
1. Introductory section

1.1. Introduction. Consider the data-bases

{(Xij , Yij), i = 1, . . . , k, j = 1, . . . , a(i)}(1.1)

consisting of k ≥ 1 series of bipartite observations; the ith one contains a(i) ≥ 1 items

and corresponds to the ith model in a system. Such data-bases arise whenever the ob-

served phenomenon is viewed as a structural system consisting of k subsystems in the

ith one of which a(i) observations are collected. For example, the body size system in-

cludes subsystems such as (height, arm length), (chest width, shoulder width), etc.; ob-

servations (X11, Y11), (X12, Y12), . . . on (height, arm length), (X21, Y21), (X22, Y22), . . . on

(chest width, shoulder width), etc. are available. The data-bases (1.1) also correspond to

the case where the relationship between two variables x, y changes from a time period

to a subsequent period, e.g. y is the weight increase rate of a man and x the mean per-

centage of protein in food given to him daily, the relation of y to x depends on growth

periods; then (X11, Y11), (X12, Y12), . . . are observations on (x, y) in the baby period,

(X21, Y21), (X22, Y22), . . . are those in a next period, etc. Naturally global analysis of the

data-bases is desired. For simplicity write (Xij ,Yij) = (x,y), where y is assumed to be

vector-valued. In the ith subsystem one might seek to represent the response y by some

spline function of the explanatory variable x, namely

y′ ≈
h∑

g=1

c′g(x)IS(g)(x)qg,

where a prime denotes transpose, S(1), . . . , S(h) are disjoint sets in the range space, quite

arbitrary, of x, the cg(·) are known vector functions, the IS(g)(·) set indicators and the

qg matrix parameters. Using block matrices q = (q
′
1 . . .q

′
h)
′ and b′(·) = (c′1(·)IS(1)(·) . . .

. . . c′h(·)IS(h)(·)) the spline representation is put in the linear form

y′ ≈ b′(x)q.

Thus, assuming the explanatory variables Xij (j = 1, . . . , a(i)) to have an arbitrary range

space Hi in common (i = 1, . . . , k) and the Yij to be r× 1 response vectors, using spline

approximation we shall consider the formal representation of the data-bases (1.1) by a

system of k linear correlation models , according to the terminology in Freedman (1981):

Y′ij = b
′
ijθi + η

′
ij , bij = bi(Xij), i = 1, . . . , k, j = 1, . . . , a(i),(1.2)

where the bi(·) are known ℓ(i)×1 vector functions on Hi, the θi unknown ℓ(i)×r matrix

parameters and the ηij residuals. In physics, chemistry, biology, etc., to determine some

unknown constants one may have several series of observations (1.1) which correspond to
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k experiments different in nature; then the use of spline approximation gives rise to the

system of models (1.2) in which the parameters are subject to the constraint θ1 = . . . = θk.

The purpose of this paper is to establish the convergence and strong consistency of

least squares estimates (LSE) of parameters in the system of models (1.2) under mini-

mal assumptions. But we shall define the LSE in the more general situation where the

regressors bij may be random or non-random and may depend or not on explanatory

variables. Let us use the symbols

ℓ = ℓ(1) + . . .+ ℓ(k),

Mp×q = linear space of all p× q real matrices.

With the residuals ηij = Yij − θ
′
ibij , i = 1, . . . , k, j = 1, . . . , a(i), in models (1.2), the

global residual is defined as a function of the global matrix parameter θ = (θ′1 . . . θ
′
k)
′,

namely

η(θ) = (η′11 . . . η
′
1a(1)
... . . .
...η′k1 . . . η

′
ka(k))

′.(1.3)

Definition 1.1. A generalized least squares (GLS) value for θ is any value θ̂ which

minimizes some norm of the global residual η(t) as the variable t inMℓ×r varies over an

affine manifold F , called the support manifold , containing the range Θ of the parameter θ.

If unique, θ̂ = θ̂(F ) ∈ F is called the GLS estimator (GLSE) for the parameter θ and in

the case F =Mℓ×r, the ordinary LSE (OLSE).

A GLS value θ̂ ∈ F always exists but may not be unique. In the one-model case (k = 1)

when the regression in (1.2) has a conditional mean structure and the conditional response

dispersion matrix has a variance components structure, the GLSE corresponding to the

smallest manifold F containing Θ enjoys local and global optimality; see Bac-Van (1992,

Theorem 5). This is the reason why we recommend the use of GLSE.

Definition 1.1 is inspired by one in multivariate fixed-design models (see Humak (1977,

Satz 2.1.3, p. 34)) and is formulated progressively for the one-model case (k = 1) in

Bac-Van (1992, 1994, 1998).

To specify the norm in Definition 1.1, let zij be given r × r positive definite (p.d.)

matrices. Put

Z = diag (z11, . . . , z1a(1), . . . , zk1, . . . , zka(k)), s = a(1) + . . .+ a(k).(1.4)

Then the norm for the global residual is a norm in R
sr defined by

‖u‖Z = (u
′Zu)

1/2
∀u ∈ R

sr.

We are led to this norm, using a given transformation of the response Yij into z
1/2
ij Yij . In

the situation with explanatory variables Xij we shall choose an r×r p.d. matrix function

zi(·) on Hi for each i = 1, . . . , k and put

zij = zi(Xij).

Then the transformation Yij 7→ z
1/2
i (Xij)Yij is conditional given the explanatory Xij

paired off with Yij .

Exploring the expression of the OLSE (see (3.18)) directly for the case of one univari-

ate fixed-design model, namely (1.2) with k = 1, r = 1, the b1j constant and z1j = 1, Lai
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et al. (1979) established the strong consistency of the OLSE under minimal assumptions

on the design matrix; papers subsequent to this work include Chen et al. (1981), Bhat

(1982), Chen et al. (1983), Wu and Wasan (1996), Jin and Chen (1996). In the random

regressors case, also named stochastic regression models, to which the present paper be-

longs, Anderson and Taylor (1979), Christopeit and Helmes (1980), Lai and Wei (1982),

Wei (1985) proved the strong consistency of the OLSE in the model (k = 1, r = 1)

Y′1j = b
′
1jθ1 + η

′
1j , j = 1, 2, . . . ,

(with our notations), where the b1j are stochastic, z1j = 1; their conditions are imposed

on the greatest and least eigenvalues of the random matrix (b11 . . .b1a(1))(b11 . . .b1a(1))
′.

Subsequent works on strong consistency of LSE in univariate stochastic regression models

include Chang and Lin (1995), D. S. Chang and M. R. Chang (1996), with conditions

imposed on the stochastic regressors and errors; in the latter work constrained LSE under

linear constraints are also considered. In the system (1.2) with explanatory variables

Xij the regressors bij are functions of the explanatory observations, so to ensure the

convergence and the strong consistency of GLSE we shall not try to seek deep conditions

on the regressors; instead, we shall see how the true value of the parameter θ, i.e. the

modelling value, influences the GLSE consistency: the point is that when in each ith

model the observations (Xij , Yij), j = 1, 2, . . . , are identically distributed then given

functions bi(·), there is a best modelling parameter value, viz. the global mean square

(msq) regression parameter value (see Definition 2.1), and under some assumptions we

shall show that the GLSE converges to the orthogonal projection of this best value on the

support manifold, so the GLSE is strongly consistent if and only if the true parameter

value coincides with this projection. In this way the results in Bac-Van (1994, 1998) for

one-model systems will be completed and extended to systems of k models. The range

Θ of θ may have an arbitrary shape, which means arbitrary constraints may be imposed

on the parameters θ1, . . . , θk. A new feature of the present paper and also, as seen in

Section 4, the main mathematical difficulty lies in the investigation of GLSE, instead of

OLSE, in systems of k ≥ 2 models, whereas previous works on strong consistency of LSE

examined one-model systems (k = 1) exclusively; all results of this paper are valid for

any mutually dependent families of observations {(Xi1 ,Yi1), (Xi2 ,Yi2), . . .} in several

models (i = 1, . . . , k). Of course with the block matrices in Subsection 3.1 we can write

the system of k models (1.2) as a single model where the set of observations disintegrates

into k dependent groups, but such a reduction is purely formal. In fact, the treatment

of systems of k ≥ 2 models requires the development of a mathematical tool based on

sign properties of coefficients in the determinant expansion for linear combinations of

matrices; this tool, which has not been used yet in the study of LSE convergence and

consistency, is presented in Subsection 4.3 which shows that exploring GLSE convergence

for systems of k ≥ 2 models is indeed a problem on the interface of matrix theory and

statistics.

Starting from the integral expression of θ̂(F )− t for t arbitrary in the support mani-

fold, which expression, by an isomorphism, has the form Aβ, where β is simply expressed

through the global residual and A is a random linear operator, our approach to proving

the GLSE convergence consists in discovering the large sample a.s. uniform boundedness
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of A which yields necessary and sufficient conditions for the convergence as well as for

the strong consistency of GLSE in multimodel systems. These results shed light on the

one-model (k = 1) case; cf. Theorem 2.1 and its Corollary 2.1. A comparison of the

preceding approach with another standard one is given in Subsection 3.6, Remark 3.3.

The paper is organized as follows. Section 2 presents the results. Section 3 gives

proofs but defers the algebraic treatment to Sections 4 and 5. Section 4 deals with a cru-

cial lemma for exploring the expression of GLSE. Section 5 treats the positivity of sums of

mixing determinants, which is basic for the mathematical method developed in Section 4.

1.2. Notations and preliminaries. In a linear space an affine manifold L is a set

such that {u− v : u,v ∈ L} is a subspace K. Then K = L− t, L = K + t, where t is a

fixed element of L. The subspace K is called parallel to L.

Throughout the paper the following symbols are constantly used. For x,y ∈ Mp×q,

x = (x1 . . .xq), y = (y1 . . .yp)
′ and K ⊂Mp×q:

[y] = (y′1 . . .y
′
p)
′, [K] = {[y] : y ∈ K},(1.5)

vecx = (x′1 . . .x
′
q)
′.(1.6)

Given a p× q real matrix C = (cij),

C(σ) = (cij)i,j∈σ for σ ⊂ {1, . . . ,min(p, q)},(1.7)

Cfg = submatrix obtained by deleting the fth row and gth column of C,

‖C‖ =
(∑

c2ij

)1/2
,

M(C) = linear space generated by the columns of C,(1.8)

kerC = {x ∈ R
q : Cx = 0},

SpanQ = linear hull of the set Q in a linear space,

Q⊥ = orthogonal complement of the set Q in a Euclidean space,

♯ϕ = cardinality of the set ϕ,

I = unit matrix, n.n.d. = non-negative definite,

ℓ = ℓ(1) + . . .+ ℓ(k) in the models (1.2),(1.9)

Φ = the subspace of Rℓr parallel to [F ] in Definition 1.1,(1.10)

E = a matrix whose columns form a basis for Φ, with(1.11)

E = (E′1 . . .E
′
k)
′, Ei = a matrix of ℓ(i)r rows.(1.12)

For Mp×q endowed with the inner product (y, z) = [y]
′W[z], W pq × pq p.d., y, z ∈

Mp×q:
‖y‖W = ([y]

′W[y])1/2,

⊥W = orthogonality symbol (use ⊥ whenW = I).

The orthogonal projection of y ∈ Mp×q on an affine manifold L ⊂ Mp×q is defined as

the unique element x ∈ L such that ‖y − x‖W ≤ ‖y − u‖W for all u ∈ L, and

PrWL = orthogonal projector onto the affine manifold L,

PrL = Pr
I

L.
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The following formula defines PrWL through the orthogonal projector onto the subspace

L− t, t ∈ L:

PrWL A− t = Pr
W

L−t(A− t), A ∈Mp×q,(1.13)

which is easily obtained using a translation by −t; cf. Bac-Van (1994, Proposition 3.4).

2. Results on GLSE convergence and consistency

Henceforth throughout the paper the following assumption will always be in force.

Assumption 2.1. • For i = 1, . . . , k, (Hi,Ai) are arbitrary measurable spaces,

• for j = 1, 2, . . . , Xij are (Hi,Ai)-valued random variables (r.v.) and Yij are r × 1

random vector variables,

• bi(·) and zi(·) are Ai-measurable functions on Hi; bi(·) is ℓ(i) × 1 vector-valued

whereas zi(·) is r × r p.d. matrix-valued;

• the ℓ(i)× r real matrix parameters θi and the global sample size

a = (a(1), . . . , a(k))

are non-random. We put

(Xi,Yi) = (Xi1,Yi1) ∀i.

It will turn out that the GLSE convergence and consistency are related to the notion

defined below; cf. Cramér (1945, p. 272). Write

∀y ∈ R
r, ∀x ∈ Hi, ‖y‖

2
zi(x)
= y′zi(x)y.

Definition 2.1. If the non-random matrix τi satisfies

E ‖Yi − τ
′
ibi(Xi)‖

2
zi(Xi)

≤ E ‖Yi − t
′
ibi(Xi)‖

2
zi(Xi)

for all ℓ(i) × r non-random matrices ti, then the function τ
′
ibi(Xi) is called the mean

square (msq) regression of Yi on Xi, and τi a msq regression of Yi on Xi parameter

value. τ = (τ ′1 . . . τ
′
k)
′ is named a global msq regression parameter value.

We shall repeatedly use the notion of stationary and indecomposable sequences of

r.v.’s of Loève (1963, §30); here this notion is introduced to ensure that the ergodic

hypothesis (loc. cit., p. 423) is true. Let (Γ, C) be an arbitrary measurable space. A

matrix-valued r.v. ξ, with range space isomorphic to (Rp,Bp), is said to be defined on a

sequence of (Γ, C)-valued r.v.’s Zn, n = 1, 2, . . . if [ξ] = ϕ({Zn}), where ϕ is a measurable

function from (Γ∞, C∞) to (Rp,Bp). An event A is defined on the sequence if so is IA.

The translate ξk by k − 1 of ξ = ϕ(Z1, Z2, . . .) is ξk = ϕ(Zk, Zk+1, . . .) for k ≥ 1, the

translate Ak of A is defined by IAk = (IA)k. An event A is called an invariant event of

{Zn} if Ak = A for all k ≥ 1. The sequence {Zn} is called stationary if PAk = PA for

all k ≥ 1 for every event A defined on it and is called indecomposable if PA = 0 or 1 for

every invariant event A of the sequence.

Proposition 2.1 (Ergodic theorem). Let ξ be a matrix-valued r.v. defined on a stationary

indecomposable sequence {Zn} and {ξk} the sequence of translates. Let the matrix E ξ

exist and have finite elements. Then h−1
∑h

k=1 ξk
a.s.
−→ E ξ as h→ +∞.
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In what follows, under Assumption 2.1 the following conditions will often be required.

A0. For each i = 1, . . . , k, {(Xi1,Yi1), (Xi2,Yi2), . . .} is a stationary and indecom-

posable sequence.

The strict stationarity is required for defining a msq regression parameter value of

the response on the explanatory variable in the ith model.

A1. E ‖z
1/2
i (Xi)Yi‖

2 <∞ for all i = 1, . . . , k.

A2. E ‖bi(Xi)‖
2Tr zi(Xi) <∞ for all i = 1, . . . , k, where Tr abbreviates Trace.

A3. For each i = 1, . . . , k, the probability distribution of bi(Xi) is not concentrated

in any proper subspace of Rℓ(i).

To state the convergence of GLSE we shall use the matrices E,Ei of (1.11), (1.12)

and the subspace Φ of R
ℓr in (1.9), (1.10). Let v = (v′1 . . .v

′
k)
′ be any vector in R

ℓr,

vi ∈ R
ℓ(i)r for all i. Put

T0i = E (bi(Xi)b
′
i(Xi)⊗ zi(Xi)) , a n.n.d. matrix ∀i,

T0 = diag (T01, . . . ,T0k),

S(F ) = {v ∈ R
ℓr : E′iT0ivi = 0 ∀i = 1, . . . , k},

[U(F )] = S(F )⊕ Φ+ [t] with an arbitrary matrix t ∈ F .

S(F ) is independent of the choice of E, a matrix generating Φ, and is thus determined

by F . Under Conditions A2 and A3, T0i and T0 are p.d. matrices; cf. Proposition 3.2.

With the inner product u′T0v in R
ℓr, S(F ) ⊂ Φ⊥. U(F ) ⊂ Mℓ×r is an affine manifold

independent of t ∈ F since [t] ∈ [F ] = Φ+ [t] ⊂ [U(F )].

Properties of U(F ). (i) U(F ) ⊃ F , whereas U(F ) = F ⇔
∑k
i=1RankEi = ℓr or, equiv-

alently, using ℓr orthogonal coordinate axes in R
ℓr =
∏k
i=1R

ℓ(i)r, the projection of Φ on

R
ℓ(i)r coincides with R

ℓ(i)r for all i.

(ii) U(F ) ⊂Mℓ×r, and

U(F ) =Mℓ×r ⇔ RankE =
k∑

i=1

RankEi(2.1)

or, equivalently, Φ is the product of its projections on the coordinate spaces R
ℓ(i)r.

(iii) The case F ⊂ U(F ) ⊂ Mℓ×r with proper inclusion really occurs if and only if

RankE <
∑k
i=1RankEi < ℓr.

Theorem 2.1 (GLSE convergence). In the system (1.2) satisfying Assumption 2.1 and

Conditions A0–A3, if the global msq regression parameter value τ ∈ U(F ) then GLSE

θ̂(F )
a.s.
→ PrT0F τ as a→∞, whereas θ̂(F ) diverges a.s. when τ 6∈ U(F ).

The GLSE is strongly consistent if and only if together τ ∈ U(F ) and the projection

PrT0F τ coincides with the true value of the parameter θ.

By (2.1) we get the following important corollary.

Corollary 2.1. For a spline model with random explanatory variables, put in the linear

form

Y′1j = b
′
1(X1j)θ + η

′
1j , j = 1, . . . , a,
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satisfying Assumption 2.1 and Conditions A0–A3 with k = 1, as a→∞ the GLSE θ̂(F )

always converges a.s. to the orthogonal projection on F of the msq regression parameter

value τ according to the inner product

(u,v) = [u]′T0[v], u,v ∈Mℓ×r, T0 = E (b1(X11)b
′
1(X11)⊗ z1(X11)).

The GLSE is strongly consistent if and only if this projection coincides with the true value

of the parameter θ.

When F is the whole parameter range spaceMℓ×r we get

Corollary 2.2. Under Assumption 2.1 and Conditions A0–A3 the OLSE always con-

verges a.s. to τ . The OLSE is strongly consistent if and only if the true value of the

parameter θ coincides with τ .

We also get

Corollary 2.3. Under Assumption 2.1 and Conditions A0–A3 the GLSE θ̂ is always

strongly consistent in the following case:

E (Yi |Xi) = θ
′
ibi(Xi) (∀i) in the system (1.2).(2.2)

Indeed, by the minimal property of the conditional expectation, (2.2) entails that θi
is the msq regression parameter value for all i, so τ = θ ∈ Θ ⊂ F ⊂ U(F ).

According to the proof of Lemma 3.2 Conditions A1–A3 are needed to ensure that

a msq regression of Yi on Xi parameter value exists and is unique, i = 1, . . . , k. In the

one-model case, for i.i.d. observations, Condition A3 is necessary and sufficient for the a.s.

existence of the GLSE for sufficiently large sample size (see Bac-Van (1994, Theorem 5.1)).

Thus at least for stationary and indecomposable sequences of observations,Theorem 2.1

gives necessary and sufficient conditions for the GLSE convergence and strong consistency

under minimal assumptions and characterizes these properties by msq regression.

In Definition 1.1 of GLS values, there may be an infinity of manifolds F containing

the parameter range Θ. In the course of the estimation process one may wish to change

the support F . Does it influence the convergence of θ̂(F )? To get an answer, we shall

build a class of manifolds F , using the following lemma and the definition below.

Lemma 2.1. Let {f1, . . . , fm}, m ≥ 1, be a basis for a subspace Φ of R
n and

{f1K , . . . , fmK} its orthogonal projection on some subspace K of R
n according to the

inner product u′v, u,v ∈ R
n. Then the ratio

σ = 1−
det(f1K . . . fmK)

′(f1K . . . fmK)

det(f1 . . . fm)′(f1 . . . fm)

is independent of the choice of the basis for Φ. Moreover 0 ≤ σ ≤ 1, and σ = 0 if and

only if Φ ⊂ K, while σ = 1 if and only if Φ contains some non-null vector orthogonal

to K.

In Section 5 we shall prove this lemma and justify the following definition.

Definition 2.2. For 0 ≤ δ < 1, the subspace Φ is said to be at most δ-steep relative to

K if 1 ≤ dimΦ ≤ dimK and if σ ≤ δ.
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An affine manifold F inMℓ×r is said to be at most δ-steep relative to some subspace

G of Mℓ×r if, in R
n = R

ℓr, the subspace Φ parallel to [F ] is at most δ-steep relative

to the subspace K = [G]. By abuse of language, we shall say that the affine manifold

F is at most δ-steep on some coordinate space Mℓ(i)×r of Mℓ×r, i = 1, . . . , k, ℓ =

ℓ(1) + . . . + ℓ(k), if in R
ℓr the subspace Φ parallel to [F ] is at most δ-steep relative to

the subspace K consisting of ℓr× 1 vectors lying in the coordinate space R
ℓ(i)r of Rℓr—a

vector x = (x1, . . . ,xk) ∈
∏k
i=1R

ni is said to lie in the coordinate space R
ni if xh = 0

for all h 6= i.

Given numbers δi, 0 ≤ δi < 1, i = 1, . . . , k, consider the following class C of affine

manifolds F ∈Mℓ×r:

C = {F ⊃ Θ : F at most δi-steep onMℓ(i)×r ∀i}.(2.3)

In the one-model case (k = 1), C = {F : Θ ⊂ F ⊂Mℓ×r} regardless of δ1.

Theorem 2.2 (Uniform convergence of GLSE). Under Assumption 2.1 and Conditions

A0–A3 if the global parameter range Θ in (1.2) contains the global msq regression param-

eter value τ and if C is non-void , then

sup
F∈C
‖θ̂(F )− τ‖

a.s.
−→ 0 as a→∞.

Theorem 2.3 (GLSE uniform consistency). Under Assumption 2.1 let Conditions A0–A3

be fulfilled. Let there exist a manifold F ∋ τ, F ∈ C. Then

θ = τ ⇔ sup
F∈C
‖θ̂(F )− θ‖

a.s.
−→ 0 as a→∞,

i.e. the GLSE θ̂(F ) is strongly consistent uniformly in F over the class C if and only if in

(1.2) the true global parameter value θ coincides with the global msq regression parameter

value τ .

In the one-model case (k = 1) this conclusion is already stated in another form in

Bac-Van (1994, Remark 5.2) for i.i.d. observations.

In the case (2.2) always F ∋ τ , hence

Corollary 2.4. In the case (2.2) if C is non-void , under A0–A3 the GLSE θ̂(F ) is

always strongly consistent uniformly in F over C.

The belonging of F to the class C implies that there are sufficiently many constraints

on the parameters θi so that the dimension of Θ does not exceed that of the range space

of any θi.

3. Proofs of the results

3.1. Algebraic formal expressions For i = 1, . . . , k consider

{(Yij ,bij), zij : j = 1, . . . , a(i)},

Yij and bij being respectively r × 1 and ℓ(i) × 1 vectors, and zij r × r p.d. matrices.

Z is defined by (1.4). ⊗ being the Kronecker product symbol, Ir the r × r unit matrix,
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we form block matrices

Y = (Y′11 . . .Y
′
1a(1)
... . . .
...Y′k1 . . .Y

′
ka(k))

′,

B′i = (bi1 . . .bia(i)),

B = diag(B1, . . . ,Bk),

C = Z1/2(B⊗ Ir),(3.1)

∆ = diag(a(1)Iℓ(1)r, . . . , a(k)Iℓ(k)r),

T =∆−1C′C = diag(T1, . . . ,Tk),

C′C =∆T.(3.2)

We set

ℓ = ℓ(1) + . . .+ ℓ(k), s = a(1) + . . .+ a(k);

then C is sr× ℓr, Ti is ℓ(i)r× ℓ(i)r. Noting that, for any vector b and matrices A,U,V

such that the products below exist,

(b⊗A)U = b⊗AU, V(b′ ⊗A′) = b′ ⊗VA′,(3.3)

we have a(i)Ti = (. . .bij ⊗ Ir . . .)(. . .bij ⊗ zij . . .)
′, thus

Ti = a
−1(i)

a(i)∑

j=1

bijb
′
ij ⊗ zij .(3.4)

We rewrite the global residual η(·) in (1.3) and define a vector function γ(·), which will

be extensively used later, as follows:

η(θ) = Y − [Bθ],(3.5)

γ(θ) =∆−1C′Z
1/2
η(θ) = (γ′1 . . . γ

′
k)
′,(3.6)

where, using (3.1) and (1.3),

γ′i = a
−1(i)(. . .Y′ij − b

′
ijθi . . .) (. . . (bij ⊗ Ir)zij . . .)

′ , j = 1, . . . , a(i),

equivalently

γ′i = γ
′
i(θi) = a

−1(i)

a(i)∑

j=1

(Y′ij − b
′
ijθi)zij(b

′
ij ⊗ Ir).

Note that I being the unit matrix, for matrices A,U,V,q, z with z symmetric and any

vector b such that the products below exist, using (1.5) we have

[AUV′] = (A⊗V)[U],(3.7)

q′b = [b′q] = (b′ ⊗ I)[q],(3.8)

(b⊗ z)q′b = (b⊗ z)(b′ ⊗ I)[q] = (bb′ ⊗ z)[q].(3.9)

Hence

γ′i(θi) = a
−1(i)

a(i)∑

j=1

(Y′ij − b
′
ijθi)(b

′
ij ⊗ zij),
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γi(θi) = a
−1(i)

a(i)∑

j=1

(
(bij ⊗ zij)Yij − (bijb

′
ij ⊗ zij)[θi]

)
.(3.10)

Note some useful expressions for γ. Put

Qi = a
−1(i)(bi1 ⊗ zi1

... . . .
...bia(i) ⊗ zia(i)), Q = diag(Q1, . . . ,Qk).

Then γi(θi) = Qi(Y
′
i1 . . .Y

′
ia(i))

′ − Ti[θi], hence the vector γ(θ) linearly depends on θ,

and is also a linear function of the global residual η, namely

γ(θ) = QY −T[θ] = Qη(θ).(3.11)

Henceforth, viewing A ∈ Mp×q as a linear map, for any set Ψ ⊂ Mq×r we shall often

use the symbol

AΨ = {Ax : x ∈ Ψ} ⊂ Mp×r.(3.12)

3.2. Elicitation of the GLSE. From Definition 1.1 for any t ∈ F ⊂ Mℓ×r, using

(1.5) consider in R
ℓr the subspace Φ = [F − t] parallel to [F ]. C being sr× ℓr, by (3.12),

CΦ ⊂ M(C) ⊂ R
sr. Generalizing the three-perpendicular theorem we can check that

in R
sr,

PrCΦ = PrCΦ PrM(C).(3.13)

Using the inner product u′v (u,v ∈ R
sr) we introduce two constantly used symbols

J = PrCΦ in R
sr,

G = (C′C)−1C′JC(C′C)
−1
.(3.14)

Lemma 3.1. Choose t arbitrarily in F . Let β be any vector defined by Tβ = γ(t). Then

GLS values θ̂ are defined by the equation

C[θ̂ − t] = JCβ.

The GLSE θ̂(F ) exists if and only if C′C is p.d., and then

[θ̂(F )− t] = (C′C)−1C′JC(C′C)
−1
∆γ(t) = G∆γ(t) = G∆Tβ for any t ∈ F ,(3.15)

β = (C′C)−1C′Z
1/2
η(t).(3.16)

Remark 3.1. The classic univariate multiple regression model is Y = Bθ + η(θ), where

Y is the a × 1 response data, B is the a × ℓ design matrix, θ is the ℓ × 1 parameter

and η(θ) = Y − Bθ is the residual; we recognize that here k = 1, r = 1, a = a(1) = s,

∆ = aIℓ, and taking Z = Ia as usual, we have C = B. Let us compute the OLSE: we

have Φ = R
ℓ, CΦ = BR

ℓ =M(B), hence from (3.14),

J = PrM(B) in R
a, G = (B′B)−1(3.17)

since JB = B; from (3.6), ∆γ(t) = B′η(t), and, by letting t = 0, (3.15) becomes the

known expression

θ̂ = (B′B)−1B′Y.(3.18)

Proof of Lemma 3.1. From Definition 1.1, using the expression (3.5) for the global resid-

ual, GLS values θ̂ are defined by

‖Y − [Bθ̂]‖Z = min
t∈F
‖Y − [Bt]‖Z,
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which, with Notation (3.12), is equivalent to [Bθ̂] = PrZ[BF ]Y. Hence GLS values θ̂ ∈ F

always exist. By a translation along −t inMℓ×r we have the equivalent equation

[B(θ̂ − t)] = PrZ[B(F−t)](Y − [Bt]).

But, using (3.7), [B(θ̂− t)] = (B⊗ Ir)[θ̂− t], [B(F − t)] = (B⊗ Ir)[F − t] = (B⊗ Ir)Φ,

so by (3.5) we can rewrite

(B⊗ Ir)[θ̂ − t] = Pr
Z

(B⊗Ir)Φ
η(t).

Recall C = Z1/2(B⊗ Ir). The automorphism y 7→ u = Z
1/2y of R

sr transforms the

inner product y′Zz into the inner product u′v, u = Z1/2y, v = Z1/2z. This yields the

equivalent equation

C[θ̂ − t] = PrCΦZ
1/2η(t).(3.19)

By (3.13) this can be rewritten as

C[θ̂ − t] = PrCΦ PrM(C)Z
1/2η(t) = JCβ,

where the vector β is defined by the orthogonality condition

C′(Z
1/2
η(t)−Cβ) = 0

or, equivalently, by ∆γ(t) = C′Cβ due to (3.6), i.e. γ(t) = Tβ by (3.2). C being sr× ℓr,

equation (3.19) has a unique solution [θ̂] if and only if RankC = ℓr, i.e. C′C is p.d.; we

then have β = C′C−1∆γ(t) and (3.16) follows from (3.6).

Remark 3.2. When Φ = {0}, F is reduced to a given element θ0 in Mℓ×r, the global

parameter θ is the constant θ0, the above reasoning gives θ̂ = θ0.

3.3. Existence of the msq regression parameter value

Lemma 3.2. (i) With Assumption 2.1 for each i = 1, . . . , k, a msq regression of Yi on

Xi parameter value exists under Conditions A1 and A2, and is unique under A1, A2

and A3.

(ii) Under A1 and A2, for τi to be a msq regression of Yi on Xi parameter value it

is necessary and sufficient that

E {(bi(Xi)⊗ zi(Xi))Yi − (bi(Xi)b
′
i(Xi)⊗ zi(Xi))[τi]} exists and vanishes.(3.20)

Proof. Write z = zi(Xi), b = bi(Xi). Let Sz be the set of all r × 1 random vectors ζ

defined up to an equivalence and such that E‖ζ‖2z = E(ζ ′zζ) = E‖z1/2ζ‖2 < ∞. Then

Sz is a linear space and the function ϕ(ξ, ζ) = E(ξ
′zζ) is an inner product in Sz. Further,

q being ℓ(i)× r and b being ℓ(i)× 1, from (3.8), (3.3) we have

q′b = [b′q] = (b′ ⊗ Ir)[q],

E ‖z1/2q′b‖2 ≤ E {‖z1/2(b′ ⊗ Ir)‖
2‖q‖2} = ‖q‖2E ‖(b⊗ z1/2)‖2

= ‖q‖2E {Tr (b⊗ z1/2)(b′ ⊗ z
1/2
)}

= ‖q‖2E {(Trbb′)(Tr z)} = ‖q‖2E ‖b‖2Tr z.

Due to Condition A2, q′b belongs to Sz for all q ∈ Mℓ(i)×r; in particular, each column

vector of b′⊗Ir belongs to Sz. Thus in the space Sz, q
′b varies over the finite-dimensional

subspace G generated by ℓ(i)r column vectors of b′ ⊗ Ir. By Condition A1 also Yi ∈ Sz.
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In the Euclidean space Sz the square distance E ‖Yi − q
′b‖2z is minimized if and only if

q′b is the orthogonal projection of Yi on G. Since G is a finite-dimensional subspace of

the Euclidean space Sz, the orthogonal projector from Sz onto G exists (see Chambadal

and Ovaert (1968), p. 370). Thus the orthogonal projection exists, denote it by τ ′ib; then

the existence of a msq regression parameter value is proved under A1 and A2. Further if

such a value were not unique there would be some non-random p ∈Mℓ(i)×r, p 6= 0 such

that p′b = 0 or, equivalently, there would be some non-random ℓ(i)-vector u 6= 0 such

that u′b = 0, which contradicts Condition A3. Moreover, the minimizing property of τi
is, under A1 and A2, equivalent to Yi− τ

′
ib ⊥ G, which, due to (3.9), can be written as

E {(Y′i − b
′τi)z(b

′ ⊗ Ir)} = 0, E {(b⊗ z)Yi − (bb
′ ⊗ z)[τi]} = 0.

3.4. Infinitesimality of γ. From now on, with Assumption 2.1 we shall consider

bij = bi(Xij),(3.21)

zij = zi(Xij).(3.22)

Lemma 3.3. Under Assumption 2.1 and Conditions A0–A2, if τ is a global msq regression

parameter value then γ(τ )
a.s.
−→ 0 as a→∞.

Proof. Under Condition A0, from Proposition 2.1 for non-random τi ∈ Mℓ(i)×r, i =

1, . . . , k, the function γi(τi), defined by (3.10) with (3.21) and (3.22), tends a.s. to zero if

(3.20) holds. But from Lemma 3.2(ii), under Conditions A1 and A2, (3.20) means τi is a

msq regression of Yi on Xi parameter value.

3.5. A crucial lemma. The lemma below states an important property of the matrix

G∆ in (3.15) which, in view of Lemma 3.3, plays a key role in the GLSE convergence.

We shall use the symbol

Mpd(n) = set of all n× n p.d. matrices

and first note

Proposition 3.1. In the linear space
∏k
i=1Mni×ni endowed with an arbitrary norm and

supplied with its norm topology , the product set
∏k
i=1Mpd(ni) is open.

Hence, together with each element, it contains some closed ball of positive radius

centered at that element. From now on, the above topology will always be implied.

Proof. For any positive integer s consider the linear topological spaceMs×s with topology

induced by an arbitrary norm n(·). By (1.6) consider the one-to-one linear map u 7→ vecu

from Ms×s onto R
s2 inducing a norm p(·) by p(vecu) = n(u). Then this map is an

isometric isomorphism from Ms×s onto R
s2 . Hence from the norm topology viewpoint

we can identify Ms×s with R
s2 . But in R

s2 every norm is equivalent to the Euclidean

norm ‖ · ‖ (cf. Cartan (1967)), hence we can consider n(u) = ‖u‖. If u0 ∈ Mpd(s) is

given, as soon as ‖u − u0‖ is sufficiently small all principal minors of u are close to

the corresponding ones of u0 hence are all positive, then, by Proposition 1c.1(iv) of Rao

(1973), u is also p.d. Therefore Mpd(s) is open in the topology of Ms×s induced by

an arbitrary norm, in particular by the max-norm n(u) = max |afg| for u = (afg)s,s.
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Thus the product set
∏k
i=1Mpd(ni) is open in the product topology

∏k
i=1 τi, where τi

is the topology in Mni×ni induced by an arbitrary norm. Without loss of generality

we can consider that each τi is induced by the max-norm; then a base for τi is the

collection of all open cubes inMni×ni hence a base for
∏k
i=1 τi is the collection of open

cubes in
∏k
i=1Mni×ni , which are defined by isomorphism if we identify

∏k
i=1Mni×ni

with
∏k
i=1R

n2i or R

∑k
i=1

n2i . Therefore the product topology
∏k
i=1 τi coincides with the

topology induced by the norm q(x) = max q(xi), where x = (x1, . . . ,xk) and q(xi) is

the max-norm of xi ∈ Mni×ni ; this last topology is also induced by any other norm

in
∏k
i=1Mni×ni , which can be seen by identifying this product space with R

∑k
i=1 n

2

i .

Thus the set
∏k
i=1Mpd(ni) is open in the linear topological space

∏k
i=1Mni×ni whose

topology is induced by an arbitrary norm.

In Lemma 3.4 below we shall use the following symbols, the relation of which to the

ones previously used will be clear later.

Symbols 3.1. (∀i = 1, . . . , k) a(i) = positive number , ni = positive integer , Ti = ni×ni
p.d. matrix.

∆ = diag(a(1)In1 , . . . , a(k)Ink),

T = diag(T1, . . . ,Tk), n =

k∑

i=1

ni, R
n =

k∏

i=1

R
ni ,

Φ = any linear subspace of R
n,

C = p× n real matrix with C′C =∆T,

R
p is endowed with the inner product (u,v) = u′v,

J = orthogonal projector from R
p onto its subspace CΦ (cf. (3.12)),

B0 = fixed closed ball in
∏k
i=1Mpd(ni) (cf. Proposition 3.1),

δ = (δ1, . . . , δk), with 0 ≤ δi < 1 ∀i.

Lemma 3.4. There exists a positive number D(Φ,B0) depending on Φ and B0 only such

that

(∀(T1, . . . ,Tk) ∈ B0) ‖(C
′C)−1C′JC(C′C)

−1
∆‖2 ≤ D(Φ,B0)(3.23)

independently of a(1), . . . , a(k) and C. Moreover , if 1 ≤ dimΦ ≤ min(n1, . . . , nk) then

the class Γδ of subspaces Φ at most δi-steep relative to every coordinate space R
ni is

non-void provided δ1, . . . , δk are sufficiently close to 1, and there is a positive constant

α(B0, δ1, . . . , δk) depending on B0, δ1, . . . , δk only such that

(3.24) (∀Φ ∈ Γδ)(∀(T1, . . . ,Tk) ∈ B0)

‖(C′C)−1C′JC(C′C)
−1
∆‖2 ≤ α(B0, δ1, . . . , δk)

independently of a(1), . . . , a(k) and C.

When k = 1, Γδ is just the class of all subspaces of R
n and the constant α is

independent of δ1. Lemma 3.4 will be proved in Section 4.
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3.6. Interpretation of Lemma 3.4. Our approach to exploring the GLSE convergence

consists in grounding the theory on Lemma 3.4. This is explained by some interpretation

using a random linear operator which clarifies the meaning of the GLSE expression (3.15).

The following formulae are useful for this purpose. Assume C′C is p.d.; we get

PrCΦ = J = CGC
′,(3.25)

PrC
′
C

Φ = GC′C = G∆T,(3.26)

PrC
′
C

Φ = E(E′∆TE)−1E′∆T,(3.27)

G = E(E′∆TE)−1E′.(3.28)

Indeed, (3.27) comes from formula (1c.4.3) of Rao (1973), which also gives

PrM(C) = C(C
′C)−1C′.(3.29)

Hence, J being symmetric and idempotent, by (3.13),

J = JC(C′C)−1C′ = C(C′C)−1C′JC(C′C)
−1
C′ = CGC′.

To prove (3.26), take λ arbitrary in R
ℓr. Then Cα = JCλ means α ∈ Φ, Cλ = Cα+Cδ,

Cδ ⊥ CΦ, i.e. δ ⊥C′C Φ; since C is sr × ℓr and RankC = ℓr we have λ = α+ δ, α ∈ Φ,

δ ⊥C′C Φ, i.e. α = PrC
′
C

Φ λ; on the other hand Cα = JCλ entails C′Cα = C′JCλ,

α = (C′C)−1C′JCλ, hence (C′C)−1C′JC = PrC
′
C

Φ . Finally (3.28) follows from (3.26)

and (3.27) since ∆T is p.d.

By Lemma 3.1,

[θ̂(F )− t] = G∆Tβ = PrC
′
C

Φ β, β = (C′C)−1C′Z
1/2
η(t)

by (3.16); in this formula G∆T is a random linear operator which depends on the ex-

planatory observations only.

When (T1, . . . ,Tk) varies over a fixed closed ball B0 in
∏k
i=1Mpd(ni), the uniform

boundedness of the linear operator G∆T is equivalent to the uniform boundedness of the

matrix G∆.

Indeed, viewing a q × q real matrix A as a linear operator, we define ν(A) = norm

of the operator A = supx∈Rq , ‖x‖=1 ‖Ax‖. Then ν(A) ≤ ‖A‖, for ‖Ax‖ ≤ ‖A‖ · ‖x‖.

Write A = (A1 . . .Aq), x = (x1 . . . xq)
′, and take xh = 1. We see that ‖Ah‖ ≤ ν(A) for

all h, hence ‖A‖2 ≤ qν2(A). Thus ν2(A) ≤ ‖A‖2 ≤ qν2(A). Now letting A = PrC
′
C

Φ ,

we see that when (T1, . . . ,Tk) ∈ B0 the uniform boundedness of A is equivalent to that

of the matrix G∆T and, in turn, to that of G∆, for ‖G∆T‖2 ≤ ‖G∆‖2‖T‖2 and

‖G∆‖2 ≤ ‖G∆T‖2‖T−1‖2.

Note that, on account of ‖Ax‖2 = x′A′Ax, ν2(A) = sup‖x‖=1 ‖x
′A′Ax‖ =maximum

eigenvalue of A′A; cf. Rao (1973), formula (1f.2.1), p. 62.

Remark 3.3. We shall now compare our approach to proving the GLSE convergence

with another standard one. Since by (3.6), ∆γ(t) = C′Z1/2η(t), we can rewrite (3.15) as

[θ̂ − t] = G∆γ(t) = GC′Z1/2η(t) for any t ∈ F .
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Using ‖Ax‖ ≤ ν(A)‖x‖ and, from above, ν2(G1/2) = maximum eigenvalue of G =

λmax(G) say, we get

‖θ̂ − t‖2 ≤ λmax(G)‖G
1/2
C′Z

1/2
η(t)‖2 = λmax(G)(η

′(t)Z1/2JZ1/2η(t)),

for CGC′ = J by (3.25). In the classic univariate multiple regression model Y = Bθ+ η

one takes Z = I, for the OLSE from (3.17), Remark 3.1, and by (3.29) we have J =

PrM(B) = B(B
′B)−1B′,G = (B′B)−1; then the preceding inequality with t = θ becomes

‖θ̂ − θ‖2 ≤ λ−1min(B
′B)(η′B(B′B)−1B′η).

Lai andWei’s (1982) approach to proving the strong consistency of OLSE consists in start-

ing from this inequality and seeking minimal assumptions ensuring that the quadratic

form Q = η′B(B′B)−1B′η is o(λmin(B
′B)). The approach of the present paper for proper

GLSE consists in starting from the integral expression [θ̂(F )− t] = PrC
′
C

Φ β and discov-

ering the uniform boundedness of the family {PrC
′
C

Φ } of linear operators, which yields

necessary and sufficient conditions for the convergence as well as for the strong consis-

tency of GLSE in multimodel systems.

3.7. Evaluation of the GLSE error norm. When applying Lemma 3.4 to the GLSE

expression we have to know if (T1, . . . ,Tk) ∈ B0; to answer this we now establish the

convergence of the matrices Ti in (3.4).

Proposition 3.2. Under Assumption 2.1 let , for all i = 1, . . . , k, {Xij : j = 1, 2, . . .} be

a stationary and indecomposable sequence. Then under Condition A2 as a→∞,

Ti
a.s.
−→ T0i = E (bi(Xi)b

′
i(Xi)⊗ zi(Xi)) , a n.n.d. matrix , ∀i,

T
a.s.
−→ T0 = diag(T01, . . . ,T0k).

If Condition A3 is added then the limits T0i,T0 are p.d. and there exists a closed ball

B0 of positive radius centered at (T01, . . . ,T0k), contained in
∏k
i=1Mpd(ℓ(i)r), and in

the basic probability space (Ω,F ,P) we have

(∃Ω1 ∈ F , PΩ1 = 1)(∀ω ∈ Ω1)(∃a0(ω))(∀a ≥ a0(ω)) (T1, . . . ,Tk) ∈ B0.

Proof. We can check that Condition A2 is equivalent to the existence and finiteness (for

all i) of E (bi(Xi)b
′
i(Xi)⊗zi(Xi)); the last matrix for each i is n.n.d. and, with Condition

A3 added, is p.d.; cf. Bac-Van (1994), Propositions 5.3, 5.4. The limits follow from (3.4)

and Proposition 2.1, the rest from Proposition 3.1.

Lemma 3.4 and Proposition 3.2 yield this important corollary which just states the

large sample a.s. uniform boundedness of the random linear operator G∆T mentioned

in Subsection 3.6 and which will be used mainly for proving Theorems 2.1–2.3.

Corollary 3.1. Under Assumption 2.1 let {Xi1, Xi2, . . .} be a stationary and indecom-

posable sequence for each i = 1, . . . , k, and let Conditions A2, A3 be satisfied. Then there

exists a positive constant D(F ) depending only on the manifold F in Definition 1.1 such

that in the basic probability space we have

(∃Ω1 ∈ F , PΩ1 = 1)(∀ω ∈ Ω1)(∃a0(ω))(∀a ≥ a0(ω)) ‖G∆‖
2 ≤ D(F ).(3.30)
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Moreover , given numbers δi, 0 ≤ δi < 1, i = 1, . . . , k, there is a positive constant

α(δ1, . . . , δk) depending on δ1, . . . , δk only such that

(∀a ≥ a0(ω))(∀F ∈ C) ‖G∆‖
2 ≤ α(δ1, . . . , δk),(3.31)

the class C being defined by (2.3).

Proof. In Proposition 3.2 fix the closed ball B0 whose existence is asserted; then as

a ≥ a0(ω), (T1, . . . ,Tk) ∈ B0. Apply inequalities (3.23) and (3.24) to the subspace Φ

of R
ℓr parallel to [F ]. Then D(Φ,B0) = D(F ) depends only on F and α(B0, δ1, . . . , δk)

depends only on δ1, . . . , δk; moreover F ∈ C entails Φ ∈ Γδ in (3.24).

The following lemma definitely asserts the a.s. existence of GLSE for sufficiently

large global sample size and also evaluates the GLSE error norm. It serves the proof of

Theorems 2.2 and 2.3.

Lemma 3.5. Under Assumption 2.1 let {Xi1, Xi2, . . .} be a stationary and indecomposable

sequence for each i = 1, . . . , k, and let Conditions A2, A3 be satisfied. Then there exists

a positive constant D(F ) depending only on the manifold F in Definition 1.1 such that

in the basic probability space (Ω,F ,P),

(3.32) (∃Ω1 ∈ F , PΩ1 = 1)(∀ω ∈ Ω1)(∃a0(ω))(∀a ≥ a0(ω))

the GLSE θ̂ = θ̂(F ) exists and ‖θ̂(F )− t‖2 ≤ D(F )‖γ(t)‖2 for any t ∈ F .

Moreover , given numbers δi, 0 ≤ δi < 1, i = 1, . . . , k, there is a positive constant

α(δ1, . . . , δk) depending on δ1, . . . , δk only such that

(∀a ≥ a0(ω)) sup
F∈C
‖θ̂(F )− t‖2 ≤ α(δ1, . . . , δk)‖γ(t)‖

2 ∀t ∈ Θ(3.33)

if C is non-void , C being defined by (2.3).

Proof. In Proposition 3.2, as a ≥ a0(ω), (T1, . . . ,Tk) ∈ B0, hence the GLSE exists since

C′C =∆T is p.d. Using (3.15) and applying inequalities (3.30) and (3.31) we get (3.32)

and (3.33).

3.8. Uniform convergence and uniform consistency. Lemma 3.2 asserts the exis-

tence and uniqueness of the global msq regression parameter value τ = (τ ′1 . . . τ
′
k)
′. As a

consequence of (3.32) and (3.33), Lemma 3.5, and by Lemma 3.3 as a→∞ we have

‖θ̂(F )− τ‖2 ≤ D(F )‖γ(τ )‖2
a.s.
−→ 0 if τ ∈ F ,(3.34)

sup
F∈C
‖θ̂(F )− τ‖2 ≤ α(δ1, . . . , δk)‖γ(τ )‖

2 a.s.−→ 0 if τ ∈ Θ.(3.35)

Proof of Theorem 2.2. Follows from (3.35).

Proof of Theorem 2.3. If the true global parameter value θ in (1.2) coincides with the

global msq regression parameter value τ then Θ ∋ τ , so (3.35) yields supF∈C ‖θ̂(F )− θ‖
a.s.
−→ 0 as a → ∞. Conversely if this convergence holds and if there exists F ∋ τ with

F ∈ C then by (3.34), θ̂(F )
a.s.
−→ τ as a→∞, hence from the former convergence τ = θ.
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3.9. Convergence of GLSE

3.9.1. Some matrix formulae. The formulae below will be used in what follows. Let

A,B,C,D be real matrices of which C is of order p× q. Then

(3.36)

(3.37)

RankC+ dimkerC = number of columns of C,

dim kerB ∩M(C) = dimkerBC if RankC = q,

(3.38) kerC′AC = kerAC for n.n.d. A,

(3.39) kerC′DC = kerC, RankC′DC = RankC for p.d. D.

(3.36) is the well known dimension formula; cf. Chambadal and Ovaert (1968), p. 54,

formula (2). To prove (3.37) note that

kerBC = {u ∈ R
q : BCu = 0} = {u ∈ R

q : Cu ∈ kerB};

but RankC = q means that C defines an isomorphism of vector spaces from R
q onto

M(C), which maps kerBC ontoM(C) ∩ kerB. To prove (3.38) consider

RankB′BC ≤ RankBC = RankC′B′BC ≤ RankB′BC,

hence RankB′BC = RankBC, which implies kerB′BC = kerBC by (3.36); butA n.n.d.

means A = B′B for some B, and so

kerC′AC = kerC′B′BC = kerBC = kerB′BC = kerAC.

3.9.2. Notations. Recall C′C = ∆T from (3.2). The following symbols will be used

throughout:

ni = ℓ(i)r, n = ℓr,

E = an n×m matrix, RankE = m, M(E) = Φ,(3.40)

E = (E′1 . . .E
′
k)
′, Ei is ni ×m,

k∑

i=1

ni = n.(3.41)

By Remark 3.2 we shall only consider m = dimΦ ≥ 1.

3.9.3. GLSE and projection of the msq regression parameter value. As an application of

Lemma 3.4, the proposition below states a simple relation between the GLSE θ̂(F ) and

the projection on F of the global msq regression parameter value τ , which serves for the

proof of convergence. We put

t0 = Pr
T0

F τ and ξ = [τ ]− [t0].(3.42)

Then by (1.13),

0 = PrT0Φ ([τ ]− [t0]), i.e. ξ ⊥T0 Φ.(3.43)

We shall let o(1) denote any random matrix of fixed order tending a.s. to 0 as a→∞.

Proposition 3.3. Under Assumption 2.1 and Conditions A0–A3,

[θ̂(F )− PrT0F τ ] = G∆T0ξ + o(1).(3.44)

Proof. We start from (3.15),

[θ̂ − t] = G∆γ(t) for any t ∈ F .
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Using (3.42) take t = t0; then by (3.11),

γ(t0) = QY −T[t0] = QY −T[τ ] +Tξ = γ(τ ) + (T−T0)ξ +T0ξ.

By Lemma 3.3 and Proposition 3.2, as a→∞, γ(τ )
a.s.
−→ 0 and T

a.s.
−→ T0. Hence, ξ being

fixed, γ(τ ) + (T−T0)ξ = o(1). Thus

[θ̂ − t0] = G∆o(1) +G∆T0ξ.

From Corollary 3.1 there exists a positive constant D(F ) depending on F only such that

a.s. as soon as the global sample size a is sufficiently large, ‖G∆‖2 ≤ D(F ). Hence we

get (3.44).

3.9.4. Properties of U(F ). Starting from the support manifold F in Definition 1.1 we

shall construct an affine manifold U(F ) which is the region of convergence in Theorem 2.1.

Let v = (v′1 . . .v
′
k)
′ be any vector in R

n, vi ∈ R
ni for all i. We shall consider the sets

Φ⊥T0 = {v ∈ R
n : E′T0v = 0},

S(F ) = {v ∈ R
n : E′iT0ivi = 0 ∀i = 1, . . . , k}.(3.45)

The matrix T0 being fixed, S(F ) is a subspace of R
n determined by E. From (3.40) the

columns of E form a basis for Φ. When the basis changes, S(F ) remains the same, thus

S(F ) is entirely determined by F , for F determines Φ. With the inner product u′T0v

the first set is the orthogonal complement of Φ which will briefly be written as Φ⊥. We

have S(F ) ⊂ Φ⊥ since

E′T0v =

k∑

i=1

E′iT0ivi.

By (3.43), ξ ∈ Φ⊥. Take a fixed matrix t ∈ F . Then by (3.42), [t0] − [t] ∈ Φ. Consider

R
n = Φ⊥ ⊕ Φ and put [τ0] = ξ + ([t0]− [t]). Then it follows that

[τ0] ∈ S(F )⊕ Φ ⇔ ξ ∈ S(F ).

Now rewrite ξ = [τ ]− [t0] as

[τ ] = ξ + ([t0]− [t]) + [t] = [τ0] + [t].

Put [U(F )] = S(F )⊕ Φ+ [t]. Then

ξ ∈ S(F ) ⇔ τ ∈ U(F ).(3.46)

U(F ) is an affine manifold inMℓ×r which remains unchanged by varying [t] in [F ], and

which is entirely determined by F . It has the following properties.

(1) U(F ) ⊃ F since [F ] = Φ+[t]; U(F ) = F if and only if S(F ) = {0}, i.e. kerE′iT0i =

{0} for all i. Noting that T0i is ni×ni and non-singular we have RankE
′
iT0i = RankE

′
i.

Then by (3.36),
dimkerE′iT0i = ni − RankE

′
i = ni − RankEi.

(2) Thus U(F ) = F if and only if RankEi = ni for all i; this condition is intrinsic for

Φ. In other words

U(F ) = F ⇔
k∑

i=1

RankEi = n,

for, Ei being ni ×m, RankEi ≤ ni for all i and
∑k

i=1 ni = n.
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For example, let the n coordinate axes in R
n =
∏k
i=1R

ni be orthogonal. Then U(F ) =

F if and only if the projections of the m column vectors of E on R
ni span the whole

space R
ni , or what is the same, the projection of Φ on R

ni coincides with R
ni itself for

all i.

(3) In R
n let v(i) denote any vector v = (v

′
1 . . .v

′
k)
′ such that vf = 0 for all f 6= i.

Then S(F ) is the direct sum of subspaces

Si(F ) = {v(i) : E
′
iT0ivi = 0}, i = 1, . . . , k,

since every v ∈ S(F ) has a unique representation v = v(1) + . . .+ v(k) with v(i) ∈ Si(F )

for all i. Hence dimS(F ) =
∑k
i=1 dimSi(F ). But by (3.37) and (3.36),

dimSi(F ) = dimkerE
′
iT0i = dimkerE

′
i = ni − RankE

′
i.

Therefore by (3.40),

dimS(F ) = n−
k∑

i=1

RankEi,

dimS(F )⊕ Φ = dimS(F ) + dimΦ = dimS(F ) +m.

Thus

[U(F )] = R
n ⇔ dimS(F )⊕ Φ = n ⇔ m =

k∑

i=1

RankEi.

The last equality means dimM(E′) =
∑k
i=1 dimM(E

′
i) or, equivalently, M(E

′) =⊕k
i=1M(E

′
i) since M(E

′
i) are subspaces of M(E

′); cf. Chambadal and Ovaert (1968),

p. 51, Theorem 6.3. But M(E′) and M(E′i) are respectively isomorphic to M(E) and

M(Ei), hence we can writeM(E) =
⊕k

i=1M(Ei) or, equivalently,M(E) =
∏k
i=1M(Ei);

cf. Dunford and Schwartz (1958), p. 38. Therefore, U(F ) =Mℓ×r, the global parameter

range space, if and only if Φ is the product of its projections on the coordinate spaces

R
ni—we use orthogonal coordinate axes in R

n =
∏k
i=1R

ni .

For example, in R
3 = R

1×R
2 if Φ is a line or a plane then the above condition means

Φ is perpendicular to either R
1 or R

2.

(4) Since m = RankE′ ≤
∑k
i=1RankE

′
i,

U(F ) ⊂Mℓ×r properly ⇔ m <
k∑

i=1

RankEi.(3.47)

The case F ⊂ U(F ) ⊂ Mℓ×r with proper inclusion really occurs when and only when

m <
∑k

i=1RankEi < n.

3.9.5. Proof of Theorem 2.1. From (3.44),

θ̂(F ) converges a.s. ⇔ so does G∆T0ξ.(3.48)

Write ξ = (ξ′1 . . . ξ
′
k)
′, ξi ∈ R

ni . By (3.41), E′ = (E′1 . . .E
′
k). Recall ∆T0 = diag(a(1)T01,

. . . , a(k)T0k). Then we have the following similar formulae:

E′∆TE =

k∑

i=1

a(i)E′iTiEi,(3.49)
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E′TE =

k∑

i=1

E′iTiEi,(3.50)

E′∆T0ξ =
k∑

i=1

a(i)E′iT0iξi.

On account of (3.28), G = E(E′∆TE)−1E′, so

G∆T0ξ = E(E
′∆TE)−1

k∑

i=1

a(i)E′iT0iξi.(3.51)

If τ ∈ U(F ) then by (3.46), ξ ∈ S(F ), hence, by (3.45), G∆T0ξ = 0, thus (3.44) yields

θ̂(F )
a.s.
−→ PrT0F τ as a→∞.

For later use the following consideration is general. From the above E′T0ξ =∑k
i=1E

′
iT0iξi, hence by (3.43), k∑

i=1

E′iT0iξi = 0.(3.52)

Thus G∆T0ξ = 0→ 0 as a→∞ so that a(1) = . . . = a(k).

Let k ≥ 2. When a(2) = . . . = a(k) = a(1)/2, from (3.52), (3.49) and (3.50),

k∑

i=1

a(i)E′iT0iξi = a(2)E
′
1T01ξ1,

G∆T0ξ = E(a
−1(2)E′∆TE)−1E′1T01ξ1 by (3.51),

a−1(2)(E′∆TE) = E′1T1E1 +E
′TE

a.s.
−→ E′1T01E1 +E

′T0E,

since T
a.s.
−→ T0 as a→∞. T0 and E

′T0E being p.d., it follows that

G∆T0ξ
a.s.
−→ E(E′1T01E1 +E

′T0E)
−1E′1T01ξ1

as a→∞ so that a(2) = . . . = a(k) = a(1)/2.

Now consider the case τ 6∈ U(F ), i.e., by (3.46), ξ 6∈ S(F ) or, equivalently, by (3.45),

E′iT0iξi 6= 0 for some i. Without loss of generality we can consider E
′
1T01ξ1 6= 0. Then

(E′1T01E1 +E
′T0E)

−1E′1T01ξ1 = ζ, say,

is a non-null vector. Hence Eζ 6= 0 by (3.40). Thus from the above for k ≥ 2 as a→∞,

G∆T0ξ
a.s.
−→

{
Eζ 6= 0 if a(2) = . . . = a(k) = a(1)/2,

0 if a(1) = . . . = a(k).

Therefore G∆T0ξ diverges a.s., and so does θ̂(F ) by (3.48). Theorem 2.1 is proved.

Remark 3.4. In Lemma 3.4 and Corollary 3.1 the assertion on boundedness of G∆ is

reasonably mild, since G∆ and Pr∆TΦ = G∆T diverge a.s. when m <
∑k
i=1RankEi.

Indeed, by (3.47) this is the case when U(F ) ⊂ Mℓ×r properly, hence G∆T0ξ diverges

a.s. as soon as τ 6∈ U(F ); then G∆T0, G∆ and G∆T also diverge a.s.

But in the one-model case (k = 1) ∆ = aIn, hence by (3.26), (3.27) and Proposi-

tion 3.2, we have

G∆T = E(E′∆TE)−1E′∆T = E(E′TE)−1E′T
a.s.
−→ E(E′T0E)

−1E′T0

as a→∞, so G∆ also converges a.s.
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4. Algebraic tools

This section aims at proving Lemma 3.4, the crucial tool for establishing the GLSE

convergence and consistency. Lemma 3.4 is trivial when Φ = R
n, which corresponds to

the OLSE, since we then have CΦ =M(C), J = PrCΦ = PrM(C), JC = C, hence, on

account of C′C =∆T,

‖(C′C)−1C′JC(C′C)
−1
∆‖2 = ‖T−1‖2 =

k∑

i=1

‖T−1i ‖
2.

Further, consider the one-model case (k = 1). From Remark 3.4 under the conditions of

Proposition 3.2, G∆ converges a.s. as a → ∞. To prove the algebraic Lemma 3.4 the

reasoning in Bac-Van (1994), Proposition 4.4, leads to the inequality

‖(C′C)−1C′JC(C′C)−1∆‖2 ≤ n(TrT−1)2
( k∑

f,g=1

a(g)a−1(f)
)
,

the right-hand side of which in the case k = 1 is reduced to n(TrT−1)2. Thus Lemma 3.4

is proved when k = 1. The only difficulty resides in Φ 6= R
n, k ≥ 2, which corresponds to

proper GLSE in systems of k models.

We shall use a coordinate approach. Throughout the proof the following symbols are

to be kept in mind.

Symbols 4.1. Recall the p.d. matrices: Ti being ni × ni, T = diag(T1, . . . ,Tk) and

∆ = diag(a(1)In1 , . . . , a(k)Ink) being n× n with positive numbers a(i).

We let E denote an n ×m real block matrix, E = (E′1 . . .E
′
k)
′, where Ei is ni ×m,

by specifying the columns E = (e1 . . . em), Ei = (e1i . . . emi); next,

Mi = E
′
iTiEi,(4.1)

Mi = P(i)Λ(i)P
′(i) (spectral decomposition),(4.2)

where

P(i) = orthogonal matrix (arbitrary whenMi = 0),

Λ(i) = diag(λ1(i), . . . , λm(i)), λ1(i) ≥ . . . ≥ λm(i) ≥ 0,

M =

k∑

i=1

a(i)Mi,(4.3)

F(i) = a−1(i)P′(i)MP(i).(4.4)

Then

M = E′∆TE,(4.5)

hence, when RankE = m, M is p.d. and so is F(i).

The proof consists of the following steps.

4.1. Three identities. We first seek an expression for the orthogonal projector in

Lemma 3.4. Let {u1, . . . ,um} be a basis for a subspace G of R
p. We let µfg denote the

(f, g) entry of the matrix

{(u1 . . .um)
′(u1 . . .um)}

−1 = (µfg).(4.6)
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Consider the matrix

J =

m∑

f,g=1

µfgufu
′
g.(4.7)

We always assume that R
p is supplied with the inner product (u,v) = u′v. We can

directly check that

J′ = J, J2 = J, Jv = 0 for v ⊥ G, Juh = uh,

h = 1, . . . ,m, so for any y = u+ v ∈ R
p with u ∈ G, v ⊥ G we have Jy = u ∈ G. Thus

J is the orthogonal projector of Rp onto G.

We now deduce identities concerning the objects in Lemma 3.4. Using the p× n real

matrix C with C′C =∆T, from (4.5) we get

M = (e1 . . . em)
′C′C(e1 . . . em).

In Lemma 3.4 let {e1, . . . , em} be a basis for the subspace Φ of R
n. Then {Ce1, . . . ,Cem}

is a basis {u1, . . . ,um} for the subspace G = CΦ of R
p (see notation (3.12)). From (4.6)

we see that

M−1 = (µfg),(4.8)

and the expression (4.7) for the orthogonal projector J onto the subspace G = CΦ of Rp

becomes J =
∑m
f,g=1 µfgCefe

′
gC
′. Hence we get the first identity

(C′C)−1C′JC(C′C)−1∆ =
m∑

f,g=1

µfgefe
′
g∆.(4.9)

The second is given below.

Proposition 4.1. If {e1, . . . , em} is an o.n. system in R
n according to the inner product

(u,v) = u′v, then

∥∥∥
m∑

f,g=1

µfgefe
′
g∆
∥∥∥
2

=
k∑

i=1

‖F−1(i)P′(i)E′i‖
2.(4.10)

On the right-hand side, every summand with RankEi = 0, if any , vanishes.

Proof. First note (
∑
µgfege

′
f )
2 =
∑

f,g,q µgfµfqege
′
q. Then using TrAA

′ = ‖A‖2 re-

peatedly, noting ∆eg = (a(1)e
′
g1 . . . a(k)e

′
gk)
′, we have

∥∥∥
m∑

f,g=1

µfgefe
′
g∆
∥∥∥
2

= Tr∆
(∑

µgfege
′
f

)2
∆ =

m∑

f=1

Tr
∑

g,q

µfg∆egµfqe
′
q∆

=
m∑

f=1

∥∥∥
m∑

g=1

µfg∆eg

∥∥∥
2

=
k∑

i=1

a2(i)
m∑

f=1

∥∥∥
m∑

g=1

µfge
′
gi

∥∥∥
2

.

From (4.8) and (4.4), (µfg) =M
−1 = a−1(i)P(i)F−1(i)P′(i). Using ‖PA‖2 = ‖A‖2 for

P orthogonal, we further have

a2(i)
m∑

f=1

∥∥∥
m∑

g=1

µfge
′
gi

∥∥∥
2

= a2(i)‖M−1(e1i . . . emi)
′‖2 = ‖F−1(i)P′(i)E′i‖

2.
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Then (4.10) follows. If RankEi = 0,Mi = 0 then from (4.2), P(i) is an arbitrary orthog-

onal matrix, hence the relevant summand on the right-hand side of (4.10) vanishes.

We now have the third identity.

Proposition 4.2. Assume that ν(i) = RankEi ≥ 1. For the subspace (see (1.8))

M(T
1/2
i Ei) of R

ni let {ϕ1, . . . , ϕν(i)} be an o.n. basis according to the inner product

(u,v) = u′v. Then for any p×m matrix U,

UE′i =

ν(i)∑

j=1

(ϕ′j ⊗UE
′
iT
1/2
i ϕj)T

−1/2
i .(4.11)

Proof. Complete {ϕ1, . . . , ϕν(i)} to an o.n. basis {ϕ1, . . . , ϕni} for R
ni . Using (3.7)

note that, for any ni × 1 vector v,
∑ni
f=1(ϕ

′
f ⊗ ϕf )v =

∑ni
f=1(ϕ

′
fv)ϕf = v, hence∑ni

f=1(ϕ
′
f ⊗ ϕf ) = Ini . Then

UE′iT
1/2
i =

ni∑

j=1

UE′iT
1/2
i (ϕ

′
j ⊗ ϕj).

Let g be any m× 1 vector. With (1.6) we have vec(ABC′) = (C⊗A) vecB for matrices

A,B,C, hence

(ϕj ⊗ ϕ
′
j)T

1/2
i Eig =

{
vec(ϕ′jT

1/2
i Eigϕ

′
j) for j ≤ ν(i),

0 for j > ν(i),

thus, by transposing,

UE′iT
1/2
i (ϕ

′
j ⊗ ϕj) = 0 for j > ν(i).

But from (3.3),

UE′iT
1/2
i (ϕ

′
j ⊗ ϕj) = ϕ

′
j ⊗UE

′
iT
1/2
i ϕj ,

therefore we get (4.11).

4.2. Majorizing. Due to (4.10) we shall try to majorize the summands in its right-hand

side, which is an important step in the proof of Lemma 3.4.

Proposition 4.3. Assume ν(i) = RankEi ≥ 1 and RankE = m. Let Ni be some

ν(i) × ν(i) p.d. principal submatrix of Mi. Then there exist two positive functions d(·)

and wν(·), defined and continuous onMm×m and Mpd(ν) respectively , such that

‖F−1(i)P′(i)E′i‖
2 ≤ d(Mi)wν(i)(Ni)(TrT

−1
i )

∑

1≤f≤ν(i), 1≤g≤m

ϕ2fg(i),(4.12)

where ϕfg(i) is the (f, g) entry of F
−1(i). In particular , when ν(i) = m there exists a

positive function c(·), defined and continuous onMpd(m), such that

‖F−1(i)P′(i)E′i‖
2 ≤ c(Mi) TrT

−1
i .(4.13)

Proof. Using notation (1.7), define the functions

d(A) = m2Tr(A2) for A ∈Mm×m,

wν(D) =

ν∑

j=1

Tr(D−1j ) for D ∈Mpd(ν), Dj = D({1, . . . , j}),

c(B) = d(B)wm(B)(TrB
−1)2 for B ∈Mpd(m).
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The topology inMm×m is assumed to be induced by an arbitrary norm or, equivalently,

by the Euclidean norm. Then, from Proposition 3.1,Mpd(ν) is an open set inMν×ν and

the functions d(·), wν(·), c(·) are continuous on their respective domains of definition.

Write ν(i) = ν briefly. Since RankT
1/2
i Ei = RankEi = ν, among the m columns of

T
1/2
i Ei there are ν linearly independent vectors, denoted by v1, . . . ,vν . Put

Ni = (v1 . . .vν)
′(v1 . . .vν), Dj = (v1 . . .vj)

′(v1 . . .vj), j = 1, . . . , ν.

Since {v1, . . . ,vν} is a basis forM(T
1/2
i Ei) (see (1.8)), the Gram–Schmidt orthogonal-

ization process gives an o.n. basis {ϕ1, . . . , ϕν}, namely

ϕj = (v1 . . .vj)(dj1 . . . djj)
′, j = 1, . . . , ν,

where, δpq denoting the (p, q) entry of D
−1
j for j ≥ 1,

djq = (detDj−1)
−1/2(detDj)

1/2δjq, q = 1, . . . , j.

By convention, take detD0 = 1 to ensure the formula consistency. Since Dj ’s are p.d. we

have

δ2jq < δjjδqq = (detDj−1)(detDj)
−1δqq,

hence d2jq < δqq for q < j, whereas

d2jj = (detDj−1)
−1(detDj)δ

2
jj = δjj .

Thus
∑j
q=1 d

2
jq ≤ Tr(D

−1
j ). Therefore, for any p×m matrix U we get

‖UE′iT
1/2
i ϕj‖

2 ≤ ‖UE′iT
1/2
i (v1 . . .vj)‖

2Tr(D−1j ).

From (4.1), UE′iT
1/2
i (v1 . . .vj) is a submatrix of UE

′
iT
1/2
i T

1/2
i Ei = UMi, hence

‖UE′iT
1/2
i ϕj‖

2 ≤ ‖UMi‖
2Tr(D−1j ), j = 1, . . . , ν.

From (4.11), noting ‖ϕ′j‖
2 = 1 and ‖A1+ . . .+Aν‖

2 ≤ ν(‖A1‖
2+ . . .+‖Aν‖

2) for matrix

sum norm, we then have

‖UE′i‖
2 ≤ ν

ν∑

j=1

‖UE′iT
1/2
i ϕj‖

2‖T
−1/2
i ‖2 ≤ m‖UMi‖

2‖T
−1/2
i ‖2

ν∑

j=1

Tr(D−1j )

= m‖UMi‖
2wν(Ni) Tr(T

−1
i ).

By (4.2) put U = F−1(i)P′(i). Noting ‖P′(i)‖2 = m we get

‖UMi‖
2 = ‖F−1(i)Λ(i)P′(i)‖2 ≤ m‖F−1(i)Λ(i)‖2 = m

∑

f,g

ϕ2fg(i)λ
2
f (i)

≤ m(TrM2i )
∑

f,g

ϕ2fg(i), 1 ≤ f ≤ ν, 1 ≤ g ≤ m,

since TrM2i =
∑ν
f=1 λ

2
f (i). Thus,

‖F−1(i)P′(i)E′i‖
2 ≤ d(Mi)wν(Ni)(TrT

−1
i )
∑

ϕ2fg(i),

i.e. we get (4.12). Now, from (4.4) and (4.3) we have

F(i) = G1 + . . .+Gk,
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where G1 = Λ(i) and the other summands are n.n.d. matrices

a−1(i)a(h)P′(i)MhP(i), h = 1, . . . , k, h 6= i.

In the case ν = RankMi = RankG1 = m, from Remark 4.1 below we have

‖F−1(i)‖2 ≤ (TrΛ−1(i))2 = (TrM−1i )
2,

therefore, using Ni =Mi due to ν = m, (4.12) becomes

‖F−1(i)P′(i)E′i‖
2 ≤ d(Mi)wm(Mi)(TrT

−1
i )(TrM

−1
i )
2 = c(Mi) TrT

−1
i .

Proposition 4.3 is proved.

Remark 4.1. For a p.d. matrix Λ = diag(λ1, . . . , λm) and m×m n.n.d. G2, . . . ,Gk let

F = Λ+
∑k

i=2Gi. Then

‖F−1‖2 ≤ (TrΛ−1)2.

Indeed, the cases m = 1 and F = Λ are trivial. Consider k,m ≥ 2. For z > 0 write

H =
∑k
i=2Gi, F(z) = Λ+ zH, F

−1(z) = (ϕfg(z)); when z is small,

ϕff (z) =
detFff (z)

detF(z)
≈
detΛff
detΛ

= λ−1f , f = 1, . . . ,m.

For z > h > 0, (Λ + zH) − (Λ + (z − h)H) is n.n.d. hence (see Rao (1973), p. 70,

Problem 9(iii)) (Λ+(z−h)H)−1−(Λ+zH)−1 is n.n.d., therefore ϕff (z−h)−ϕff (z) ≥ 0,

so ϕff (z) is non-increasing in z, thus ϕff (z) ↑ λ
−1
f as z ↓ 0, hence 0 < ϕff (z) ≤ λ

−1
f for

all f . Now write F−1 = (ϕfg) to get

‖F−1‖2 =
∑

f,g

ϕ2fg <
∑

f,g

ϕffϕgg ≤
(∑

λ−1f

)2
= (TrΛ−1)2.

The following corollary, which will be used for proving (3.24) in Lemma 3.4, follows

from (4.10) and (4.13).

Corollary 4.1. If the system {e1, . . . , em} is o.n. in R
n for the inner product (u,v)

= u′v and RankEi = m for all i = 1, . . . , k, then there exists a positive function c(·),

defined and continuous onMpd(m), such that

∥∥∥
m∑

f,g=1

µfgefe
′
g∆
∥∥∥
2

≤
k∑

i=1

c(Mi) TrT
−1
i .

Due to (4.12) to prove the boundedness of the summands on the right-hand side of

(4.10) we are led to proving the boundedness of
∑
ϕ2fg(i), ϕfg(i) being the (f, g) entry

of F−1(i): this is just the most involved step in the proof of Lemma 3.4. Noting that,

by (4.3) and (4.4), F(i) is a linear combination of n.n.d. matrices, we have to investigate

the inverse of such a matrix combination; the study of such inverses, though laborious,

is unavoidable when we explore the GLSE expression, so we shall digress a little in order

to examine the determinant expansion for linear matrix combinations.

4.3. Linear matrix combinations, determinant expansion. The main tool for

proving Lemma 3.4 is just the sign properties of coefficients in the determinant expan-

sion for a linear combination of matrices and is presented in this subsection. Let there
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be given m × m real matrices A1, . . . ,Ak, m, k ≥ 1. Consider the integers m1, . . . ,mk

≥ 0, m1 + . . .+mk = m and the polynomial det(
∑k
i=1 tiAi) in the numerical variables

t1, . . . , tk; we shall use the symbol

A1(m1) ◦ . . . ◦Ak(mk) = coefficient of t
m1
1 . . . tmkk in det

( k∑

i=1

tiAi

)
.

Thus we have the determinant expansion

det
( k∑

i=1

tiAi

)
=
∑

m1,...,mk

tm11 . . . tmkk A1(m1) ◦ . . . ◦Ak(mk),(4.14)

and get

Proposition 4.4. A1(m1) ◦ . . . ◦ Ak(mk) is obtained by deleting mi rows from Ai,

i = 1, . . . , k, and taking the sum of m!/(m1! . . .mk!) determinants , each formed with

the deleted rows , their original ordinals being conserved.

Proof. Write Ai = (ajh(i)),
∑
i tiAi = (

∑
i tiajh(i)). In det

∑
tiAi the term with

tm11 . . . tmkk is generated by the following process:

(i) Take a partition {D1, . . . , Dk} of {1, . . . ,m} with ♯Di = mi, i = 1, . . . , k.

(ii) When forming det
∑
tiAi, consider the product ±

∏m
j=1

∑
i tiajhj (i) correspond-

ing to some permutation {h1, . . . , hm} of {1, . . . ,m}, and when forming this product take

the summand element tiajhj (i) for every j ∈ Di; then a term with t
m1
1 . . . tmkk is produced.

(iii) Summing these terms over all permutations {h1, . . . , hm} gives a determinant

whose rows with ordinals in Di are from tiAi, i = 1, . . . , k. This determinant gives a term

with tm11 . . . tmkk , corresponding to the chosen partition, namely t
m1
1 . . . tmkk det(r

′
1 . . . r

′
m)
′,

where for j ∈ Di, rj is the jth row of Ai.

(iv) Summing these terms over all partitions {D1, . . . , Dk} with ♯Di = mi given, i =

1, . . . , k, gives the term with tm11 . . . tmkk of det
∑
tiAi, which is just t

m1
1 . . . tmkk A1(m1) ◦

. . . ◦Ak(mk).

We shall present three sign properties of coefficients in Propositions 4.5–4.7. The first

of these is basic, it concerns the positivity of coefficients which plays a key role in the

study of the inverse of a linear matrix combination.

Proposition 4.5. (i) If A1(m1) ◦ . . . ◦Ak(mk) 6= 0 then

Rank(. . .A′i . . .)i∈ϕ ≥
∑

i∈ϕ

mi ∀ϕ ⊂ {1, . . . , k}, ϕ 6= ∅.(4.15)

On the right-hand side stands a block matrix formed with blocks Ai, the index i ranging

through the subset ϕ from left to right.

(ii) For n.n.d. A1, . . . ,Ak the coefficient A1(m1) ◦ . . . ◦Ak(mk) is non-negative, and

it is positive if and only if (4.15) holds.

Proof of (i). Let (4.15) be false, i.e.

(∃ϕ ⊂ {1, . . . , k}, ϕ 6= ∅) Rank(. . .A′i . . .)i∈ϕ ≤
∑

i∈ϕ

mi − 1.
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Then any set of
∑
ϕmi rows, consisting of mi rows drawn from each Ai with i ∈ ϕ,

is linearly dependent. Thus every determinant formed with mi rows from each Ai, i =

1, . . . , k, vanishes and by Proposition 4.4, A1(m1) ◦ . . . ◦Ak(mk) = 0.

The proof of (ii), long and involved, is deferred to Section 5.

The following proposition explores the index set of positive coefficients in the poly-

nomial det(
∑k
i=1 tiMi).

Proposition 4.6. For i = 1, . . . , k, k ≥ 2 consider the real matrices: Ti ni × ni p.d.;

Ei ni × m, E = (E
′
1 . . .E

′
k)
′ with RankE1 > 0 and RankE = m ≥ 2; Mi = E

′
iTiEi

m×m n.n.d. Put

(4.16) u = (ψ, {si : i ∈ ψ}) for each set ψ ⊂ {2, . . . , k} and

for positive integers si such that
∑
i∈ψ si ≤ m− 1.

Setting s1 = m−
∑
i∈ψ si, consider the coefficient

du =M1(s1) ◦ . . . ◦Mi(si) ◦ . . . , i ∈ ψ.(4.17)

Then the set U = {u : du > 0} is non-void , finite, independent of T1, . . . ,Tk and is

entirely determined by the matrix E.

Proof. Consider positive numbers ti with t1 = 1. Set

H =

k∑

i=1

tiMi = E
′ diag(tiTi)E.

Then RankH = RankE = m, hence H is p.d. In the polynomial detH in t2, . . . , tk each

term of degree less than m corresponds biunivocally to one index u, and the uth term

du
∏
i∈ψ t

si
i has coefficient du which is non-negative by Proposition 4.5(ii). Set

z = (t22 + . . .+ t
2
k)
1/2 and ν = RankM1 = RankE1 ≥ 1,

and consider the spectral decomposition

M1 = PΛP
′, Λ = diag(λ1, . . . , λν , . . .), λ1 ≥ . . . ≥ λν > 0.

Put Qi = P
′MiP and G0 =

∑k
i=2(ti/z)Qi. Then

P′HP = Λ+

k∑

i=2

tiQi = Λ+ zG0 is p.d.

Disregard the expression ofG0. Then in the formal expansion of detH = det(Λ+zG0) the

term with zm−ν , by (4.14), is zm−νΛ(ν)◦G0(m−ν) whose coefficient, by Proposition 4.4,

equals the determinant formed by piling the first ν rows of Λ on the last m− ν rows of

G0; hence this term is positive for ν = m, whereas for ν < m with notation (1.7) it is

zm−νλ1 . . . λν detG0({ν+1, . . . ,m}) and it is also positive since det(zG0({ν+1, . . . ,m}))

is a principal minor of the p.d. matrix Λ+ zG0. But this positive term is just the sum of

terms of degree m− ν in t2, . . . , tk in the polynomial detH = det(Λ+
∑k

i=2 tiQi). These

terms are non-negative, hence there exists a positive one among them. Therefore the set

U of those indices u for which the coefficients du are positive is non-void. Further, from
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Proposition 4.5(ii), du is positive if and only if

Rank(. . .Mi . . .)i∈ϕ ≥
∑

i∈ϕ

si ∀ϕ ⊂ ψ ∪ {1}, ϕ 6= ∅.

By (3.39), kerMi = kerEi, hence

ker(. . .M′i . . .)
′
i∈ϕ = ker(. . .E

′
i . . .)

′
i∈ϕ.

Thus by (3.36), du is positive if and only if

Rank(. . .E′i . . .)
′
i∈ϕ ≥

∑

i∈ϕ

si ∀ϕ ⊂ ψ ∪ {1}, ϕ 6= ∅.

This condition is quite independent of T1, . . . ,Tk, so the set U = {u : du > 0} is entirely

determined by the matrix E.

We further deal with the vanishing of coefficients in the determinant expansion for a

linear combination of n.n.d. matrices and the cofactors of its elements.

Proposition 4.7. Let Q2, . . . ,Qk be m × m n.n.d. matrices , k,m ≥ 2 and Λ =

diag(λ1, . . . , λm) with RankΛ = ν ≥ 1, λ1, . . . , λν > 0. Let F = Λ +
∑k
i=2 tiQi with

real t2, . . . , tk. Consider any set {si : i ∈ ψ}, where ψ ⊂ {2, . . . , k} and si are posi-

tive integers with
∑
i∈ψ si ≤ m − 1. Then, if in the expansion of detF the coefficient

of
∏
i∈ψ t

si
i vanishes , so does the same coefficient in the expansion of detFfg for fixed

(f, g), f = 1, . . . , ν and g = 1, . . . ,m.

Proof. Put s1 = m −
∑
i∈ψ si ≥ 1, r1 = s1 − 1 and Q1 = Λ. Put Ri = Qi, fg, the

submatrix obtained by deleting the fth row and gth column of Qi. Then R1 = Λfg. The

coefficient of
∏
i∈ψ t

si
i in the expansion of detF is Q1(s1) ◦ . . .◦Qi(si) ◦ . . . , i ∈ ψ, which

from Proposition 4.5(ii) vanishes if and only if

(∃ϕ ⊂ ψ ∪ {1}, ϕ 6= ∅) Rank(. . .Qi . . .)i∈ϕ ≤
∑

i∈ϕ

si − 1.(4.18)

Similarly, in the expansion of detFfg = det(R1 +
∑k
i=2 tiRi) the coefficient of∏

i∈ψ t
si
i is

R1(r1) ◦ . . . ◦Ri(si) ◦ . . . , i ∈ ψ.(4.19)

Starting from Assumption (4.18), we shall consider three cases.

(a) ϕ ⊂ ψ. Since (. . .R′i . . .)i∈ϕ is a submatrix of (. . .Q
′
i . . .)i∈ϕ, from (4.18) we have

Rank(. . .R′i . . .)i∈ϕ ≤
∑

i∈ϕ

si − 1,

which, by Proposition 4.5(i), entails the vanishing of (4.19).

(b) ϕ = {1}. Now (4.18) becomes RankΛ ≤ s1 − 1. Since Λ = diag(λ1, . . . , λν , . . .),

ν ≥ 1 and λ1 . . . λν 6= 0, for f = 1, . . . , ν we have RankΛfg ≤ RankΛ − 1, hence

RankR1 ≤ r1 − 1. Thus (4.19) vanishes by Proposition 4.5(i).

(c) {1} ⊂ ϕ and ϕ ∩ ψ 6= ∅. Then (4.18) is rewritten as

Rank(Λ . . .Qi . . .)i∈ϕ∩ψ ≤
∑

i∈ϕ∩ψ

si + s1 − 1 =
∑

i∈ϕ∩ψ

si + r1 ≤ m− 1
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since
∑
i∈ψ si + s1 = m. Thus we have

m− n = Rank(Λ . . .Qi . . .)
′
i∈ϕ∩ψ ≤

∑

i∈ϕ∩ψ

si + r1, where n ≥ 1.(4.20)

Let C1, . . . ,Cm denote the successive columns of the matrix (Λ
′ . . .Q′i . . .)

′
i∈ϕ∩ψ . Then a

vector (z1 . . . zm)
′ belongs to ker(Λ′ . . .Q′i . . .)

′
i∈ϕ∩ψ if and only if z1 = . . . = zν = 0 and

(zν+1 . . . zm)
′ ∈ ker(Cν+1 . . .Cm). Hence, from (4.20) using (3.36) we have

n = dimker(Λ . . .Qi . . .)
′
i∈ϕ∩ψ = dimker(Cν+1 . . .Cm).

Then from (3.36) we have

m− ν − n = Rank(Cν+1 . . .Cm) ≥ 0.

Therefore in Cν+1 . . .Cm there are exactly m − ν − n linearly independent columns

forming a submatrix C(m− ν − n). Thus by (4.20),

m− n = Rank(Λ . . .Qi . . .)
′
i∈ϕ∩ψ = Rank(C1 . . .Cm) = Rank(C1 . . .Cν

...C(m− ν − n)).

Therefore we have all the m − n columns linearly independent in the last matrix. In it

and in the matrix (Λ′ . . .Q′i . . .)
′
i∈ϕ∩ψ the deletion of the fth column, 1 ≤ f ≤ ν, thus

gives rise to two new matrices with ranks both equal to m − n − 1. A fortiori, further

deleting some rows, for 1 ≤ g ≤ m on account of (4.20) we have

Rank(Λ′gf . . .Q
′
i, gf . . .)

′
i∈ϕ∩ψ ≤ (m− n)− 1 ≤

∑

i∈ϕ∩ψ

si + r1 − 1.(4.21)

From (4.14), in the expansion of

detFgf = det
(
Λgf +

k∑

i=2

tiQi, gf

)
,

the coefficient of
∏
i∈ψ t

si
i is Λgf (r1) ◦ . . . ◦ Qi, gf (si) ◦ . . . , i ∈ ψ, which, because of

(4.21), vanishes by Proposition 4.5(i). Since F is symmetric we have detFfg = detFgf ,

thus the coefficient of
∏
i∈ψ t

si
i in the expansion of detFfg vanishes for 1 ≤ f ≤ ν and

1 ≤ g ≤ m.

4.4. Proof of Lemma 3.4. The most involved task concerns
∑
ϕ2fg(i) in (4.12); it can

now be achieved.

Proposition 4.8. Assume ν = RankE1 ≥ 1, RankE = m ≥ 2. Put F
−1(1) = (ϕfg)m,m

(see (4.4)). Then, for all (T1, . . . ,Tk) in a fixed closed ball B0 in
∏k
i=1Mpd(ni), the sum∑

ϕ2fg (f = 1, . . . , ν and g = 1, . . . ,m) is bounded by a positive constant depending on

B0 and E only.

Proof. From (4.5), M is p.d. Write

H = a−1(1)M =M1 +
k∑

i=2

tiMi,

where ti = a
−1(1)a(i) > 0, i = 2, . . . , k. From (4.2) and (4.4) write

P(1) = P, Λ(1) = Λ, F(1) = F, Qi = P
′MiP.
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Then

F = P′HP = Λ+

k∑

i=2

tiQi.

First let k ≥ 2. Consider

(−1)f+gϕfg =
detFfg
detF

.

For each set ψ ⊂ {2, . . . , k} and for positive integers si such that
∑
i∈ψ si ≤ m − 1, the

coefficient of
∏
i∈ψ t

si
i in the expansion of detF = detH is given by (4.17), namely

du =M1(s1) ◦ . . . ◦Mi(si) ◦ . . . , i ∈ ψ,

where s1 = m−
∑
i∈ψ si and the index u is defined by (4.16),

u = (ψ, {si : i ∈ ψ}).

The set U = {u : du > 0}, by Proposition 4.6, is non-void. By Proposition 4.5(ii) all

summands in the expansion of detH = detF are non-negative, hence by putting

δu = du
∏

i∈ψ

tsii

we have

detF ≥
∑

u∈U

δu > 0.

By Proposition 4.7, for f = 1, . . . , ν and g = 1, . . . ,m, in the expansion of detFfg the

coefficient of
∏
i∈ψ t

si
i can be different from zero only if u ∈ U . Let E be given and (f, g)

fixed. Then for

r1 = s1 − 1, R ∈Mm×m, Di = R
′MiR

we define the functions zu(R,T1, . . . ,Tk) through the matrices Di, fg obtained by delet-

ing the fth row and gth column of Di:

duzu = D1, fg(r1) ◦ . . . ◦Di, fg(si) ◦ . . . , i ∈ ψ, u ∈ U.

In particular, choosing R = P we have

F = P′M1P+

k∑

i=2

tiP
′MiP = D1 +

k∑

i=2

tiDi,

hence in the expansion of detFfg the possibly non-null coefficient of
∏
i∈ψ t

si
i is just duzu.

Moreover, as Ffg is of order (m − 1) × (m − 1) and r1 +
∑

i∈ψ si = m − 1, r1 ≥ 0, the

expansion of detFfg for 1 ≤ f ≤ ν and 1 ≤ g ≤ m is

detFfg =
∑

u∈U

duzu
∏

i∈ψ

tsii =
∑

u∈U

zuδu,

where zu = zu(P,T1, . . . ,Tk). Therefore,

|ϕfg| ≤

∑
u∈U |zu|δu∑
u∈U δu

, 1 ≤ f ≤ ν and 1 ≤ g ≤ m.

Now, given the matrixE, for fixed (f, g) and for each u∈U , the function zu(R,T1, . . . ,Tk)

is defined and is obviously continuous on the product setMm×m×
∏k
i=1Mpd(ni) whose
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topology is induced by an arbitrary norm on the product spaceMm×m ×
∏k
i=1Mni×ni

(see Proposition 3.1). A fortiori zu(R,T1, . . . ,Tk) is continuous on the closed and

bounded, hence compact, subset {R ∈ Mm×m : ‖R‖
2 = m} × B0; the existence of

closed balls B0 in
∏k
i=1Mpd(ni) being ensured by Proposition 3.1. On this compact set,

|zu| has a finite upper bound K(f, g,E, B0, u). By Proposition 4.6 the set U is non-void,

finite, independent of T1, . . . ,Tk and is entirely determined by the matrix E. Hence we

can put

K(f, g,E, B0) = max
u∈U

K(f, g,E, B0, u) <∞.

In particular, letting R = P orthogonal, we have

|zu(P,T1, . . . ,Tk)| ≤ K(f, g,E, B0) ∀u ∈ U,

hence

|ϕfg| ≤ K(f, g,E, B0) for 1 ≤ f ≤ ν, 1 ≤ g ≤ m and (T1, . . . ,Tk) ∈ B0.

Thus for all (T1, . . . ,Tk) ∈ B0,
∑

ϕ2fg ≤ K(E, B0) =
∑

f,g

K2(f, g,E, B0), f = 1, . . . , ν, g = 1, . . . ,m,

where the constant K(E, B0) depends only on B0 and E.

In the case k = 1 we have F = Λ and RankΛ = ν = m, hence
∑

ϕ2fg = ‖F
−1‖2 (1 ≤ f, g ≤ m),

and from (4.2) we have

‖F−1‖2 = ‖Λ−1‖2 = Tr(Λ−1)2 = Tr(M−11 )
2

since Λ = Λ(1). Given E = E1, Tr(M
−1
1 )
2 is a continuous function of T1 on Mpd(n1).

Therefore
∑
1≤f,g≤m ϕ

2
fg = Tr(M

−1
1 )
2 has a finite upper bound K(E, B0) when T1 varies

over a closed ball B0 ⊂Mpd(n1).

Due to the above important result we can assert the boundedness of each summand

in (4.10).

Proposition 4.9. Let RankE = m ≥ 1 and RankEj ≥ 1 for some given j = 1, . . . , k. Let

(T1, . . . ,Tk) vary over a fixed closed ball B0 in
∏k
i=1Mpd(ni). Then ‖F

−1(j)P′(j)E′j‖
2

is bounded by a positive number Kj depending on E and B0 only.

Proof. By renumbering the coordinate spaces R
ni , the corresponding matrices Ti and

numbers a(i), we can assume j = 1 without loss of generality. Then we are starting with

the same conditions as in Proposition 4.8, so the same notations will be used.

First consider m ≥ 2. Let us apply inequality (4.12). Let E be given and (T1, . . . ,Tk)

vary over B0. The sum
∑
ϕ2fg, 1 ≤ f ≤ ν, 1 ≤ g ≤ m, on the right-hand side of (4.12), by

Proposition 4.8, is bounded by a positive constant K = K(E, B0). Since M1 = E
′
1T1E1

by (4.1) and the function d(M1) is continuous in M1 it follows that given E the factor

d(M1) TrT
−1
1 is continuous in T1. On the other hand

RankM1 = RankE1 = ν ≥ 1,
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hence, given E, there exists some fixed set σ ⊂ {1, . . . ,m} with ♯σ = ν such that

Rank (. . . ef1 . . .)f∈σ = ν and then

N1 = (. . . ef1 . . .)
′T1(. . . ef1 . . .) (f ∈ σ)

is a ν × ν p.d. principal submatrix of M1 for any p.d. matrix T1. Thus, the function

wν(N1), being continuous in N1 on Mpd(ν), is continuous in T1 on Mpd(n1). There-

fore d(M1)wν(N1) TrT
−1
1 is continuous in T1 on Mpd(n1), hence it is continuous in

(T1, . . . ,Tk) on the product set
∏k
i=1Mpd(ni), so on the compact subset B0 it has a

positive upper bound K ′ = K ′(E, B0). Put K1(E, B0) = KK
′. From (4.12) we have

‖F−1(1)P′(1)E′1‖
2 ≤ K1(E, B0) ∀(T1, . . . ,Tk) ∈ B0.

In the case m = 1 we have ν = RankE1 = 1 = m. Then (4.13) applies. Given E, the

positive function c(M1) TrT
−1
1 is continuous in T1, hence continuous in (T1, . . . ,Tk),

thus on B0 it has a positive upper bound K1(E, B0), therefore the above inequality still

holds true.

The boundedness of our norm now follows.

Proposition 4.10. If {e1, . . . , em} is an o.n. system in R
n for the inner product (u,v)

= u′v and if (T1, . . . ,Tk) varies over a fixed closed ball B0 in
∏k
i=1Mpd(ni), then

‖
∑m
f,g=1 µfgefe

′
g∆‖

2 is bounded by a positive constant K0 depending on {e1, . . . , em}

and B0 only.

Proof. On the right-hand side of (4.10), every summand with RankEi ≥ 1 is, by Proposi-

tion 4.9, bounded by a positive constant Ki = Ki(E, B0), whereas that with RankEi = 0

vanishes. If we put K0 =
∑
Ki for those i with RankEi ≥ 1, the assertion follows.

We are in a position to prove Lemma 3.4. We let m = dimΦ.

Proof of (3.23). When m = 0, Φ = {0} hence J = 0p×p and (3.23) is trivial. Thus we

consider m ≥ 1. Let {e1, . . . , em} be an arbitrary o.n. basis of Φ according to the inner

product (u,v) = u′v in R
n. From (4.9) and Proposition 4.10 there is a positive constant

K0(e1, . . . , em, B0) such that

‖(C′C)−1C′JC(C′C)−1∆‖2 ≤ K0(e1, . . . , em, B0)

if (T1, . . . ,Tk) ∈ B0. Consider the set {Φ} of all linear subspaces Φ of R
n with dimΦ ≥ 1.

For each Φ there is the corresponding set O(Φ) of all o.n. bases of the subspace Φ. By

the axiom of choice we can construct on {Φ} a function E(Φ) whose value at Φ is some

definitely chosen element E(Φ) in O(Φ). Taking {e1, . . . , em} = E(Φ), put D(Φ,B0) =

K0(E(Φ), B0). Then (3.23) holds.

Before proving (3.24) note the following fact.

Let Φ and K be subspaces of a Euclidean vector space, of which Φ is finite-dimensional.

Let ΦK be the orthogonal projection of Φ on K. Then

dimΦK = dimΦ− dim(Φ ∩K
⊥).(4.22)

Indeed, let A be the orthogonal projector from Φ onto K. Then ImA = image of

A = AΦ = ΦK and

kerA = {u ∈ Φ : Au = 0} = Φ ∩K⊥.
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By the dimension formula (see Chambadal and Ovaert (1968), p. 54, formula (2))

dim ImA+ dimkerA = dimΦ,

we get the desired equality.

Proof of (3.24). There are m linearly independent vectors e1i, . . . , emi in every R
ni , for

1 ≤ m ≤ minni. According to Symbols 4.1, put

Ei = (e1i . . . emi), E = (e1 . . . em) = (E
′
1 . . .E

′
k)
′.(4.23)

Then e1, . . . , em are linearly independent vectors in R
n =

∏k
i=1R

ni . Put Φ =

Span{e1, . . . , em}. Let Ri be the set of n × 1 vectors x = (x1, . . . ,xk) lying in the

coordinate space R
ni of Rn, i.e. xh ∈ R

nh , xh = 0 for all h 6= i. Then by (4.22),

dim(Φ ∩ R
⊥
i ) = dimΦ− dimSpan{e1i, . . . , emi} = 0.

Thus the class

Γ = {Φ ⊂ R
n : 1 ≤ dimΦ ≤ minni, Φ ∩R

⊥
i = {0} ∀i}

is non-void. In each subspace Φ ∈ Γ now choose any o.n. basis which is still denoted by

{e1, . . . , em}, and the representation (4.23) remains in use; then according to Lemma 2.1

consider

σi = 1− det (e1i . . . emi)
′(e1i . . . emi).

It follows that Φ ∩R⊥i = {0} means

σi < 1 or, equivalently, RankEi = m.(4.24)

Hence

Γ = {Φ : Φ has an o.n. basis {e1, . . . , em}, 1 ≤ m ≤ minni, σi < 1, ∀i},

so using the symbol

Γδ = {Φ : 1 ≤ dimΦ ≤ minni, σi ≤ δi, ∀i}

we have Γ =
⋃
Γδ, where the union extends over all δ = (δ1, . . . , δk), 0 ≤ δi < 1 for all i.

By Definition 2.2, Γδ is just the class of subspaces Φ at most δi-steep relative to every

coordinate space R
ni . Since Γ is non-void there is δ0 = (δ01, . . . , δ0k), 0 ≤ δ0i < 1 for all i,

such that Γδ0 is non-void. Then for every δ ≥ δ0 we have Γδ ⊃ Γδ0 , so Γδ is non-void.

From (4.9), (4.24) and Corollary 4.1, for every Φ ∈ Γ we get

‖(C′C)−1C′JC(C′C)−1∆‖2 ≤
k∑

i=1

c(Mi) TrT
−1
i ,(4.25)

where c(Mi) = c(E′iTiEi) (see (4.1)) is a function continuous in Mi on Mpd(m). But

Mi ∈Mpd(m) whenever Ti ∈Mpd(ni) and RankEi = m. Therefore using (4.24) we see

that c(Mi) is a continuous function of (Ei,Ti) on the product space

{Ei : σi < 1} ×Mpd(ni).

Hence by (4.23), c(Mi) is a continuous function of (E,T1, . . . ,Tk) on the product space

{E : σi < 1 ∀i = 1, . . . , k} ×
k∏

i=1

Mpd(ni)(4.26)
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and then so is the sum
∑k

i=1 c(Mi) TrT
−1
i . But the set

Eδ = {(e1 . . . em) : σi ≤ δi ∀i, the vectors e1, . . . , em are o.n.}

is bounded and closed inMn×m since the orthonormality conditions are

e′jej = 1 and e
′
jep = 0 ∀j = 1, . . . ,m, p = j + 1, . . . ,m.

Thus Eδ is compact, and hence so is Eδ × B0 as a product of compact spaces. But

Eδ×B0 is included in the set (4.26), hence the positive function
∑k

i=1 c(Mi) TrT
−1
i , being

continuous on Eδ ×B0, attains on this compact set its supremum denoted by αm(B0, δ)

as this depends only on m, δ1, . . . , δk and B0. Now consider an arbitrary subspace Φ ∈ Γδ
and let m = dimΦ. Then for any o.n. basis {e1, . . . , em} of Φ we have (e1 . . . em) ∈ Eδ,

hence the right-hand side of (4.25) does not exceed

α(B0, δ) = max{αm(B0, δ) : m = 1, . . . ,minni}

provided (T1, . . . ,Tk) ∈ B0. Thus (3.24) is proved.

The proof of Lemma 3.4 is complete.

5. Positivity of sums of mixing determinants

In this section we shall prove the basic property stated in Proposition 4.5(ii) for sums of

mixing determinants, the name stemming from Proposition 4.4. As a geometric applica-

tion, Lemma 2.1 will then be proved and Definition 2.2 justified.

5.1. Proof of Proposition 4.5(ii). In the particular case k = m, m1 = . . . = mk = 1,

Proposition 4.5(ii) follows from (i) and the following.

Proposition 5.1. Let A1, . . . ,Am be m×m n.n.d. matrices. If

Rank(. . .A′i . . .)i∈ψ ≥ ♯ψ ∀ψ ⊂ {1, . . . ,m}, ψ 6= ∅(5.1)

then A1(1) ◦ . . . ◦Am(1) > 0.

Proof. We always write

A1 ◦ . . . ◦Am = A1(1) ◦ . . . ◦Am(1)

for short. By assumption we have RankAi ≥ 1, i = 1, . . . ,m. Let µ = RankA1 ≥ 1.

Consider the spectral decomposition

A1 = PΛP
′, P = (P1 . . .Pm) orthogonal,

Λ = diag(λ1, . . . , λm), λ1 ≥ . . . ≥ λµ > 0.

Put Qi = P
′AiP. For any numbers t1, . . . , tm we then have

det
( m∑

i=1

tiAi

)
= det

( m∑

i=1

tiQi

)
.

Thus from (4.14) in the expansion of the right-hand side, A1 ◦ . . . ◦ Am is also the

coefficient of t1 . . . tm. For m ≥ 2 from Proposition 4.4 this coefficient is the sum of

m! mixing determinants, each formed by deleting one row from each Qi, i = 1, . . . ,m.
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But Q1 = Λ, hence we only consider those mixing determinants formed with the jth

row deleted from Λ, j = 1, . . . , µ, whereas the remaining rows are from Q2, . . . ,Qk.

The cofactors of λj in such mixing determinants are formed by deleting one row from

each matrix Q2(σj), . . . ,Qk(σj), Qi(σj) being, according to (1.7), the (m− 1)× (m− 1)

principal submatrix of Qi corresponding to σj = {1, . . . ,m} − {j}. Thus

A1 ◦ . . . ◦Am =

µ∑

j=1

λjQ2(σj) ◦ . . . ◦Qm(σj).(5.2)

In general we have

Qi(σ) = (. . .Pf . . .)
′
f∈σAi(. . .Pf . . .)f∈σ for σ ⊂ {1, . . . ,m}.

Since Qi is n.n.d., so is Qi(σ). Further let Ki denote kerAi and ϕ any subset of

{2, . . . ,m}. Thus

ker(. . .A′i . . .)
′
i∈ϕ =

⋂

i∈ϕ

Ki.

Then from (3.38) and (3.37) we have

dimker(. . .Qi(σ)
′ . . .)′i∈ϕ = dim

⋂

i∈ϕ

kerQi(σ) = dim
⋂

i∈ϕ

kerAi(. . .Pf . . .)f∈σ

= dimker(. . .A′i . . .)
′
i∈ϕ(. . .Pf . . .)f∈σ

= dim
( ⋂

i∈ϕ

Ki

)
∩ Span{Pf : f ∈ σ}.

But G and H being arbitrary finite-dimensional subspaces of some linear space, we have

dimSpan(G ∪H) = dimG+ dimH − dim(G ∩H)(5.3)

(cf. Chambadal and Ovaert (1968), p. 453, formula (1)), in particular dim(G ∩ H) =

dimG+ dimH −m if dimSpan(G ∪H) = m. Hence, the index f ranging over 1, . . . ,m,

we get

dimker





...

Qi(σj)
...





i∈ϕ

=

{
dim
⋂
i∈ϕKi if

⋂
i∈ϕKi ⊂ Span{Pf : f 6= j},

dim
⋂
i∈ϕKi − 1 otherwise.

(5.4)

Let us reason by induction. Using (3.36) we make the following assumption, equivalent

to (5.1):

Assumption. A1, . . . ,Am are m×m n.n.d. matrices satisfying the condition

dim
⋂

i∈ψ

Ki ≤ m− ♯ψ ∀ψ ⊂ {1, . . . ,m}, ψ 6= ∅.(5.5)

Let m ≥ 2. We adopt the following

Induction hypothesis. For arbitrary (m− 1)× (m− 1) n.n.d. matrices B1, . . . ,Bm−1
we have B1 ◦ . . . ◦Bm−1 > 0 if

dimker(. . .B′i . . .)
′
i∈ψ ≤ m− 1− ♯ψ for every non-void set ψ ⊂ {1, . . . ,m− 1}.
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On account of Proposition 4.5(i) and formula (5.2), this hypothesis has three conse-

quences:

(5.6) if B1, . . . ,Bm−1 are (m− 1)× (m− 1) n.n.d. matrices then B1 ◦ . . . ◦Bm−1 ≥ 0,

(5.7) B1 ◦ . . . ◦Bm−1 = 0 if and only if

(∃ψ ⊂ {1, . . . ,m− 1}, ψ 6= ∅) dim ker(. . .B′i . . .)
′
i∈ψ ≥ m− ♯ψ,

(5.8) A1 ◦ . . . ◦Am ≥ 0.

Under Assumption (5.5) we intend to prove A1 ◦ . . . ◦Am > 0. In view of (5.8) we

start from the converse

Supposition: A1 ◦ . . . ◦Am = 0,(5.9)

which by (5.2) and (5.6) is equivalent to

Q2(σj) ◦ . . . ◦Qm(σj) = 0 for j = 1, . . . , µ,

and again, by (5.7), equivalent to

(∀j = 1, . . . , µ)(∃ϕ ⊂ {2, . . . ,m}, ϕ 6= ∅) dimker(. . .Qi(σj)
′ . . .)′i∈ϕ ≥ m− ♯ϕ.

Now, from (5.4), if
⋂
i∈ϕKi were not included in Span{Pf : f 6= j}, from Assump-

tion (5.5) we would have

dimker(. . .Qi(σj)
′ . . .)′i∈ϕ = dim

⋂

i∈ϕ

Ki − 1 ≤ m− ♯ϕ− 1.

Therefore, on account of Assumption (5.5), Supposition (5.9) is equivalent to

(5.10) (∀j = 1, . . . , µ)(∃ϕ ⊂ {2, . . . ,m}, ϕ 6= ∅)
⋂

i∈ϕ

Ki ⊂ Span{Pf : f 6= j} and dim
⋂

i∈ϕ

Ki = m− ♯ϕ.

For short reference we shall say that a subset ϕ of {2, . . . ,m} suits some integer

j, 1 ≤ j ≤ µ, if simultaneously

ϕ 6= ∅,
⋂

i∈ϕ

Ki ⊂ Span{Pf : f 6= j}, dim
⋂

i∈ϕ

Ki = m− ♯ϕ.(5.11)

Then note the following properties.

(a) If ϕ suits j and ϕ′ suits j′ 6= j then ϕ ∪ ϕ′ suits both j and j′.

Indeed, by Assumption (5.5) the subspaces Ki, i = 2, . . . ,m, of R
m satisfy the con-

dition

dim
⋂

i∈ϕ

Ki ≤ m− ♯ϕ ∀ϕ ⊂ {2, . . . ,m}

with the agreement that
⋂
i∈∅Ki = R

m. Then we have

m− ♯ϕ ∩ ϕ′ ≥ dim
⋂

i∈ϕ∩ϕ′

Ki ≥ dimSpan
{( ⋂

i∈ϕ

Ki

)
∪
( ⋂

i∈ϕ′

Ki

)}

= dim
⋂

i∈ϕ

Ki + dim
⋂

i∈ϕ′

Ki − dim
⋂

i∈ϕ∪ϕ′

Ki by (5.3)

≥ (m− ♯ϕ) + (m− ♯ϕ′)− (m− ♯ϕ ∪ ϕ′) = m− ♯ϕ ∩ ϕ′,
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since ♯ϕ∪ϕ′ = ♯ϕ+♯ϕ′−♯ϕ∩ϕ′. Thus from the fourth inequality it follows dim
⋂
i∈ϕ∪ϕ′ Ki

= m − ♯ϕ ∪ ϕ′. Moreover, both
⋂
i∈ϕKi and

⋂
i∈ϕ′ Ki contain

⋂
i∈ϕ∪ϕ′ Ki hence so do

Span{Pf : f 6= j} and Span{Pf : f 6= j
′}. Thus (a) follows.

(b) If there exists a set ϕ that suits a certain j ≤ µ = RankA1, then necessarily

µ ≥ 2 and
⋂
i∈ϕKi is not included in K1.

Indeed, dim
⋂
i∈ϕKi = m− ♯ϕ whereas dimK1 ∩

⋂
i∈ϕKi ≤ m− ♯ϕ− 1 by Assump-

tion (5.5). Hence
⋂
i∈ϕKi cannot be included in K1. On the other hand, from the spectral

decomposition of A1, noting that

K1 = kerA1 = {P1, . . . ,Pµ}
⊥ =

µ⋂

k=1

{Pk}
⊥ =

µ⋂

k=1

Span{Pf : f 6= k},(5.12)

we haveK1 ⊂ Span{Pf : f 6= j} since j ≤ µ. Since RankA1 ≥ 1 we have dimK1 ≤ m−1.

If dimK1 = m− 1, we would have

K1 = Span{Pf : f 6= j} ⊃
⋂

i∈ϕ

Ki since ϕ suits j.

Thus dimK1 < m− 1, i.e. µ = RankA1 ≥ 2.

(c) If ϕ suits j then there exists another j′ such that no set ϕ′, if any , suiting j′ is

included in ϕ.

Indeed, from (b),
⋂
i∈ϕKi is not included in K1, also µ ≥ 2. Since, by (5.11),⋂

i∈ϕKi ⊂ Span{Pf : f 6= j} there exists from (5.12) some j
′ 6= j, 1 ≤ j′ ≤ µ, such that⋂

i∈ϕKi is not included in Span{Pf : f 6= j′}. Then by (5.11) no ϕ′ ⊂ ϕ suits j′ since⋂
i∈ϕ′ Ki ⊃

⋂
i∈ϕKi. Thus (c) follows.

Now, by (5.10) and (5.11) Supposition (5.9) is equivalent to

(∀j = 1, . . . , µ)(∃ϕ ⊂ {2, . . . ,m}) ϕ suits j.(5.13)

For µ = 1, from (b), (5.13) is impossible. Let (5.13) be true for some µ ≥ 2. Consider some

j ≤ µ and let ϕ be a set of maximal cardinality that suits j. By (5.13) for any j′ ≤ µ there

exists ϕ′ suiting j′ and from (c) there exists j′ 6= j such that ♯ϕ′∪ϕ > ♯ϕ; from (a), ϕ′∪ϕ

suits j, which contradicts the maximality of ♯ϕ. Therefore (5.13) is always impossible.

Thus the induction hypothesis and Assumption (5.5) entail that A1 ◦ . . . ◦Am > 0. On

the other hand for m = 2 the induction hypothesis is trivially true: indeed, for m−1 = 1,

the n.n.d. matrix B1 is a non-negative number and obviously B1 ◦ . . . ◦Bm−1 = B1 is

positive if dimkerB1 ≤ m− 1− 1 = 0. So Proposition 5.1 is proved.

Let us now prove Proposition 4.5(ii) in the general case.

From Proposition 4.4, the sum A1(m1) ◦ . . .◦Ak(mk) does not involve those Ai with

mi = 0. Also, if (4.15) is satisfied by every set ϕ containing no elements i with mi = 0,

then it is satisfied by an arbitrary set ϕ. Thus, without loss of generality, we shall assume

that m1, . . . ,mk are positive. Put l0 = 0, . . . , li = m1+ . . .+mi, . . . , lk = m. Consider the

partition {1, . . . ,m} =
⋃k
i=1∆i, where∆i = {li−1+1, . . . , li}. To every set ϕ in {1, . . . , k}

there corresponds a subset, called the ∆-set , of {1, . . . ,m}, of the form ∆ =
⋃
i∈ϕ∆i,

where ∆ = ∅ if and only if ϕ = ∅. Since an intersection of ∆-sets is again a ∆-set, to every

set ψ in {1, . . . ,m} there corresponds a minimal ∆-set containing ψ. From A1, . . . ,Ak let



42 Nguyen Bac-Van

us generate n.n.d. matrices B1, . . . ,Bm by putting Bf = Ai for all f ∈ ∆i, i = 1, . . . , k.

Then for any set ψ ⊂ {1, . . . ,m} and for the minimal set ∆ =
⋃
i∈ϕ∆i containing ψ we

have

Rank(. . .A′i . . .)i∈ϕ = Rank(. . .B
′
f . . .)f∈∆ = Rank(. . .B

′
f . . .)f∈ψ.

Note that
∑
i∈ϕmi = ♯∆. Then in particular taking ψ = ∆, we see that the condition

(∀ψ ⊂ {1, . . . .m}, ψ 6= ∅) Rank(. . .B′f . . .)f∈ψ ≥ ♯ψ(5.14)

entails

Rank(. . .A′i . . .)i∈ϕ ≥
∑

i∈ϕ

mi ∀ϕ ⊂ {1, . . . , k}, ϕ 6= ∅,

which is (4.15). Conversely, (4.15) entails (5.14) since ♯∆ ≥ ♯ψ. Thus (4.15) is equivalent

to (5.14).

On the other hand, from the proof of Proposition 4.4, A1(m1) ◦ . . . ◦ Ak(mk) is a

sum of determinants, each corresponding to a partition of the set {1, . . . ,m} into k parts

Di (i = 1, . . . , k) with ♯Di = mi, and the jth row of a summand determinant is just

the jth row of Ai when j ∈ Di; in particular each permutation of the set {1, . . . ,m},

considered as a partition of this set intom parts, gives a summand determinant of B1(1)◦

. . . ◦ Bm(1), the jth row of which is the jth row of Bf when j is the fth element

of the permutation considered. To any permutation of {1, . . . ,m} there corresponds a

partition {D1, . . . , Dk} with ♯Di = mi as follows: put Di = {j}, where j is the fth

element of the permutation with f ∈ ∆i; but f ∈ ∆i entails Bf = Ai, hence the

m1! . . .mk! permutations generated by the partition {D1, . . . , Dk} give the corresponding

summand determinants of B1(1) ◦ . . . ◦Bm(1) all equal to the summand determinant of

A1(m1) ◦ . . . ◦Ak(mk) that corresponds to the same partition. Thus we get

m1! . . .mk!A1(m1) ◦ . . . ◦Ak(mk) = B1 ◦ . . . ◦Bm.

Therefore, from Propositions 4.5(i) and 5.1, A1(m1) ◦ . . . ◦Ak(mk) is non-negative and

its positiveness is equivalent to (5.14), i.e. to (4.15). The proof of Proposition 4.5(ii) is

complete.

5.2. A multidimensional geometric characteristic. Proposition 4.5(ii) enables us

to establish a geometric fact in multidimensional vector spaces, namely Lemma 2.1.

Proof of Lemma 2.1. Let {g1, . . . ,gm} ⊂ R
n be another basis of Φ. If A is the m ×m

matrix of change of basis then (g1 . . .gm) = (f1 . . . fm)A. Consider

det(g1 . . .gm)
′(g1 . . .gm) = (detA)

2 det (f1 . . . fm)
′(f1 . . . fm);

projecting on K we have a similar equality for det(g1K . . .gmK)
′(g1K . . .gmK). But

detA 6= 0 since Rank(g1 . . .gm) = m. Then we see that σ is independent of the choice

of the basis.

Write fi = fiK + tiK , fiK ∈ K, tiK ⊥ K, i = 1, . . . ,m. Then

(f1 . . . fm)
′(f1 . . . fm) = (f

′
i fj) = (f

′
iKfjK + t

′
iKtjK), i, j = 1, . . . ,m.

Consider the n.n.d. matrices B = (f ′iKfjK) and C = (t
′
iKtjK). From (4.14) we have

det (f1 . . . fm)
′(f1 . . . fm) = det (B+C) = detB+

∑
B(r) ◦C(s),
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r = 0, . . . ,m− 1, r + s = m. By Proposition 4.5(ii), B(r) ◦C(s) ≥ 0, hence 0 ≤ σ ≤ 1;

moreover, when detB > 0 then B(r) ◦C(s) = 0 if and only if RankC ≤ s− 1, since we

have neither RankB ≤ r−1 nor Rank(B
...C) ≤ r+s−1. Thus det (f1 . . . fm)

′(f1 . . . fm) =

detB > 0 if and only if RankC ≤ s − 1 for s = 1, . . . ,m, i.e. if and only if C = 0 or,

equivalently, tiK = 0 for i = 1, . . . ,m. Therefore σ = 0 if and only if

fi = fiK ∀i = 1, . . . ,m or, equivalently, Φ ⊂ K.

On the other hand, σ = 1 if and only if

det(f1K . . . fmK)
′(f1K . . . fmK) = 0, i.e. Rank(f1K . . . fmK) < m,

which means dimΦK < m, where ΦK is the orthogonal projection of Φ on K. By (4.22)

we see that σ = 1 if and only if dim(Φ ∩K⊥) > 0.

Since K ⊂ R
n we have dimK = n− dimK⊥, which by (5.3) entails

dim(Φ ∩K⊥) = dimΦ+ (n− dimK)− dimSpan(Φ ∪K⊥) ≥ dimΦ− dimK,

for Φ ∪K⊥ ⊂ R
n. Hence if dimΦ > dimK then, from the above, always σ = 1, whereas

if dimΦ ≤ dimK, σ can in fact vary from zero to one, and then σ can be used as a

measure of steepness of the subspace Φ with respect to the subspace K in R
n, which

justifies Definition 2.2.
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