0. Introduction

Let us consider the following stochastic differential equation in a real separable Hilbert
space H:

(%)

In this equation:

dX; = [AX, + F(X,)|dt + BdW,,
Xo=x€H, t>0.

e A is the infinitesimal generator of a strongly continuous semigroup Sy, ¢ > 0, of
linear bounded operators on H,

e F'is a Borel mapping from H to H,

e B is a linear bounded operator from a real separable Hilbert space K to H,

o W, t >0, is a K-valued standard cylindrical Wiener process.

If the operators QQ; defined by
t
(0.1) Qiz =\S.BB*Siwds, x€H, t>0,
0
are nuclear (tr Q¢ < co), then the process Z given by the formula

t

(0.2) 7 = Zy(x) = Sz + | S BdW,, t>0,
0
is a unique mild solution to the linear equation corresponding to (x) (F' = 0) (see

e.g. [D-Z; S]). The process Z is Gaussian and Markovian and it is called an Ornstein—
Uhlenbeck process (O-U process for short).
In this paper our basic assumption is

(A1) | trS,BB*S; ds < oo.

0
If (A1) holds, then the Gaussian measure p = N(0, Q) on H with mean zero and with
covariance operator

oo

(0.3) Qoo = S S¢BB*S;xds, «x¢€ H,
0

is an invariant measure for the O-U process Z defined by (0.2). It is well known that
under (A1) the transition semigroup (R;) of Z,

Rig(x) := E(6(Z))),
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is a positivity preserving Cy-semigroup of contractions in LP(H, u), for all 1 < p < oo.
An important example is the so-called Malliavin process which is a solution of (%) with
A = —1/2, F = 0 and a Hilbert-Schmidt operator B, and then Q. = BB*. The
generator LM (the Malliavin generator) of its transition semigroup (RM) is known in
quantum physics as the Number Operator. Let us recall some remarkable properties
of (RM) like hypercontractivity ([N]) and the Logarithmic Sobolev Inequality for LM
([Gr1], [S1]). Moreover, (RM) is symmetric (in L2(H, u)).

Two classes of O-U semigroups (and related semilinear equations) have been inten-
sively studied for many years:

e The first is the class of symmetric O-U semigroups, which is important because
of applications in physics. Recall that symmetric transition semigroups correspond to
reversible processes.

e The second one is the class of strongly Feller O-U semigroups, which is important in
the theory of Kolmogorov equations because of smoothing properties of such semigroups.

The aim of this paper is to investigate the transition semigroup for equation (x) in the
spaces LP(H, ). We do not assume that the corresponding O-U semigroup is associated
to a Dirichlet form (in particular symmetric) nor do we assume that it has the strong
Feller property. Results on O-U processes obtained in several papers [Ch-G, ...] enable
us to consider quite a general class of O-U semigroups (Section 2), which also contains
the Malliavin semigroup (R} ) as well as a certain important subclass of strongly Feller
semigroups. Applications to non-reversible systems and recently also to Mathematical
Finance ([M]) provide some motivation here.

We make weak assumptions on the nonlinear term, namely our basic assumption on
Fis
(F1) F:H — im B is a Borel function and

S exp(8||B7'F(z)||*) u(dx) < oo for some § > 0,
H

where B! means the pseudoinverse of B. By the Fernique theorem, functions F of
linear growth satisfy the exponential integrability condition in (F1). Extensions of the
Fernique theorem and conditions for (F1) to hold have been given e.g. in [A-Ms-Sh], [A-St]
and [L].

Starting from the observation that under (Al) and (F1) for any T > 0 equation (x)
has a solution X7, 0 <t < T, given by the Girsanov transform (a Girsanov solution for
short), we define a family (P;)o<i<7 of operators on L*>(H, ) by

(0.4) Piple) = Bp(X), 0<t<T.

If uniqueness in law holds for (x) (in particular, if F is bounded), then any realization
of the martingale solution to (x) is a Markov process and the (P;) defined above is its
transition semigroup. If there is no uniqueness, we use one of solutions to (x), which is
constructed on compact intervals [0, 7], to define (P! )g<;<7 in (0.4). But it follows from
the properties of the Girsanov transform that for a fixed t > 0 the operator P! does
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not depend on T', T' > t (Remark 1.5a). We show that the operators P, ¢t > 0, form a
semigroup and the Girsanov solution X[*, 0 <t < T, has a quasi Markov property with
respect to (P;) (Remark 1.7), so roughly speaking (P;) is a transition semigroup for any
Girsanov solution to (x).

We prove that, in the case of F' bounded, (F;) is a Cy-semigroup on LP(H, i) for all
1 < p < o0, and in the case of F' exponentially integrable the same holds for p suitably
large. Then we study basic analytic properties of the semigroup (P;), first for F' bounded
and then in the general case. We investigate hyperboundedness, Logarithmic Sobolev
Inequality (LSI), the domain of the generator and invariant measures with densities
w.r.t. (with respect to) p, obtaining new results for nonsymmetric non-strongly Feller
systems. Hyperboundedness and LST have been investigated mainly for reversible (P;) or
for perturbations of symmetric systems (see [Gr2], [Ba] and references therein). Invariant
measures with densities were an object of intensive study starting from the results of
[Sh; E], [vV] obtained for a semilinear equation (x) corresponding to the Malliavin process
on Wiener space. In both the papers the theory of Fredholm operators was used, and F
was assumed either to be bounded ([Sh; E]) or to satisfy a stronger condition than our
(F1b) in Section 7 ([vV]). Recently, many results have been obtained for strongly Feller
processes ([D-Z; R}, [Ch-G; EJ, [D-Z; E] and references therein, [D-G,2]) and for processes
corresponding to Dirichlet forms (e.g. [B-R], [H; E], [B-R-Zh], and references therein) but
they do not cover our results even in the case of bounded F'.

In view of recent results in [H; P] the hyperboundedness of (P;) is important for the
existence of an invariant measure with density. It is well known ([Grl], [Gr2]) that in the
case of (P;) symmetric, hyperboundedness and LST are equivalent but in the nonsymmet-
ric case LSI is a stronger property (see [F; H], [Ch-G; N] and also Sections 2, 5, 6).

The LSI, established in the case of F' bounded, enables us to obtain crucial estimates
related to (F1). Thanks to these estimates, we prove by approximation that for general F
(P;) is a hyperbounded Cy-semigroup in LP(H, u) for p > pg, po being given explicitly. As
a corollary we get a result on an invariant measure analogous to the previous one for F’
bounded. In the particular case of A = —1/2, a similar result was obtained in [H; E] by the
Dirichlet form approach and the hyperboundedness of (P;) was proved by tedious direct
calculations. For gradient systems (see [D-Z; EJ), i.e. where P; is symmetric w.r.t. its own
invariant measure, the same LP-regularity of the invariant density as in Corollary 7.3 has
been obtained in a different setting in [L] and [A-Ms-Sh].

Finally, we give a characterization of the domain of the generator L, extending the
result in [Sh; N] and partially generalizing a result in [D]. An LSI is also proved.

Our main tools are the Girsanov transform and Miyadera perturbation method. The
first one gives good estimates for the norm and the second one provides some information
about the domain of Lg. Let us mention that the advantage of using the Girsanov trans-
form in the study of the strong Feller property of (P;) has recently been demonstrated
in [Ma-Se].

Roughly speaking, we show that (P;) has similar properties to those of the correspond-
ing O-U semigroup. Therefore the results obtained in [Ch-G,. ..] are of basic importance.
In Section 2 we extend them to the case where u need not be a full measure.
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Annotated contents
0. Introduction

1. Preliminaries

It is shown that under (F1), equation (*) has a martingale solution given by the Girsanov
transform (Prop. 1.2 and Cor. 1.3) and in particular P; is well defined on L°°(H, u). Lemma 1.6
on convergence of Girsanov martingales is proved.

2. The O-U semigroup (R;) and Gaussian Sobolev spaces
Some properties from [Ch-G; ...] are recalled in a more general setting.

3. The semigroup (P;) on L?(H, u)—existence for bounded F

3.1. Probabilistic approach

Using the Girsanov transform it is shown that (P;) is a Cp-semigroup on LP(H,u), 1 < p < oo.
8.2. Analytic approach and equivalence

A Co-semigroup (Vi) on L%(H,p) is constructed by a Miyadera perturbation of L (Thm. 3.4)
and the equality V; = P; is proved (Thm. 3.6). Consequently, doma(L ) = doma(L) (where Ly
is the generator of (P) and L is the corresponding O-U generator).

4. Properties of (P;)—the case of bounded F

4.1. Hyperboundedness

e “Iff” conditions (Thm. 4.1).

e P, improves positivity (Prop. 4.2).

4.2. Domains of generators

In L? and in LP , some consequences of results for O-U generators.

4.8. Invariant measures with densities

e Thm. 4.7—existence; uniqueness of the density g; 0 > 0, g € ﬂp>1 LP(H,p).

e Exponential convergence of P; (Prop. 4.8) and Wé’;—regularity of o (Prop. 4.9).

5. Examples

Simple examples show that, even in the case of F(z) = b € im B and under (A1), it may happen
that equation (x) has no invariant measure or (*) has a unique invariant measure which is
singular with respect to p. An example of (P;) hyperbounded for ¢ > to and non-hyperbounded
for t < tp is also given.

6. Logarithmic Sobolev inequality—the case of bounded F

e “Iff” conditions are given for Lp to satisfy a defective LSI (Thm. 6.1). To prove the LSI for
all 1 < p < oo some domain consideration is needed, since we only have information about
doma(Lp).

e The LSI enables us to obtain some auxiliary estimates for || Pt|lp—g¢, corresponding to (F1)
(Lem. 6.2 and Cor. 6.3)

7. The semigroup (P;) on LP(H, )—the case of general F
This section contains the main results.

e Under (F1) with some lower bound on ¢ (i.e. (Fla)), (P;) is shown to be a Cp-semigroup on
LP(H, p) for p > pg, where pg is given explicitly. Moreover, (P) is hyperbounded (Thm. 7.1).
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In the proof F' is approximated by bounded Fj, and the estimates obtained in Section 6 are
essential.

e As a corollary concerning invariant measures we obtain the statements of Thm. 4.7 and Prop.
4.8 but with a weaker LP-regularity (Cor. 7.3).

e As another corollary, doma(L ) is characterized in case the corresponding O-U semigroup
(R¢) is symmetric (Cor. 7.5).

e Under assumption (F1b), a bit stronger than (F1la), it is proved that in the case of an arbitrary
(nonsymmetric) (R¢) we have domg (L) = domg(L) and L satisfies a defective LSI for p > 2
(Thm. 7.4).

Appendix

Technical lemmas on approximation.

1. Preliminaries

We assume that (£2,F, P) is a fixed probability space with a filtration (F;):>¢ satisfying
the usual conditions, W = (W) is a standard cylindrical K-valued Wiener process w.r.t.
(F:) and 7 is an H-valued Fy-measurable random variable. If tr Q; < oo, t > 0 (see (0.1)),
then the process
t
(1.1) Zi(n) = S+ \ Si_sBdW,, t>0,
0
is a unique mild solution to the equation
{ dZ, = AZ,dt + BdWy,
ZO =1,
on the given (2, F,(F;),P) w.r.t. the fixed Wiener process W. For preliminaries on
stochastic integration and equations in Hilbert spaces see e.g. [D-Z; S].
For the equation
(%) { dX, = [AX, + F(X,)]dt + BdW,,
XO =T c H,

we consider so-called martingale solutions (see ibid.):

DEFINITION 1.1. Fix € H. If there exist: a probability space (ﬁz,f‘r,]sx) with a
filtration (F7) satisfying the usual conditions, a K-valued standard cylindrical Wiener

process W2 relative to (F¥) and an (F¥)-adapted process X* satisfying

t t
(1.2) X7 =S+ | Si—oF(X2)ds + | Se— . BAWE, >0, P"ace,
0 0

then the process X7 is called a martingale solution to equation (*). More precisely, the
martingale solution is the sequence ((2%, F*, P¥); (FF); W?*; X*).

We first prove, by means of the Girsanov theorem, that under our basic assumptions
(A1) and (F1) below, equation (%) has a martingale solution. Under condition (Al) the
nonlinear term F in (x) is assumed to satisfy
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(F1) F:H — im B is a Borel function and

S exp(8||B7F(z)||?) u(dx) < oo for some § > 0,
H
where u = N(0,Qo) is well defined by (0.3) in view of (A1) and B~! stands for the
pseudoinverse of the operator B (see e.g. [D-Z; S], p. 407). (Recall that dom(B~1) = im B
and for y € im B, B~'y = x, where x is the element in B~!'{y} of minimal norm.
Moreover, im B! is orthogonal to ker B.)
For the O-U process (Z7) given by (0.2) and (1.1), define the following processes:
(1.3) U(t,x) = B 'F(Z}), x€H, t>0,
¢ ¢
] 1
(1.4) U = UF (W) := exp <§ (W (s, x),dW,) — §§ @ (s, x)|? ds>.
0 0
PROPOSITION 1.2. Assume (Al) and (F1). Then for u-a.a. x,
EWUS)=1 forallt>0.
(Equivalently, (UF) is an (Fi)-martingale.)
Proof. Let (Z!') denote the process (1.1) with the initial distribution g, i.e. the random
variable ) in (1.1) has the probability distribution £(n) = p. Then £(Z!") = p for t > 0
and hence
(1.5)  § exp(8B7 F()|*) p(dz) = Elexp(8| B~ F(2{)]*)]
H
= | Blexp(6l| B~ F(Z8)|2)] uldw) ~ for every & > 0,
H

the latter equality being a consequence of the Markov property of Z.

Let ¥ be as in (1.3) and fix ¢t,7 > 0, z € H. Since the function s — exp s is convex
we obtain by Jensen’s inequality

t+T t+T ds
(1.6) | exp(dl[@ (s, 2)|*)ds =T | exp(d]|@ (s, 2)[I) 7

t+T
2
> Texp {f § (s, )] ds}
Note that (z,s,w) — Z7 is B(H) ® B(R) ® F-measurable, where B(H) denotes the Borel
o-field in H. Then from (F1), (1.5), (1.6) and the Fubini theorem it follows that

t+T 5T
00 > S S Elexp(8||@ (s, z)||?)] u(dz) ds > T S E[exp <? S | (s, )| ds)] p(dx).
t H H t

Hence, if we take T' = 20, then for a set G; € B(H) with u(G;) = 1 the Novikov condition

(1.7) E{exp <; HST ||q>(s,x)||2ds)} <

t
holds for « € G;. The rest of the proof runs as in [K-S, Cor. 3.5.14] and [D-Z; S, p. 299].
Namely, set ¢, := 2kd, k=0,1,2,..., and G =), G¢,. Then p(G) = 1. For a fixed z € G,
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it follows from [D-Z; S, Prop. 10.17] or [K-S, Cor. 3.5.13] that for any £k =0,1,2,... the
process
t

M = oxp ([, dW) = 5 WG a)Pds ).ttt

tr tr
is an (F;)-martingale. In particular we have E(MF|F;, ) = 1. If t € [tm,tme1], then
Ur =M -... ~M[Z_1 - M]" and hence EU{ = 1, which finishes the proof. =
As an immediate consequence of Proposition 1.2 and the Girsanov theorem [D-Z; S,
Thm. 10.14 and p. 300] we obtain

COROLLARY 1.3. Assume (Al) and (F1). Then for p-a.a. x and any T > 0 there ezists a

martingale solution of equation (x) on the interval [0,T]. Namely, the process Xz = AR
t €[0,T], considered on (£2,F,(Ft), PF), where

(1.8) dP}(w) = U (w)dP(w),
is a martingale solution of (x) relative to the Wiener process Wt"” =W, — Sg U(s,x)ds,
tel0,T].
REMARK 1.4. Let (A1) be satisfied. If for a constant ¢ > 0,
IB-1P@)| < e+ |2l), = e H,
then (F1) holds by the Fernique theorem.
REMARK 1.5. If for all ¢ > 0 the operators @; defined by (0.1) are nuclear and
(F2) 1B Pl = sup | B Fla)| = 6 < o,
then for every x € H and T > 0 equation (x) has a unique-in-law martingale solution on
[0,T]. (Indeed, for any = € H the Novikov condition (1.7) holds for t = 0 and all T' > 0,

which implies the existence by [D-Z; S, Prop. 10.17]. The uniqueness follows as in [K-S,
Cor. 5.3.11].)

Let By (H) denote the space of real-valued bounded Borel functions on H. Assume
(A1), (F1) and let G be the set defined in the proof of Proposition 1.2. Then, in view of
Proposition 1.2, for z € G, t > 0 and ¢ € By,(H) we can define
(1.9) Pig(z) := E[o(Z])U/]-

By (1.9), Pi¢ is p-measurable and
[1Peolloc = esssup [Pp(x)] < [|¢]loo,
zeH

which implies that P; is a contraction on L (H, u).
Note that by Proposition 1.2 and Corollary 1.3 we have the following equality for any
z€GanyT>0and 0<t<T, ¢ € By(H):

(1.9a) big(z) = BEr(¢(XY)),

where E% means the expectation w.r.t. the probability measure ﬁ% defined by (1.8) and
X7 is a martingale solution of (x) given in Corollary 1.3. Hence Py¢ corresponds to
equation (k).
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REMARK 1.5a. Even if there is no uniqueness in law of martingale solutions to (x), the
RHS (right hand side) of (1.9a) does not depend on T'. For 0 < Ty < T let X% and X2
be the solutions on [0,71] and [0, T3], respectively, starting from = € G and constructed
by the Girsanov transform on different probability systems. Then the expected values of
B(X}") and ¢(X") are equal for 0 < ¢ < Tj.

The following simple lemma, about convergence of Girsanov martingales, will be useful
in Sections 3 and 7.
Let

U, (t,x) == B F,(Z}) and U}, :=Uf(¥,),
where U is given by (1.4).
LEMMA 1.6. Assume (Al). Let F,F,, n=1,2,..., satisfy (F1) and

(1.10) S |B~Y(F,(z) — F(z))|?dp — 0 as n — .
H

Then for any T > 0 there exists a subsequence (n.,) such that

(1.11) E\WU; r—Uf|l—0 asm— oo, for p-a.a. z.
Proof. Analogously to (1.5) we have
T T
| B(§ 10t 0) —w(t, )2 dt) ulda) = | § BB (Fu(27) = F(Z0)) | u(da) dt
H 0 0H
T
= VBB~ (Fu(2t) - F(Z))|I dt
0
=T | B (Falw) - Fa)|2du—0  asn— oo.
H
Hence for a subsequence
T
(1.12) E S |y, (t,2) — @ (t,z)||>dt — 0 asm — oo, for p-a.a. .
0
Fix z € H such that (1.12) holds. Then
T T
S (P, (t, ), dW) — S (U(t,x),dW) in mean square, as m — oo,
0 0

which implies that Uy ;. — Uf in probability as m — oo. Since U7 1., Uf are nonneg-
ative random variables with mean one, (1.11) follows by [D-Z; S, Lem. 10. 16]. m

REMARK 1.7. It follows from the general definition that the Girsanow solution X = AS

0 <t < T, defined in Corollary 1.3 is a Markov process with the transition semigroup
(P) iff

(1.13) B (p(Z7)| Fo) = P—sp(Z7)  for 0< s <t < T, ¢ € By(H).

Since for 0 < s < t, ZF = Z(t,s;Z%) P-a.e., where Z(t,s;n) = Si—sn + Sz Si_uBdW,
with Fs-measurable 7, repeating the argument from the proof of [D-Z; S, Thm. 9.9] we
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see that (1.13) follows from the equality
(1.14) B (p(Z(t,5:9) | Fa) = Posiply) - for p € Cy(H), y € H.

If F = BF with F € CL(H, K), then (1.14) holds, since () has a pathwise unique mild
solution. Approximating U7 as in Lemma 1.6 (compare the proofs of Theorem 7.1 and
Proposition 3.2) one can prove that if F satisfies (F1), then (1.14) holds for p-a.a. y, for
all 0 < s <t < T and if F satisfies (F2), then (1.14) holds for all y € H. Therefore in the
latter case the Girsanov solution to () is Markov w.r.t. (P). In the former case it has
a weaker Markov-like property and one can show that it satisfies (1.13) w.r.t. ﬁ;, where
15% is defined in Remark 4.6 and v is absolutely continuous w.r.t. u.

2. The O-U semigroup (R;) and Gaussian Sobolev spaces

Here we discuss some properties of O-U semigroups to be used in the next sections. Some

results from several papers [Ch-G, ...] are reviewed in a more general setting. In contrast
to [Ch-G, ...], in the present paper it is not assumed that
(2.1) ker Qo = {0}.

Recall that the O-U semigroup (R;) (i.e. the transition semigroup for the O-U process
Z in (0.2)) is given by
Rip(x) = EG(ZF) = | (Six +y) u(dy), ¢ € By(H),
H
where uy = N(0,Q¢) with Q; as in (0.1). (R;) is a Cp-semigroup of contractions on
LP(H, p) for 1 <p < 0.
We define the following class of cylindrical functions:
(2.1a) FCi°:={p:H—-R:p(x)=f({z,h),...,{x, hy)) for some m € N
and hy, ..., hy € dom(A¥), fe Ce°(R™)}.
and the differential operator, for ¢ € FCy°,
Lo¢(z) := 2 tr(QD*¢(2)) + (Az, Dd(z)), =z € dom(A),

where () := BB* and D denotes the Fréchet derivative.

It was proved in [Ch-G; E, Lem. 1] (see also [Z2]) that under (A1) the generator L
of (Ry) in LP(H,p), 1 < p < oo, is the closure of L° and moreover FC{° is invariant
for (Ry).

Assume (A1) and (2.1). Then it was shown in [Ch-G; Q] and [Ch-G; R] that the
equality of images

(A2) im Q% = im Q/2

assures many regularizing properties of Ry, for instance (A2) is a sufficient and necessary
condition for hypercontractivity of (R;) in LP(H, p) (see also [F; H]). It was proved in
[Ch-G; N] that under (A1) and (2.1), the inclusion

(A3) im QY/? C im Q'/?
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is equivalent to the Log Sobolev Inequality for L (and it is equivalent to the existence
of a spectral gap for L). It follows from this section that the same is true without the
assumption (2.1).

Let us remark that (A3) is stronger than (A2)—see Lemma 2.1(iv) and Corollary 2.3
below. Note that (A3) is satisfied in two important cases: for the Malliavin process
(Q = Q) and for Q = I. In the latter case the corresponding semigroup (R;) is strongly
Feller ([D-Z; S, Cor. 9.23]) and it has many regularity properties.

2.1. Preliminaries—the semigroup (Sy(t)). We first investigate an auxillary semi-
group So(t) which plays an important role in the study of properties of (R;) (see
[Ch-G; Q], [Ch-Gs; R]).

It has been proved in [Ch-G; R, Prop. 1] that under (A1) the subspace

Hy = QY?(H)
is invariant for the semigroup (S;):
(2.2) S¢(Ho) C Hy forallt > 0.

(For the reader’s convenience the proof of (2.2) is given in the Appendix.)
We denote by 7 the orthogonal projection in H onto Hy, the closure of Hy in H. (We
always consider H, with the scalar product induced from H.) For a mapping 7" on H let

(23) Tﬂ— = T‘go
be the restriction of T' to Hy. Obviously, by (2.2),
ST :Hy— Hy is a Cp-semigroup on H.

Observe that Q(;l/ 2, the pseudoinverse of Q%Q, satisfies

(2.4) imQY?=Hy, QIQY*=m QY2Q?=1Iy,.
It also follows from (2.2) that

(2.5) So(t) = (Qx*8:QL%)™ = QST Q)T

is a bounded operator from H to Hq with the adjoint operator on H:
(2.5a) Si(t) = QLA (S7)*Qx?.

Below we prove modifications of some propositions from [Ch-G; ...].
LEMMA 2.1 (comp. [Ch-G; R, Prop. 2]). Assume (Al).
(i) For all t > 0 the following identities hold:

(2.6) (57)" =m(S)7,
(2.7) Se(t)r = QL2SrQM*x  for x € Hy,
and S§(t) restricted to Hy is a Co-semigroup in the norm || - ||g, (where |z||g, =
|Q="x).
(ii) For all t > 0 we have the equality
(2.8) QLP[I™ = So(1)S5(1]QXy = Quy,  y € Ho.

(iii) (So(t)) is a Co-semigroup of contractions on Hy.
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(iv) For any t > 0,
1So@®)|l <1 iff (A2) holds for t.
Proof. (i) For x,y € H we have
((SE)'@ 9, = (@S r = (i@, y)u = (TS; %, 9) i,
which yields (2.6). Observe that Q})é?y = Qé</3271'y for y € H, which together with (2.6)
gives (2.7). The rest of (i) follows from (2.5a) and (2.4), since (S7)* is a Cp-semigroup
on I‘—Io.
(ii) For y € Hy, from (2.7) and (2.4) we obtain
QI So()S5()QL%Y = $1Qu ST y-

Since, as a consequence of (A1), we always have

(2.8a) Qoo — S1QocSy = Q1
the equality (2.8) follows.

(iii) By (2.8) the operator I — So(t)Sg(¢) is nonnegative on Hy and hence ||Sp(t)|| < 1.
Strong continuity of Sy(t) follows as in [Ch-G; R, Prop. 2].

(iv) Let V; := So(t)Sg(t) : Hy — Hg and observe that ||So(t)|| < 1 iff I™ — V; has
a bounded inverse. By (2.8a) we have Qtl/Q(_o) C Ql/z( H) = Q%Q(HO) and hence
Jy = _1/2(62% 2) is a bounded operator from H to Hy. Note that by (2.8),

- Vi = JuJ}.
If (A2) holds, then ker (Q; 1/2 = {0} and Q, 1/2(Q(1>42)” = J7 ! is bounded from Hy to
Hy. Hence I™ — V; has a bounded inverse. By (2.8) and [D-Z; S, Prop. B1],
im (Q1/*)" = im QY2 (I — i)'/
and if I™ — V; has a bounded inverse then Q;/*(H,) = QX*(Hy), which implies (A2). u
REMARK. With respect to the decomposition H = Hy @ Hy the operator S; has the
form

. {sgl s12

11 ™
0§22 } with ;7 = 57.

Recall that @ := BB*. Then
ker Qéég C ker Q2.
Indeed,

(Quor.z) = | |QV2S;alPdt, « € H,
0

and hence for x € ker Qéf we have Q'/2S;x = 0 for a.a. t € [0,00) and by continuity
Q'2z =0.
The above inclusion yields
(2.8b) QY?y=QY?*ry foryeH,
(2.8c¢) Hy>imQY? (=im B).
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Let V .= Ql/QQ;}/Z be an operator from Hy to H with domain Hy. By H; we denote
dom(A}|Hp), the domain of Af considered as the generator of the semigroup (Sg(t))
acting on Hy (see Lemma 1(i)). Note that by [Da, Thm. 1.9, p. 8], H; is a core for A}
in H. It is easy to check that H; = %2(dom(A”)*), where A™ is the generator of the
semigroup (S7). Let Hy := (1)42(dom(A*)).

LEMMA 2.2 (for (a) comp. [Ch-G; Sp, Lem. 1.2]). Assume (Al).

(a) For xz,y € H; the following (Lyapunov) equation holds:
(2.9 Az, ) — (@, Agy) = (Va, V).

(b) If h € dom(A*) then wh € dom((A™)*) and (A™)*wh = wA*h.

(¢c) Hy C Hy, Hy is invariant for (S§(t)) and it is a core for Af in Hy.
Proof. (a) The following identity follows from (2.8) for h,g € Ho:

t

(QY2h,QY2g) — (S5 (HQL*h, S;(1)QY g) i1, (= (Qih.g)) = | (QY/2S:h, Q'/*S: g) ds.
0

Assume that Q})éQh,Q})fg € H;. Then we can differentiate at ¢ = 0 both sides of the

above equality to obtain
—(AQN2h, QNP9 i, — (QLPh, AQY 9) i, = (Q'2h, Q'2g).

Putting z = chxéQh and y = chx/fg we get (2.9).
(b) By (2.2), 7S;mtz = 0 and hence 7S} mx = 7S;z. Therefore for h € dom(A*),

tH(SF)*(wh) — wh] =t *n(S;fh — h) o wA*h,
t—
and (b) follows.

(c) Let g € Hy. Then g = QX2h, where h € dom(A*) and Q%9 =rhe dom((A™)*)
by (b). Hence g € Hy, since Af = Q¥2(A”)*Q;31/2 on Hy. We have

Si(t)g = QY%mSymh = QY*rS;h = QY28 h € H,.

Finally, Hs is dense in (Hy, || ||o). Therefore, by [Da, Thm. 1.9], H; is a core for Af in
Hy and hence in Hy. =

COROLLARY 2.3. Assume (Al).
(i) For any a > 0 the following conditions are equivalent:
(2.10) IVall > allel, =€ Hy,
(2.11) [1So(t)|| < exp(—a?t/2)  for all t > 0.
(i) (A3) is satisfied iff (2.10) holds for some a > 0.

Proof. (i) Since H; is a core for A} in H, we see from Lemma 2.2 that (2.10) is equivalent

to the inequality
2

(A52,2), < = llel®  for = € dom(47),

which is equivalent to (2.11).
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(ii) For y € H, putting = = Q%y in (2.10) and using (2.4) and (2.8b) we obtain

(2.12) 1Ryl > allQxyll.

Conversely, for © € Hy, setting y = Q;}/Qx in (2.12) we get (2.10). Finally, by e.g.
[D-Z; S, Prop. B.1] or [Z1], (A3) is satisfied iff (2.12) holds for some & > 0. m

2.2. The semigroups (R;) and (Rg) By well known properties of Gaussian measures
w(Ho) = 1 and therefore for any 1 < p < oo the spaces LP(H,u) and LP(Hg,u) are
isometrically isomorphic. Indeed, if ¢, € LP(H, ) and ¢™ (z) = 9™ (z) for p-a.a. x € H
(¢™ as in (2.3)) then ¢ = ¢ p-a.e., in particular ¢(r) = ¢(wz) for p-a.a. x € H. Hence
e.g. the mappings

(213)  LP(H,pu) > ¢+ ¢™ € LP(Ho, 1) and LP(Ho,pu) > f+ fom € LP(H, p)
define the suitable isomorphisms.

If T is a bounded linear operator on Hy, then the operator Q})éQTQ;}/Q is bounded

on Hy and therefore it can be uniquely extended to a u-measurable linear transformation
Tg.. on Hy such that
(2.14) J 1 To.xll? pldr) = tr(QUPTT Q).
Ho

It has been proved in [Ch-G; Q] that the so-called generalized Mehler formula
(215)  Rof(@):= | F((So())que+ (I = So(t)S5(£) g2 y) pdy)

HO _ _

for f € By(Hp) and p-a.a. x € Hy
defines a Cyp-semigroup of contractions in all spaces LP(Hg, u), 1 < p < oo, and moreover
in L2(H, 1),
Ry = I'(S5(1)),
where I is the second quantization operator as defined in [S2] (see also [Ch-G; Q)).
Using (2.14), (2.8) and the equality 7Q:m = (), we obtain from (2.15)

(2.16)  Ref(z) = | f(S7a + m2)m(dz) = Ry(f o 7)()
" for f € By(Ho) and z € Hy (where p; = N(0,Qy)).

In much the same way we get
(2.17) (Ryp)(nx) = Ry™ (wz)  for ¢ € By(H), z € H.
REMARK. Note that R, f(z) = Ef(Z¥) and ZF = STz + Sg STBdWs =7Z¥, z € Hy.

It follows from (2.16), (2.17) and (2.13) that
(2.18) |Beglly = 1Bl and [[Billymg = [ Bellp—q-

Let L be the generator of the semigroup R, in LP(Hg, p1). As a consequence of (2.13),
(2.16)—(2.18) we find that

e if ¢ € dom, (L), then o™ € dom,(L) and Le™ (y) = Le(y) for p-a.a. y € Hy,

o~

o if f € dom,(L), then fon € dom,(L) and L(f om)(z) = Lf(rz) for pra.a. x € H.
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Therefore, if D is a core for L in LP(H, y1) then {¢©™ : ¢ € D} is a core for Lin LP(Ho, p),
and if D is a core for L in LP(Hy, i) then

(2.19) Dy :={fon:feD}
is a core for L in LP(H, ). By (2.13) we see that in particular
(2.20) if D is a core for L in LP(H, ) then so is Dy = {@ o7 : ¢ € D}.

2.3. Sobolev spaces. Let
FC*®(H):={¢p: H—-R:p(x)= f((z,h1),...,(z, hy)) for some m € N
and hy,...,hy, € H, f € C®(R™)}.

For a bounded selfadjoint operator T in H and ¢ € FC*°(H) we define
(2.21) Drg(z) := T 2w Dy (),
where Dp(z) denotes the Fréchet derivative of ¢ at the point z. Then in particular
Dqg_ p(x) = ¥2D<p(x) and
(2.22) Dro(z) = (T'?Q/?)Dq.. o().

Note also that by (2.8b) we have

(2.23) Do¢(x) = Q> Do(x).

Observe that D(y o w)(x) = wDyp(wz) = D™ (wax), and hence

(2.24) Dy (¢ om)(x) = Dpyp™ (mz).

It also follows that if p(x) = ¢(7wz), where ¢ € FC*°(H), then
Dro(z) = TY?Dyp(z).

(Indeed, Dp(z) = DY (rx) = m(nDy(mwx)) = mDp(x).)

For h € Hy we denote by f;, the linear functional on Hg defined by fi(y) =
(y, 501/2h>. If K, is a subspace of Hy, we set

P(Ko) :=1lin{1l, fn, - fry - fn, :n=1,2,..., hy,...,h, € Ko}
and Pr(Kp) is defined as in (2.19).

Then P(K,) and P, (Kj) are subspaces of FC™(H) and FC*(H), respectively, and
their elements may be identified with polynomials of n variables, n = 0,1,...If Ko = Hy,
then P(Ky) is dense in LP(H, 1) and hence P, (Kjy) is dense in LP(H, 11).

For ¢y € Pr(Hp) and T as in (2.21) we define the first Sobolev norm of ¢ by

el = § le@@)” u(de) + | | Do) | plde)
H H
and forn=2,3,...,
el = lleln-y, + § 1(TY2m) =" D (@) |50 n(da).
H

The Sobolev space W;" is defined as the completion of Pr(Hp) in the norm || ||, p,
n =1,2,... Note that

(2.25) W is continuously embedded in LP(H, 1)
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iff the operator Dy with domain Pr(Hy) is closable in LP(H, p) and then W} is con-
tinuously embedded in W}L*l’p .

It is well known that (2.25) holds for T' = Quo, p > 1 (see e.g. [W]). In the general
case it can be shown as in [G] (see also [Ch-G; M]) that (2.25) holds (p > 1) iff the
operator TV/2Q5 12, : Hy — H is closable (in H x H). Here we deal with T equal to @
or Q- Finally, note that by (2.24), WP is isometrically isomorphic to WP (Hg) (the
isomorphism (2.13)), n =1,2,...

2.4. Properties of L and (R;). First recall the Ito-Wiener decomposition

2(Ho, p @Hm

where the spaces H,, are defined as follows: HO = H<o is the space of constants; for
n > 1, H<, denotes the closed subspace spanned by all products fp, - ... f,, € P(Ho)
of order m < n and H,, is the orthogonal complement of H<,,_1 in H<y,. Let I,, be the
orthogonal projection in L?(Hg, 1) onto H,. Then for h € Hy,

V 1L (fi)(@)]? ulde) = nl|BI*", n=1,2,...,
Hy
and note that I1(fn) = f.

In particular, if ||h|| = 1, then I,,(f*), n = 0,1,2,..., may be identified with the usual

Hermite polynomials. It follows by polarization that
P(Ko) =lin{I,(f;}):n=0,1,2,..., h € Ko}

Let H; := dom(Af|Hp) as in Section 2.1. By [Ch-G; N] the space P(H;) is a core for
Lin LP(Hg,p), 1 < p < oco. Hence Py (H;) is a core for L in LP(H, p).

Let Dg_ be the closure of Dg_ with domain P, (Hp) in L?(H, ;) and Dy, . be the
adjoint of the operator Dg_ acting in L?-space. We denote by G the maximal domain
of the operator DémAEEQW that is, ¢ € G iff ¢ € Wé’Q Dq. ¢ € L*(H, p;dom(A))
and A5Dq.. ¢ € domy(Dp, ). Below we show a basic identity. Part (i) has been proved
in [Ch-G; Sp, Thm. 1.6] for exponential functions. Let FC° be as in (2.1a).

LEMMA 2.4. Assume (Al). Then:
(i) Lf = Dy_AsDq. [ for [ € P(Hy).

(ii) G C domz(L) and Lo = Dy, AgDq.. ¢ for ¢ €G.

(iii) FC* € G and Lo = D§y_AgDq. ¢ for ¢ € FCF°.
Proof. (i) Let h € Hy. Then by [Ch-G; Q] we have

(2.25a) LI, (f) = nLy(fazn - fi ).
On the other hand
Do (In(fi)) (@) = nhl, 1 (fi~")(x) € Hy

and hence A§Dq . (I.(f)) is an Hy-valued polynomial. Recall that for an Hy-valued
polynomial ¥ and = € Hy we have

(2.25b) (DG )(x) = — tr(Dg. W) () + (2, Q¥ (2)).
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Therefore taking into account that (z, Q;1/2A6h> = fagzn(x) we obtain

(2.25¢)  Dg_ AgDo.. (In(f7))
= —n(n — D)(AGh, W) Ln—o(f72) + nfasnln-1(f7")  for n > 2,

and forn =1, Dfy, A{Dq. frn = fazn = th. Then for f = I,(f) and n > 2 the equality
(i) follows from (2.25a), (2.25¢) and the well known identity for Hermite polynomials:

In(fq ;;—1) = foln-1( }?_1) — (n = 1)(g, W) -2 2_2)
Thus (i) holds for f € P(Hy).

(ii) It follows from (2.9) that (A§z,z) < 0 for x € H; and hence for x € dom(Af),
since H; is a core for Aj. Let ¢ € G. Then by the definition of G, Dg__ ¢(x) € dom(Af)
for p-a.a. x. Therefore

(D5, AiDq..¢,9)12 = {(43Dq..é(2), Do, é(x)) u(dx) <0,
H
which means that the operator DamASEQOO with domain G, denoted by Lg, is dissipative
in L?(H, u) and hence closable (see e.g. [P]). Obviously, P, (H;) C G. Then by (i),

(2.25d) Lg=1LonPr(Hy) and Pr(Hp)is a core for L.

Since L generates a Cy-semigroup of contractions, (o — L)(P,(Hy)) is dense in L?(H, 1)
for @« > 0 and by (2.25d) so is (a« — Lg)(G). From this, the dissipativity of £g and the
Lumer-Phillips theorem (see e.g. [P]) we conclude that Lg (the closure of Lg) generates
a Co-semigroup on L%(H, p1). Then it follows from (2.25d) and Lemma 3.5 of Section 3
that £g = L, which implies (ii).

(ili) Let ¢ € FCP°. Then ¢(z) = ¢(IlIx), where IT is a finite-dimensional orthogonal
projection in H with IT(H) C dom(A*) and ¢ € C2°(H). Therefore,

Dq..#(x) = Do.,¢(x) = QL* I D¢(x) € QYL (dom(A%)) C Hy,

where the first equality holds for p-a.a. © € H by well known properties of the Sobolev
space Wéi and the inclusion follows from Lemma 2.2(c). Taking into account that Q\}XGH
is a bounded operator from H to (Ho, || ||m,)s ééQH(H) C H; and Aj with domain
H, is a closed operator in (Ho, || ||z,), we conclude by the closed graph theorem that
Aj Y217 is a bounded operator from H to (Ho, || Ilm,)- Therefore, ¥ := A§Dg_ ¢ is a
bounded Hp-valued function on H and for this ¥ the RHS of (2.25b) defines a bounded
function on H. The former implies that Dg_ ¢ € L?(H, y; dom(A*)), and the latter that
ADq., ¢ € domy(Dg,_ ). Thus ¢ € G and the equality follows from (ii).

The proposition below is a slight modification of [Ch-G; Sp, Prop. 1.7] but we prove
it in a different and simpler way.

PROPOSITION 2.5. Assume (Al). Then:
(i) For ¢, € Px(H1) or for ¢,y € FC°,
—(Lo, ¥) — (@, L) = (Dqwp, Doi).
(ii) The operator Dg with domain P, (Hi) has a unique extension to an operator D¢

bounded on domy(L) endowed with the graph norm. The operator EQ 18 also the unique
extension of Dg with domain FCE°.
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(iii) For any ¢ € domy(L) and t > 0,
t

VIDqRspl3 ds = [lol3 — | Repll3.
0

Proof. (i) By Lemmas 2.4 and 2.2, for f € P(H;) we have
“2LS. ) raig ) = ~2AiDaw f. Do ) = | IV Dau f()[7 u(dy)

Ho
= {1Q"* 7D f(ma) |3 u(dz) = { IDq(f o m)() I3 n(de)
H H

(the last equality being a consequence of (2.24)). Therefore
_2<L(f © 71—)7 f © 7T>L2(H,,U«) = ||DQ(f © 7T)H%r‘-’(H,;L:H)’

which implies the first part of (i). The second part follows similarly from Lemma 2.4(iii).
(ii) From (i) we have the estimate

IDowl3 < 2lLel2liellz < ILell3 + el for ¢ € Pr(Hr).

Since P (H) is dense in domy (L) in the graph norm, Dg with domain P, (H;) can be
uniquely extended to an operator D¢ defined on doms (L) and L-bounded (i.e. bounded
in the norm of the graph of L). It follows from (i) that Doy = Dg¢p for ¢ € FC° and
since FCE° is also a core for L we obtain the second statement.

(iii) By (i) and (ii), for ¢ € doma(L) we have —2(LRp, Rsp) = |[DgRs¢|3, and
integration from 0 to ¢ gives the equality in (iii). m

Now we recall some properties of (R;), which are equivalent to (A3) and analogous
to those of (Sp(t)) in Corollary 2.3. (2.27) is a spectral gap inequality for L.

Let

L§(H, p) :={p € L*(H,p) : (¢, 1) = 0}.
Then LZ(H, p) is invariant for the semigroup (R;). The restriction of R; to L3(H, u) will
be denoted by RY.

COROLLARY 2.6 (comp. [Ch-G; N, Thm. 3.1]). Assume (Al). Then for any o > 0, the
condition (2.10) holds iff

(2.26) IRl < exp(~a?t/2)
and iff
(2.27) (~Lo,¢) > 30%|9]*, ¢ € doma(L) N Li(H, p).
Moreover, if (2.10) holds then for each 1 < p < oo,
0 ot
(2.26a) | Rl < exp <—m>.

Proof. (2.26) and (2.27) are equivalent by the properties of contraction semigroups. Sup-
pose (2.10) holds for some « > 0. Then for ¢ € P, (H1) N LY(H, i), by Proposition 2.5(i)
and (2.22) we have

(=L¢,¢) = 3(VDq..6,VDq. ) > 50°|IDq. o3 > 507|413,
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where the last inequality follows from the well known properties of the Malliavin deriva-
tive Dg__ (see e.g. [W]). Since Pr(H;) is a core for L, we get (2.27).

For h € Hy, let ¥p(x) := (w,Q;l/zh). Then 1, € LY(H,p), Yn(z) = fu(rx) and
l¥n]l? = ||R||?. By the definition of R; we have

Regn () = | (St + 9. Q! /h) uldy) = (we, STQh) + (w57 Q<)
H
= (@, Q2S5 (W) + (2, 7 ST Q2 h),

where 7 is the projection orthogonal to 7. Therefore || Ry || = ||Sg (¢)R||?. Thus (2.26)
implies (2.11) and hence (2.10) by Corollary 2.3.

Finally (2.26a) follows from (2.26), the inequality ||RY||«c < 1 and the Riesz—Thorin
Interpolation Theorem (see [Ch-G; Sp]). m

Now we formulate some consequences of (A3) for the domain of L.
COROLLARY 2.7. Assume (Al) and (A3). Then domy(L) is continuously embedded in
Wéi and
(225) 1D3_ell2 < 5 1Loll,
where a = sup{a : (2.10) holds} and

103215 = { I1D%.. (@) e m nlde).
H
Proof. The close inspection of the proof of [Ch-G; N, Thm. 4.3] shows that for ¢ €

LY(H, ;1) we have the estimate

(2:29) 1Ll < gl
Indeed, to prove (2.29) first note that

(2.30) L P

(because for n > 1 the space H,, is invariant for L and for M ). It follows from the
properties of LM (or from (2.25a) with Aj = —11) that for ¢ € P(H,),

ML= fg -

Hence, taking into account that R; and L™ commute and by [Ch-G; Q, Lem. lc
and Thm. 1],
| ReI,|| < exp(—na’®t/2),

for n > 1 we obtain
o0 oo

_ n 2 1
ILM L || < § | ReLM Lo dt < 3 | et 2| Ll dt = el

0 0
This and (2.30) imply (2.29).
From (2.29), for ¢ € domsy(L) we have

1
[Laepllz < a—2HL<P||2-
This and the known inequality [[Dg_ ¢z < 2|[Lasep|2 (see e.g. [Sh; D]) give (2.28). =
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Finally, the hypercontractivity of R; and the Log Sobolev Inequality for L are recalled
in Sections 4.1 and 6, respectively.

3. The semigroup (F;) on LP(H, )—existence for bounded F

In this section we assume (A1) and
(F2) IB™ Fllo := sup IB~'F ()] = 8 < oo,
fAS

Then, in view of Remark 1.5, for ¢ € By, (H) and for every « € H, P,¢(x) is well defined
by formula (1.9) which is recalled below:

(1.9) Pyp(x) := E[¢(Z])UY']
(where Z is the O-U process corresponding to (x) and U is the Girsanov martingale given

n (1.4)).

3.1. Probabilistic approach

PROPOSITION 3.1. Let (A1) and (F2) be satisfied. Then for any p € (1,00) the following
conditions hold:

(i) For every t > 0, P, has a unique extension (still denoted by P;) to a bounded
operator from LP(H,u) to LP(H,u). Moreover

2
(3.1) 1Py < exp (ﬁt)
(i) For ¢ € LP(H, ), |Pup— 6y — 0 as £ 0.

Proof. (i) We first prove a more general estimate (3.4) which will be useful in Section 4.
Let ¢ € Bp(H) and 1 < r < p. Hélder’s inequality with exponents r and ' = r/(r — 1)
yields

(3.2) 1Pl = | 1Po@)? n(dz) < § [ [ lo(20)|U7 dP]” p(do)
H H 2

<1 (§ |¢(Zf)ITdP) "(Swny ap)" ).
H [0}

Next, from (1.4), (F2) and Proposition 1.2 we have

) B(UE@)) = B e | [orwamy - EE T i s LU0 o as])

0

— B|UF6D) e ((2)5 o as )
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Taking into account that p > r and the O-U semigroup R; is a contraction in L? for
g > 1, from (3.2) and (3.3) we obtain

(3.4) IPilln < [ee(r')]P § (Re(|g]") (2))P/" p(da) < [Ct(?”)]leéﬁlrlliﬂ
H
Therefore

=1 ,
1Pl < exp (g 8% )1l
for ¢ € By,(H) and then for ¢ € LP(H). Hence

r—1
[Pdllp—p < exp <252t>

for any ' > p' =p/(p — 1). Setting r’ = p’, we obtain (3.1).
To prove (ii), first consider ¢ € C}(H). Let
[¢lloc + 1Dolloc =: cg.
Then for every z € H, t € [0, 1], by Holder’s inequality and (3.3) we have

(35)  [Peg(a) — ¢@)* < [E(16(ZF) — o(2)|UF)])? < exp(5?) - E([6(ZF) — d(x)]?).

Since, by our assumption, E([¢p(ZF) — ¢(z)]?) < c¢ E((Z# — x)?) and the process Z¥ is
mean square continuous, estimate (3.5) implies that for all z € H, P,¢(x) — ¢(x) as
t — 0. Moreover, |P¢(z)| < ||¢|lc < ¢y for all z.

Therefore, by the Lebesgue Dominated Convergence Theorem, (ii) follows for ¢ €
CL(H). For ¢ € LP(H, j1) we can choose a sequence (¢,) C C{(H) converging to ¢ in LP.
The standard estimate

[1P:¢ — 0ll < [|Pe(¢ — dn)ll + | Peor — @l + llPn — &l
and (3.1) yield, for ¢ € [0, 1],

1P:¢ = ollp < |14 exp o—==|[lpn — Sllp + | Pen — ¢all.

B?
2(p—1)
Hence, for an arbitrary € > 0 we can take n. large enough to make the first term on the
RHS less than /2 and then for n. we can choose J. > 0 such that for ¢t € [0,d.] the

second term is less than /2, which finishes the proof. =

PROPOSITION 3.2. Let (Al) hold. Assume that F,F, € By(H,K),n=12,..., and
(Fn) converges fi-a.s. and boundedly to F. Let F, = BF, n, I'= BF, let Uy, denote the
Girsanov martingale corresponding to F,, and

Plo(x) = E[¢(Z)U, ] for ¢ € Bp(H), v € H.
Then for every T > 0 there exists a subsequence (n,) such that for every ¢ € LP(H, p),

(3.6) sup ||P/'™¢ — P, =0 as m — oo.
0<t<T

Moreover, if (ﬁn) converges pointwise to ﬁ, then for every x € H,

EWU;r—Ur|—0 asn— o
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and

(3.6") OiltlET |P¢ — Piopll, =0 asn— oo.

Proof. Since B~!'B is an orthogonal projection, it follows easily that F),, F satisfy (F2)
and (1.10). Then by Lemma 1.6, for some subsequence (n,),

(3.7) E\U? —-U7|—0 asm — oo, for y-a.a. x.

ms

If € By(H), then by Proposition 1.2 and Remark 1.5, for any € H we have
(38) [Po(x) — Pep(a)| < Elp(Z]) - (Uy, — UP)| < ||9llo - EIUS 7 — Ur| < 2[|6]] oo

Therefore, for the subsequence satisfying (3.7) we obtain (3.6) from (3.8) and the Lebesgue
Dominated Convergence Theorem.

For ¢ € LP(H, u) let (¢m) C By(H) be such that ¢,,, — ¢ in LP. Then for ¢ € [0,T],
Proposition 3.1(i) yields

(3.9 P —Polp < 1P(d = dm)llp + 1P bm — Pedmllp + [Pe(dm — O)lp
< 2C(p7 T)||¢m - d)H;D + ”Ptnd)m - P(bme,

where ¢(p,T) = exp (2(;—i1)T) and v = sup,, || Fylee- From (3.9) we obtain (3.6) by the
same argument as in the proof of Proposition 3.1(ii).

Finally, let F},(x) — F(x) boundedly for all z. Then (under the notation of Lemma 1.6)
for every z, ¥, (t,z) — ¥(t,x) P-a.s. and boundedly, therefore U . — Uf in probability
and in L'(£2, F, P) by [D-Z; S; Lem. 10.16]. Arguing as before, we obtain (3.6'). m

COROLLARY 3.3. Under assumptions (Al) and (F2), for any p € (1,00), (Py)t>0 is a
Co-semigroup in LP(H, ).

Proof. By Proposition 3.1 it suffices to show that

(3.10) P(Ps¢p)(x) = Pysp(z) for By(H), t,s >0, for p-a.a. z.

First assume that F is a Lipschitz function. Then equation (x) has a unique mild solution
X on the given probability space (£2,F, (F;), P) w.r.t. the fixed Wiener process W.
Therefore, in virtue of Remark 1.5, for any 7" > 0,

Pi(z) = E3¢(XT) = B(XT), 0<t<T,

for ¢ € B,(H) and x € H. By [D-Z; S, Thm. 9.8, Cor. 9.9] the process X is Markovian
and (3.10) holds for all z € H. For every F satisfying (F2) we can find a sequence of
bounded Lipschitz functions F,:H—> K , converging p-a.s. and boundedly to F =
B~'F € By(H,K). For fixed T > 0, by Proposition 3.2 we can choose a subsequence
(P'™,0 <t <T) satisfying (3.6). By the first part of the proof

P (Pym¢) = Plg, ¢ € By(H), m=1,2,...

Letting m — oo, from (3.6) and the uniform boundedness of |P™||, m = 1,2,...,

t € [0,T], we obtain (3.10). m
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3.2. Analytic approach and equivalence. On the other hand, with equation (%) one
can associate, at least formally, the differential operator L% on H given by the formula

(3:11)  Ly¢(x) = §tr(QD*¢(x)) + (Az, Dg(x)) + (F(x), Dp(x)), = € dom(A),
for ¢ € dom(LY%) = FC°, where FCf° is defined in (2.1a). Then LY%¢ = Lo+ Gop, where

L is the generator of the O-U semigroup (R;) and Goo(z) = (F(x), D¢(x)), dom(Go) =
FCRe.

THEOREM 3.4. Assume (A1) and (F2). Then the operator LY, is closable in L*(H, ), its
closure Ly is the generator of a Co-semigroup (Vy,t > 0) on L*(H,p) and dom(Lp) =
dom(L). Moreover, Lr = L+ G, where G is the unique extension of Go to an L-bounded
operator with domain dom(L). The semigroup (Vi) is a unique Cq-semigroup on L*(H, )
satisfying

(3.12) Vio = R+ \Vi_.GR,$ds

= Ri¢p+ \Ri—sGVspds  for all ¢ € dom(L), t > 0.

O_,:w O e

Proof. (A version of this theorem has been proved in an unpublished paper [Ch-G; P]
and it follows from a result in [V; P] on Miyadera perturbations.) Note that by (2.23) for
¢ € FC® we have God(z) = (Q7V/2F(z), Dgé(z))). By [D-Z; S, Cor. B.4], we have
(3.13) Q" Y2h| =B th|| for heimQY?=imB

(where Q~'/2 is the pseudoinverse of Q'/?).
Therefore

(3.14) IGodll2 < B~ Fllos - Dl

Recall that FC° is a core for L. By Proposition 2.5(ii), Do uniquely extends to an
L-bounded operator (still denoted by D¢) with domain dom(L) and hence so does Gj.
Thus, by [V; P, Thm. 1] it is enough to show that there exist T, > 0 such that

T

(3.15) v<1 and ||GRglladt <]z for all ¢ € dom(L).
0

To this end we estimate the integral in (3.15) using the Holder inequality, (3.14) and
finally Proposition 2.5(iii):
T T NT:
(3.16) [ IIGR¢ll2 dt < \/T(g ||GthbH2dt)
0

0
T 1/2
<VIB(§IDoRgl3dt) " < VT B9l
0

Hence, for T sufficiently small, (3.15) holds and the theorem follows from [V; P, Thm. 1]. =

The next theorem shows that both the probabilistic and analytic constructions of the
transition semigroup for (x) coincide. We will need the following lemma about general
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Coy-semigroups. This fact is known (see e.g. [E]) but, for completeness, we give a simple
proof different from that in [E].

LEMMA 3.5. Let (S;) and (7;) be Co-semigroups of bounded linear operators on a Banach
space E with generators A and B, respectively. If D is a core for A and Ax = Bx for
all x € D, then S; = T; for all t > 0.

Proof. Because D is a core for A, for every x € dom(.A) there exists a sequence (x,) C D
such that z,, — x and Az,, — Ax as n — oo. But Az,, = Bz, for all n and from the
closedness of B it follows that z € dom(B) and Bz = Az. Consequently, A C B.

Next, for fixed ¢t > 0 and y € dom(.A) consider the function [0,t] 5 s — T;_;Ssy € E,
which is differentiable since Ss(dom(.A)) C dom(A) C dom(B). Basic properties of Cp-
semigroups and A C B yield
d
%[Zfsssy] = _Bzfsssy + 77575-/4559 = _72758881(} + zfsBSSy =0.
Therefore, for all s € [0,t], 7;—sSsy = Tzy and, in particular S;y = Zpy. It follows that
S; =T, on dom(A) and then on E. m

THEOREM 3.6. Let (A1) and (F2) hold. Then for every t > 0,

P =V, forall g € L*(H, p),
where (V) is the semigroup given by Theorem 3.4.
Proof. STEP 1. Here we assume that F' € CZ(H, H). Then (x) has a unique mild solution
(X7) on (2, F,(F), P, (W) and for ¢ € By(H),

Pup(z) = Ey(X)), x€H.

Let Ar denote the generator of the semigroup () in L?(H, u). Because FC° is a core
in L2(H, u) for the O-U generator L and, by Theorem 3.4, dom(Lg) = dom(L), it follows

that FCE° is a core for Lr. Therefore, by Lemma 3.5, in order to prove the theorem it is
enough to show that

(3.17) App=Lp¢p for ¢ € FC°,
which is equivalent to the condition:

for p € FC°, t (P — o) = Lr¢ in L*(H,p).

Because we do not assume that ) := BB* is nuclear, the relevant result on the Kol-
mogorov equation [D-Z; S, Thm. 9.17], [D-Z; E, Thm. 5.4.2], [Z2] is not directly applica-
ble. We use approximations as in [P-Z], [D-Z; E, Thm. 7.1.1]. Let A := kA(kI — A)~ 1,
for sufficiently large k, be the Yosida approximation of A. Let (e,) be an ON basis in H
and 7 be the orthogonal projection onto lin{es,...,e;}. For each k, let (Xfl) denote
the solution to the stochastic equation

dXf = [ALXF + F(XF)|dt + m, BAW;,
(3.18) k

Xi=u.
Then for any T > 0,
(3.19) sup E[(X{ — X{)?] — 0.

0<t<T k—o0
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Fix ¢ € FCg°. Then ¢(z) = f(IIx), where, for a certain natural number N, IT is an
N-dimensional orthogonal projection such that II(H) C dom(A*) and f € Cg°(H).
Therefore

Do(z)=IIDf(Ilx) = o [IDf(Ilx) = IIDyp(x),

(3.20) D*¢(x) = ID?f(Ilx)II = IID*p(x)I1.
Write
(3.21) olte) = BplXi) = Relo). 0 oy

vk (t,x) = Bp(X),
Since (Xt]”) is the strong solution to (3.18), using the Ito lemma [D-Z; S, Thm. 4.17],
(3.20) and differentiating with respect to t, we obtain

vy

(3.22) o

(t,7) = 3 ([T D*p(X{ ") 11Qy))
+ BE(X{", ALITD (X)) + B(F(X{™"), Dp(X{)),

where Qj 1= T Q7.
Because ¢ is a bounded Lipschitz function, it follows from (3.21), (3.19) and the
Lebesgue Dominated Convergence Theorem (LDCT for short) that for x € H,

(3.23) sup |vg(t,x) — v(t,z)| — 0.
0<t<T

Consider the RHS of (3.22). Note that A*IT is a bounded operator on H and
(3.24) ltr ITD*p(X ") Q| < (tr IT) - QL mry - ||D280(th’x)||L(H,H)
< N|@QN ra,m D¢l
(where ||D%*¢|l = supgep [1D%*@(2)|| Lot my)- For t >0, x € H define
(3.25) u(t,x) = $E(tr ID*p(X])11Q)
+ E(XY, AITD(XY)) + E(F(X]), Dp(XY)).

Because ¢, F', D and D?p are bounded Lipschitz mappings, from (3.19), (3.22), (3.24)
and LDCT for x € H we obtain

v
su —(t,z) —u(t,x 0,
ogth 875(7 ) (7 )k:o

which combined with (3.23) implies that v(-, z) is ¢t-differentiable and
Ov

(3.26) a(t,x) =u(t,z), t>0, z¢€H.

It is well known that for some constant ¢ > 0,
sup E((X])?) < er(1+ |z]?)
tel0,T']

and therefore by (3.24) and (3.25),
2
AT, @)1+ ||z]*), =€ H,

ov
E(tv l‘)

sup
t€[0,7T']
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where ¢(T, ¢) > 0 is a constant independent of x. This combined with (3.26) and LDCT
gives
2

) v(t,x) —v(0,x) B
(3.27) tliré{r}[ [f —u(0,z)| du=0.

Note that u(0,z) = L%p(z) (see (3.11)). Hence, recalling that v(¢,z) = Pyp(z), we can
write (3.27) as

lim % =Lpy (in L*(H,p)),

which implies (3.17) and completes the proof of Step 1.

STEP 2. We proceed as in the proof of Corollary 3.3. If F' satisfies (F2), then F =
B~'F € By(H,K) and one can find a sequence (F,)52, C CZ(H,K) converging to F'
p-a.s. and boundedly.

Let (P]");>0 be the semigroup defined in Proposition 3.2, which corresponds to F, :
BE,. Then for ¢ € By(H),
Pié(x) = E¢(Xrgf,t)a
where (X ;) is the mild solution to equation () with nonlinear term F,,. According
to Theorem 3.4, let (V) denote the semigroup with generator Ly, = L + G, where
GMe(z) = (Fy(x), Dp(x)) for ¢ € dom(LY}). By (3.14) and (3.16) for any ¢ > 0 and
¢ € dom(L) we have

t
(3.28) [IGM R@llads < VEB[¢lls, where 3 :=sup Byl < ox,
0 n

t
(329)  [I(G™ — G)R,6|2ds
0
t

< VI [ Ba(a) ~ F@)|P|DaReb@)| plda) ds — 0 asn — oo,
0H
where the convergence follows from LDCT, since by Section 2,
t

| | 1DoR¢()|? p(dz) ds < ||8]3-
0H

From (3.28) and (3.29) we conclude, using [V; A, Thm. 1.4], that for every T' > 0 and
¢ € L*(H, p),

(3.30) sup || Vi'¢ —Vig|la — 0 asn — oo.
0<t<T

Since by Step 1,
th(b:Ptn(b) ’I’L:1,27...,t207¢)€L2(H,,U/>,
it follows from (3.30) and (3.6) in Proposition 3.2 that V;¢ = Pi¢. =

According to Theorem 3.6, in what follows we denote by Lp the generator of the
semigroup (F;).
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REMARK 3.7. It is interesting to compare the estimate (3.1) of the norm || P;||2—2 with
the estimate that follows from Theorems 3.4 and 3.6.

Write u := /T 3, where T satisfies (3.15) and (3.16). Then 0 < u < 1. Theorem 3.4
and [V; P, (1.3)] imply

1 32 1
(3.31) |1P |22 < T, &XP {(F log T u)t} =: M, expla(u)t], t>0.

Let us find a lower bound of a(u). As a(u) > 0, lim, o+ a(u) = oo and lim, ,1- a(u)
= 00, it follows that «(-) achieves its minimum at some @ € (0, 1). Then d—z( ) =0 and
by an easy computation we have

u

log(1—w) = —m,

which yields
a(u) = i > 232
2u(1 — 1)
Therefore in (3.31)
M, expla(u)f] > exp(260),
while (3.1) gives

| Pill2—2 < exp(B8°t/2).

4. Properties of (P;)—the case of bounded F

4.1. Hyperboundedness. First, recall that for ¢ > 0 the condition

(A2) im Q% = im QY/?

is equivalent to

(4.1) [So(t)[l <1 (where So(t) = QxS QY% i,)  (see Sect. 2),

which, finally, is equivalent to the hypercontractivity of R;. By the result in [Ch-G; Q]
and (2.18), for every p,q > 1,
_J1 ifg=<qltp),
(4.2) IRy ={ by 05000
where
-1

(4.3) qt,p) =1+ 5
IISo( 15N
(Recall that always || So(t)|| < 1.)

The theorem below says that the semigroup (F;) has a similar property with hyper-
contractivity replaced by hyperboundedness.

THEOREM 4.1. Assume (Al) and (F2).

(i) If (A2) holds for some ty > 0, then for every t > to, p > 1, ¢ > 1 the operator
P, : LP(H,p) — LY(H, ) is bounded for g < q(t,p) and unbounded for q > q(t,p), where
q(t,p) is defined by (4.3).
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(ii) Conversely, if Py, : LP°(H,u) — L%(H,p) is bounded for some to > 0 and
qo > po > 1, then (A2) holds for all t > ty.

Proof. (i) Fix p > 1, t > tp and r such that 1 <r < p. Let ¢ € By(H) and ¢ > p. Then
the first inequality in (3.4) with p replaced by ¢ takes the form

rl/r
(4.4) 1Pielly < el )| Re(lio ) )
From what has been recalled, R, is a contraction from LP/" to L4/" for
-1
4 _q plr=1 -
r [1So(8)]]
Hence taking
g : o,
R ENOIER
n (4.4) we obtain
1/r
(4.5) 1Piglg, < o) - Il 1127 = o)l

where by (3.3), ¢;(r') = exp (5 (f 1)) Writing ¢(t,p) and ¢, in the form

o 1 p L
49 o) = gt~ (s =) o= o~ (soor )

we see that for any g < ¢(t,p) (¢ > 1), one can find € > 0 such that for r. = 1 + ¢,
gr. = ¢, which by (4.5) completes the proof of the first part of (i).

(ii) Let ¢ > 7> 1,t > 0, ¢ € By, (H). Next, let U? be the Girsanov martingale defined
by (1.3), (1.4). Since U? > 0, P-a.e., using Holder’s inequality with exponents r and
r'=r/(r—1), we have

(4.7) |Rip])? = Hgto YUBT(UF) - I/TdP’ (dz)
(7]

0

|

H

< | (Vieznruear)” - (w70 ap)" us)

H 2
= §R I B DD ),

For v > 0, in much the same way as in (3.3) we obtain the estimate

Bl07) ) < e (L5 20) =t

which combined with (4.7) yields
(4.8) IRelly < () |P(l@")IM7, where

a/r’

- )] - ()

Fix r > 1. Setting t = tg, ¢ = G := gor in (4.8) and using the notation

M := ||Pt0||p0*>qo < 00, Cr = Eto(r)’ P = por,
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we get
(4.9) 1Reo ellg < eoll P (el Il < er MY ol 17 = e MY |0l

Therefore || Ry, |l5—g < 00, and since § > P, we deduce from (4.2), (4.3) that necessarily
IS0 (t0)]| < 1. This implies that ||So(¢)|| < 1 for all ¢ > ¢, and hence (ii) follows.

(i) (cont.) Finally, to prove the latter claim of (i), suppose conversely that for p > 1,
| Pt|lp—q < oo for some g > ¢(t,p). Then it follows from (4.9) that

(4.10) | Rellpr—qr < 0o for any r > 1.
Since by assumption ||So(¢)|| < 1, we can set
q—q(t,p)
€= > 0.
2([1So(8)[72 = 1)

Thus from (4.6) we have
q(1+¢) = (1+¢e)q(t,p) + (1 +€)lg — q(t, p)]
> (L4 ) plSoI~ = (1Sl 7> = 1)] + 2e (1o ()| 7 — 1)
> p(L+)So®)I7 = ([[So(®) 7% = 1) = q(t, p(1 +¢)).
Therefore, taking » = 1 + ¢ in (4.10), we obtain a contradiction with (4.2). m

Below we show another consequence of (A2): P, improves positivity. Since in Propo-
sition 4.2 assumption (F2) is replaced by the weaker condition (F1), we treat P, defined
by (1.9) as an operator on L*°(H, u).

PROPOSITION 4.2. Assume (Al), (F1) and let (A2) be satisfied for some ty > 0. Then
for each t > tg,

(4.11) if ¢ € Bp(H) is nonnegative and ¢ Z 0, then Pyp(x) > 0 for p-a.a. x.

Proof. Because any nonnegative Borel function is a pointwise limit of a nondecreasing
sequence of simple nonnegative functions and P; is a linear and positivity preserving
operator, it suffices to prove (4.11) for ¢ = 1¢, the indicator function of a Borel set C
with p(C) > 0.

Since (A2) holds for ty > 0, by (4.1) we have

(4.12) ISg®)]] <1 for all t > t.

By the result of [Ch-G; Q], R = I'(S;(t)), where I" is the second quantization operator.
Hence from (4.12) and [S2, Thm. I.16] we conclude that for ¢ > ¢y, R; improves positivity,
in particular R;1c(x) > 0 for p-a.a. z. Let G be the set mentioned above (1.9). Then
1(G) =1 and for each z € G,

dP?
dP
which means the probability measures f’f and P are equivalent. Consequently, for x € G
if Rilo(z) = P(ZF € C) > 0, then Plg(z) = PF(Z* € C) > 0. This finishes the
proof. =

EU)=1 and (w) =Uf(w) >0, P-ae.,

4.2. Domains of generators. In some results of this subsection we assume

(A3) im QY/? ¢ im Q'/?,
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which is stronger than (A2) (see Section 2). Corollaries 4.3 and 4.5(i) below concerning
domg(Lp) are immediate consequences of Theorem 3.4 and the analogous results for the
O-U generator L, obtained in [Ch-G; N] (see also Proposition 2.5 and Corollary 2.7).

COROLLARY 4.3. (i) If (A1), (F2) hold and the operator V := QY2Qx"* with dom(V) =
im Qéf is closable, then domy(Lp) is continuously embedded in Wé’z.

(i) If (A1), (A3), and (F2) are satisfied, then domy(Lp) is continuously embedded
into Wéi and into the Orlicz space L?log" L for 0 <r < 2.

To consider dom,(Lp) we need the following assumption:
(F3) F: H —imQ!/? is a Borel function and fy := ||Q2}/?F||s < oc.
PROPOSITION 4.4. Assume (A1), (A3), and (F3). Then for every p € (1,00),

(i) domy(Lr) = dom,(L) and in particular
(i) dom,(Lg) is continuously embedded in the Orlicz space LPlog" L for 0 < r < p.

Proof. (i) Note that in the notation of Theorem 3.4 by (2.21), (2.22) we have
Lrp=Lp+Gyp, Gp(z) = (Q*F(x), Do p(x), ¢eFCy.
Hence

(4.13) 1Gellp < BollDgu #llp:

which means that G can be uniquely extended to a bounded operator (still denoted by G)
acting from Wéi to LP(H, i). By [Ch-G; R, Thm. 1, (15)], under (A3),

(4.14) 1D Regllp < eI = Vo)~ Vil 2o,

where V; := Sy(t)S(t). Because (A3) implies that ||So(t)|| < e~**/2 for some \ > 0 (see
Section 2), we have

—\t
(115) I -V il < Pt < = =
It follows from (4.13)—(4.15) that for any 7' > 0,
T
S |GRyp|lpdt < oo and dom,(G) = Wéi D domy, (L)
0

(the latter is due to [Da; Lem. 3.4, p. 70]). Hence G is a Phillips perturbation of L and
(i) follows by [H-Ph; Cor. 1, p. 400 and Thm. 13.5.3]. Next, (i) and [Ch-G; N, Thm. 4.4]
imply at once (ii). m

If the O-U generator L is symmetric, the L,-domains of Lr can be characterized
explicitly, as a consequence of the corresponding result for L obtained in [D-G,1] for
p =2 and in [Ch-G; M], [Ch-G; N] for 1 < p < co. Recall that if ker Qoo = {0}, the O-U
semigroup (Ry) is self-adjoint in L2(H, u) iff
(A4) Q(dom(A*)) C dom(A) and AQzr =QA"z, =z € dom(A¥)

(see [Ch-G; S]). Under (A4) the operator —AQ has a Friedrichs extension to a self-adjoint
nonnegative operator in H (see ibid.).
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COROLLARY 4.5. Assume (Al) and let ker Qoo = {0}.
(i) If (A4) and (F2) are satisfied, then doma(Lp) = Wé’Q N Wi’jQ.
(i) If (A2), (A4), and (F3) hold, then dom,(Lp) = WP N W% .
Proof. (i) is an easy consequence of Theorem 3.4 and [D-G,1, Thm. 3.2] (see also [Ch-G;

M, Cor. 5.4] or [Ch-G; N, Thm. 2.4]) and (ii) follows from this last result, Proposition
4.4 and the fact that under (A4) conditions (A2) and (A3) are equivalent.

4.3. Invariant measures with densities. Recall that a Borel measure v on H is
invariant for the semigroup (P;) if
(4.16) S Pio(z)v(de) = ‘ p(x)v(dz), ¢ € By(H), t>0.
H H
We consider only probability invariant measures.

REMARK 4.6. Under the assumptions of Remark 1.5 and notation of Proposition 1.2, it
follows from an obvious modification of [K-S, Cor. 5.3.11] that equation (*) has a unique

martingale solution (X} )o<¢<r with initial distribution v on (2, F, (¥%), P%), where

Py (dw) = | Pf(dw)v(dz)
H
and

Py(Xy € C)= | PE(X] € C)v(de), C € B(H).
The latter together with the equali{cly
Pyp(z) = Ef(p(X})), 0<t<T,
shows that (4.16) holds iff
PY(XVeC)=v(C), CeB(H), 0<t<T.
Hence, v is an invariant measure for (P;) iff v is a stationary distribution for (x). If F' sat-

isfies (F1) the same holds, except the uniqueness of solution, for v absolutely continuous
w.r.t. u.

We are concerned with the existence of invariant measures for (P;) that are absolutely
continuous w.r.t. u. Equivalently, we look for o € L*(H, j1) such that
(4.17) 00, lolh=1, V(Ppedu=\podu forye By(H), t=>0.

H H

Note that if o € LP(H, u) for some p € (1,00), then (4.17) holds iff Pfp = o, t > 0,
and hence iff p € dom,(L}) and Lj0 = 0, where L}, denotes the generator of the
semigroup (P;") on LP(H, ;1) and (P;) is adjoint to the semigroup (P;) acting on L¥' (H, 1),
P =p/lp—1).

The theorem below is a counterpart of [Ch-G; E, Thm. 5] which was proved by the
compactness method.

THEOREM 4.7. Assume (Al) and (F2). If (A2) holds for some ty > 0, then

(a) there exists an invariant measure v for (P;) which is absolutely continuous w.r.t. p;
(b) 0 :=dv/dp € (51 LP(H, p);
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(c) o(x) >0 for p-a.a. x;
(d) v is a unique invariant measure for (P;) in the class of probability measures ab-
solutely continuous w.r.t. p.

Proof. Fix p > 1 and let p/ = p/(p —1). (P,) is considered in L? (H, 1), so (P}) acts in
LP(H,v).

(a) The proof of existence is based on a result obtained recently in [H; P]. It fol-
lows from (A2) and Theorem 4.1 that for some ¢’ > p/, Py, : LF (H, ) — L9 (H, p) is
bounded. Combining this with the observation that 1 € ker(I —F;), t > 0, we deduce from
[H; P, Thm. 2.8 and Lem. 2.2] that there exists a nonnegative nonzero :Q: € ker(I — P;)
in LP(H, u). Then it is easy to verify that

to
0:= S Prpds € ker(I — P;)  for every t > 0,
0
0> 0and g # 0 (see [H; P, Rem. 2.10]). Hence g := ¢/||0]|1 € LP(H, 1) and p satisfies
(4.17). In particular the measure dv = pdu is invariant for (P;), which proves (a).

(¢), (d), (b). In this part of the proof we use the result [Da, Thm. 7.3] on irreducible
positive semigroups. According to [Da, p. 174], a set C € B(H) is called invariant for the
operator P; acting on LPI(H, w) if for any f € ¥’ (H, p),

supp(f) C C' implies supp(P.f) C C

(with all inclusions up to sets of measure zero).

We will show that under condition (A2) for ¢y, the semigroup (F;) is irreducible, that
is, the only sets which are invariant for all P, t > 0, are sets of measure zero or one. To
this end suppose that C € B(H), 1(C) > 0 and C is an invariant set w.r.t. P; for some
t > to. Then supp(P;1¢) C C. But, by Proposition 4.2, P;1¢(x) > 0 for p-a.a. z and
hence u(C) = 1.

Consequently, (P;*) acting on LP(H, p) is also irreducible. Indeed, let U be invariant
for Py for some t > tg, 0 < u(U) < 1. If 0 < f € LP(H, p) and supp(f) C U then for
every nonnegative g € L? (H, 1) with supp(g) € H — U we get

0=\(Prf)-gdu=\f-(Pg)dp
H H
and since f and g are arbitrary we conclude that supp(P.g) C H — U. This contradicts
the irreducibility of (P;).

(P;) is obviously a positive semigroup (i.e. f > 0 implies P;"f > 0).

In [Da, Thm. 7.3] it is assumed that (7;) is a semigroup of contractions but a close
inspection of the proof enables us to reformulate this theorem as follows:

THEOREM [Da, Thm. 7.3]. Let (7;) be a positive irreducible Cy-semigroup on LP(H, i)
for some p € [1,00).
(i) If there exists a nonnegative f Z 0 such that T,f = f for all t > 0, then f(x) >0

for p-a.a. x.
(ii) If K :=[\;>oker(I —Tz) is a sublattice, then dim K < 1.
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Therefore, for 7; = P;* the assumptions of the theorem quoted above are satisfied. By
(a) we can put f = g in (i). Thus (c) follows.

In the proof of (d) we use an idea from [B-R-Zh, Cor. 2.13]. Since P; is positive,
|Pfg| < P}|g| for g € By,(H), and hence

1Prgllh < | Prlgldp =\ lg|Pdu = |lg])s.

H H
which implies that P;* can be extended to a contraction ]St* on L'(H, u). It is standard to
prove that (P}) is strongly continuous in L (H, p) since so is (P}*) in LP(H, p), 1 < p < c.
Consequently, (]St*) is a positive irreducible Cy-semigroup of contractions on L'(H, p),
ie. T, = ]5,5* satisfies the assumptions of the theorem above. It follows easily from (4.17)
that if 0 < g € L'(H, p) and g is an invariant density for (P;) then Po = o for all ¢ > 0.
Therefore to prove (d) it is enough to show that

(4.18) ker(I — Py) is a sublattice for each ¢ > 0
and invoke (ii).

(4.18) follows from [Da, Thm. 7.2] or [B-R-Zh, Cor. 2.13] and we repeat here the latter
simple proof for completeness. It is sufficient to show that

(4.18a) feker(I—P}) implies f* €ker(I— P}).
Let f = Py f. Since Py f < Py fT we have f < P} fT and hence
(4.19) f1 =max(f,0) < P/
Therefore

0=\ @ -Didu=\(P;f* = f*)dp,
H H
which combined with (4.19) yields f* = ﬁt*f"' and (4.18a) follows. This finishes the proof
of (d).
Finally, (b) follows from (d) and the proof of (a). =

PRrROPOSITION 4.8. If (Al), (A3) and (F2) are satisfied, then all the statements of The-
orem 4.7 hold and moreover for each p € (1,00) there exist constants M, > 0, A, > 0
such that

(4.20) ‘

Pep— | podn| < Mgl
s P
for all p € LP(H, p).
Proof. If (A3) holds then by (2.26a) for each p € (1,00) and for a constant c,, > 0,

HR“O - | ‘/’d"Hp <e|oll, ¢ € LP(H,p).
H

Hence by [H; P, Thm. 3.6], (R;) satisfies condition (E) of Definition 3.1 ibid. Then by
[H; P, Prop. 4.5], (E) holds for (P;) and (4.20) follows again by [H; P, Thm. 3.6]. =

The proposition below is some generalization of the result obtained in [Sh; EJ.
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PROPOSITION 4.9. Assume (Al), (A3) and (F3). Then
(4.21) domy (L) € W52,

In particular o € Wéi, where o is the (P:)-invariant density (which exists by Theo-
rem 4.7).

Proof. To show (4.21) we follow the proof of [Sh; E, Thm. 2.1], where a similar inclusion
was proved in the case of L = L™ the Malliavin generator. We write (-,-)2, || - ||z and
| - |l2—2 for the scalar product and norm in L?(H,u) and the norm of operators on
L?(H, 1), respectively. The norm in WS: is denoted by | - |, and the norm of operators

from ng to ng is denoted by | - |a—g, @, 8 € R. Recall that
Pla = (I = LM)* P05,  a€R, p e W52,

For ¢ € L2(H,u), let Ipp := {p,1)21 and o := ¢ — Ipp. Hence ¢q is the orthogonal
projection of ¢ onto

L§(H, p) =My = {f € L*(H,p) : (f,1)2 = 0}

(where H, is the subspace of constant functions).

Recall that both Hy and Hp are invariant for any O-U semigroup and accordingly
write

Ry = Ril iy and - Lo = Llzgap-

By Corollary 2.6, (RY) is exponentially stable. Hence J, defined as

o

(4.22) Je =\ Ripodt, e L*(H,p),
0

is a bounded operator on L?(H, u) and
(4.23) Jp:=—Ly'podt, LIp=—po.
We first show that for any o € R,

(4.24) J: ng — ngf’? is bounded and |J|a—at2 < 0 < 00, with o independent
of a.

Indeed, by [Ch-G; Q], L and Ly, commute and by Corollary 2.7, (A3) implies
(4.25) domy(L) C W52,
Combining this with (4.23) we obtain
(T blass = (I = LY @HD2L g, = [[(1 = IMYIGHT — L) 2,
< = L)Ly Hl2—2 - [0l = ol¢la-

Since by (4.25), 0 < oo, (4.24) follows.
Throughout the rest of the proof we assume that ¢ € doms(L}). Then (4.24) yields

(4.26) (T, L)l < ol Lpdllalel-2, @ € L*(H, p).
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Since, by Theorem 3.4, domy (L) = domy(L), it follows from (4.23) that J¢ € doma (L)
for o € L?(H, uu). From this and the formula for Lr (Theorem 3.4) we obtain

(T, Lp)a = (LrT ,¥)2 = (LT o + GT ¢, )2
= —<S07¢>2 + <-[0907 ¢>2 + <GL7Q07¢>2
using (4.23) in the last equality. This and (4.13) yield

(427) [, )2l < (T, Lptha| + [(Top, ¥)2| + [((QL2F (), Do T ¢ (), )|

= J1+ Jo + J3.
Then by (4.26) we have
(4.28) Ji+Ja < o||Lpiplla - |@l—2 + [To| —2—0 - |¥]l2 - [0]—2;

(429)  J3 < QX 2F | [1Do Tz - 12 < BolTlr - 1¢ll2 < Boolpl—1 - ||,

the last inequality being a consequence of (4.24).
Thus, for ¢ € dom(L%) and ¢ € L?(H, 1) we obtain from (4.27)(4.29) the estimate

(o) 2| < e(®) - [el-1,

where ¢(1)) is a finite constant depending on 1. This means that (), -)3 has an extension
to a continuous functional on chjf’ which implies that ¢ € Wéi Hence dom(L%,)
C Wéi [

5. Examples

Example 1 shows that our assumption, F(H) C im B, is in some sense justified. In
Examples 2 and 3 we consider the simplest case of system (x), namely equation (5*'),
which satisfies (A1) and (F2). However, in Example 2 the unique invariant measure
for (5*') is singular w.r.t. 1 and in Example 3 there is no invariant measure for (5*'). By
virtue of Theorem 4.7, in both examples for no ¢ > 0 does (A2) hold. Equivalently, for
no ¢t > 0 can R; and P; be hyperbounded in L?(H, ut). An example similar to Example 2,
but not so explicit, has also been given in [F; L].

Finally, in Example 4 we present a model (%) (with nonconstant F') which satisfies
precisely the assumptions of Theorem 4.7. That is, (A2) is satisfied for some t; > 0
but does not hold for 0 < ¢t < ¢y. Equivalently the corresponding O-U semigroup (R;) is
hypercontractive for t > ¢y but it is not hyperbounded for 0 < ¢ < ty. Such a phenomenon
cannot happen when (R;) is symmetric or H has finite dimension. Moreover, (A3) is
not satisfied here. It should be mentioned that Example 4 is of some importance in
Mathematical Finance ([M], [Z3]). A shortened version of Example 4 has been given in
[Ch-G; NI.

As an illustration we first consider the simplest semilinear equation (x) with constant
nonlinear term:

(5%) dX, = AX,dt + bdt + BdW,, t>0, wherebec H, Q:= BB".

We are mainly interested in invariant measures with densities. Let us recall the following
known facts.
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PROPOSITION 5.1 ([Ch, Prop. 3.5, Cor. 3.4], [D-Z; E, p. 185]). There exists an invariant
measure v for (5%) iff (A1) holds and

(5.1) the deterministic equation § = Ay + b has an invariant measure v*.

Then v = v x N(0,Qx)-

COROLLARY 5.2 (see e.g. [Ch, Prop. 6.1]). Let (S;) be a stable semigroup (i.e. lim;_,o Six
=0 for all x € H). Then (5%) has an invariant measure iff (A1) holds and

S T

(5.2) the improper integral ‘ Sibdt := lim ‘Stb dt exists.
0 T=eey

If v is an invariant measure for (5%), then

v=MN(ts,RQc0), where ay := S Sibdt.
0

(Note that for stable (St), (5.2) implies that b € im A and as, = —A~1b.)

If (S;) is stable and (A1), (5.2) hold then, by the Cameron—Martin Theorem (see e.g.
[D-Z; S, Thm. 2.21]), v = N (a0, Qo) is absolutely continuous w.r.t. g = N(0, Q) iff

(5.3) oo € im QY% = Hy
and then
_ v
dp
The last equality implies that for h € Hy,
(Dov(x),h) = (Q=*a0e, Q)03 ()

and hence Dg_ 0p = ng;}/zao@. Therefore g, € Wéi for p > 1iff (5.3) holds. Note that
under condition (5.3), g € W;” for all n > 1 and p > 1.

on(a) = ) = ex (102 20, Q5] = 10 0.

EXAMPLE 1. Let A = A* be a bounded operator with spectrum in (—oo,0). Hence (S;)
is exponentially stable and A~! is bounded. Suppose that @ is nuclear and

(5.4) QA = AQ.

Then the corresponding O-U semigroup is symmetric in L?(H, ). By Corollary 5.2,
N(as, Qo) is a unique invariant measure for (). By (5.4), Qoo = {7 S(t)QS*(t) dt =
§o. S(2t)Qdt = —3A~'Q. Hence by (5.4),

Q1/2 - 1

HQEAT

which yields
(5.5) imQY? =im Q"2
In particular, (A3) holds. By (5.4) we have
AT =QY?h iff b= AQY?h = Q'*(Ah)
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and since A is a bijection, we conclude from (5.5) that (5.3) holds iff b € im Q'/2. Therefore
if we look for invariant measures for (x) absolutely continuous w.r.t. p, our assumption
that F(H) C im B = im Q'/? is justified.

EXAMPLE 2. Here H = L?(0,0), the operator A = 9/00 with dom(A) = H'(0, )
generates the left shift semigroup

St)x(0) =zt +6), xe€H b)) =exp(—02/2), 6>0,

and w is a one-dimensional Wiener process. Consider the particular case of (5%):

(5*) dX, = AX,dt + bdt + bdw,.

Then Q =b® b and
(oo} (oo} oo o0 R
| tr9QS;dt =\ S|P dt = | | e dsdt < 0.
0 0 0t

Hence (A1) holds.

Consider (5.2). Note first that for every § > 0, the function ¢t — Sg S¢b(0) ds is
increasing in ¢ and

o] t
S Ssb(0) ds = tlim SSSb(Q) ds exists.
0 0

Then to prove (5.2) it is enough to observe that {~ Ssb(-) ds € L*(0,00).

Since (S;) is stable, by Corollary 5.2, M(deo, @) iS a unique invariant measure
for (5*).

Finally, suppose that (5.3) holds. By a result in [D-Z; S], im Q})éQ =im L, where

o0

Loo:L*(0,00) = H, Loou= | Sbu(s)ds
0
(Note that by the estimate
o0 oo 172 ¢ %° 1/2
| 1S.bu(s)ll ds < “ |\Ssb||2ds} . “u2(s) ds}
0 0 0

the operator L., is well defined.) Therefore as, € im Lo, which means that for some
u € L?(0,00),

S Ssbds = S Ssbu(s) ds
0 0
Hence

\b(s+0)ds = |
)-

for a.a. 6 and by continuity for all 8 € [0, co

b(s + O)u(s) ds

Then for every 6 > 0 we have

(5.6) 0={b(s+0)[1—u(s)ds = e /2 [ e70[e="/2(1 — u(s))] ds.
0 0

Therefore the Laplace transform of the function

[0,00) 3 5 6_52/2[1 — u(s)]
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vanishes identically, which implies that u(s) = 1. But u(s) = 1 € L?(0, 00), a contradic-
tion. Hence the measures N (s, Qo) and N (0, Qo) are singular.

ExAMPLE 3. Consider equation (5*') in Example 2, where b is now replaced by
b(O)=(O+1)72  6>0.

Then
|S¢b||* dt = (t+04+1)3d0)dt =~ \(t+1)2dt = =
jusatar={(§ )3 ] 2

and (A1) holds. Hence the corresponding O-U process has an invariant measure.
We will show that (5.2) is not satisfied. Conversely, suppose that (5.2) holds. This

means that
t

fo = SSsgds converges in L?(0,00), as t — 0o,

0
to some f. Therefore, for some sequence (t,) with ¢, — oo, we have f; (0) — f(6) for
a.a. 0 € [0,00). Hence

fO) = \(s+0+1)"%2ds=2(0+1)""/2
0

but f ¢ L?(0,00), a contradiction. It follows from Corollary 5.2 that now there is no
invariant measure for (5*').

ExAMPLE 4. Consider the equation

(5.7)
XO =,
in the space H = L?(0,1), where A = 9/06 with dom(A4) = {z € H'(0,1) : z(1) = 0}
generates the semigroup (S;) given by
t+60) ift+o<1
S, () = 4 & <L
t(0) {0 ift+6>1.
Let w be a one-dimensional Wiener process, f € By(H) and b € H, b # 0. Then Q» = Q1
and (A2) holds for ¢ > 1. Hence for t > 1 the corresponding O-U semigroup (R;) is
hypercontractive and (P;) is hyperbounded in LP(H, i), by Theorem 4.1. For simplicity
take b = 1. Then

oo 1
Loot = S Ssbu(s)ds = S (Ss1)u(s)ds, € L*(0,00).
0 0
For uy(s) := (n + 1)s"1p,1) we have

Lootn(0) =1 —-0)"T  0c0,1], n=1,2,...,

which implies that im Qgg = H. In particular, (A3) is not satisfied. By [D-Z; S], im Q%/Q

= im L;, where
t

Liu = XSsbu(s) ds, u€ L*0,t).
0
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For 0 <t < 1 we have
tA(1—0)
Liu(0) = ‘ u(s)ds, 0€][0,1],
0
and consequently any function in im £; is constant on the interval [0,1 — t]. Thus for
0 <s<t<1we have

iin/Z o ing/Q ¢CH
and for no ¢t € (0,1) does (A2) hold. Hence for any 0 < ¢t < 1, R; and P, are not
hyperbounded in LP(H, u).

However, all the assumptions of Theorem 4.7 are satisfied and (5.7) has an invariant
measure equivalent to pu = N (0, Q1).

6. Logarithmic Sobolev inequality—the case of bounded F

It has been proved in [Ch-G; N] that under (2.1) the O-U generator L satisfies the
Logarithmic Sobolev Inequality (LSI, for short) (6.3) below iff
(A3) imQY? c im QY2

(Hence, by Section 2, the same is true without assumption (2.1).)
Recall that (A3) is equivalent to the following condition (see e.g. [D-Z; S, Prop. B.1]):
There exists a > 0 such that

(6.1) 1QY%x|| > a||QY/%x| forall z € H.
By Corollary 2.3 condition (6.1) holds iff

(6.1) |Vz| > alz|| forall z € Hy := im Q2
where V = Ql/Qngl/z with dom (V') = Hy. Define

(6.2) a :=sup{a > 0: (6.1) holds}.

Then a is easily seen to be the maximum, i.e. a is the best constant in the inequality (6.1).
It follows from [Ch-G; N] and Section 2 that if (A3) holds, then for p > 1 and
¢ € dom, (L),
P 1
(6.3) | [6(2)[Plog |6(x)| p(dx) < o1 2L dp) + 1917 log |9,
H
where the constant a is given in (6.2) and

(6.4) bp = sgn - |p7 L.

Below we prove that the generator L of the semigroup (P;) enjoys a similar property.
We do not use (6.3) for L in the proof but we apply the well known LST for the Malliavin
generator LM . We still assume (F2), now writing it in the equivalent form (see (3.13))

(F2) F: H — imQ"? is a Borel function and 3 := ||Q_1/2F||oo < o0.
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Note that for ¢ € FCg°, by Theorem 3.4 and Proposition 2.5(ii),
Lrp=Lo+Gp, where Gp(z) = (@ VF(z), Doy(x)).
THEOREM 6.1. Assume (Al), (F2).
I. If (A3) holds, then for every p>1and 0 <e <1,

6.5) ()" log| ()| u(dz)

H
< e:(0){(0:(p) = Lr)e.p) + llelih log el @ € domy (L),
where
(6.6) ) = e 1=
(67) o) = 5o e

a, B are the constants given above and @, is defined in (6.4).
I1. Conversely, if (6.5) holds for some pg > 1 and constants c¢(po) > 0 and v(pg) > 0,
then (A3) is satisfied.

Proof of I. We first consider p > 2.

STEP 1. First (6.5) will be proved for ¢ € FC°. Then ¢(x) = f(II,x), where IT,, is
an orthogonal projection such that for some m, dim IT,,, = m, II,,(H) C dom(A*) and
f e CP(H). It follows by Lemma 2.2(c) that

Do..p(z) = QY M Df () = QL* M Dp(x) s in dom(Af|Ho)
and by Lemma 2.4(iii),
(6.8) Lo =D _AsDq.. -

Observe that for s > 1 the function g(y) = sgny - |y|?, v € R, is differentiable and
g'(y) = sly|*~! (where we adopt the convention that 0° = 1). Therefore, for p > 2,
op =sgne - |p[P~1 is Fréchet differentiable and from (6.8) we obtain

(~Lg, ¢p) = (~A;Dq.. ¢, Dq.. op) 2t ui) = (— A Do s (0 — 1wl Do )

= (0 = Dle(@)"*(~A; Do ¢(), Da. (@) i plde).

Since (—2A{x,x) = (Vz,Vz) for x € dom(Aj|Hy) and VDg_¢(z) = Dge(x) for
¢ € FC° by (2.22), we get

(69) (~ L) = o 00, (Dap(), Dae()) ):

Similarly, for r :=1+4 p/2,

2
(6.10) I1DQ@r 12 a1 sy = %(I@(')\”’Q, (Dqw(), Doe()) m)
and
6.11)  (Gerer) = [(Q V2R (@), Dagr(@))er(2) n(dx) = £ (G, ).

H
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It follows from (6.9) and (6.10) that

DI

(Lo = L2

From this and (6.11) we have

(6.12) (~Lrvvon) = 2 (10w lP - -2 (Goron) ).

By (F2) we can estimate the last term as follows, for o > 0:

s o)
. < —
613)  TolGenenl< <f||Dw,<>||H, -
_p_Po 2 P Py,
< 2 D iDgprl? + 25 el

Therefore the RHS of (6.12) can be estimated from below by ¢||Dger||* with some
constant ¢ > 0, independent of ¢, if

(6.14) 0<o< =l 1

B 8
Then, assuming (6.14) and taking into account that [|¢,[|*> = [|¢||5 and D@, = VDq_ ¢r
for ¢ € FC°, from (6.12) and (6.13) we obtain

p2

B
. AR ol
> (1= p0)|lVDq. ¢rl|* 2 a*(1 — Bo)|| D, erll*,
the last inequality being a consequence of (6.2). Since ¢,, 7 = p/2 + 1, is in dom(Dg_, ),

the well known LSI for the quadratic form ||Dg_t||* ([Grl, 2]) with ¢ = ¢, takes the
form

(6.15)

P?>Z

D r
| Dq..¢ 5

[ § Il 10g |l dp — IIllz 0g ol
H

If 0 < o < 1/3, from this and (6.15) we get (6.5) for ¢ € FCg° with the constants
p -1
C(U) p) (p _ 1)(12 [ Uﬁ} ) 7(0-72)) po_
Putting ¢ = o3, we obtain (6.6) and (6.7).
STEP 2. Let ¢ € doma(Lp) be bounded. By Theorem 3.4, doms(Lr) = domy(L) and the
graph norms are equivalent. Hence, by Lemma 2 from Appendix, we can approximate ¢
in the graph norm and p-a.e. by a sequence ¢, € FC° with ||¢y|lcc < ||¢||lco- Therefore

for any p > 2 we can pass to the limit in (6.5) for ¢,: using Fatou’s lemma to the LHS
and LDCT to the RHS, we conclude that ¢ satisfies (6.5) for each p > 2.

STEP 3. Finally, fix p > 2 and consider dom,(Lp). It follows from the last part of
[P, Thm. 5.5, p. 123] that

(6.16) dom,(Lp) ={p € LP(H, ) Ndoma(Lp) : Lpy € LP(H, u)}.

Let K, := dom,(Lr) N L>®(H, ). Note that for ¢ € FC2°, Lpy € LP(H, 1) and hence
FCg° C K,, which implies the density of K, in LP(H, y). Moreover, because P, is a
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bounded operator from L* to L*>°, t > 0, we have
P(K,) C K, t>0.

Therefore, by [Da, Thm. 1.9] the space K, is dense in dom,(Lp) in the graph norm.
By Step 2 and (6.16), the inequality (6.5) holds for ¢ € K, and hence, by a limiting
argument, for ¢ € dom,(Lp).

Consider now the case p € (1, 2).

STEP 1'. Let ¢ € FC°, ¢ > 6 > 0. Then ¢s(x) = p*"(z) (s=pors=p/2+1)is
Fréchet differentiable and we can repeat Step 1 of the proof.

STEP 2'. Let ¢ € domy(Lr) be a nonnegative bounded function. By Lemma 2 in Ap-
pendix, we can find a sequence (g, ) such that ¢, € FC°, 0 < ¢, < [|¢]leo and ¢, — ¢
in the graph norm and p-a.e. Let 0 < J,, < 1 be a sequence of numbers converging to 0.
Then ¢, + 9, € FC°, 0 < §,, < ¢, + 3, < ||¢]leo + 1 and since Lgd,, = 0, we have
©n + 0n, — @ in the graph norm. By Step 1/, (6.5) holds for ¢,, + §,, and a passage to the
limit similar to that in Step 2 yields (6.5) for ¢.

STEP 3'. Recall that Ky = domg(Lp) N L®(H, ) is dense in LP(H,pu), 1 < p < 2,
and P;(K3) C Ks, t > 0. Because P, preserves positivity we conclude from Lemma 1
in Appendix that each ¢, 0 < ¢ € dom,(LF) can be approximated in the graph norm
by 0 < ¢, € Ks. Hence by a limiting argument we show (6.5) for every nonnegative
¢ € dom,(Ly). Finally, using again the fact that P, preserves positivity, we can apply
[Gr2, Cor. 3.10 and Thm. 3.12] to prove (6.5) for all ¢ € dom,(Lr). This completes the
proof of Part I.

Proof of II. Let

(6.17) F C :={p € FCE° : ¢ > 6, > 0 for some §, € R}.

It follows from (6.12) and (6.13) that for some constants dy > 0, dy > 0,
(—Lre,0po) < dil| Dor||* + dollor || for all ¢ € F1LCp (where ¢, = ¢"/?).
Therefore, by assumption we obtain

(6.18) § o7 log 0 i < Gy (1DQwrlI” + A loro ) + 21125 108 [0l
H

for some constants %po > 0, ﬁpo >0 and all ¢ € FLCp°.

For a fixed p € (1,00) and an arbitrary ¢ € FLCg® we can put ¢ := YP/Po ¢ F, . Cg°
into (6.18) and then we get the LSI of the form (6.18) with ¢ instead of ¢ and with the
index p instead of py. This and the equality below (6.11) imply that the O-U generator
L satisfies for each p € (1,00) and all ¢ € FLCp° the defective LST of the form (6.5) with
coefficients ¢(p) > 0 and J(p) > 0 continuous in p. Arguing as in Step 2’ we deduce from
Lemma 2 in Appendix that this LSI for L holds for all nonnegative ¢ € dom,(L) and
hence, by [Gr2, Cor. 3.10 and Thm. 3.12], for all ¢ € dom,(L). Therefore, it follows as
in the proof of [Ch-G; N, Thm. 3.2] that (6.1) holds. Hence (A3) is satisfied. m
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LEMMA 6.2. Assume (Al), (A3), (F2) and let the constant a be given in (6.2). If
€ (1,00) and 0 > 0 are such that

p \° 2
2 — — <4
(6.20) <p— 1) a? =
then the generator Lp satisfies the LSI (6.5) with the principal coefficient
-1
p pV2
6.21 co(p) = {1 — ]
(621 ®) (p—1)a? (p—1)ave
and the local norm
a’*(p—1)
(6.22) Yo(p) = 2—p2(/f9 -1,
where

ko = | exp(8]Q2F (2)|*) ulde).
H
Proof. We will now estimate the expression in (6.13) using the Hausdorff-Young (H-Y)
inequality: for s € R, t > 0,
st <e’+tlogt—t.

Let ¢ € FCE° and write 9 := ¢,. Then
(6.23) <Gw'w«—§ TP (2)y(x), Doi(x)) p(dx) = (b, Do),

where to shorten notation we have set b(z) := Q~/?F(z). Then
v (x)

(b, Do) < 07| DoulI31e113 | Ollb()] - TAE p(dz)
o 2
and applying the H-Y inequality with
V*(x)
= 0||b(x)||? = :
s=0lb(x)[", ¢ e
yields
<w0wwseWQmeﬁ[hmwwmmw+ﬂ¢%%%W@Mu1}
p & 1l [l

(We omit the subscript 2 in the L?-norm.) Hence, using the LSI (6.3) with p = 2 and
taking into account that (—2Lv, ) = [[Dge||* and k := kg for brevity, we obtain

2
<www¥§eWQwP%nWW+3www}

=92 ||DQ¢H4+—||DQ1/’||2 [
V2 2 alk—1)y o ’
< (2 IDout? + i)
This and (6.23) give
f ( )

(6.24) P LCURIS ||¢||2



Transition semigroups 47

Consequently, the RHS of (6.12) can be estimated from below by ¢|[Dge,||* with some
absolute constant ¢ > 0 if

2

L < 17

(p—1ave

which is equivalent to (6.20). If (6.2) holds, then proceeding analogously to the proof of
Theorem 6.1, from (6.12), (6.24) and the Gross LSI for |[Dg__||? we get the inequality

o9 1=

2

p a(ﬁ_l) P P p
sy (ool + eI 2 a1 -0 5§ el ogloldn— el ool

Consequently, Lp satisfies (6.5) with the principal coefficient cy(p) of the form (6.21).
Finally, by (6.20),

V2p
Ve > a(p—1)

and hence
a(kg —1) _a’(p—1)
pV20 STy el
Therefore, (6.5) holds for ¢ € FC° and p satisfying (6.20) with cy(p) given by (6.21) and
~o(p) of the form (6.22).

Then in much the same way as in Step 2 of the proof of Theorem 6.1 we deduce that
for each bounded ¢ € doms(Lp) and each p satisfying (6.20) the inequality (6.5) holds
with ¢(6,p) and (0, p) given by (6.21) and (6.22). The proof is completed by repeating
Steps 3 and 1’-3’ of the proof of Theorem 6.1. m

COROLLARY 6.3 (Auxiliary estimates). Let (A1), (A3), (F2) hold and the constant a be
given in (6.2). Assume that

0 >2/a’.
Let p satisfy (6.20) and p' := p/(p—1) denote the conjugate exponent of p. Then for
t>0,

a2
a) || Pl ,— <exp[
(3) [1Pllp—p < exp | 5

(kg — l)t],

2
) 1Pl-a < o0 |

(k 9—1)47

for p < q <qlt,p), where

(6.25) q(t,p) =1+ (p—1)exp [aQ (1 — Zlﬁ)t]

and kg is defined in Lemma 6.2.

Proof. (a) By Lemma 6.2, the LSI (6.5) holds with (6, p) iven by (6.22). Because the
function g : [0,00) — R, g(s) = slogs, s # 0, g(0) = 0, is convex, using Jensen’s
inequality we have

<(’7(97p) - LF)S07 (pp> Z 0 for 2 S domp(LF)a
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which implies that (Lg — (0, p)I) generates a contraction semigroup in LP(H, i) (see
[Gr2, Rem. 3.5]). Hence (a) follows.

(b) By an easy calculation, p satisfies (6.20) iff
V2 >_1
6.26 >(1—-—F= .
(6.26) p>(1- 22
Fix p satisfying (6.26) and for ¢ > p define
OB AL
P 2 a\/a ’

a

where ¢’ := ¢/(¢ — 1). Then for ¢ > p,

ep(q) = ¢4(q) = c(8, 9),

where ¢(6, q) is given by (6.21). For (1 —v/2/(av/0))™! < ¢ < p define ¢,(q) = ¢(0, q).
Since 1/(qq") < 1/4, from (6.22) we have

]

a
0.q) < —
’y(,qL8

Therefore, by Lemma 6.2, for ¢ satisfying (6.26) the LSI (6.5) holds with the prin-
cipal coefficient ¢,(g) and the local norm 7(¢q) = 7. Moreover, ¢,(-) is continuous in
q € (1 —+v2/(avh))~',00). Consequently, all the assumptions of [Gr2, Thm. 3.7] are
satisfied and one can consider the initial value problem

(6.27) 0™ — @), a0y =p 120

Observe that ¢(-) in (6.27) is an increasing function and hence, using the notation

oo 2]

(ko — 1) =: 7.

we can write (6.27) in the explicit form
d
-1 =adt, ¢0)=p, ¢t>0.

Therefore, the solution ¢(¢,p) to (6.27) is given by the formula

q(t,p) = (p — 1) exp(at) + 1 =q(t,p), t>0,

where (¢, p) is defined by (6.25).
From [Gr2, Thm. 3.7] we conclude that P; is a bounded operator from LP(H, u) to
LIOPN(H, i) and || Pyllp—g(e.p) < exp M(t,p), where

t

M(t,p) =F(q(s,p))ds =t -y =t
0

[ V)

a

g(ﬁ?g — 1)

Thus (b) follows. m
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7. The semigroup (P;)—the case of general F’

In this section we assume (A1) and (A3). Let a be the constant corresponding to (A3) via
(6.2). The nonlinear term F' in equation (x) is required to satisfy the following condition
(Fla) which is a bit stronger than (F1):

(Fla) F:H — im B is a Borel function and
K= S exp(d||B~1F(x)||?) p(dz) < oo for some & > 2/a?
H

(where B~! denotes the pseudoinverse of B).
Recall that for ¢ € By,(H),
Pio(x) = E(p(Z5)UF)  for pra.a. x and all t > 0,

where U is the Girsanov martingale corresponding to F' (see (1.9), (1.4)). It is shown in
Theorem 7.1 below that under the assumption (Fla), (P;) is a Co-semigroup in LP(H, u)
for sufficiently large p and (P;) is hyperbounded. In the proof we approximate F' by a
suitable sequence (F},) of functions satisfying (F2) and then we use the auxiliary estimates
from Corollary 6.3.

Recall that (see (3.11)) for ¢ € dom(L%) = FC°,

Lyp(z) = L(z) + Gop(z) = Lp(z) + (F(x), Dp(z)).
(Note that by (F1), Gop € L(H, u) for all ¢ € (1,00).)
THEOREM 7.1. Assume (Al), (A3), (Fla) and let a and (0,k) be the constants corre-
sponding to (6.2) and (Fla) respectively. Then for each p € (1,00) such that

)
(7.1) po=—L < i,
p—1 V2
we have:
(a) (P;) is a Co-semigroup on LP(H, u) and its generator L is an extension of LY.
Moreover,

CL2
(72) Py < 050 | 5= e, ez 0

(b) For each t > 0, P; is a bounded operator from LP(H, u) to LI(H,u) for p < q
< q5(t7p)7 where

(73) i) = 1+ (= Dewp [ (1- 2 ﬁ)t]

and in this case
a2
1Pl < oxp | 5= 1]
Proof. Clearly, (F1) implies that

(7.4) JIB7 F(@)))? n(da) < oc.
H
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For F := B~1F define
Foe) =4 F@) iEIF@)I<n g oy BE (2).
0 otherwise,
Then

IB™ (@) < 1Fu(@)ll < n

and in particular F,, satisfies (F2) for each n.
By definition

E,(z) = F(z) for pra.a. z and ||F,(2)|| < |F(z)].

Hence by (7.4) and LDCT, the condition (1.10) of Lemma 1.6 is satisfied.
Let (Uy,) and (UY), t > 0, be the Girsanov martingales corresponding to F, and F,
respectively (see (1.4) and Lemma 1.6). Let

Plo(z) = E(p(Z])Un,),  » € Bu(H),

be the transition semigroup for equation (*) with nonlinear term Fj,. In virtue of Lem-
ma 1.6, for any T > 0 one can choose a subsequence (n,,) such that for p-a.a. x,

(7.5) E\WU; r—Ufr|—0 asm — oo.

From the estimate (3.8) (in the proof of Proposition 3.2) and (7.5) we deduce that for
p-a.a. x and for every ¢ € By(H),
(7.6) sup |P/'"p(z) — Pip(z)| =0 as m — oo.
0<¢<T
Since for each n, F), satisfies the condition (F2) and the remaining assumptions of
Corollary 6.3 hold for p satisfying (7.1) and # = § (6 given in (Fla)) we conclude from

Corollary 6.3(a) that
2

a
1PP [y < exp [wwz - 1>t]

where
ry = | exp(8|Q V2 F,(x)|* p(da) = | exp(8|| B~ Fy(@)]?) puldz) < &,
H H
with & given in (Fla). (The second equality holds because im B = im Q'/? and ||Q~/2y||
= |[|[B~ Yy for y € im B.)
Therefore

a?

@& 1Py < o0 | 5= 1| = k()

In much the same way we deduce from Corollary 6.3(b) that
(75 P e

for p < g < ¢s(t,p), where gs(t,p) is given by (7.3). Then (7.6), (7.7) and the Fatou
lemma yield for ¢ € By (H),

| [Pep(@)P p(da) < liminf § [P/ o(2)|? u(dz) < (k(p, )70,
H H
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which means that P; extends to a bounded operator on L”(H, p) and (7.2) holds. Simi-
larly, from (7.6), (7.8) and the Fatou lemma we obtain our assertion (b).

To prove the remaining claims of (a) first note that (7.7) and (7.2) imply that for any
T>0,

(7.9) sup sup [P |lp—p < k(p,T),  sup [|Plp—p < k(p,T).
n 0<t<T 0<t<T

Then from (7.6), (7.9) and LDCT we obtain, first for ¢ € By(H) and next for ¢ €
LP(H, p),

(7.10) sup [P — Prpll, — 0.
0<t<T m— 00

(Compare the proof of (3.6) in Proposition 3.2.)
Since by Corollary 3.3 for each n and ¢ € LP(H, p),

Ptn(Psn(p) = PtT—Li-s(pv S 2 Oa t Z 07 and hm+ PtngD = Qoa
t—0
we deduce easily from (7.9) and (7.10) that () has the same properties.
It remains to prove that
(7.11) L% C Ly in LP(H,p).
Recall that FCp° = dom(L}) = dom(L}, ), FCp° as in (2.1a), and by Theorem 3.4
and (6.16) for each ¢ € (1,00) we have L}, C Lp, in LI(H, j1). Hence for ¢ € FCP°,
(712)  |ILp,¢ — Lyl = |1 Lk, ¢ — Lrely = [{B™H(F() = Fu(), BDe()) ally
< |BI - I1D¢llos - [ B™ (Fa = F)lp = 0 as n— oo.

Note also that the semigroup property implies that for the subsequence (n,,) in (7.10)
we have for all t > 0 and ¢ € LP(H, p),

(7.13) |P "¢ — Pplp, =0 asm — oco.

Taking into account (7.7), (7.12) and (7.13), we will have shown (7.11) if we prove the
following simple lemma.

LEMMA 7.2. Let (T), (7;™) be Cy-semigroups on a Banach space E, with generators A,
A, respectively, n =1,2,... Assume that for some constants M > 1 and Ay,

177 < Mexp(aot), n=1,2,...,
and
T — Typ forallt>0, p€FE.
If a linear operator B with domain dom(B) =: D has the properties
D C dom(A,) for every n, li}ln.AngO =By forpeD,
then A D B.

Proof. Fix areal A > \g. It follows easily that the resolvent operators satisfy R(A, A, )y
— R\ A for ¢ € E and ||R(\, Ay)| are bounded uniformly in n. Therefore for
@ € D we have

HmR(A, An) (M = B)y = R(A, A)(Ap — By)
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and on the other hand

RN A) A —Bp) =0+ RN Ap)(Anp — Bp) — ¢ asn — 0.
Hence ¢ € dom(A) and Ap = Bp. =
COROLLARY 7.3. If the assumptions of Theorem 7.1 are satisfied, then

(a) the semigroup (P;) has an invariant measure v absolutely continuous w.r.t. p;
(b) 0 :=dv/dp € LP (H,p) for all p' < av/3/v/2;

(c) o(x) > 0 for p-a.a. x;

(d) for each p satisfying (7.1) there exist constants My, A\, > 0 such that

for all ¢ € LP(H, p), t > 0;
(e) v is a unique (Py)-invariant probability measure which is absolutely continuous
w.r.t. .

Pep— | podn| < Mgl
H p

Proof. (a)—(c), (e) are proved in much the same way as Theorem 4.7 and (d) follows as
Proposition 4.8. =

THEOREM 7.4. Assume (Al), (A3) and let a = sup{a > 0: (6.1) holds}. If
(Flb) F:H —im Q})éQ is a Borel function and

K= S exp(0|Q2F (2)|?) p(dx) < 0o  for some § > 8/a*,
H

then

(a) for every p > 2, (P;) is a Cy-semigroup in LP(H,p) and its generator Ly D LY

(b) doms(Lp) = domso(L);

(¢) domg(Lp) is continuously embedded into Wéi and into the Orlicz space L* log” L
for0<r <2

(d) for p > 2, the generator Lp satisfies the LSI (6.5) with the principal coefficient
c(0,p) and the local norm v(8,p) as in (6.21), (6.22) (respectively) with 6 = § = a*J.

Proof. (a) We will show that (Fla) is satisfied. Note that by (A3) the operator Q*1/2Q<1>42
is bounded on H. If y € Hg := im Q'/2, then z := Q(l,ézQ’lmy € Hy and by (6.1),
Vz|| > allz], ie.

1 _
“llyll > 1QL2Q™/2y]|.

Recall that the image im U~! of the pseudoinverse of an operator U is orthogonal to
ker U, so in particular im Q /2 c FIQ and hence for z € H,

sup (QV2QY 2w, y) = sup  [(QV2QN 1w,y
lyll<1 lyll<1l,ycHgq
_ 1
= sup [z, QYPQTy)| < —|ll.
lyl<1,yeHq a

Consequently, ||Q_1/2Q<1x/>2|| < 1/a, and hence by (F1b) we have

Q2 F(@)? = |Q*QLPQL*F (x| < a—lgHQ;o”ZF(w)IIQ,



Transition semigroups 53

which implies that (Fla) holds for § = a?4. Since § > 8/a?, all the statements of Theo-
rem 7.1 hold for p > 2 and with x = x(0) as in (Fla). In particular (a) follows.

(b) To prove that L% = L + G with dom(L%) = FC° has an extension Lp with
dom(z r) = domy (L), which generates a Co-semigroup on L?(H, i), we proceed similarly
to [Sh; NJ, where perturbations of the Malliavin generator L™ were considered.

We first show that for some constants 0 < o < 1 and ¢ > 0,

(7.14) [Gopllz < el Lellz + allell2,  » € FCE.

Let b(z) = ;,1/2F(:L‘). Then by the H-Y inequality (see above (6.23)) we have, for
¢ € FC° such that ||[Dg_ ¢ll2 # 0,

(b(x), Do..¢())* < dllb(z)[|* - 67| Dg.. (@)l

<6 Y Dq.. s0||2< 8lb(a)]|? +2”DQOQ<P(33)2H2 o 1P (@) IIDQOQ@(JJ)2|2>.
Do #ll2 1Dq..#ll2 Dol

This and the LSI for the quadratic form ||DQDO1Z||2 of the H-valued function 1 = /|||,
where ¢ = Dq_ ¢ ([Sh; C, (2.12)]), yield

ID3_ |3
7.15 Gogll3 <671 Dou e} 7+ 2yp2="m —1).
(7.15) [Gogll3 <0 IDg ¢l | F + Do ol

By Corollary 2.7 we have the estimate

2
104412 < SlLell2,
which together with (7.15) implies

8 .
1Goplls < s lILell3 + 07" (& = D[ Do ¢ll3

and hence

2v2 VE—1
[Goell2 < [Loll2 + —=—IDq..¢ll2-
NG Ve e

Since § > 8/a*, for some & > 0 we have

It follows from (4.14), (4.15) that
1
VIDg., Repll2 dt < oo
0

and hence by [Da, Lem. 3.4, p. 70], Dg_, has L-bound zero. Therefore, for o, sufficiently
large, (7.14) holds with & = 1 — . Because FC° is dense in domy (L) in the graph norm,
Gy can be uniquely extended to an operator G defined on domsy (L) and satisfying (7.14)
for ¢ € domy(L).

For 6 = a2 and x(6) as in (Fla) let

a2

5= g[li(g) —1] and L) .= L —75I.
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It follows from the proof of (a) and (7.2) that for each u € [0,1], the operator L,p — 71
generates a Cp-semigroup of contractions on L?(H, u) and L, D LY. In particular for
p € FCFe,

(7.16) 0> ((Lor —FDe, @) = (LD, o) + u(Gow, o).

Because FC° is a core in L? for L (and hence for L)) and Gy satisfies (7.14), inequality
(7.16) can be extended to doma(L), i.e.

(7.17) L) 4 u@G with domain domy(L) is dissipative in L2(H, ), u € [0, 1].
Clearly,
(7.18) L) with domain domgy(L) is m-dissipative in L?(H, p).

Then using [P, Thm. 3.2, p. 81] we conclude from (7.14), (7.17), (7.18) that L) + G
defined on domy (L) is m-~dissipative, and hence L + G, with domain doms (L), generates
a Cp-semigroup on L?(H, u). Since for ¢ € FCP°,

(L+G)p=LYo=Lpyp

and FCy® is a core for L + G, as a consequence of Lemma 3.5 we find that L + G = L,
which implies (b).

(c) follows from (b) and the results of [Ch-G; N] (compare Corollary 4.3(iii)).

(d) It is proved in (a) that (Fla) holds with § = a?6 > 8/a?. Let (F,) be the sequence
approximating F' defined in the proof of Theorem 7.1.

Applying Lemma 6.2 with # = § to the generators L, , we see that for each p > 2
and n = 1,2,..., Lp, satisfies the LSI (6.5) with ¢(J,p) as in (6.21) and ~(, p) defined
as in (6.22), where

k(8) = | exp(8]Q 2 F(a)|*) u(da).
H
Therefore ¢(8, p) and (8, p) are independent of n. For a fixed ¢ € FCg° and p > 2, letting
n — oo, we see from (7.12) that LY, satisfies (6.5) for all p > 2 with the above coefficients.
Since LY. C Ly and FC{° is a core for Lp in L*(H, uu), the proof of (d) is completed by
repeating Steps 2 and 3 of the proof of Theorem 6.1. »

COROLLARY 7.5 (The case of symmetric O-U). Assume (Al), (2.1), (A3) and let Ry = R}
in L2(H, p). If (Fla) holds with § > 8/a?, then

(i) domy(Lp) = doma(L) = WG N W3 ;

(ii) statement (d) of Theorem 7.4 holds.
Proof. (i) The first equality follows by the same method as in the proof of Theorem
7.4(b) with Dg_ replaced by Dg. Now, the above-mentioned LSI for H-valued functions
[Sh; C, (2.12)] is a counterpart of (6.3) with L = —%DZ?DQ, which gives the constant
factor 2/a” instead of 2 in the middle term in brackets in (7.15). By [Ch-G; N] we have
ID3¢ll2 < 2| Lella. Therefore Gy now has L-bound equal to 2v/2/(aV/§) < 1 and the
rest of the proof runs as before.

The second equality of (i) follows from [D-G,1] or [Ch-G; N]. Note that (ii) has actually
been shown in the proof of Theorem 7.4(d). m
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Appendix

Proof of (2.2). By a result in [D-Z; S], Hy = im L, where

o0

Loo: L*((0,00);H) = H, Lou= | S.Q"u(s)ds
0
(Lo is well defined by (A1)).
For any u € L?((0,00); H) we have
_ T 1/2 _ ~ ~ 0 ifo<s<t,
SiLocu = S S sQ / u(s)ds = Loouy, where w(s) = {u(s 4 ifs >t

0
and hence S;(Hp) C Hyp. m

LEMMA 1. Let p > 1 be fized.

(a) Let Ty be a positivity preserving strongly continuous semigroup on LP(H, ) with
generator A. Let G be a linear subspace of LP(H, ) such that G C dom(A), T:G C G and
G+ is dense in L (H, p) (where the subscript + means the cone of nonnegative functions
in the suitable space). Then Gy is dense in domy (A) in the graph norm.

(b) Moreover, if Ty restricted to L*°(H,u) is a contraction semigroup on L and
any @ € L°(H, ) can be approzimated in LP-norm by (n)n=, such that

(1) Yn € G4,y ||¢n||o<> < ‘|<)OHOO) n=12...,

then any ¢ € domy (A) can be approzimated in the graph norm by a sequence (pn)n=1

satisfying (1).

Proof. The lemma is a modification of [Da; Thm. 1.9] and we adapt the proof given there.
To prove (a) let ¢ € domy(A) and define

2*"}
Jnp=2" | Tupds, n=12,..
0

Then J,p € domy(A). Let | - || denote the graph norm in dom(.A). From the strong
continuity of T it follows that s — T is continuous in || || norm. Hence
(2) I7np =&l =0 asn — oo

From semigroup properties we have for 0 <t <1,

o imesl = fagmen] « fimon]
0 0 o

1
< T — ol + V1Tl ds < 2(M +1)% ||,
0

where M = supg<;<; IT%]|-
Let now (1,,,) be a sequence such that

(4) ltom — ]l =0 asm — o0, ¥, €Gy.
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The estimate (3) implies that for any fixed n,

(5) | Jntom — Jne|l — 0 as m — oc.
Finally, for ¢ € dom(A) and any fixed n, it follows again from the strong continuity of
s — Tstp in || - || norm that J,% is the limit in || - || norm of the Stieltjes sums:

gk—n
(6) |ty — SPap|| — 0 as k — 0o, where Spqp=2"F Z T jor .

j=1
Note that if ¢ € G4, then 8¢ € G4. From (2), (5), and (6) we conclude that ¢ is the
limit in || - || norm of some subsequence of (Sp4,,) and hence part (a) follows.

To prove (b) note that if the functions v, in (4) satisfy additionally the estimate
[Pmlloe < ll#lloe,  m=1,2,...,
then
1S Ymlloe < i@l for all m,m, k
(because T is a contraction on L™).
LEMMA 2. Let p > 1. Recall that
FC? :={¢: H - R:9(x)= f({z,h1),...,{x, hy)) for some m € N
and hy,..., hy € dom(A%), f e Ce°(R™)}.
Then for any bounded ¢ € domy,(L) there exists (¢n)oe such that
on €FCE,  lenlloo <ll@lloe for all n, —and |lon — ]| — 0,

where || - || means the graph norm in domy,(L). Moreover, if ¢ > 0, then one can choose
on 2> 0.

Proof. Obviously FC° is a linear subspace of LP(H, ) and FCP° C dom,(L). Moreover,
R (FCg°) C FC for t > 0 (see the proof of [G-Ch; E, Lem. 1]). Since R; preserves
positivity and is a contraction on L we can apply Lemma 1(b). Hence it suffices to
prove that for any given ¢ € B, (H), ¢ > 0, one can find a sequence (¢,,) such that

(7) pn €FCE,  0<on < |l@lloe =2 M, lon = ¢llLr — 0.
First, by Lusin’s theorem
Ve >03C C H,C closed u(H\C)<e and ¢|c is continuous.

Next, by the Tietze—Urysohn theorem ¢|c can be extended to a function . which is
continuous on the whole of H and such that 0 < ¢. < M. Then

(8) llpe — pllr < 2eM.

Since dom(A*) is dense in H, there exists a sequence (I1,,,)5°_; of orthogonal projections
such that dim IT,, = m, IT,,(H) C dom(A*) and I,z — x as m — oo, x € H. If ¢p > 0,
1 € Cp(H), then

U = Y[ px) — Y(z) for all z € H,

®) 0 < < [lloos (@) = Fonlls ) (&2 o),
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where f,, € C,(R™), hy,... hy, € HmN(H). Finally, any nonnegative f € C,(R™) can be
pointwise approximated by functions fj € C5°(R™) with 0 < fi < ||f]loo, which together
with (8) and (9) proves (7). Hence the lemma follows. m

[A-Ms-Sh]
[A-St]
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