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SOLVABILITY OF THE FUNCTIONAL EQUATION f = (T —I)h
FOR VECTOR-VALUED FUNCTIONS

BY

RYOTARO SATO (Okayama)

Abstract. Let X be a reflexive Banach space and ({2, A, i) be a probability measure
space. Let T': M (u; X) — M (u; X) be a linear operator, where M (u; X) is the space of all
X-valued strongly measurable functions on ({2, .4, u). We assume that 7' is continuous in
the sense that if (fp) is a sequence in M (p; X) and limy—co fn = f in measure for some
f € M(u; X), then also limp—oo T'fnn = T'f in measure. Then we consider the functional
equation f = (T'— I)h, where f € M(u; X) is given. We obtain several conditions for the
existence of h € M (u; X) satisfying f = (T — I)h.

1. Introduction. Let (X,| - ||x) be a reflexive Banach space and
(£2, A, 1) be a probability measure space. Let M (u; X) denote the linear
space of all X-valued strongly measurable functions on {2 under pointwise
operations. Two functions f and g in M (u; X) are not distinguished pro-
vided that f(w) = g(w) for almost all w € 2. We define a metric dy on
M (p; X) by

@) — gl
(9= T ) — gl

It is known that under this metric M (u; X) becomes an F-space (see p. 8
of [8] for the definition of an F-space). It is easily checked that if (f,) is a
sequence in M (u; X), then limy,_o do(frn, f) = 0 for some f € M(u;X) is
equivalent to the convergence of f, to f in measure as n — oc.

For 0 < p < o0, let L,(1; X) denote the set of all functions f in M (u; X)
such that {, || f(w)|% di < 0. If 0 < p < 1, then under the metric

dp(f.9) = Y If (@) =gk du (= If = gl})
2

Ly(p; X)) becomes an F-space, and if 1 < p < oo, then under the norm
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171 2= (§ 1) ) "
2

Ly(p; X) becomes a Banach space. For p = oo, let Loo(p; X) denote the
set of all functions f in M(u; X) such that ||f|le := esssup{||f(w)|x :
w € 2} < oo. Then Lo (p; X) becomes a Banach space under the norm ||-|| .
The symbols M (p) and Ly(p) (0 < p < oo) mean M (p; X) and L, (p; X),
respectively, for X = the scalars.

Let T : M(p; X) — M(u; X) be a linear operator continuous with re-
spect to the metric do, and let f € M(u;X) be given. We consider the
solvability of the cohomology equation f = (T' — I)h. We first prove that if
0 <r, <1andlim, .7, =1, and the series Zzio rﬁTk f is summable in
M (p; X) for every n > 1, then the condition

oo
sup S H (ZrﬁT’“f) (w)” d\ < 00,
2l o k=0 X

where A is a o-finite measure equivalent to u, implies that there exists h €
Li(\; X) such that f = (T — I)h. Applying this, we then extend Assani’s
result [2] to vector-valued functions. Next, we consider a Lamperti-type
operator T' = T¢ ; (i.e., T has the form T'f(w) = &{(w) f(Tw) for f € M(p; X)
and w € (2, where £ € M(u) and 7 is a null-preserving transformation
on (2, A, ). We extend Krzyzewski’s result [6] to vector-valued functions.
Lastly, we consider a Lamperti-type operator T = T¢ ,, where T is a measure-
preserving transformation on ({2, 4, ). Under this assumption, we extend
Alonso, Hong and Obaya’s result [1] and the author’s result [9] to vector-
valued functions.

For general notions and definitions in ergodic theory we follow Krengel’s
book [5].

2. Results. Our main result is the following theorem.

THEOREM 1. Let X be a reflexive Banach space and v be a strictly
positive measurable function on (2. Let T be a continuous linear operator
on M(p; X), and f e M(p; X). Assume that (ry) is a sequence of positive
numbers such that 0 < r,, < 1, limy,_.oo Ty = 1, and the series ZZ‘;O rfLka
is summable in M (u; X) for every n > 1. Then the condition

o 0= [ (S rtrr) ] ot < o

implies that there exists h € M(,u; X) satisfying f = (T — I)h and
§o Ih(W)llxv(w)dp < C.

For the proof of Theorem 1 we need the following key lemma.
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LEMMA 1 (cf. [6]). Let X be a reflexive Banach space and (f,) be a
sequence in M (u; X) such that

(2) sup || fn(w)||x < oo for almost all w € 2.
n>1

Then there exists a function g € M (u; X) satisfying
(3) g(w) = lim fo(w) for almost all w € £2,

where ]?n is a function in the convex hull co({f; : 1 > n}).

Proof. Define a nonnegative measurable function F' on {2 by
Fw) =swp | fa@)lx (v e ),
and put
O ={w:Flw)<Il} (=12,...).

It follows that 2 C (2 C --- and 2 = limy . 2 (mod u). Since
{fn : n > 1} is uniformly bounded on §2; and since La(f2;; X) is reflex-
ive by the reflexivity of X (cf. Corollary IV.1.2 of [3]), it follows that the
set {fn|n, : n > 1} is weakly sequentially compact in Lo(§2; X). Thus, there
exists a subsequence (f,/) of (f,) and a function g; € La(f2;; X) such that

fwlo, — g1 weakly in Lo(82; X) as n' — oc.

By the diagonal argument we see that there exists a subsequence (f,) of
(fn) and a function g € M (p; X) such that for each [ > 1,

frele, — gla,  weakly in Lo(§2;; X) as k — oo.

By Theorem 3.13 of [8], there exists f; € co({fn, : k > I}) for each [ > 1
such that

>V llg(w) )deu<z2 F<1 o (1>1).
9}

k=l 2, k=l
Hence, limy,_, o fk(w) = g(w) for almost all w € (2, and the proof is complete.

Proof of Theorem 1. Let f,, = > 72 rET* f for each n > 1. Since

lim d0<irﬁka, fn) =0,
k=0

N—oo

it follows that limy_ oo do(rYTNf,0) = 0, ie., limy oo rYTNf = 0 in
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M (p; X). This together with the continuity of 7" implies

N N
Jo=Tfu= Jim (Do rkThf =3 rkrty)
k=0 k=0

= lim [f—(1- Tn)T(]:g:TZT’“f) — TN ]

=f-=0=r)Tfn (in M(p;X)).
Here, since {,(1 — )|/ fn(w)|xv(w)dp < (1 —7,)C — 0 as n — oo, we
may assume without loss of generality (if necessary, choose a subsequence
of (fn)) that

(4) lim (1 —ry,)fo(w) =0 for almost all w € (2.

n—oo

Thus
lim (1 - Tn)fn =0 (in M(:U’; X))?

n—oo

and so by the continuity of T',
lim (1 —7,)Tf, =0 (in M(p; X)).
n—oo
Thus, choosing a further subsequence of (fy,) if necessary, we may again
assume that
(5) lim (1 —7r,)T fr(w) =0  for almost all w € (2.
n—oo

Let then hy,(w) = || fn(w)||x for n > 1. By condition (1) we have

sup S hn(w)v(w) dp = C < oo,

n>1 0
and hence we may apply Komlés’s theorem [4] to infer that there exists a
subsequence (hy,) of (hy) and a nonnegative function H € Lj(vdu) such
that

H(w)= lim N} Z hp,(w)  for almost all w € (2.

N—oo

In order to prove the theorem, we may assume without loss of generality
that ng = k for all & > 1, i.e. (hnk) = (hg). Under this assumption

H(w) = lim N72)  hy( for almost all w € £2
(w) i Z k(w or almost all w € {2,
and thus

sup HN 1 fre(w H < sup N7! hi(w) < 0o

e Z K] = 2 Z &

for almost all w € (2.

Then, by Lemma 1 there exists a sequence (F,) of functions in M (y; X)
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such that
(i) F, € co({N~! SN fe: N >n}) for every n > 1, and
(ii) the limit
(7) Gw) = lim F,(w)
n—oo
exists for almost all w € 2.
We then deduce by Fatou’s lemma and (1) that

(8) § 16 (@)l x0(w) dp < liminf § [ F(w) | xv(w) du < C.
17, 19,
On the other hand, since

N
g -1 . _ — _ _
F, € co ({N kZ:lfk i N > n}) and  fr, —Tfr=f—(1—r)Tfr,

(5) implies that
lim (F,(w) — TF,(w)) = f(w) for almost all w € £2,

n—oo

and hence
G—TG = lim (F, —TF,) = f (in M(u; X)),

n—o0

which completes the proof.

COROLLARY 1 (cf. [2]). Let X be a reflexive Banach space and v be a
strictly positive measurable function on 2. Let T : Ly (vdu; X) — Ly (vdp; X)
be a linear operator continuous with respect to the metric dy, and assume
that f € Ly(vdu; X). Then the condition

9) := sup HZTk H w)dp < 0o

n>1 O k=0
implies that there exists h € Ly(vdp; X) with f = (T —I)h and ||h]| 1, (vdu;x)
<C.

Proof. For 0 < r < 1 we have (formally)

irkaf:(l (Z >Zrka oork<§k:ij),
k=0 k=0 Jj=0

k=0

and (9) implies that || ijo T fll 1y wapsx) < C for all k > 0. Thus, the
series Y 72 rRT* f is summable in L;(vdy; X), and hence also in M (u; X).
Furthermore, we have

o S s e

Hence, the desired conclusmn follows from the proof of Theorem 1.
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The following example, showing that the converse implications of Theo-
rem 1 and Corollary 1 do not hold in general, may be interesting.

EXAMPLE 1. Let u be the probability measure on the set Z of all integers
defined by
p({k}) = (1/3)27 " for k € Z.
Define a positive function v on Z by
(k):{?,-z—k if k<0,
3(k+1)-2F ifk>1.
Thus, the measure A\ = vdyu satisfies
1 if k<0,
AUk = {k:+1 if k> 1.
Define a continuous linear operator T' on M (u) by T f(m) = f(m — 1) for
m € Z. Then, by an easy computation, the restriction of T to Lq(vdu) is
a continuous linear operator on Li(vdu) such that [|[T"(|1,(yqu = n + 1
for every n > 0. Let h = xy_1}, and put f = (7" — I)h. Then we have
f = X{oy — X{-1}, and the series > ;° , r*TF f, where 0 < 7 < 1, is summable
in Lj(vdp) and hence also in M (u). It is easy to see that

o 0 itk < -2,
(D)) = -1 it k= —1,
k=0 rk —pF+lif k> 0.

Hence,

kk k
i =1+ (1- k1
H; sy =1+ Q=D o b4 1)
=0 k=0
=1+(1—-7r)"' =00 asrTl,
and condition (9) does not hold either.

THEOREM 2 (cf. [6]). Let X be a reflexive Banach space and T be a
conservative ergodic null-preserving transformation on (2. Let £ € M(u),
and let T = T¢ . be the continuous linear operator on M(u; X) defined
by Tf(w) = Terf(w) = E(w)f(tw) for f e M(u; X) and w € §2. Then
conditions (I) and (II) below satisfy (I)=-(II) for f € M(u; X). If in addition
C :=sup,> [|T"||c < o0, then (I) and (II) are equivalent.

(I) There exists A € A with u(A) > 0 and an absolute constant K > 0

such that if w,7"w € A for some n > 1, then ||S,f(w)||x < K,
where

n—1
Snf(w) ::Zka(w) for n > 1.
k=0

(IT) There exists h € M(u; X) such that f = (T —I)h.
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Proof. (I)=(II). Using the equality 7" f(w) = £(w) -+ £(7" Lw) f(T"w),
we first notice that for any n,m > 1 and w € (2,

(10) Sptmf(w) = Sp f(w) + Sm(T" f)(w)
= Snf(W) + S (E() - E(T" 1) F(T™)) (W)
= Suf (@) + [E(w) - - (7" W) S f ("W).
Next, by the conservativity and ergodicity of 7 we have

(11) 2= J7"*A (modp).

n=1k=n

Thus, it may be assumed without loss of generality that for every w € 2
the set {n > 1: 7"w € A} is infinite. Then for every w € 2 there exists a
strictly increasing sequence (r;j(w))52, of positive integers such that

{rilw):j>1}={n>1:7"we A}
By (10) we have
Srj (w)f(w) = Sm(w)f(w) + Srj(w)fn(w) (Th(w)f)(w)
= Sy () f(W) + [EW) - TS, (o) () (T ).
Since 771w and 77 @) ="1(@) (771(@)y) belong to A, it follows from (I) that
(12) ||Srj(w)—r1(w)f(7_r1(W)w)||X <K.
Therefore,

(13) sup 150 @) f @)1 < 1Sy ) f@)llx + [€w) - £ w) K < oo
JZ

Hence, putting

(14) fa@) =07t 080 W) (2 1),
j=1
we get
(15) sup || fullx < oo for every w € (2,
n>1

so that by Lemma 1 there exists a strongly measurable X-valued function
g on {2 such that

(16) g(w) = lim f,(w) for almost all w € £2,
where f, € co({fx : k > n}). Thus, f, has the form
)
fTL = ch,jfkja

J=1
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where

j(n)
Cpj >0, ch’j =1, k;j>n forl<j<jn).
j=1

And from (16) we may assume without loss of generality that
(17) g(w) = lim fu(w) for allw e £2.

CASE 1: r(w) = 1. Then, by the definition of 7;(w) it follows that
rj(tw) = rj;1(w) — 1 for every j > 1. Thus, using the equality

(18) Snf(w) —&(w)Sp—1f(Tw) = f(w) forn>2and w € (2,

we get
n n—1
Z Srj(w)f(w) - §(w) Z Srj(fw)f(Tw) = (n - 1)f(w)
=2 j=1

From this, together with the fact that S, () f(w) = S1f(w) = f(w), we have
(cf. (14))

Fal) = €@} falrw) = " F(@) F - F(@) ~ - E£)Sr, i (7)
= f(w) — %§(w>srn(7w)f<7w)7
and by (13),
Tim n7HE(W)] - [ISr, (ry f(Tw)l|x = 0.
Consequently,
(I -T)g(w) = g(w) — £w)g(rw) = lim [fn(w) — E(Ww) fu(tw)] = f(w).

n—oo

CASE 2: ri(w) > 2. Then we have rj(7w) = r;(w) — 1, so that by (18),

n

Z Srj(w)f(w) - f(w) Z Srj(Tw)f<7_w) = nf(w)
j=

j=1
Thus it follows that f,(w) — &(w) fn(Tw) = f(w) for every n > 1, and
(I = T)g(w) = glw) = é(w)g(rw) = lim [fu(w) = &) falrw)] = f(w).
This completes the proof of (I)=-(II).

To prove the second half of Theorem 2, assume that C' := sup,,~q [|T"||co
< 00, and that (II) holds. Then there exists a constant M > 0 such that the
set A= {w: ||h(w)|x < M} satisfies u(A) > 0. Since f = Th — h, we may
assume without loss of generality that f(w) = Th(w) — h(w) for all w € £2.
Then, for all n > 1 and w € {2 we have

Suf (@) = T"h(w) — h(w) = £w) - £ W)h(r"w) - h(w).
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Since ||[T"|co = |E()E(T-) - €(7" 1) ||o < C for all n > 1 by hypothesis,
we may assume without loss of generality that [£(w)é(Tw) -+ &(77 tw)| < C
foralln > 1 and w € §2. Then

|Snf(Ww)llx < C||h(7"w)||x + ||h(w)]|x foralln >1and w € 2,

and so w,7"w € A for some n > 1 implies that ||S,f(w)||x < CM + M.
Therefore, (I) holds with K := CM + M, and the proof is complete.

PROPOSITION 1. Let 7 be an invertible null-preserving transformation
on §2, and & € M(p). Let T = Tg . be as in Theorem 2. Then the following
conditions are equivalent:

(I) The restriction of T to Loo(u; X) is an invertible operator on
Loo(p; X) such that C = sup {||T"||cc : 1 € Z} < 0.

(I1) There exists ¢ € LI (u), with 1/¢ € LY (1), such that |£(w)| =
((tw)/¢(w) for almost all w € 2.

Proof. (I)=-(II). Since the restriction of T to Lo (p; X) is an invertible
operator on Lo (p; X) by hypothesis, it follows that [{(w)| > 0 for almost
all w € 2, and for every n > 1 we have

T"f(w) = &(w) - &(r"w) f(T7w),

" T = gty g 1)

Thus, by the inequalities ||7" || < C and [|T7"|oc < C,
1
[§(r71w) - - E(r7mw)|

[€(w) - (" w)| < C,

< (C for almost all w € (2,

and since 7 is invertible,
1

[E(w) - w)
It follows that

< C for almost all w € 2 (n > 1).

n—1
(20) —logC < Zlog |€(T7w)| < logC' for almost all w € 2 (n > 1).
=0
Now, we apply Corollary 6 of [7] to infer that there exists ¢ € Loo(p)
such that log [£(w)| = g(T7w) — g(w) for almost all w € 2. Since |{(w)| =
e9(7%) /¢9(9) the function ¢(w) := e9@) (w € ) satisfies |€(w)| = C(Tw)/¢(w)
for almost all w € (2, and furthermore by the fact that g € Loo(p) we have

¢, 1/¢ € LL(n).
(IT)=(I). Condition (II) implies that

/<1 Gl < (@)l = ¢(rw)/¢(w)
< [¢]looll1/Clloc  for almost all w € £2.
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It follows that the restriction of T to Loo(p; X) is an invertible operator on
Loo(p; X), and for every n € Z and f € Loo(p; X) we have

)
7 sl = 75

lf(7"w)|lx for almost all w € £2.

Thus
[T"loo < I<llocll1/Clloe (n € Z),

and this completes the proof.

From now on we restrict ourselves to the case where 7 is a measure-
preserving transformation in order to discuss the solvability problem in
Ly(p; X), with 0 < p < o0.

PROPOSITION 2. Let 7 be an invertible measure-preserving transforma-
tion on §2, and § € M(n). Let T =T¢ + be as in Theorem 2. If 0 < p < oo,
then the following conditions are equivalent:

(I) The restriction of T to Ly(w; X) ts an invertible operator on
L,(p; X) such that sup{||[T"|, : n € Z} < oo, where |T"|, =
sup{[|T" fllp : | fllp =1, f € Lp(p; X)}.

(IT) There exists ¢ € LI (n), with 1/¢ € LI (u), such that |{(w)| =
((Tw)/C¢(w) for almost all w € 12.

Proof. (I)=(II). Since the restriction of 7' to L,(p; X) is an invertible
operator on L,(u; X) by hypothesis, it follows as above that [£(w)| > 0
for almost all w € (2. Hence, (19) holds for every n > 1, and since 7 is
measure-preserving, we then have

1Tl = 1EC) - €™ )lloor N7

1
a "5(7‘1') e g(rm) Hoo
Thus, we can apply the proof of (I)=-(II) of Proposition 1 to obtain the
present implication.

(IT)=(I). The proof is the same as that of (II)=(I) of Proposition 1,
and we omit the details.

REMARK 1. It follows from the above propositions that if 7 is an invert-
ible measure-preserving transformation on (2, then sup{||7"|oc : 7 € Z} =
sup{||T"|l, : n € Z} for every p with 0 < p < oc.

THEOREM 3 (cf. [1], [10]). Let X be a reflexive Banach space and T
be an invertible measure-preserving transformation on 2. Let £ € M(u),
and T = T¢ ; be as in Theorem 2. Assume that 0 < p < oo, and that the
restriction of T to Ly(p; X) is an invertible operator on Ly(p; X) such that
sup{||T™||, : n € Z} < oco. Then the following conditions are equivalent for
fe M(u; X):
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(I) There exists A € A with (A) > 0 and an absolute constant K > 0
such that

(i) if w,7"w € A for some n > 1, then ||S,f(w)||x < K,
(i) lim infp, oo n ™t Y0705 1185 (w) IR dps < o0,
(IT) There exists h € Ly(p; X) such that f = (T — I)h.
Proof. (I)=(II). By Proposition 2 there exists ¢ € L}, with 1/¢ €

[ooh)

LI (u), such that |{(w)| = ((Tw)/¢(w) for almost all w € 2. Thus, there
exists a constant D > 0 such that for every n > 1,

(21) D7 < [E(w)E(tw)---E(r" W) < D for almost all w € £2.
Furthermore, by Theorem 2 there exists h € M (p; X) such that f = (T'—1I)h.
Hence, S;f = T7h — h for every j > 1, and
1h(w) + Sif (@)llx = 1T h(w)]lx = 1§w) - &(r " w)| - [A(r7w) ] x
for almost all w € (2.
Thus, by (21) we have
(22)  [|h(F7w)|[% < DP||h(w) + Sjf(w)|5  for almost all w € £2.

Now, define a nonnegative measurable function F' on {2 by

F(w) =liminfn ' > IS fw)%  (w € £2).
Jj=1

Then, by Fatou’s lemma,

n

S F(w)du < liminfn™! Z S 155 f (w)]I% dp < o0,
A J=1 A

so that F'(w) < oo for almost all w € A. Since the function

n—oo

G(w) =liminfn ' > " ||h(w) + S;fW)|%  (we Q)
j=1
satisfies G(w) < oo whenever F(w) < 0o, it follows from (22) that

n
(23)  liminfn~! Z [h(T7w) |5 < DPG(w) < oo for almost all w € A.
n—oo
j=1
On the other hand, since 7 is ergodic and measure-preserving by hypothesis,
the Birkhoff pointwise ergodic theorem implies that

lim n~! Z |h(Tw)|5 = S |h(w)|% dpe  for almost all w € 2.
j=1 02

Therefore, by (23) we have h € Ly(1; X).
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(II)=(I). Since sup,;>; [|[T"|lcc = sup,>1 [|T"]lp < oo, this implication
follows immediately from Theorem 2, and the proof is complete.

THEOREM 4 (cf. [9]). Let X be a reflexive Banach space and T be an
invertible measure-preserving transformation on (2. Let & € M(u), and
T =T¢r be as in Theorem 2. Assume that the restriction of T to Loo(p; X)
is an invertible operator on Loo(p; X) such that sup {||T"]|c : n € Z} < 0.
Then the following conditions are equivalent for f € M (u; X):

(I) There exists A € A with (A) > 0 and an absolute constant K > 0
such that
(i) if w,7"w € A for some n > 1, then ||S,f(w)||x < K,
(if) iminf, oo n ™" 3251 [Ixa - Sj flloo < 00

(IT) There exists h € Loo(p; X) such that f = (T — I)h.

Proof. (I)=-(II). By Proposition 1 there exists a constant D > 0 such
that for every n > 1 we have D™! < [((w)é(Tw)---&(t" w)| < D for
almost all w € 2. And by Theorem 2 there exists h € M (u; X) such that
f= (T —1)h. Thus, h+ S;f = T7h for every j > 1, and we deduce by (19)
applied to A in place of f that

Ih(@)llx + 155 f()llx = ITh(w)|x = D™ A(Tw)||x

for almost all w € 2.

It follows that

D(Ihea-lloe + 07D Ixa - (5)le0) =07 Ixa - (ho ™)
j=1

=1

=Y o) Al = [[(n Y xao ) ‘hHoo'
j=1 o

Here, considering the set A N {w : ||h(w)||x < N} for a sufficiently large
N > 0 instead of A (if necessary), we may assume from the start that
XA - h € Loo(p; X). Then we find by condition (ii) of (I) that

n—oo

(24) limian(n_lzXAOT_j> hH < 0.
j=1 *
On the other hand, by the Birkhoff pointwise ergodic theorem we have

lim n~! ZXA(T*jw) =u(A) >0 for almost all w € (2.
j=1
Hence, (24) implies that h € Loo(p; X).
(IT)=-(I). This follows immediately from Theorem 2, and hence the proof
is complete.



THE FUNCTIONAL EQUATION f = (T —1)h 265

REMARK 2. One may wonder whether condition (i) of (I) can be omitted

in Theorems 3 and 4. The author thinks that this is not known even if X =
the scalars. On the other hand, if X = the scalars and £ = 1 on {2, then it
is known that condition (i) of (I) can be omitted in Theorems 3 and 4. See

[1], [9] and [10].
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