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SOLVABILITY OF THE FUNCTIONAL EQUATION f = (T − I)h
FOR VECTOR-VALUED FUNCTIONS

BY

RYOTARO SATO (Okayama)

Abstract. Let X be a reflexive Banach space and (Ω,A, µ) be a probability measure
space. Let T : M(µ;X)→M(µ;X) be a linear operator, where M(µ;X) is the space of all
X-valued strongly measurable functions on (Ω,A, µ). We assume that T is continuous in
the sense that if (fn) is a sequence in M(µ;X) and limn→∞ fn = f in measure for some
f ∈ M(µ;X), then also limn→∞ Tfn = Tf in measure. Then we consider the functional
equation f = (T − I)h, where f ∈M(µ;X) is given. We obtain several conditions for the
existence of h ∈M(µ;X) satisfying f = (T − I)h.

1. Introduction. Let (X, ‖ · ‖X) be a reflexive Banach space and
(Ω,A, µ) be a probability measure space. Let M(µ;X) denote the linear
space of all X-valued strongly measurable functions on Ω under pointwise
operations. Two functions f and g in M(µ;X) are not distinguished pro-
vided that f(ω) = g(ω) for almost all ω ∈ Ω. We define a metric d0 on
M(µ;X) by

d0(f, g) :=
�
Ω

‖f(ω)− g(ω)‖X
1 + ‖f(ω)− g(ω)‖X

dµ.

It is known that under this metric M(µ;X) becomes an F -space (see p. 8
of [8] for the definition of an F -space). It is easily checked that if (fn) is a
sequence in M(µ;X), then limn→∞ d0(fn, f) = 0 for some f ∈ M(µ;X) is
equivalent to the convergence of fn to f in measure as n→∞.

For 0 < p <∞, let Lp(µ;X) denote the set of all functions f in M(µ;X)
such that � Ω ‖f(ω)‖pX dµ <∞. If 0 < p < 1, then under the metric

dp(f, g) :=
�
Ω

‖f(ω)− g(ω)‖pX dµ (= ‖f − g‖pp)

Lp(µ;X) becomes an F -space, and if 1 ≤ p <∞, then under the norm
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‖f‖p :=
( �
Ω

‖f(ω)‖pX dµ
)1/p

Lp(µ;X) becomes a Banach space. For p = ∞, let L∞(µ;X) denote the
set of all functions f in M(µ;X) such that ‖f‖∞ := ess sup{‖f(ω)‖X :
ω ∈ Ω} <∞. Then L∞(µ;X) becomes a Banach space under the norm ‖·‖∞.
The symbols M(µ) and Lp(µ) (0 < p ≤ ∞) mean M(µ;X) and Lp(µ;X),
respectively, for X = the scalars.

Let T : M(µ;X) → M(µ;X) be a linear operator continuous with re-
spect to the metric d0, and let f ∈ M(µ;X) be given. We consider the
solvability of the cohomology equation f = (T − I)h. We first prove that if
0 < rn < 1 and limn→∞ rn = 1, and the series

∑∞
k=0 r

k
nT

kf is summable in
M(µ;X) for every n ≥ 1, then the condition

sup
n≥1

�
Ω

∥∥∥
( ∞∑

k=0

rknT
kf
)

(ω)
∥∥∥
X
dλ <∞,

where λ is a σ-finite measure equivalent to µ, implies that there exists h ∈
L1(λ;X) such that f = (T − I)h. Applying this, we then extend Assani’s
result [2] to vector-valued functions. Next, we consider a Lamperti-type
operator T = Tξ,τ (i.e., T has the form Tf(ω) = ξ(ω)f(τω) for f ∈M(µ;X)
and ω ∈ Ω, where ξ ∈ M(µ) and τ is a null-preserving transformation
on (Ω,A, µ)). We extend Krzyżewski’s result [6] to vector-valued functions.
Lastly, we consider a Lamperti-type operator T = Tξ,τ , where τ is a measure-
preserving transformation on (Ω,A, µ). Under this assumption, we extend
Alonso, Hong and Obaya’s result [1] and the author’s result [9] to vector-
valued functions.

For general notions and definitions in ergodic theory we follow Krengel’s
book [5].

2. Results. Our main result is the following theorem.

Theorem 1. Let X be a reflexive Banach space and v be a strictly
positive measurable function on Ω. Let T be a continuous linear operator
on M(µ;X), and f ∈ M(µ;X). Assume that (rn) is a sequence of positive
numbers such that 0 < rn < 1, limn→∞ rn = 1, and the series

∑∞
k=0 r

k
nT

kf
is summable in M(µ;X) for every n ≥ 1. Then the condition

C := sup
n≥1

�
Ω

∥∥∥
( ∞∑

k=0

rknT
kf
)

(ω)
∥∥∥
X
v(ω) dµ <∞(1)

implies that there exists h ∈ M(µ;X) satisfying f = (T − I)h and
� Ω ‖h(ω)‖Xv(ω) dµ ≤ C.

For the proof of Theorem 1 we need the following key lemma.
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Lemma 1 (cf. [6]). Let X be a reflexive Banach space and (fn) be a
sequence in M(µ;X) such that

sup
n≥1
‖fn(ω)‖X <∞ for almost all ω ∈ Ω.(2)

Then there exists a function g ∈M(µ;X) satisfying

g(ω) = lim
n→∞

f̃n(ω) for almost all ω ∈ Ω,(3)

where f̃n is a function in the convex hull co({fl : l ≥ n}).

Proof. Define a nonnegative measurable function F on Ω by

F (ω) = sup
n≥1
‖fn(ω)‖X (ω ∈ Ω),

and put

Ωl = {ω : F (ω) ≤ l} (l = 1, 2, . . .).

It follows that Ω1 ⊂ Ω2 ⊂ · · · and Ω = liml→∞Ωl (mod µ). Since
{fn : n ≥ 1} is uniformly bounded on Ωl and since L2(Ωl;X) is reflex-
ive by the reflexivity of X (cf. Corollary IV.1.2 of [3]), it follows that the
set {fn|Ωl : n ≥ 1} is weakly sequentially compact in L2(Ωl;X). Thus, there
exists a subsequence (fn′) of (fn) and a function gl ∈ L2(Ωl;X) such that

fn′ |Ωl → gl weakly in L2(Ωl;X) as n′ →∞.
By the diagonal argument we see that there exists a subsequence (fnk) of
(fn) and a function g ∈M(µ;X) such that for each l ≥ 1,

fnk |Ωl → g|Ωl weakly in L2(Ωl;X) as k →∞.

By Theorem 3.13 of [8], there exists f̃l ∈ co({fnk : k ≥ l}) for each l ≥ 1
such that

∞∑

k=l

�
Ωl

‖g(ω)− f̃k(ω)‖2X dµ <
∞∑

k=l

2−k ≤ 1 (l ≥ 1).

Hence, limk→∞ f̃k(ω) = g(ω) for almost all ω ∈ Ω, and the proof is complete.

Proof of Theorem 1. Let fn =
∑∞

k=0 r
k
nT

kf for each n ≥ 1. Since

lim
N→∞

d0

( N∑

k=0

rknT
kf, fn

)
= 0,

it follows that limN→∞ d0(rNn T
Nf, 0) = 0, i.e., limN→∞ rNn T

Nf = 0 in
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M(µ;X). This together with the continuity of T implies

fn − Tfn = lim
N→∞

( N∑

k=0

rknT
kf −

N∑

k=0

rknT
k+1f

)

= lim
N→∞

[
f − (1− rn)T

(N−1∑

k=0

rknT
kf
)
− rNn TN+1f

]

= f − (1− rn)Tfn (in M(µ;X)).

Here, since � Ω(1 − rn)‖fn(ω)‖Xv(ω) dµ ≤ (1 − rn)C → 0 as n → ∞, we
may assume without loss of generality (if necessary, choose a subsequence
of (fn)) that

lim
n→∞

(1− rn)fn(ω) = 0 for almost all ω ∈ Ω.(4)

Thus
lim
n→∞

(1− rn)fn = 0 (in M(µ;X)),

and so by the continuity of T ,

lim
n→∞

(1− rn)Tfn = 0 (in M(µ;X)).

Thus, choosing a further subsequence of (fn) if necessary, we may again
assume that

lim
n→∞

(1− rn)Tfn(ω) = 0 for almost all ω ∈ Ω.(5)

Let then hn(ω) = ‖fn(ω)‖X for n ≥ 1. By condition (1) we have

sup
n≥1

�
Ω

hn(ω)v(ω) dµ = C <∞,

and hence we may apply Komlós’s theorem [4] to infer that there exists a
subsequence (hnk) of (hn) and a nonnegative function H ∈ L1(vdµ) such
that

H(ω) = lim
N→∞

N−1
N∑

k=1

hnk(ω) for almost all ω ∈ Ω.

In order to prove the theorem, we may assume without loss of generality
that nk = k for all k ≥ 1, i.e., (hnk) = (hk). Under this assumption

H(ω) = lim
N→∞

N−1
N∑

k=1

hk(ω) for almost all ω ∈ Ω,

and thus

(6) sup
N≥1

∥∥∥N−1
N∑

k=1

fk(ω)
∥∥∥
X
≤ sup

N≥1
N−1

N∑

k=1

hk(ω) <∞

for almost all ω ∈ Ω.
Then, by Lemma 1 there exists a sequence (F̃n) of functions in M(µ;X)
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such that

(i) F̃n ∈ co({N−1∑N
k=1 fk : N ≥ n}) for every n ≥ 1, and

(ii) the limit
G(ω) = lim

n→∞
F̃n(ω)(7)

exists for almost all ω ∈ Ω.

We then deduce by Fatou’s lemma and (1) that�
Ω

‖G(ω)‖Xv(ω) dµ ≤ lim inf
n→∞

�
Ω

‖F̃n(ω)‖Xv(ω) dµ ≤ C.(8)

On the other hand, since

F̃n ∈ co
({
N−1

N∑

k=1

fk : N ≥ n
})

and fk − Tfk = f − (1− rk)Tfk,

(5) implies that

lim
n→∞

(F̃n(ω)− T F̃n(ω)) = f(ω) for almost all ω ∈ Ω,
and hence

G− TG = lim
n→∞

(F̃n − T F̃n) = f (in M(µ;X)),

which completes the proof.

Corollary 1 (cf. [2]). Let X be a reflexive Banach space and v be a
strictly positive measurable function on Ω. Let T : L1(vdµ;X)→L1(vdµ;X)
be a linear operator continuous with respect to the metric d0, and assume
that f ∈ L1(vdµ;X). Then the condition

C := sup
n≥1

�
Ω

∥∥∥
n−1∑

k=0

T kf(ω)
∥∥∥
X
v(ω) dµ <∞(9)

implies that there exists h ∈ L1(vdµ;X) with f = (T −I)h and ‖h‖L1(vdµ;X)
≤ C.

Proof. For 0 < r < 1 we have (formally)
∞∑

k=0

rkT kf = (1− r)
( ∞∑

k=0

rk
) ∞∑

k=0

rkT kf = (1− r)
∞∑

k=0

rk
( k∑

j=0

T jf
)
,

and (9) implies that ‖∑k
j=0 T

jf‖L1(vdµ;X) ≤ C for all k ≥ 0. Thus, the
series

∑∞
k=0 r

kT kf is summable in L1(vdµ;X), and hence also in M(µ;X).
Furthermore, we have

sup
0<r<1

�
Ω

∥∥∥
( ∞∑

k=0

rkT kf
)

(ω)
∥∥∥
X
v(ω) dµ ≤ C.

Hence, the desired conclusion follows from the proof of Theorem 1.
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The following example, showing that the converse implications of Theo-
rem 1 and Corollary 1 do not hold in general, may be interesting.

Example 1. Let µ be the probability measure on the set Z of all integers
defined by

µ({k}) = (1/3)2−|k| for k ∈ Z.
Define a positive function v on Z by

v(k) =
{

3 · 2−k if k ≤ 0,

3(k + 1) · 2k if k ≥ 1.
Thus, the measure λ = vdµ satisfies

λ({k}) =
{

1 if k ≤ 0,

k + 1 if k ≥ 1.
Define a continuous linear operator T on M(µ) by Tf(m) = f(m − 1) for
m ∈ Z. Then, by an easy computation, the restriction of T to L1(vdµ) is
a continuous linear operator on L1(vdµ) such that ‖T n‖L1(vdµ) = n + 1
for every n ≥ 0. Let h = χ{−1}, and put f = (T − I)h. Then we have
f = χ{0}−χ{−1}, and the series

∑∞
k=0 r

kT kf , where 0 < r < 1, is summable
in L1(vdµ) and hence also in M(µ). It is easy to see that

( ∞∑

k=0

rkT kf
)

(k) =





0 if k ≤ −2,

−1 if k = −1,

rk − rk+1 if k ≥ 0.
Hence,

∥∥∥
∞∑

k=0

rkT kf
∥∥∥
L1(vdµ)

= 1 + (1− r)
∞∑

k=0

rk(k + 1)

= 1 + (1− r)−1 →∞ as r ↑ 1,

and condition (9) does not hold either.

Theorem 2 (cf. [6]). Let X be a reflexive Banach space and τ be a
conservative ergodic null-preserving transformation on Ω. Let ξ ∈ M(µ),
and let T = Tξ,τ be the continuous linear operator on M(µ;X) defined
by Tf(ω) = Tξ,τf(ω) = ξ(ω)f(τω) for f ∈ M(µ;X) and ω ∈ Ω. Then
conditions (I) and (II) below satisfy (I)⇒(II) for f ∈M(µ;X). If in addition
C := supn≥1 ‖Tn‖∞ <∞, then (I) and (II) are equivalent.

(I) There exists A ∈ A with µ(A) > 0 and an absolute constant K > 0
such that if ω, τnω ∈ A for some n ≥ 1, then ‖Snf(ω)‖X ≤ K,
where

Snf(ω) :=
n−1∑

k=0

T kf(ω) for n ≥ 1.

(II) There exists h ∈M(µ;X) such that f = (T − I)h.
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Proof. (I)⇒(II). Using the equality T nf(ω) = ξ(ω) · · · ξ(τn−1ω)f(τnω),
we first notice that for any n,m ≥ 1 and ω ∈ Ω,

Sn+mf(ω) = Snf(ω) + Sm(Tnf)(ω)(10)

= Snf(ω) + Sm(ξ(·) · · · ξ(τn−1·)f(τn·))(ω)

= Snf(ω) + [ξ(ω) · · · ξ(τn−1ω)]Smf(τnω).

Next, by the conservativity and ergodicity of τ we have

Ω =
∞⋂

n=1

∞⋃

k=n

τ−kA (modµ).(11)

Thus, it may be assumed without loss of generality that for every ω ∈ Ω
the set {n ≥ 1 : τnω ∈ A} is infinite. Then for every ω ∈ Ω there exists a
strictly increasing sequence (rj(ω))∞j=1 of positive integers such that

{rj(ω) : j ≥ 1} = {n ≥ 1 : τnω ∈ A}.
By (10) we have

Srj(ω)f(ω) = Sr1(ω)f(ω) + Srj(ω)−r1(ω)(T
r1(ω)f)(ω)

= Sr1(ω)f(ω) + [ξ(ω) · · · ξ(τ r1(ω)−1ω)]Srj(ω)−r1(ω)f(τ r1(ω)ω).

Since τ r1(ω)ω and τ rj(ω)−r1(ω)(τ r1(ω)ω) belong to A, it follows from (I) that

‖Srj(ω)−r1(ω)f(τ r1(ω)ω)‖X ≤ K.(12)

Therefore,

(13) sup
j≥1
‖Srj(ω)f(ω)‖X ≤ ‖Sr1(ω)f(ω)‖X + |ξ(ω) · · · ξ(τ r1(ω)−1ω)|K <∞.

Hence, putting

fn(ω) := n−1
n∑

j=1

Srj(ω)f(ω) (n ≥ 1),(14)

we get

sup
n≥1
‖fn‖X <∞ for every ω ∈ Ω,(15)

so that by Lemma 1 there exists a strongly measurable X-valued function
g on Ω such that

g(ω) = lim
n→∞

f̃n(ω) for almost all ω ∈ Ω,(16)

where f̃n ∈ co({fk : k ≥ n}). Thus, f̃n has the form

f̃n =
j(n)∑

j=1

Cn,jfkj ,



260 R. SATO

where

Cn,j > 0,
j(n)∑

j=1

Cn,j = 1, kj ≥ n for 1 ≤ j ≤ j(n).

And from (16) we may assume without loss of generality that

g(ω) = lim
n→∞

f̃n(ω) for all ω ∈ Ω.(17)

Case 1: r1(ω) = 1. Then, by the definition of rj(ω) it follows that
rj(τω) = rj+1(ω)− 1 for every j ≥ 1. Thus, using the equality

Snf(ω)− ξ(ω)Sn−1f(τω) = f(ω) for n ≥ 2 and ω ∈ Ω,(18)

we get
n∑

j=2

Srj(ω)f(ω)− ξ(ω)
n−1∑

j=1

Srj(τω)f(τω) = (n− 1)f(ω).

From this, together with the fact that Sr1(ω)f(ω) = S1f(ω) = f(ω), we have
(cf. (14))

fn(ω)− ξ(ω)fn(τω) =
n− 1
n

f(ω) +
1
n
f(ω)− 1

n
ξ(ω)Srn(τω)f(τω)

= f(ω)− 1
n
ξ(ω)Srn(τω)f(τω),

and by (13),
lim
n→∞

n−1|ξ(ω)| · ‖Srn(τω)f(τω)‖X = 0.

Consequently,

(I − T )g(ω) = g(ω)− ξ(ω)g(τω) = lim
n→∞

[f̃n(ω)− ξ(ω)f̃n(τω)] = f(ω).

Case 2: r1(ω) ≥ 2. Then we have rj(τω) = rj(ω)− 1, so that by (18),
n∑

j=1

Srj(ω)f(ω)− ξ(ω)
n∑

j=1

Srj(τω)f(τω) = nf(ω).

Thus it follows that fn(ω)− ξ(ω)fn(τω) = f(ω) for every n ≥ 1, and

(I − T )g(ω) = g(ω)− ξ(ω)g(τω) = lim
n→∞

[f̃n(ω)− ξ(ω)f̃n(τω)] = f(ω).

This completes the proof of (I)⇒(II).

To prove the second half of Theorem 2, assume that C := supn≥1 ‖Tn‖∞
<∞, and that (II) holds. Then there exists a constant M > 0 such that the
set A = {ω : ‖h(ω)‖X ≤ M} satisfies µ(A) > 0. Since f = Th − h, we may
assume without loss of generality that f(ω) = Th(ω)− h(ω) for all ω ∈ Ω.
Then, for all n ≥ 1 and ω ∈ Ω we have

Snf(ω) = Tnh(ω)− h(ω) = ξ(ω) · · · ξ(τn−1ω)h(τnω)− h(ω).
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Since ‖Tn‖∞ = ‖ξ(·)ξ(τ ·) · · · ξ(τn−1·)‖∞ ≤ C for all n ≥ 1 by hypothesis,
we may assume without loss of generality that |ξ(ω)ξ(τω) · · · ξ(τn−1ω)| ≤ C
for all n ≥ 1 and ω ∈ Ω. Then

‖Snf(ω)‖X ≤ C‖h(τnω)‖X + ‖h(ω)‖X for all n ≥ 1 and ω ∈ Ω,
and so ω, τnω ∈ A for some n ≥ 1 implies that ‖Snf(ω)‖X ≤ CM + M .
Therefore, (I) holds with K := CM +M , and the proof is complete.

Proposition 1. Let τ be an invertible null-preserving transformation
on Ω, and ξ ∈M(µ). Let T = Tξ,τ be as in Theorem 2. Then the following
conditions are equivalent :

(I) The restriction of T to L∞(µ;X) is an invertible operator on
L∞(µ;X) such that C := sup {‖T n‖∞ : n ∈ Z} <∞.

(II) There exists ζ ∈ L+
∞(µ), with 1/ζ ∈ L+

∞(µ), such that |ξ(ω)| =
ζ(τω)/ζ(ω) for almost all ω ∈ Ω.

Proof. (I)⇒(II). Since the restriction of T to L∞(µ;X) is an invertible
operator on L∞(µ;X) by hypothesis, it follows that |ξ(ω)| > 0 for almost
all ω ∈ Ω, and for every n ≥ 1 we have




Tnf(ω) = ξ(ω) · · · ξ(τn−1ω)f(τnω),

T−nf(ω) =
1

ξ(τ−1ω) · · · ξ(τ−nω)
f(τ−nω).

(19)

Thus, by the inequalities ‖T n‖∞ ≤ C and ‖T−n‖∞ ≤ C,

|ξ(ω) · · · ξ(τn−1ω)| ≤C, 1
|ξ(τ−1ω) · · · ξ(τ−nω)| ≤C for almost all ω ∈Ω,

and since τ is invertible,
1

|ξ(ω) · · · ξ(τn−1ω)| ≤ C for almost all ω ∈ Ω (n ≥ 1).

It follows that

− logC ≤
n−1∑

j=0

log |ξ(τ jω)| ≤ logC for almost all ω ∈ Ω (n ≥ 1).(20)

Now, we apply Corollary 6 of [7] to infer that there exists g ∈ L∞(µ)
such that log |ξ(ω)| = g(τω) − g(ω) for almost all ω ∈ Ω. Since |ξ(ω)| =
eg(τω)/eg(ω), the function ζ(ω) := eg(ω) (ω ∈ Ω) satisfies |ξ(ω)| = ζ(τω)/ζ(ω)
for almost all ω ∈ Ω, and furthermore by the fact that g ∈ L∞(µ) we have
ζ, 1/ζ ∈ L+

∞(µ).
(II)⇒(I). Condition (II) implies that

‖1/ζ‖−1
∞ ‖ζ‖−1

∞ ≤ |ξ(ω)| = ζ(τω)/ζ(ω)

≤ ‖ζ‖∞‖1/ζ‖∞ for almost all ω ∈ Ω.
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It follows that the restriction of T to L∞(µ;X) is an invertible operator on
L∞(µ;X), and for every n ∈ Z and f ∈ L∞(µ;X) we have

‖Tnf(ω)‖X =
ζ(τnω)
ζ(ω)

‖f(τnω)‖X for almost all ω ∈ Ω.

Thus
‖Tn‖∞ ≤ ‖ζ‖∞‖1/ζ‖∞ (n ∈ Z),

and this completes the proof.

From now on we restrict ourselves to the case where τ is a measure-
preserving transformation in order to discuss the solvability problem in
Lp(µ;X), with 0 < p ≤ ∞.

Proposition 2. Let τ be an invertible measure-preserving transforma-
tion on Ω, and ξ ∈M(µ). Let T = Tξ,τ be as in Theorem 2. If 0 < p <∞,
then the following conditions are equivalent :

(I) The restriction of T to Lp(µ;X) is an invertible operator on
Lp(µ;X) such that sup{‖T n‖p : n ∈ Z} < ∞, where ‖T n‖p :=
sup{‖Tnf‖p : ‖f‖p = 1, f ∈ Lp(µ;X)}.

(II) There exists ζ ∈ L+
∞(µ), with 1/ζ ∈ L+

∞(µ), such that |ξ(ω)| =
ζ(τω)/ζ(ω) for almost all ω ∈ Ω.

Proof. (I)⇒(II). Since the restriction of T to Lp(µ;X) is an invertible
operator on Lp(µ;X) by hypothesis, it follows as above that |ξ(ω)| > 0
for almost all ω ∈ Ω. Hence, (19) holds for every n ≥ 1, and since τ is
measure-preserving, we then have

‖Tn‖p = ‖ξ(·) · · · ξ(τn−1·)‖∞, ‖T−n‖p =

∥∥∥∥
1

ξ(τ−1·) · · · ξ(τ−n·)

∥∥∥∥
∞
.

Thus, we can apply the proof of (I)⇒(II) of Proposition 1 to obtain the
present implication.

(II)⇒(I). The proof is the same as that of (II)⇒(I) of Proposition 1,
and we omit the details.

Remark 1. It follows from the above propositions that if τ is an invert-
ible measure-preserving transformation on Ω, then sup{‖T n‖∞ : n ∈ Z} =
sup{‖Tn‖p : n ∈ Z} for every p with 0 < p <∞.

Theorem 3 (cf. [1], [10]). Let X be a reflexive Banach space and τ
be an invertible measure-preserving transformation on Ω. Let ξ ∈ M(µ),
and T = Tξ,τ be as in Theorem 2. Assume that 0 < p < ∞, and that the
restriction of T to Lp(µ;X) is an invertible operator on Lp(µ;X) such that
sup{‖Tn‖p : n ∈ Z} < ∞. Then the following conditions are equivalent for
f ∈M(µ;X):
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(I) There exists A ∈ A with µ(A) > 0 and an absolute constant K > 0
such that

(i) if ω, τnω ∈ A for some n ≥ 1, then ‖Snf(ω)‖X ≤ K,
(ii) lim infn→∞ n−1∑n−1

j=0 � A ‖Sjf(ω)‖pX dµ <∞.

(II) There exists h ∈ Lp(µ;X) such that f = (T − I)h.

Proof. (I)⇒(II). By Proposition 2 there exists ζ ∈ L+
∞, with 1/ζ ∈

L+
∞(µ), such that |ξ(ω)| = ζ(τω)/ζ(ω) for almost all ω ∈ Ω. Thus, there

exists a constant D > 0 such that for every n ≥ 1,

D−1 ≤ |ξ(ω)ξ(τω) · · · ξ(τn−1ω)| ≤ D for almost all ω ∈ Ω.(21)

Furthermore, by Theorem 2 there exists h ∈M(µ;X) such that f = (T−I)h.
Hence, Sjf = T jh− h for every j ≥ 1, and

‖h(ω) + Sjf(ω)‖X = ‖T jh(ω)‖X = |ξ(ω) · · · ξ(τ j−1ω)| · ‖h(τ jω)‖X
for almost all ω ∈ Ω.

Thus, by (21) we have

‖h(τ jω)‖pX ≤ Dp‖h(ω) + Sjf(ω)‖pX for almost all ω ∈ Ω.(22)

Now, define a nonnegative measurable function F on Ω by

F (ω) = lim inf
n→∞

n−1
n∑

j=1

‖Sjf(ω)‖pX (ω ∈ Ω).

Then, by Fatou’s lemma,

�
A

F (ω) dµ ≤ lim inf
n→∞

n−1
n∑

j=1

�
A

‖Sjf(ω)‖pX dµ <∞,

so that F (ω) <∞ for almost all ω ∈ A. Since the function

G(ω) = lim inf
n→∞

n−1
n∑

j=1

‖h(ω) + Sjf(ω)‖pX (ω ∈ Ω)

satisfies G(ω) <∞ whenever F (ω) <∞, it follows from (22) that

lim inf
n→∞

n−1
n∑

j=1

‖h(τ jω)‖pX ≤ DpG(ω) <∞ for almost all ω ∈ A.(23)

On the other hand, since τ is ergodic and measure-preserving by hypothesis,
the Birkhoff pointwise ergodic theorem implies that

lim
n→∞

n−1
n∑

j=1

‖h(τ jω)‖pX =
�
Ω

‖h(ω)‖pX dµ for almost all ω ∈ Ω.

Therefore, by (23) we have h ∈ Lp(µ;X).
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(II)⇒(I). Since supn≥1 ‖Tn‖∞ = supn≥1 ‖Tn‖p < ∞, this implication
follows immediately from Theorem 2, and the proof is complete.

Theorem 4 (cf. [9]). Let X be a reflexive Banach space and τ be an
invertible measure-preserving transformation on Ω. Let ξ ∈ M(µ), and
T = Tξ,τ be as in Theorem 2. Assume that the restriction of T to L∞(µ;X)
is an invertible operator on L∞(µ;X) such that sup {‖T n‖∞ : n ∈ Z} <∞.
Then the following conditions are equivalent for f ∈M(µ;X):

(I) There exists A ∈ A with µ(A) > 0 and an absolute constant K > 0
such that

(i) if ω, τnω ∈ A for some n ≥ 1, then ‖Snf(ω)‖X ≤ K,
(ii) lim infn→∞ n−1∑n

j=1 ‖χA · Sjf‖∞ <∞.

(II) There exists h ∈ L∞(µ;X) such that f = (T − I)h.

Proof. (I)⇒(II). By Proposition 1 there exists a constant D > 0 such
that for every n ≥ 1 we have D−1 ≤ |ξ(ω)ξ(τω) · · · ξ(τn−1ω)| ≤ D for
almost all ω ∈ Ω. And by Theorem 2 there exists h ∈ M(µ;X) such that
f = (T − I)h. Thus, h+ Sjf = T jh for every j ≥ 1, and we deduce by (19)
applied to h in place of f that

‖h(ω)‖X + ‖Sjf(ω)‖X ≥ ‖T jh(ω)‖X ≥ D−1‖h(τ jω)‖X
for almost all ω ∈ Ω.

It follows that

D
(
‖χA · h‖∞ + n−1

n∑

j=1

‖χA · (Sjf)‖∞
)
≥ n−1

n∑

j=1

‖χA · (h ◦ τ j)‖∞

= n−1
n∑

j=1

‖(χA ◦ τ−j) · h‖∞ ≥
∥∥∥
(
n−1

n∑

j=1

χA ◦ τ−j
)
· h
∥∥∥
∞
.

Here, considering the set A ∩ {ω : ‖h(ω)‖X ≤ N} for a sufficiently large
N > 0 instead of A (if necessary), we may assume from the start that
χA · h ∈ L∞(µ;X). Then we find by condition (ii) of (I) that

lim inf
n→∞

∥∥∥
(
n−1

n∑

j=1

χA ◦ τ−j
)
· h
∥∥∥
∞
<∞.(24)

On the other hand, by the Birkhoff pointwise ergodic theorem we have

lim
n→∞

n−1
n∑

j=1

χA(τ−jω) = µ(A) > 0 for almost all ω ∈ Ω.

Hence, (24) implies that h ∈ L∞(µ;X).
(II)⇒(I). This follows immediately from Theorem 2, and hence the proof

is complete.
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Remark 2. One may wonder whether condition (i) of (I) can be omitted
in Theorems 3 and 4. The author thinks that this is not known even if X =
the scalars. On the other hand, if X = the scalars and ξ ≡ 1 on Ω, then it
is known that condition (i) of (I) can be omitted in Theorems 3 and 4. See
[1], [9] and [10].
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