

Similarly, if f = (f(n)) then fΛ denotes the element of l1(N) given by

fΛ(n) =
{
f(n) if n ∈ Λ,

0 if n ∈ N \ Λ.

We set Λc = N \ Λ.
Let X be a subspace of c0(N). We denote by XΛ the subspace of c0(N)

given by
XΛ = {xΛ : x ∈ X}.

If X = c0(N), we write c0(Λ) in place of XΛ and set

l1(Λ) = {f = (f(n))n≥1 ∈ l1(N) : f(n) = 0 ∀n ∈ Λc}.
Also, we define a subspace of l1(N) by

X⊥Λ = {fΛ : f ∈ X⊥}.
We observe that the notation X⊥Λ could have two legitimate meanings. How-
ever, we use it throughout to mean (X⊥)Λ, as in the definition above.

For convenience in notation, we denote by X⊥Λc1 the closed unit ball of
the subspace X⊥Λc of l1. That is, we set

X⊥Λc1 = BX⊥Λc
=
{
f ∈ X⊥Λc : ‖f‖1 =

∞∑

n=0

|f(n)| ≤ 1
}
,

where
X⊥Λc = {fΛc : f ∈ X⊥}.

Finally, c0 denotes c0(N) and l1 denotes l1(N).

Remark 4.4. Assume Λ is a finite subset of N. Then XΛ is a closed
subspace of c0. Also, it is easily verified that X⊥Λc is a weak∗ closed subspace
of l1.

If x ∈ c0 and f ∈ l1, we set

〈x, f〉 =
∞∑

n=1

x(n)f(n), S(f) = {n ∈ N : f(n) 6= 0}.

We recall that f is in NA(c0) if and only if S(f) is a finite set.

The following remark is easy to verify.

Remark 4.5. Let X be c0. Select any f in NA(X) and x in JX(f).
Let (yn) be a sequence in BX such that 〈yn, f〉 → 1 as n → ∞. Then,
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if Λ = S(f),

‖(x− yn)Λ‖∞ = sup
k∈Λ
|(x− yn)(k)| → 0 as n→∞.

We now start proving Theorem 4.2 through a series of facts. In the
following results of this section, X denotes a subspace of c0.

Fact 4.6. Let Λ be a finite subset of N. Assume x in BX , and (wn) a
sequence in BX , are such that

‖(x− wn)Λ‖∞ = sup
k∈Λ
|(x− wn)(k)| → 0 as n→∞.

Then
lim
n→∞

sup{〈x− wn, f〉 : f ∈ X⊥Λc1} = 0.

Proof. Define a map T from X⊥ into X⊥Λc by

T (f) = fΛc , f ∈ X⊥.
Then T is continuous, linear and onto. Since X⊥Λc is a closed subspace of l1,
T is open. There exists an M > 0 such that for any h in X⊥Λc1, there exists
an f in X⊥ satisfying

‖f‖1 ≤M, T (f) = fΛc = h.

Note that in this case for any z in X we have

0 = 〈z, f〉 = 〈z, fΛ〉+ 〈z, T (f)〉 = 〈z, fΛ〉+ 〈z, h〉 = 〈zΛ, fΛ〉+ 〈z, h〉.
Thus

|〈z, h〉| = |〈zΛ, fΛ〉| ≤M‖zΛ‖∞
for any z in X and h in X⊥Λc1.

Now, by assumption, limn→∞ ‖(x− wn)Λ‖∞ = 0, and x−wn is in X for
all n ≥ 1. By the above inequality, we have

sup
h∈X⊥Λc1

〈(x− wn), h〉 ≤M‖(x− wn)Λ‖∞

and the required conclusion follows.

Fact 4.7. Let x ∈ BX , and Λ a finite subset of N. Assume that

sup
f∈X⊥Λc1

〈x, f〉 = 1.

Then Ax = {f ∈ X⊥Λc1 : f(x) = 1} 6= ∅, and

Λ1 =
⋃
{S(f) : f ∈ Ax}

is a finite subset of Λc. Further , if (wn) is a sequence in BX such that

lim sup
n→∞

{〈x− wn, f〉 : f ∈ X⊥Λc1} = 0(15)
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then
lim
n→∞

‖(x− wn)Λ1
‖∞ = 0.

Proof. As mentioned in Remark 4.4, X⊥Λc1 is a weak∗ compact subset of
l1(N) and so Ax is non-empty. It is easily seen that Λ1 ⊆ {k ∈ N : |x(k)| = 1}
and since x ∈ c0, Λ1 is finite. Clearly, Λ1 ⊆ Λc.

For any k in Λ1, there exists f in X⊥Λc1 such that 〈x, f〉 = 1 and k ∈ S(f).
Now by (15) and Remark 4.5,

lim
n→∞

‖(x− wn)S(f)‖∞ = 0.

As k ∈ S(f), limn→∞ |(x−wn)(k)| = 0. Since Λ1 is a finite set, this implies
limn→∞ ‖(x− wn)Λ1

‖∞ = 0.

Remark 4.8. Assume y in BX satisfies ‖(x− y)Λ‖∞ = 0, for Λ as in
the above fact. Then by Fact 4.6 we conclude that

sup{〈x− y, f〉 : f ∈ X⊥Λc1} = 0.

Therefore, Ax = Ay. Further by Fact 4.7, ‖(x− y)Λ1
‖∞ = 0, and

lim
n→∞

‖(y − wn)Λ1
‖∞ = 0

if (wn) is a sequence in BX satisfying

lim sup
n→∞

{〈x− wn, f〉 : f ∈ X⊥Λc1} = 0.

Fact 4.9. Let x ∈ BX , Λ0 be a non-empty finite subset of N, and

A(x,Λ0) = {y ∈ BX : ‖(x− y)Λ0
‖∞ = 0}.

Then there exists a finite subset Λ of N containing Λ0 and η > 0 such that

sup
f∈X⊥Λc1

〈y, f〉 = 1− η ∀y ∈ A(x,Λ0),(16)

and for any sequence (wn) in BX satisfying limn→∞ ‖(x− wn)Λ0
‖∞ = 0, we

have
lim
n→∞

‖(y − wn)Λ‖∞ = 0, ∀y ∈ A(x,Λ0).(17)

Proof. If (16) holds with Λ = Λ0, we can take Λ = Λ0 and there is
nothing to prove. Otherwise, as by Fact 4.6,

sup
f∈X⊥

Λc
01

〈x− y, f〉 = 0 ∀y ∈ A(x,Λ0),

we must have
sup

f∈X⊥
Λc

01

〈y, f〉 = 1 ∀y ∈ A(x,Λ0).

We take Λ = Λ0 in Fact 4.7 and using Remark 4.8 get a finite subset Λ1

of Λc
0 satisfying (17) for Λ = Λ1. Let Λ = Λ0 ∪ Λ1. Clearly (17) is satisfied
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for Λ and in particular,

‖(x− y)Λ‖∞ = 0 ∀y ∈ A(x,Λ0),

which, in turn, implies (Fact 4.6)

sup
f∈X⊥Λc1

〈x− y, f〉 = 0 ∀y ∈ A(x,Λ0).

If now (16) holds for Λ, we are done. Otherwise we must have

sup
f∈X⊥Λc1

〈y, f〉 = 1 ∀y ∈ A(x,Λ0).

Now repeat the above argument with Λ0 replaced by Λ = Λ0 ∪ Λ1 to get
a finite subset Λ2 of Λc satisfying (17) for Λ = Λ2. Clearly (17) holds for
Λ =

⋃2
i=0 Λi and if (16) also holds for Λ, then Λ is the required set.

We proceed inductively to get pairwise disjoint, finite sets Λi satisfy-
ing (17) for Λ = Λi. Note that, for each i, Λi ⊆ {n ∈ N : |x(n)| = 1}.
Since x ∈ c0, the inductive process must end at a finite stage, say l, with
Λ =

⋃l
i=0 Λi satisfying (16). Clearly Λ also satisfies (17) and is the required

set.

Remark 4.10. It is clear from the above facts that the set Λ in the above
fact and the constant η occurring in (16) are independent of the choice of
the sequence (wn).

Fact 4.11. Let g in l1 and x in SX satisfy g(x) = ‖g‖1. Then there
exists a finite subset Λ of N, containing Λ0 = S(g), and η > 0 such
that (16) is satisfied and also (17), for any sequence (wn) ⊆ BX with
limn→∞〈wn, g〉 = 1.

Proof. Note that Λ0 is a finite set and JX(g) = A(x,Λ0). Also, using
Remark 4.5, we have

lim
n→∞

‖(x− wn)Λ0
‖∞ = 0

for any sequence (wn) contained in BX with limn→∞〈wn, g〉 = 1. The re-
quired conclusion now follows from Fact 4.9.

Fact 4.12. Let x be in BX and assume there exists a finite subset Λ
of N, η > 0 such that

1− sup
f∈X⊥Λc1

〈x, f〉 = 2η,

and w in BX satisfying

sup
f∈X⊥Λc1

〈x− w, f〉 < ηε

1− ε
for some 0 < ε < 1/2. Then there exists a t in c0 such that

‖t‖∞ ≤ 1, ‖x− t‖∞ < 3ε,

〈t, f〉 = 〈w, f〉 ∀f ∈ X⊥Λc .
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Proof. By Remark 4.4, X⊥Λc is a weak∗ closed subspace of l1, and there-
fore,

X⊥Λc = M⊥ = {f ∈ l1 : 〈y, f〉 = 0 ∀y ∈M},
where

M = (X⊥Λc)⊥ = {y ∈ c0 : 〈y, f〉 = 0 ∀f ∈ X⊥Λc}.
We have 1− 2η ≥ 0, 0 < ε < 1/2 and if

ηε

1− ε = ε′,

then ε′ < min{ε, η}. Further, by assumption

sup
f∈X⊥Λc1

〈w, f〉 < 1− 2η + ε′ ≤ 1− 2η + η = 1− η.

Now, our assumption along with the above inequality and the duality for-
mula implies that there exist y1 and y2 in M satisfying

‖w − y1‖∞ < 1− η, ‖x− w − y2‖∞ < ε′.

Let s1 = w − y1 and s2 = w + y2. Then

〈si, f〉 = 〈w, f〉 ∀f ∈ X⊥Λc , i = 1, 2.(18)

Also,

‖x− s2‖∞ < ε′, ‖s1‖∞ < 1− η.(19)

Note that
‖s2‖∞ ≤ ‖x‖∞ + ε′ ≤ 1 + ε′

and λ = ε satisfies the equation

λ(1− η) + (1− λ)(1 + ε′) = 1.

Let t = λs1 + (1− λ)s2. Then ‖t‖∞ ≤ 1. Also,

‖x− t‖∞ ≤ λ‖x− s1‖∞ + (1− λ)‖x− s2‖∞
≤ 2λ+ ‖x− s2‖∞ < 2ε+ ε = 3ε

by (19). Now using (18) we have

〈t, f〉 = 〈w, f〉 ∀f ∈ X⊥Λc ,

and this completes the proof.

5. Hausdorff metric continuity of Qf1,...,fk . Having proved most
of the required preliminary results in the previous section, we now prove
Theorem 4.2. We begin with two observations. In the following, X stands
for a subspace of c0.

Remark 5.1. We have X∗ ' l1/X
⊥. Let T denote the quotient map

from l1 onto l1/X⊥. For F ∈ X∗, let

N(F ) = T−1(F ) ∩ {f ∈ l1 : ‖f‖1 = ‖F‖}.
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If f ∈ N(F ) and f|X denotes f restricted to X then

f|X = F,

∞∑

n=1

|f(n)| = ‖f‖1 = ‖f|X‖ = ‖F‖.

Also, in this case we have

JX(f) = Jc0(f) ∩X = JX(F ).

Fact 5.2. Let Y be a proximinal subspace of finite codimension n in X
and x0 in DY be a k-corner point , 1 ≤ k ≤ n, with respect to a linearly
independent subset {F1, . . . , Fk} of SX∗ ∩ Y ⊥. Select any fi in N(Fi) for
1 ≤ i ≤ k and let g denote k−1∑k

i=1 fi. Then

S(g) =
k⋃

i=1

S(fi).

Proof. By the definition of a k-corner point with respect to F1, . . . , Fk,
we have

QF1,...,Fk(x0) =
k⋂

i=1

{x ∈ BX : Fi(x) = Fi(x0)},

and by Remark 2.1, the set QF1,...,Fk(x0) is non-empty. Now by the above
remark,

QF1,...,Fk(x0) =
k⋂

i=1

JX(Fi) =
k⋂

i=1

JX(fi) =
k⋂

i=1

(Jc0(fi) ∩X) 6= ∅.(20)

Clearly S(g) is contained in
⋃k
i=1 S(fi). Choose any m in

⋃k
i=1 S(fi) and

using (20), choose an element x in
⋂k
i=1[Jc0(fi) ∩X]. Let

Am = {i : 1 ≤ i ≤ k and m ∈ S(fi)}.
For any real number α define

sgnα =





1 if α > 0,

−1 if α < 0,

0 if α = 0.
Clearly the set Am is non-empty and

0 6= x(m) = sgn fi(m) ∀i ∈ Am.
Therefore

0 6= sgn fi(m) = sgn fj(m) ∀i, j in Am.

This implies g(m) 6= 0 and S(g) ⊇ ⋃k
i=1 S(fi). Hence

S(g) =
k⋃

i=1

S(fi).
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Let x and Y be as in Fact 5.2. In the rest of this section, given a linearly
independent subset F1, . . . , Fk of Y ⊥, f1, . . . , fk and g are as defined in
Fact 5.2.

We need the following fact in the proof of Theorem 4.2. We recall that
the definition of k-corner point is given in Definition 3.3.

Fact 5.3. Let X be a subspace of c0(N) and Y be a proximinal subspace
of finite codimension n in X. Assume x0 in DY is a k-corner point for some
1 ≤ k ≤ n with respect to some linearly independent subset {F1, . . . , Fk}
of Y ⊥. Then there exists η > 0 and a finite subset Λ containing S(g) such
that

sup
f∈X⊥Λc1

〈x, f〉 = 1− 2η, ∀x ∈ QF1,...,Fk(x0).

Further given ε > 0, there exists δ > 0 (depending on ε and η) such that for
any y in DY ∩B(x0, δ), w in QF1,...,Fk(y) and x in QF1,...,Fk(x0), we have

‖(x− w)Λ‖∞ < ε, sup
f∈X⊥Λc1

〈x− w, f〉 < ηε

1− ε.

Proof. Since x0 is a k-corner point with respect to F1, . . . , Fk, we have

QF1,...,Fk(x0) =
k⋂

i=1

{x ∈ BX : Fi(x) = Fi(x0) = ‖Fi‖} =
k⋂

i=1

JX(Fi).

Select any x in QF1,...,Fk(x0). Then ‖x‖∞ = 1. We can assume ‖Fi‖ = 1 for
1 ≤ i ≤ k. Clearly ‖g‖1 = 1. Also g(x) = 1, which implies g ∈ NA(c0) and
therefore S(g) is a finite set. Let Λ0 denote the set S(g). Note that

JX(g) = {y ∈ BX : g(x) = ‖g‖1} = A(x,Λ0) = QF1,...,Fk(x0).

Consider any sequence (xn) in DY that converges to x0 in X. Choose
any wn in QF1,...,Fk(xn). Then wn ∈ BX for each n ≥ 1. We have

lim
n→∞

Fi(wn) = lim
n→∞

Fi(xn) = Fi(x0) = Fi(x) = 1 for 1 ≤ i ≤ k
and so

lim
n→∞

fi(wn) = fi(x) = 1 for 1 ≤ i ≤ k.
This implies

lim
n→∞

g(wn) = g(x) = 1,

and by Remark 4.5, we have

lim
n→∞

‖(x− wn)Λ0
‖∞ = 0.

By Fact 4.9, there exists a finite subset Λ of N containing Λ0 and η > 0
such that

(21) sup
f∈X⊥Λc1

〈z, f〉 = 1− 2η, ∀z ∈ QF1,...,Fk(x0),

(22) lim
n→∞

‖(z − wn)Λ‖∞ = 0 ∀z ∈ QF1,...,Fk(x0).
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Now we apply Fact 4.6 to conclude that

lim
n→∞

sup
f∈X⊥Λc1

〈z − wn, f〉 = 0 ∀z ∈ QF1,...,Fk(x0).(23)

It is clear from Remark 4.10 that η is independent of the choice of the
sequence (wn). Thus given 0 < ε < 1/2, (22) and (23) imply that there
exists δ > 0 such that if y ∈ DY and ‖x0 − y‖ < δ then

‖(x− w)Λ‖∞ < ε, sup
f∈X⊥Λc1

〈x− w, f〉 < ηε

1− ε,(24)

for any x in QF1,...,Fk(x0) and w in QF1,...,Fk(y). This together with (21)
completes the proof.

We are now in a position to prove Theorem 4.2.

Proof of Theorem 4.2. Let x0 in DY be a k-corner point for some 1 ≤
k ≤ n with respect to some linearly independent subset {F1, . . . , Fk} of Y ⊥.
If 0 < ε < 1/3, use Fact 5.3 to get a finite subset Λ containing S(g) and
δ > 0 satisfying (24), where η is given by (21).

We first prove the lower Hausdorff semicontinuity of QF1,...,Fk at x0.
To this end, select any x in QF1,...,Fk(x0), y in DY ∩ B(x0, δ) and w in
QF1,...,Fk(y). We will construct v in QF1,...,Fk(y) such that ‖x− v‖∞ < 3ε.

We apply Fact 4.12 to get t ∈ c0 with ‖t‖∞ ≤ 1, ‖x− t‖∞ < 3ε and

〈t, f〉 = 〈w, f〉 ∀f ∈ X⊥Λc .

Define
v(m) =

{
w(m) if m ∈ Λ,

t(m) if m ∈ Λc.
We observe that at this point of the proof, we have made use of the special
structure of c0 in the construction of v and it is easily seen that v belongs
to the unit ball of c0. Also, by Fact 5.2,

S(g) =
k⋃

i=1

S(fi),

and since Λ contains Λ0, which is S(g), we have

〈v, fi〉 = 〈w, fi〉 = 〈w,Fi〉 = 〈y, Fi〉 for 1 ≤ i ≤ k.(25)

Further, if f is in X⊥ then

〈v, f〉 = 〈v, fΛ〉+ 〈v, fΛc〉 = 〈w, fΛ〉+ 〈t, fΛc〉 = 〈w, fΛ〉+ 〈w, fΛc〉 = 0

as w is in X. Hence v ∈ X and so

〈v, Fi〉 = 〈v, fi〉 for 1 ≤ i ≤ k.
By (25), the above equality gives

〈v, Fi〉 = 〈y, Fi〉 for 1 ≤ i ≤ k



METRIC PROJECTIONS 251

and v is in QF1,...,Fk(y). We have ‖x− t‖∞ < 3ε and by (24) this implies

‖x− v‖∞ < 3ε.

This proves the lower Hausdorff semicontinuity of QF1,...,Fk at x0.
Now we show the upper Hausdorff semicontinuity of QF1,...,Fk at x0. To

this end, we select any w in QF1,...,Fk(y), where y ∈ DY ∩B(x0, δ). We will
get v in QF1,...,Fk(x0) such that ‖w − v‖∞ < 5ε.

Select any x in QF1,...,Fk(x0). Note that since ε < 1/3, by (24),

sup
f∈X⊥Λc1

〈x− w, f〉 < ηε

1− ε < η/2.

Since η satisfies (21), using the above inequality we have

1− 2α = sup
f∈X⊥Λc1

〈w, f〉 < 1− 2η + η/2 = 1− 3
2
η.(26)

Hence 2α > η. Now

sup
f∈X⊥Λc1

〈x− w, f〉 = sup
f∈X⊥Λc1

〈w − x, f〉 < ηε

1− ε <
2αε

1− ε.(27)

Now it is easily verified, using (26), (27) and the proof of Fact 4.12, that
we can get t in c0 such that ‖t‖∞ ≤ 1, ‖w − t‖∞ < 5ε and

〈t, f〉 = 〈x, f〉 ∀f ∈ X⊥Λc .

From this point onwards, we can follow the argument for lower Hausdorff
semicontinuity, replacing y by x0 and interchanging x and w, to get v in
QF1,...,Fk(x0) satisfying ‖w − v‖∞ < 5ε. This completes the proof of Theo-
rem 4.2.
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