
1. Introduction

The classical Hardy–Littlewood maximal operator M has proved to be a most useful

analytical tool ever since its introduction in 1930. Of particular importance are its map-

ping properties: the celebrated result that M maps Lp space boundedly into itself when

1 < p ≤ ∞ (cf. [HL]), and the corresponding weak (1, 1) boundedness when p = 1 (cf.
[R] and [W]), have had a multitude of applications. For details of some of these and for

further historical remarks see [BS] and [Stn1], [Stn2]. This success, together with the

increasing sophistication of the questions which arise in applications nowadays, makes it

quite natural to try to extend the classical mapping results for M in various ways. One

possibility is to replace M by a closely related operator such as the fractional maximal

operator; another is to consider scales of spaces more general than Lp. Of course, much

progress has already been made in both these directions and is well documented in the

research literature. Here we continue this line of work and give mapping theorems which

provide a reasonably complete description of the action of the fractional maximal oper-

ator (and even a more general operator) between Lorentz spaces of classical and weak

type.

For n ∈ N and γ ∈ (0, n), the fractional maximal operator Mγ is defined by
(1.1) (Mγf)(x) = sup

Q∋x
|Q|γ/n−1

\
Q

|f(y)| dy, x ∈ Rn,

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to the coordinate
axes. The corresponding Riesz potential Iγ , γ ∈ (0, n), is given by

(1.2) (Iγf)(x) =
\

Rn

f(y)

|x− y|n−γ dy, x ∈ Rn.

It is well known that Iγ satisfies the sharp endpoint estimates

Iγ : L
1(Rn)→ Ln/(n−γ),∞(Rn),(1.3)

Iγ : L
n/γ,1(Rn)→ L∞(Rn)(1.4)

(for (1.3) see, e.g., [Stn1]; (1.4) is equivalent to (1.3) since Iγ is selfadjoint), while

(cf. [CKOP])

Mγ : L
1(Rn)→ Ln/(n−γ),∞(Rn),(1.5)

Mγ : L
n/γ,∞(Rn)→ L∞(Rn).(1.6)

Using estimates (1.3)–(1.6) and the Marcinkiewicz interpolation theorem [BS, Chap-

ter 4, Th. 4.1], we see that both operators Iγ and Mγ are of strong type (p, q), where

1 < p < n/γ and 1/q = 1/p − γ/n. While, by (1.3) and (1.5), the mapping properties
[5]
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of Iγ and Mγ coincide on L
1, we deduce from (1.4) and (1.6) that the behaviour of Iγ

and Mγ is different on spaces which are close to L
n/γ . Since the Riesz potential Iγ is

an operator of joint weak type (1, n/(n− γ);n/γ,∞) (cf. [BS]) satisfying a convenient
lower estimate (cf., e.g., [EOP1, Section 10]), one can describe its precise behaviour on

certain spaces close to Ln/γ (see again [EOP1]; for further results in this direction we

refer to the recent papers [CP] and [P]). On the other hand, sufficiently general results

describing the behaviour of Mγ on spaces close to L
n/γ or on spaces which are mapped

by Mγ into spaces close to L
∞, e.g. into expLβ, are not mentioned in the literature. To

establish such results, we shall look for necessary and sufficient conditions which guaran-

tee that Mγ is bounded between classical (cf. [L]) and weak-type (cf. [CS1], [So]) Lorentz

spaces. These scales of spaces are general enough for most purposes and involve many

familiar spaces (e.g. spaces of Lebesgue, Lorentz–Zygmund type, and Orlicz spaces with

power-logarithmic or exponential Young functions—cf. Section 2).

In fact, in this paper we solve the above-mentioned problem for operators more gen-

eral than Mγ . We consider fractional maximal operators involving logarithmic terms.

Such operators correspond to the potentials with logarithmic smoothness considered in

[OT1,2]. Also the maximal operator appearing in [AV] is a local version of the particular

case of these operators when γ = 0. In this limiting situation the maximal operators

mentioned above are purely logarithmically fractional and their behaviour differs from

that of corresponding potentials even on the space L1 (cf. [OT2, Remark 3.7(iii)] and

Section 10 below). Our methods also enable us to describe mapping properties of these

operators on spaces close to L1 (again cf. Section 10). Although this method gives the

best possible result within the chosen scale of spaces, one can sometimes improve it by

making use of another approach. However, in such a case the improved result involves

spaces which are outside the given scale of spaces. This phenomenon is illustrated in

the Appendix of our paper, where the limiting real interpolation is applied to improve a

particular result (of Section 10), which involves a local version of the fractional maximal

operator Mγ .

Putting γ = 0 in (1.1), we obtain the classical Hardy–Littlewood maximal operator

M , that is, M =M0. Note that the boundedness of M on classical Lorentz spaces Λ
q(w)

was characterized in [AM]. It was proved that M : Λq(w) → Λq(w), 1 ≤ q < ∞, if and
only if the weight w belongs to the class Bq. Necessary and sufficient conditions for the

boundedness of

(1.7) M : Λp(v)→ Λq(w)

were given in:

• [Sa, Th. 2] if 1 < p, q <∞;
• [Stp, Th. 3(a)] if 0 < q < 1 < p <∞;
• [Stp, Th. 3(b)] and [CS2, Prop. 2.6(b)] if 0 < p < 1 and p ≤ q <∞;
• [SS, Th. 4.1] if 0 < q < p = 1;

• [CPSS, Th. 4.1(iv)] if 1 = q < p <∞.
Sufficient conditions for (1.7) with 0 < q < p < 1 can be found in [Stp, Prop. 2]. The

boundedness of M from the classical Lorentz space Λp(v) into the weak-type Lorentz
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space Λq,∞(w) was characterized in:

• [CAS, Th. 2.3] if v = w and p = q = 1;
• [CS3, Th. 3.9] if 1 < p, q <∞;
• [CPSS, Th. 4.2] if 0 < p, q <∞.

Necessary and sufficient conditions for the boundedness of M : Λp,∞(v) → Λq,∞(w),

0 < p, q <∞, were established in [So, Th. 4.1(ii)].
The boundedness of the fractional maximal operator Mγ : Λ

p(v) → Λq(w), 1 <

p ≤ q < ∞, was characterized in [CKOP] and necessary and sufficient conditions for
the boundedness of the power-logarithmic fractional maximal operator Ms,γ;A (see Sec-

tion 2) from the classical Lorentz space Λp(v) into Λq(w) were given without proof in

[O1] provided that 0 < p ≤ q <∞.
The results described above on the boundedness of the classical Hardy–Littlewood

maximal operator M rely on the estimate (Mf)∗(t) ≈ t−1
Tt
0
f∗(τ ) dτ , t > 0, involving

the non-increasing rearrangements f∗ and (Mf)∗ (cf. [BS, Chapter 3, Th. 3.8]) and

on weighted inequalities for the averaging operator (A g)(t) = t−1
Tt
0
g(τ ) dτ , t > 0,

considered on the class of all non-negative and non-increasing functions. On the other

hand, in the case of fractional maximal operators the role of the averaging operator A is

played by the operator (T g)(t) = supt<τ<∞ u(τ )
Tτ
0
g(σ) dσ, where u(τ ) is a convenient

weight. Therefore, weighted inequalities for the operatorT on the class of all non-negative

and non-increasing functions are of basic importance.

The main results of our paper are Theorems 3.1, 4.1, 5.1, 6.1, and 7.1.

2. Notation and preliminaries

Given two quasi-Banach spaces X and Y , we say that X coincides with Y (and write

X = Y ) ifX and Y are equal in the algebraic and the topological sense (their quasi-norms

are equivalent). The symbol X →֒ Y means that X ⊂ Y and the natural embedding of

X in Y is continuous.

We write A . B if A ≤ cB for some constant c independent of appropriate quantities
involved in the expressions A and B, and A ≈ B if A . B and B . A. We use the

convention 1/∞ = 0 and ∞/a = ∞ for 0 < a < ∞, and for 0 < q ≤ ∞ we define q′ by
1/q′ + 1/q = 1 when q 6= 1, and q′ = +∞ if q = 1 (note that q′ < 0 when 0 < q < 1).

If E ⊂ Rn is a measurable subset (with respect to n-dimensional Lebesgue measure),
we denote by |E| its measure, by χE its characteristic function, and by M(E) the set
of all measurable functions on E. When E = (a, b) ⊆ R, we write simply M(a, b).
By M+(a, b; ↓) we mean the subset of M(a, b) consisting of all non-negative and non-
increasing functions on (a, b). The set W (a, b) of all weights on (a, b) is defined by

W (a, b) := {w ∈M(a, b); 0 < w <∞ a.e. on (a, b)}.

If q ∈ (0,∞), Ω ⊂ Rn is a domain, and w ∈ W (0, |Ω|), then the classical Lorentz space
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Λq(Ω;w) is the collection of all f ∈M(Ω) such that the quantity

‖f‖Λq(Ω;w) :=
( |Ω|\
0

[f∗(t)]qw(t) dt
)1/q

is finite (cf. [L]); here

f∗(t) := inf{λ ≥ 0; |{x ∈ Ω; |f(x)| > λ}| ≤ t}, t ≥ 0,
is the non-increasing rearrangement of f . Moreover, a weak-type modification of the space

Λq(Ω;w) is defined by (cf. [CS1], [So])

Λq,∞(Ω;w) :=
{
f ∈M(Ω); ‖f‖Λq,∞(Ω;w) := sup

0<t<|Ω|

f∗(t)
( t\
0

w(τ ) dτ
)1/q

<∞
}
.

One can easily see that Λq(Ω;w) →֒ Λq,∞(Ω;w). If Ω = Rn, we write simply Λq(w) and
Λq,∞(w) instead of Λq(Rn;w) and Λq,∞(Rn;w), respectively.
Recall that classical and weak-type Lorentz spaces include many familiar spaces. In

particular:

(i) If w(t) ≡ 1, then Λq(Ω;w) is the Lebesgue space Lq(Ω) and Λq,∞(Ω;w) is the
weak Lebesgue space Lq,∞(Ω).

(ii) If w(t) = tq/p−1, t ∈ (0, |Ω|), p ∈ (0,∞], then Λq(Ω;w) is the Lorentz space
Lp,q(Ω) and, moreover, if p <∞, then Λq,∞(Ω;w) is the Lorentz space Lp,∞(Ω).
(iii) If w(t) = tq/p−1ℓqβ(t), t ∈ (0, |Ω|), p ∈ (0,∞], β ∈ R and ℓ(t) := 1 + |log t|,

then Λq(Ω;w) is the Lorentz–Zygmund space Lp,q(logL)β(Ω) introduced in [BR] and,

moreover, if p < ∞, then Λq,∞(Ω;w) is the Lorentz–Zygmund space Lp,∞(logL)β(Ω)
(see again [BR]).

(iv) If |Ω| < ∞, β < 0 and w(t) = t−1ℓqβ−1(t), t ∈ (0, |Ω|), then Λq,∞(Ω;w) co-
incides with the exponential space expL−1/β(Ω) (cf. [BR, Theorem 10.3] or [EOP1,

Lemma 2.2(iv)]), which is the Orlicz space LΦ(Ω), where the Young function Φ sat-

isfies Φ(t) = exp t−1/β for large t. (Note that our space expL−1/β(Ω) corresponds to

L−βexp(Ω) of [BS].)

(v) If w(t) = ℓqβ(t), t ∈ (0, |Ω|) and β ∈ R, then Λq(Ω;w) is the Lorentz–Zygmund
space Lq,q(logL)β(Ω) and Λq,∞(Ω;w) is the Lorentz–Zygmund space Lq,∞(logL)β(Ω).

Moreover, if q ∈ (1,∞), or q = 1, β > 0 and |Ω| < ∞, then Λq(Ω;w) coincides with
the Zygmund class Lq(logL)β(Ω), which is the Orlicz space LΦ(Ω), where the Young

function Φ satisfies Φ(t) ≈ tqℓqβ(t), t ∈ (0,∞) (cf. [OP, Section 8]).
Throughout the paper we denote by ‖ · ‖s, s ∈ (0,∞], the usual quasi-norm in the

Lebesgue space Ls(Rn) and by ‖·‖s,(a,b), −∞ ≤ a < b ≤ +∞, the usual Ls-quasi-norm in
the Lebesgue space Ls((a, b)). Moreover, if s ∈ (0,∞) and A = (A0, A∞) ∈ R2, the symbol
‖ · ‖s;A stands for the quasi-norm in the generalized Zygmund class Ls(logL)A(Rn) :=
Λs(Rn;w) = Λs(w), where

w(t) = ℓsA(t) :=

{
ℓsA0(t), t ∈ (0, 1],
ℓsA∞(t), t ∈ (1,∞).

By [OP, Theorem 8.8], the space Ls(logL)A(Rn) coincides with the Orlicz space LΦ(Rn),
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where

Φ(t) ≈ tsℓs(A∞,A0)(t), t > 0,

provided that either s ∈ (1,∞) and A = (A0, A∞) ∈ R2, or s = 1 and A∞ ≤ 0 ≤ A0.
Let s ∈ (0,∞), γ ∈ [0, n) and A = (A0, A∞) ∈ R2. The fractional maximal operator

Ms,γ;A at f ∈M(Rn) is given by

(2.1) (Ms,γ;Af)(x) = sup
Q∋x

‖fχQ‖s
‖χQ‖sn/(n−γ);A

, x ∈ Rn,

where the supremum is extended over all cubes Q in Rn with sides parallel to the coor-
dinate axes.

Since the estimate ‖χQ‖sn/(n−γ);A ≈ |Q|(1/s)(1−γ/n)ℓA(|Q|) holds for all cubesQ ⊂ Rn,
we have

(2.2) (Ms,γ;Af)(x) ≈
[
sup
Q∋x
|Q|γ/n−1ℓ−sA(|Q|)

\
Q

|f(y)|s dy
]1/s

, x ∈ Rn.

Hence, if s = 1, γ = 0 and A = (0, 0), then Ms,γ;A is the classical Hardy–Littlewood

maximal operator M . If s = 1, γ ∈ (0, n) and A = (0, 0), then Ms,γ;A is the usual

fractional maximal operator Mγ from (1.1). Moreover, if s = 1, γ ∈ [0, n) and A ∈ R2,
then Ms,γ;A is the fractional maximal operator which corresponds to potentials with

logarithmic smoothness treated in [OT1] and [OT2]. In particular, if γ = 0, then M1,γ;A

is the maximal operator of purely logarithmic order. Local versions of this operator were

considered in [OT2] and also appeared in [AV]. Finally, the maximal operators considered

in [MO] correspond to local versions ofMs,0;A with s ∈ [1,∞) and A = (α, α), α ∈ [0,∞).
Throughout the paper we use the abbreviation LHS(∗) (RHS(∗)) for the left (right)

hand side of the relation (∗).

3. Sharp estimates of (Ms,γ;Af)
∗

While the results of [AM] and [Sa] rely on the estimate

(3.1) (Mf)∗(t) ≈ f∗∗(t) := t−1
t\
0

f∗(τ ) dτ, t ∈ (0,∞),

in our situation the role of (3.1) is replaced by the following assertion (which is consistent

with (3.1) if s = 1, γ = 0 and A = (0, 0)).

Theorem 3.1. Let s ∈ (0,∞), γ ∈ [0, n) and A = (A0, A∞) ∈ R2 satisfy

(3.2) either γ ∈ (0, n), or γ = 0 and A0 ≥ 0 ≥ A∞.
Then there exists a positive constant C depending only on n, s, γ and A such that for all
f ∈M(Rn) and every t ∈ (0,∞),

(3.3) (Ms,γ;Af)
∗(t) ≤ C

[
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

(f∗)s(σ) dσ
]1/s

.
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Inequality (3.3) is sharp in the sense that for every ϕ ∈M+(0,∞; ↓) there exists a func-
tion f ∈M(Rn) such that f∗ = ϕ a.e. on (0,∞) and for all t ∈ (0,∞),

(3.4) (Ms,γ;Af)
∗(t) ≥ c

[
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

(f∗)s(σ) dσ
]1/s

,

where c is a positive constant which again depends only on n, s, γ and A.

The proof of Theorem 3.1 will be carried out in several steps. First we establish

endpoint estimates for the operatorM1,γ;A.

Lemma 3.2. Let γ ∈ [0, n) and A = (A0, A∞) ∈ R2 be such that (3.2) holds. Then

M1,γ;A : L
n/γ,∞(logL)−A(Rn)→ L∞(Rn),(3.5)

M1,γ;A : L
1(Rn)→ Ln/(n−γ),∞(logL)A(Rn).(3.6)

Proof. (i) To prove (3.5), take f ∈ Ln/γ,∞(logL)−A(Rn) and a cube Q ⊂ Rn. Then the
Hardy–Littlewood inequality (cf. [BS, Chapter 2, Theorem 2.2]), the Hölder inequality

and the fact that the fundamental functions of the spaces Ln/(n−γ),1(logL)A(Rn) and
Ln/(n−γ)(logL)A(Rn) are equivalent (cf. [OP, Lemma 3.7]) imply that

‖fχQ‖1 ≤ ‖f∗χ∗Q‖1,(0,∞) ≤ ‖χQ‖n/(n−γ),1;A‖f‖n/γ,∞;−A

≈ ‖χQ‖n/(n−γ);A‖f‖n/γ,∞;−A

and (3.5) follows.

(ii) To prove (3.6), take f ∈ L1(Rn), λ > 0 and put
E(λ) = {x ∈ Rn; (M1,γ;Af)(x) > λ}.

Then, for any x ∈ E(λ), there is a cube Q = Q(x) containing x such that
(3.7) λ‖χQ(x)‖n/(n−γ);A ≤

\
Q(x)

|f(y)| dy.

The collection of all such cubes covers E(λ) and we claim that

(3.8) sup{diamQ(x); x ∈ E(λ)} <∞.
Indeed, putting ε = (1 − γ/n)/2, we see that ε > 0 and, since tεℓA(t) → ∞ as t → ∞,
there is T = T (ε,A) such that ℓA(t) ≥ t−ε for all t > T . Hence, if |Q(x)| > T , then

ℓA(|Q(x)|) ≥ |Q(x)|−ε, which in turn yields
(3.9) |Q(x)|1−γ/nℓA(|Q(x)|) ≥ |Q(x)|ε.
Since LHS(3.9) ≈ ‖χQ‖n/(n−γ);A, we infer from (3.9) and (3.7) that

|Q(x)|ε . λ−1
\
Q(x)

|f(y)| dy ≤ λ−1‖f‖1

and so

diamQ(x) = |Q(x)|1/n√n . (λ−1‖f‖1)1/(εn)
√
n.

Consequently, for all cubes Q(x), x ∈ E(λ),
diamQ(x) . max{T 1/n, (λ−1‖f‖1)1/(εn)}

√
n

and (3.8) follows.
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Condition (3.8) allows us to apply the Besicovitch covering theorem (see [G]) which

asserts that one can choose, from among the given cubes Q(x), x ∈ E(λ), a sequence
{Qk} (possibly finite) such that

E(λ) ⊂
⋃

k

Qk,(3.10)

∑

k

χQk(x) ≤ ̺n for every x ∈ Rn(3.11)

(̺n is a number which depends only on n).

Putting X := Ln/(n−γ)(logL)A, we deduce from (3.10) that

(3.12) ‖χE(λ)‖X ≤ ‖X⋃
k
Qk‖X .

Since the space X is (equivalent to) a Banach function space (cf. [OP, Theorem 7.1]),

(3.13) RHS(3.12) .
∑

k

‖χQk‖X .

Now, by (3.7) and (3.11),

(3.14) RHS(3.13) ≤ λ−1
∑

k

\
Qk

|f(y)| dy . λ−1‖f‖1.

On the other hand, since the fundamental function ϕX of the space X satisfies ϕX(t) ≈
t1−γ/nℓA(t), t ∈ (0,∞) (cf. [OP, Lemma 3.7(i)]), we see that
(3.15) LHS(3.12) ≈ |E(λ)|1−γ/nℓA(|E(λ)|).
Summarizing estimates (3.12)–(3.15), we arrive at

|E(λ)|1−γ/nℓA(|E(λ)|)λ . ‖f‖1.
Therefore,

‖f‖1 & sup
λ>0
|E(λ)|1−γ/nℓA(|E(λ)|)λ = sup

t>0
t1−γ/nℓA(t)(M1,γ;Af)

∗(t)

and (3.6) follows.

Our next lemma states that estimate (3.3) holds if s = 1.

Lemma 3.3. Under the assumptions of Lemma 3.2, there is a positive constant C de-

pending only on n, γ and A such that for all f ∈M(Rn) and every t ∈ (0,∞),
(3.16) (M1,γ;Af)

∗(t) ≤ C sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ ).

Proof. Let t ∈ (0,∞) and f ∈M(Rn). We may assume that
(3.17) sup

t<τ<∞
τγ/nℓ−A(τ )f∗∗(τ ) <∞

(otherwise (3.16) holds trivially). Define functions gt and ht on Rn by

gt(x) = max{|f(x)| − f∗(t), 0} sgn f(x), ht(x) = min{|f(x)|, f∗(t)} sgn f(x).
Then

(3.18) f = gt + ht
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and, for all τ ∈ (0,∞),
(3.19) g∗t (τ ) = χ(0,t)[f

∗(τ )− f∗(t)], h∗t (τ ) = min{f∗(τ ), f∗(t)}.
Since, by (3.19),

(3.20) ‖gt‖1 =
∞\
0

g∗t (τ ) dτ =

t\
0

[f∗(τ )− f∗(t)] dτ ≤
t\
0

f∗(τ ) dτ,

we infer from (3.17) that gt ∈ L1(Rn). Together with (3.6), this implies that
(3.21) sup

0<τ<∞
τ (n−γ)/nℓA(τ )(M1,γ;A gt)

∗(τ ) . ‖gt‖1.

Analogously, by (3.19) and (3.2),

‖ht‖n/γ,∞;−A = sup
0<τ<∞

τγ/nℓ−A(τ )h∗t (τ )(3.22)

= max{ sup
0<τ<t

τγ/nℓ−A(τ )f∗(t), sup
t≤τ<∞

τγ/nℓ−A(τ )f∗(τ )}

≈ max{tγ/nℓ−A(t)f∗(t), sup
t≤τ<∞

τγ/nℓ−A(τ )f∗(τ )}

≤ sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ ).

Thus, inequality (3.17) implies that ht ∈ Ln/γ,∞(logL)−A(Rn). Together with (3.5), this
yields

(3.23) sup
0<τ<∞

(M1,γ;Aht)
∗(τ ) . ‖ht‖n/γ,∞;−A.

Using (3.18) and [BS, Chapter 2, Proposition 1.7], we obtain

(3.24) (M1,γ;Af)
∗(t) ≤ (M1,γ;A gt)

∗(t/2) + (M1,γ;Aht)
∗(t/2).

Thus, combining estimates (3.21), (3.23), (3.20) and (3.22), we arrive at

(M1,γ;Af)
∗(t) . (t/2)(γ−n)/nℓ−A(t/2)‖gt‖1 + ‖ht‖n/γ,∞;−A

. t(γ−n)/nℓ−A(t)

t\
0

f∗(τ ) dτ + sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ )

. sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ )

and (3.16) is proved.

Remarks 3.4. (i) There is another way of proving Lemma 3.3: First, the endpoint esti-

mates (3.6) and (3.5) imply that

(3.25) K(M1,γ;Af, t;L
n/(n−γ),∞(logL)A(Rn), L∞(Rn))

. K(f, t;L1(Rn), Ln/γ,∞(logL)−A(Rn))

for all f ∈ L1(Rn) + Ln/γ,∞(logL)−A(Rn) and every t ∈ (0,∞); here K is the Peetre
K-functional.

Second, by [EvO, (8.12)],

Ln/(n−γ),∞(logL)A(Rn) = (L1/2,∞(Rn), L∞(Rn))(1/2)(1+γ/n),∞;A.



Boundedness of fractional maximal operators 13

(Here, for a compatible couple of quasi-Banach spaces X0 and X1, the interpolation space

(X0, X1)θ,q;A, θ = [0, 1], q ∈ (0,∞] and A ∈ R2, is the set of all f ∈ X0 +X1 such that
‖f‖θ,q;A := ‖t−θ−1/qℓA(t)K(f, t;X0, X1)‖q,(0,∞)

is finite.)

Hence, applying [EOP2, Theorem 6.6] (with X0 = L1/2,∞(Rn) and X1 = L∞(Rn)),
we arrive at

(3.26) K(M1,γ;Af, t
1−γ/nℓA(t); Ln/(n−γ),∞(logL)A(Rn), L∞(Rn))

≈ sup
0<τ<t

τ1−γ/nℓA(τ )(M1,γ;Af)
∗(τ ), t ∈ (0,∞).

On the other hand,

Ln/γ,∞(logL)−A(Rn) = (L1(Rn), L∞(Rn))1−γ/n,∞;−A.

Thus, applying [EOP2, Theorem 6.10] or [EOP2, Theorem 6.5], respectively, if γ = 0 or

γ ∈ (0, n), we obtain
(3.27) K(f, t1−γ/nℓA(t);L1(Rn), Ln/γ,∞(logL)−A(Rn))

≈ t1−γ/nℓA(t) sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ )

and (3.16) follows from (3.25)–(3.27).

(ii) Since the proof of (3.16) is based on the endpoint estimates (3.5) and (3.6) (cf.

part (i)), inequality (3.16) holds not only for the fractional maximal operatorM1,γ;A but

for any quasi-linear operator satisfying the same endpoint estimates.

Now, we are going to verify estimate (3.4) provided that s = 1.

Lemma 3.5. Let the assumptions of Lemma 3.2 be satisfied. Then for every ψ ∈
M+(0,∞; ↓) there is f ∈M+(Rn) such that f∗ = ψ a.e. on (0,∞) and
(3.28) (M1,γ;Af)

∗(t) ≥ c sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ )

for all t ∈ (0,∞), where c is a positive constant depending only on n, γ and A.

Proof. For a ∈ (0,∞) put Q(a) = {z ∈ Rn; |zi| ≤ a, i = 1, . . . , n} and B(a) = {z ∈ Rn;
|z| ≤ a}. Let ωn = |B(1)|. Then

(3.29)

( |B(a)|
|Q(a)|

)1−γ/n
=

(
ωna

n

(2a)n

)1−γ/n
= ω1−γ/nn 2γ−n =: c1 = c1(n, γ).

Since the function

(3.30) g(t) := ℓA(ωnt
n)/ℓA((2t)n), t ∈ (0,∞),

is positive and continuous on (0,∞) and satisfies g(t)→ 1 as t→ 0+ or t→∞, there is
a positive constant c2 = c2(n,A) such that

(3.31) g(t) ≥ c2 for all t ∈ (0,∞).
If ψ ∈M+(0,∞; ↓) and f(x) := ψ(ωn|x|n), x ∈ Rn \ {0}, then f∗ = ψ a.e. on (0,∞).

Moreover, we deduce from (3.29)–(3.31) and from the definition ofM1,γ;A that for every
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x, y ∈ Rn with |y| > |x|,
(M1,γ;Af)(x) & c1c2(ωn|y|n)γ/n−1ℓ−A(ωn|y|n)

\
B(|y|)

f(z) dz.

Since the definition of f and spherical coordinates give\
B(|y|)

f(z) dz =

|y|\
0

\
{|z|=r}

ψ(ωnr
n) dθ dr

=

|y|\
0

ψ(ωnr
n)ωnnr

n−1 dr =

ωn|y|
n\

0

ψ(σ) dσ,

we arrive at the estimate

(M1,γ;Af)(x) ≥ c1c2H(ωn|y|n),
where H(τ ) = τγ/n−1ℓ−A(τ )

Tτ
0
ψ(σ) dσ, τ ∈ (0,∞), and (3.28) follows.

Proof of Theorem 3.1. Since for all f ∈M(Rn) and any cube Q in Rn,

‖fχQ‖s = ‖|f |sχQ‖1/s1 and ‖χQ‖sn/(n−γ);A = ‖χQ‖1/sn/(n−γ);sA,
we have

(3.32) Ms,γ;Af = [(M1,γ;sA|f |s)]1/s.
Therefore, using Lemma 3.3, for all t ∈ (0,∞) we obtain

(Ms,γ;Af)
∗(t) = [(M1,γ;sA|f |s)∗(t)]1/s

≤ [C sup
t<τ<∞

τγ/nℓ−sA(τ )(|f |s)∗∗(τ )]1/s

= C1/s
[
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

(f∗)s(σ) dσ
]1/s

(where C = C(n, γ, sA)) and (3.3) is verified.
To prove (3.4), take ϕ ∈M+(0,∞; ↓) and put ψ = ϕs. Then ψ ∈M+(0,∞; ↓) and, by

Lemma 3.5, there is F ∈M+(Rn) such that F ∗ = ψ a.e. in (0,∞) and, for all t ∈ (0,∞),
(3.33) (M1,γ;sAF )

∗(t) ≥ c sup
t<τ<∞

τγ/nℓ−sA(τ )F ∗∗(τ ),

where c = c(n, γ, sA). Moreover, on putting

(3.34) f = F 1/s,

we obtain

(3.35) F ∗ = (f∗)s and F ∗∗(τ ) = τ−1
τ\
0

(f∗)s(σ) dσ, τ > 0.

Consequently, by (3.34), (3.33) and (3.35),

(3.36) (M1,γ;sA |f |s)∗(t) = (M1,γ;sA F )
∗(t) ≥ c sup

t<τ<∞
τγ/n−1ℓ−sA(τ )

τ\
0

(f∗)s(σ) dσ

for all t ∈ (0,∞). Estimates (3.36) and (3.32) imply (3.4). Moreover, f∗ = (F ∗)1/s =
ψ1/s = ϕ.
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We conclude this section with some results related to Lemma 3.3. In the proof of

Lemma 3.3 (cf. also Remarks 3.4) we have seen that inequality (3.16) is a consequence of

the endpoint estimates (3.6) and (3.5). The next assertion shows that the converse holds,

that is, inequality (3.16) implies that the endpoint estimates (3.6) and (3.5) are satisfied.

Lemma 3.6. Let γ ∈ [0, n) and A = (A0, A∞) ∈ R2 be such that (3.2) holds. Assume
that for all f ∈M(Rn) and every t ∈ (0,∞),
(3.37) (M1,γ;Af)

∗(t) . sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ ).

Then

M1,γ;A : L
1(Rn)→ Ln/(n−γ),∞(logL)A(Rn),(3.38)

M1,γ;A : L
n/γ,∞(logL)−A(Rn)→ L∞(Rn).(3.39)

Proof. First, we verify (3.38). Let f ∈M(Rn). Using estimate (3.37), we obtain
‖M1,γ;Af‖n/(n−γ),∞;A = sup

0<t<∞
t(n−γ)/nℓA(t)(M1,γ;Af)

∗(t)(3.40)

. sup
0<t<∞

t(n−γ)/nℓA(t) sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ )

= sup
0<τ<∞

τγ/nℓ−A(τ )f∗∗(τ ) sup
0<t<τ

t(n−γ)/nℓA(t).

Since γ < n, we see that for all τ ∈ (0,∞),
sup
0<t<τ

t(n−γ)/nℓA(t) ≈ τ (n−γ)/nℓA(τ ).

Thus,

(3.41) RHS(3.40) ≈ sup
0<τ<∞

τf∗∗(τ ) =

∞\
0

f∗(σ) dσ = ‖f‖1

and (3.38) is a consequence of estimates (3.40) and (3.41).

Now, we are going verify (3.39). Taking f ∈ M(Rn), applying (3.37) and the fact
that the non-increasing rearrangement of any function is a right-continuous function on

[0,∞), we obtain
‖M1,γ;Af‖∞ = sup

0<t<∞
(M1,γ;Af)

∗(t) = (M1,γ;Af)
∗(0)(3.42)

. sup
0<τ<∞

τγ/nℓ−A(τ )f∗∗(τ ) = sup
0<τ<∞

τγ/n−1ℓ−A(τ )

τ\
0

f∗(σ) dσ.

Since γ < n,

τ\
0

f∗(σ) dσ =

τ\
0

(σγ/nℓ−A(σ)f∗(σ))σ−γ/nℓA(σ) dσ

≤
( τ\
0

σ−γ/nℓA(σ) dσ
)
sup
0<σ<∞

σγ/nℓ−A(σ)f∗(σ)

≈ τ1−γ/nℓA(τ )‖f‖n/γ,∞;−A



16 D. E. Edmunds and B. Opic

for all τ ∈ (0,∞). Consequently,
RHS(3.42) . ‖f‖n/γ,∞;−A

and (3.39) follows.

Assuming additionally in Lemma 3.3 that γ > 0, we are able to prove the following

variant of (3.16).

Lemma 3.7. Let γ ∈ (0, n) and A = (A0, A∞) ∈ R2. Then there is a positive constant C
depending only on n, γ and A such that for all f ∈M(Rn) and every t ∈ (0,∞),
(3.43) (M1,γ;Af)

∗∗(t) ≤ C sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ ).

Proof. For p, q ∈ (0,∞] and A ∈ R2 define the quasi-norm ‖ · ‖(p,q;A) onM(Rn) by
‖f‖(p,q;A) = ‖t1/p−1/qℓA(t)f∗∗(t)‖q,(0,∞)

and put

L(p,q;A)(R
n) = {f ∈M(Rn); ‖f‖(p,q;A) <∞}.

By [OP, Theorem 3.8(i)],

Lp,q(logL)A(Rn) = L(p,q;A)(R
n)

(and the corresponding quasi-norms are equivalent) provided that p > 1. Hence, if γ ∈
(0, n), then

Ln/(n−γ),∞(logL)A(Rn) = L(n/(n−γ),∞;A)(R
n),

which in turn means that the endpoint estimate (3.6) is equivalent to

(3.6∗) M1,γ;A : L
1(Rn)→ L(n/(n−γ),∞;A)(R

n).

For t ∈ (0,∞) and f ∈ M(Rn) let gt and ht be functions from the proof of Lemma 3.3.
As gt ∈ L1(Rn), estimate (3.6∗) implies that
(3.21∗) sup

0<τ<∞
τ (n−γ)/nℓA(τ )(M1,γ;A gt)

∗∗(τ ) . ‖g‖1.

Similarly, one can replace estimate (3.23) with

(3.23∗) sup
0<τ<∞

(M1,γ;Aht)
∗∗(τ ) . ‖ht‖n/γ,∞;A.

Moreover, by (3.18) and [BS, Chapter 2, Theorem 3.4],

(3.24∗) (M1,γ;Af)
∗∗(t) ≤ (M1,γ;A gt)

∗∗(t) + (M1,γ;A ht)
∗∗(t).

Therefore, (3.24∗), (3.21∗) and (3.23∗) imply that

(M1,γ;Af)
∗∗(t) . t(γ−n)/nℓ−A(t)‖gt‖1 + ‖ht‖n/γ,∞;A.

Hence, by (3.20) and (3.22),

(M1,γ;Af)
∗∗(t) . t(γ−n)/nℓ−A(t)

t\
0

f∗(τ ) dτ + sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ )

. sup
t<τ<∞

τγ/nℓ−Af∗∗(τ ),

which is the desired result.
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One can easily see from the proofs of Lemmas 3.3 and 3.6 that the following assertion

holds.

Corollary 3.8. Let γ ∈ [0, n) and A = (A0, A∞) ∈ R2 be such that (3.2) is satisfied.
Let T be a quasi-linear operator on M(Rn) with values in M(Rn). Then the following
statements are equivalent :

(i) There is a positive constant C such that for all f ∈M(Rn) and every t ∈ (0,∞),
(Tf)∗(t) ≤ C sup

t<τ<∞
τγ/nℓ−A(τ )f∗∗(τ ).

(ii) The mappings

T : L1(Rn)→ Ln/(n−γ),∞(logL)A(Rn) and T : Ln/γ,∞(logL)−A(Rn)→ L∞(Rn)

are bounded.

Similarly, if γ ∈ (0, n), we arrive at the next result.
Corollary 3.9. Let γ ∈ (0, n) and A = (A0, A∞) ∈ R2. Let T be a quasi-linear operator
onM(Rn) with values inM(Rn). Then the following statements are equivalent :
(i) There is a positive constant C such that for all f ∈M(Rn) and every t ∈ (0,∞),

(Tf)∗(t) ≤ C sup
t<τ<∞

τγ/nℓ−A(τ )f∗∗(τ ).

(ii) There is a positive constant C such that for all f ∈M(Rn) and every t ∈ (0,∞),
(Tf)∗∗(t) ≤ C sup

t<τ<∞
τγ/nℓ−A(τ )f∗∗(τ ).

(iii) The mappings

T : L1(Rn)→ Ln/(n−γ),∞(logL)A(Rn) and T : Ln/γ,∞(logL)−A(Rn)→ L∞(Rn)

are bounded.

4. Boundedness of Ms,γ;A : Λ
p(v)→ Λq(w), 0 < p ≤ q <∞

Using Theorem 3.1 and the definition of the quasi-norms in classical Lorentz spaces, one

can see that the operator

(4.1) Ms,γ;A : Λ
p(v)→ Λq(w), 0 < p, q <∞,

is bounded if and only if

(4.2)
{∞\
0

(
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

[ϕ(σ)]s dσ
)q/s

w(t) dt
}1/q

.
{∞\
0

[ϕ(t)]pv(t) dt
}1/p

for all ϕ ∈M+(0,∞; ↓).

Putting

(4.3) ψ = ϕs and P = p/s, Q = q/s,
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we can rewrite (4.2) as

(4.4)
{∞\
0

[(T ψ)(t)]Qw(t) dt
}1/Q

.
{∞\
0

[ψ(t)]P v(t) dt
}1/P

for all ψ ∈M+(0,∞; ↓),

where the operator T is given on the setM+(0,∞; ↓) by
(4.5) (T ψ)(t) := sup

t<τ<∞
τγ/nℓ−sA(τ )ψ∗∗(τ ), t ∈ (0,∞).

Now we claim that for all ψ ∈M+(0,∞; ↓) and all t ∈ (0,∞),
(4.6) (T ψ)(t) ≈ (Sψ)(t) + (Rψ)(t),

where the operators S and R are defined onM+(0,∞; ↓) by
(Sψ)(t) := tγ/nℓ−sA(t)ψ∗∗(t), t ∈ (0,∞),(4.7)

(Rψ)(t) := sup
t<τ<∞

τγ/nℓ−sA(τ )ψ(τ ), t ∈ (0,∞).(4.8)

Consequently, (4.1) is satisfied if and only if both inequalities

{∞\
0

[(Sψ)(t)]Qw(t) dt
}1/Q

.
{∞\
0

[ψ(t)]P v(t) dt
}1/P

(4.9)

and
{∞\
0

[(Rψ)(t)]Qw(t) dt
}1/Q

.
{∞\
0

[ψ(t)]P v(t) dt
}1/P

(4.10)

hold onM+(0,∞; ↓).
To verify (4.6), first note that T & S + R on M+(0,∞; ↓) since the estimates

T ψ ≥ Sψ and T ψ ≥ Rψ are evident for any ψ ∈ M+(0,∞; ↓). On the other hand,
since for all ψ ∈M+(0,∞; ↓) and all t ∈ (0,∞),

(4.11) (T ψ)(t) = sup
t<τ<∞

τγ/n−1ℓ−sA(τ )
[ t\
0

ψ(σ) dσ +

τ\
t

ψ(σ) dσ
]

and since γ < n, we have

(4.12) sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

t\
0

ψ(σ) dσ ≈ (Sψ)(t)

and

(4.13) sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
t

ψ(σ) dσ

≤ sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
t

[ sup
t<ξ<∞

ξγ/nℓ−sA(ξ)ψ(ξ)]σ−ν/nℓsA(σ) dσ

. (Rψ)(t) sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

σ−γ/nℓsA(σ) dσ ≈ (Rψ)(t).

Thus, the estimate T ψ . Sψ + Rψ for all ψ ∈ M+(0,∞; ↓) is a consequence of
(4.11)–(4.13).
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Our main result in this section is the following theorem which provides us with a

characterization of (4.1) in the case when 0 < p ≤ q <∞.

Theorem 4.1. Let s ∈ (0,∞), n ∈ N, γ ∈ [0,∞), A = (A0, A∞) ∈ R2 and v, w ∈
W (0,∞). Assume that 0 < p ≤ q <∞ and
(4.14) either γ ∈ (0, n), or γ = 0 and A0 ≥ 0 ≥ A∞.
Then the following statements are equivalent :

(i) The operator Ms,γ;A : Λ
p(v)→ Λq(w) is bounded.

(ii) For all ψ ∈M+(0,∞; ↓),

(4.15)
{∞\
0

[
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

ψ(σ) dσ
]q/s

w(t) dt
}1/q

.
{∞\
0

[ψ(t)]p/sv(t) dt
}1/p

.

(iii) For all r ∈ (0,∞),

(4.16) rγ/(ns)ℓ−A(r)
( r\
0

w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

and either

(4.17)
(∞\
r

t(q/s)(γ/n−1)ℓ−qA(t)w(t) dt
)1/q

×
[ r\
0

(
t−1

t\
0

v(τ ) dτ
)p/(s−p)

v(t) dt
]1/s−1/p

. 1 if s < p,

or

(4.18) r1/s
(∞\
r

t(q/s)(γ/n−1)ℓ−qA(t)w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

if p ≤ s.

To prove Theorem 4.1, we shall characterize the validity of inequalities (4.9) and (4.10)

on M+(0,∞; ↓). To find necessary and sufficient conditions under which (4.9) holds on
M+(0,∞; ↓), we shall use the following assertions.

Lemma 4.2 (cf. [Sa, Theorem 2]). Suppose that ṽ, w̃ ∈ W (0,∞) and 1 < P ≤ Q < ∞.
Then the inequality

(4.19)
{∞\
0

[
t−1

t\
0

ψ(τ ) dτ
]Q
w̃(t) dt

}1/Q
.
{∞\
0

[ψ(t)]P ṽ(t) dt
}1/P

holds for all ψ ∈M+(0,∞; ↓) if and only if , for all r ∈ (0,∞),

(4.20)
( r\
0

w̃(t) dt
)1/Q

.
( r\
0

ṽ(t) dt
)1/P

and

(4.21)
(∞\
r

t−Qw̃(t) dt
)1/Q[ r\

0

(
t−1

t\
0

ṽ(τ ) dτ
)−P ′

ṽ(t) dt
]1/P ′

. 1.
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Lemma 4.3 (cf. [HM, Theorem 3.2(b)]). Let 0 < P ≤ 1, P ≤ Q < ∞. Suppose that
ṽ, w̃ ∈ W (0,∞) and Φ ∈M+((0,∞)× (0,∞)). Then the inequality

(4.22)
{∞\
0

[∞\
0

Φ(t, τ )ψ(τ ) dτ
]Q
w̃(t) dt

}1/Q
.
{∞\
0

[ψ(t)]P ṽ(t) dt
}1/P

holds for all ψ ∈M+(0,∞; ↓) if and only if

(4.23)
{∞\
0

[ r\
0

Φ(t, τ ) dτ
]Q
w̃(t) dt

}1/Q
.
[ r\
0

ṽ(t) dt
]1/P

for all r ∈ (0,∞).

In the next lemma we present a characterization of inequality (4.9) onM+(0,∞; ↓).

Lemma 4.4. Let all the assumptions of Theorem 4.1 be satisfied and P = p/s, Q = q/s.

Then inequality (4.9) holds on M+(0,∞; ↓) if and only if either s < p and , for all

r ∈ (0,∞),

(4.24)
( r\
0

tγq/(ns)ℓ−qA(t)w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

and

(4.25)
(∞\
r

t(q/s)(γ/n−1)ℓ−qA(t)w(t) dt
)1/q[ r\

0

(
t−1

t\
0

v(τ ) dτ
)p/(s−p)

v(t) dt
]1/s−1/p

. 1,

or p ≤ s and , for all r ∈ (0,∞), condition (4.24) holds and

(4.26) r1/s
(∞\
r

t(q/s)(γ/n−1)ℓ−qA(t)w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

.

Proof. If 0 < s < p, then 1 < P ≤ Q <∞ and inequality (4.9) can be rewritten as (4.19)
with

w̃(t) = t(γ/n)Qℓ−sQA(t)w(t), ṽ(t) = v(t), t ∈ (0,∞).
Thus, by Lemma 4.2, inequality (4.9) holds on M+(0,∞; ↓) if and only if (4.20) and
(4.21) are satisfied. However, (4.20) and (4.21), respectively, can be rewritten as (4.24)

and (4.25).

If p ≤ s, then 0 < P ≤ 1 and P ≤ Q < ∞ and inequality (4.9) can be rewritten as
(4.22) with

w̃(t) = t(γ/n−1)Qℓ−sQA(t)w(t), ṽ(t) = v(t), Φ(t, τ ) = χ(0,t)(τ ), t, τ ∈ (0,∞).
Thus, by Lemma 4.3, inequality (4.9) holds on M+(0,∞; ↓) if and only if (4.23) is sat-
isfied. However, for any fixed r ∈ (0,∞), the integral

T∞
0
. . . dt in (4.23) can be written

as
Tr
0
. . . dt+

T∞
r
. . . dt. This in fact shows that (4.23) is equivalent to two conditions; the

first (resp. second) of them is obtained on replacing
T∞
0
. . . dt in (4.23) by

Tr
0
. . . dt (resp.T∞

r
. . . dt). Finally, it is easy to see that the first (resp. second) condition coincides with

(4.24) (resp. (4.26)).

We now turn our attention to (4.10).
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Lemma 4.5. Let all the assumptions of Theorem 4.1 be satisfied and P = p/s, Q = q/s.

Then inequality (4.10) holds onM+(0,∞; ↓) if and only if for all r ∈ (0,∞),

(4.27) rγ/(ns)ℓ−A(r)
( r\
0

w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

.

Proof. Necessity. Since, for any r ∈ (0,∞),
(4.28) Rχ(0,r) ≈ rγ/nℓ−sA(r)χ(0,r),
the necessity of (4.27) follows by testing (4.10) with ψ = χ(0,r).

Sufficiency. (i) Assume additionally that

(4.29)

x\
0

v(t) dt <∞ for any x ∈ (0,∞).

(i-1) First, consider the case when

(4.30) either γ ∈ (0, n) and A ∈ R2, or γ = 0 and A0 ≥ 0 > A∞.

Then limr→∞ rγ/(ns)ℓ−A(r) =∞. Together with (4.27), this implies that

(4.31)

∞\
0

v(t) dt =∞.

Then there is an increasing sequence {rk}k∈Z ⊂ (0,∞) such that

(4.32)

rk\
0

v(t) dt = 2k.

It is clearly sufficient to verify (4.10) for continuous ψ ∈ M+(0,∞; ↓) having compact
support in [0,∞) and ψ 6≡ 0. For such ψ, the set B ⊂ Z given by

(4.33) B = {k ∈ Z; (Rψ)(rk−1) > (Rψ)(rk)}
is not empty. Take k ∈ B and define

(4.34) zk =

{
0 if (Rψ)(t) = (Rψ)(rk−1), t ∈ (0, rk−1),
min{rj ; (Rψ)(rj) = (Rψ)(rk−1)} otherwise.

Together with the fact that Rψ ∈M+(0,∞; ↓), this implies that
(Rψ)(t) ≤ (Rψ)(rk−1), k ∈ B, t ∈ [zk, rk).

Moreover, by the definition of B, the supremum appearing in the definition of (Rψ)(rk−1)

is attained in [rk−1, rk). Therefore, for every k ∈ B and all t ∈ [zk, rk),
(4.35) (Rψ)(t) ≤ (Rψ)(rk−1) = sup

rk−1<τ<rk

τγ/nℓ−sA(τ )ψ(τ ) . ψ(rk−1)r
γ/n
k ℓ−sA(rk).

Thus, by (4.35), (4.27), (4.32), the monotonicity of ψ and the inequality Q/P ≥ 1, we
obtain

∞\
0

[(Rψ)(t)]Qw(t) dt =
∑

k∈B

rk\
zk

[(Rψ)(t)]Qw(t) dt(4.36)

.
∑

k∈B

[ψ(rk−1)]
Qr
(γ/n)Q
k ℓ−sQA(rk)

rk\
zk

w(t) dt
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≤
∑

k∈B

[ψ(rk−1)]
Q
( rk\
0

v(t) dt
)Q/P

= 4Q/P
∑

k∈B

[ψ(rk−1)]
Q
( rk−1\
rk−2

v(t) dt
)Q/P

≤ 4Q/P
∑

k∈B

( rk−1\
rk−2

[ψ(t)]P v(t) dt
)Q/P

≤ 4Q/P
(∑

k∈B

rk−1\
rk−2

[ψ(t)]P v(t) dt
)Q/P

and (4.10) follows.

(i-2) Second, consider the case when

(4.37) γ = 0 and A0 ≥ 0 = A∞.
Then limr→∞ rγ/(ns)ℓ−A(r) = 1, and hence, (4.27) does not yield (4.31). If (4.31) holds,

then the previous method gives the result. Therefore, we now assume that

(4.38)

∞\
0

v(t) dt <∞.

Then there exists k0 ∈ Z such that

(4.39) 2k0 ≤
∞\
0

v(t) dt < 2k0+1.

Put Z0 = {k ∈ Z; k ≤ k0} and define the increasing sequence {rk}k∈Z0 ⊂ (0,∞) by
(4.32). Moreover, put

(4.40) B0 = {k ∈ Z0; (Rψ)(rk−1) > (Rψ)(rk)}.
Note that now it can happen that B0 = ∅.
(i-2.1) Assuming that B0 6= ∅, we assign to any k ∈ B0 the point zk just as in (4.34).

Let kM = maxB0. Proceeding as above, we obtain (cf. (4.36))

(4.41)

rkM\
0

[(Rψ)(t)]Qw(t) dt . 4Q/P
( ∑

k∈B0

rk−1\
rk−2

[ψ(t)]P v(t) dt
)Q/P

.

Put I = [rkM ,∞). If ψ ≡ 0 in I, then Rψ ≡ 0 in I as well and the result follows from
(4.41). Therefore we assume that ψ 6≡ 0 in I. We deduce from the definitions of B0
and kM that

(Rψ)(t) = (Rψ)(rk0) for all t ∈ [rkM , rk0 ].
Hence, since Rψ ∈M+(0,∞; ↓),
(4.42) (Rψ)(t) ≤ (Rψ)(rk0) if t ∈ I.
As

(Rψ)(rk0) = sup
rk0<τ<∞

τγ/nℓ−sA(τ )ψ(τ ) ≤ ψ(rk0) sup
rk0<τ<∞

τγ/nℓ−sA(τ ),(4.43)

. ψ(rk0) limτ→∞
τγ/nℓ−sA(τ ),

estimate (4.42) implies that

(4.44) (Rψ)(t) . ψ(rk0) limτ→∞
τγ/nℓ−sA(τ ) for all t ∈ I.
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Moreover, by (4.27), (4.39) and (4.32),

( lim
τ→∞

τγ/nℓ−sA(τ ))Q
∞\
rkM

w(t) dt = lim
τ→∞

τ (γ/n)Qℓ−sQA(τ )
( τ\
rkM

w(t) dt
)

(4.45)

. lim
τ→∞

( τ\
0

v(t) dt
)Q/P

≤ (2k0+1)Q/P

=
(
8

rk0−1\
rk0−2

v(t) dt
)Q/P

.

Applying (4.44), (4.45) and the monotonicity of ψ, we obtain

∞\
rkM

[(Rψ)(t)]Qw(t) dt ≤ [ψ(rk0)]Q( limτ→∞ τ
γ/nℓ−sA(τ ))Q

∞\
rkM

w(t) dt(4.46)

. 8Q/P
( rk0−1\
rk0−2

[ψ(t)]P v(t) dt
)Q/P

,

which, together with (4.41) and the fact that Q/P ≥ 1, yields the result.
(i-2.2) Assume now that B0 = ∅. Then the function Rψ is constant in (0, rk0 ] and

thus

(4.47) (Rψ)(t) ≤ (Rψ)(rk0) for all t ∈ (0,∞).
Together with (4.43), this implies (4.44) with I = (0,∞). Consequently,

(4.48)

∞\
0

[(Rψ)(t)]Qw(t) dt ≤ [ψ(rk0)]Q( limτ→∞ τ
γ/nℓ−sA(τ ))Q

∞\
0

w(t) dt.

Proceeding analogously to (4.45) and (4.46), we obtain

RHS(4.48) . 8Q/P
( rk0−1\
rk0−2

[ψ(t)]P v(t) dt
)Q/P

and the result follows.

(ii) Assume finally that condition (4.29) is violated.

(ii-1) If
Tx
0
v(t) dt =∞ for any x ∈ (0,∞), then Λp(v) = {0}. Consequently,

Ms,γ;A : Λ
p(v)→ Λq(w) is bounded.

Since also condition (4.27) is satisfied, Lemma 4.5 holds in this case.

(ii-2) Suppose that there exist x0 ∈ (0,∞) such that

(4.49)

x\
0

v(t) dt

{
=∞ for any x ∈ (x0,∞),
<∞ for any x ∈ (0, x0).

Let ψ ∈ M+(0,∞; ↓), ψ 6≡ 0, be a continuous function. If
T∞
0
[ψ(t)]P v(t) dt = ∞, then

(4.10) holds trivially. On the other hand, if
T∞
0
[ψ(t)]pv(t) dt < ∞, then, by (4.49),

suppψ ⊂ [0, x0], which implies that Rψ ≡ 0 on (x0,∞). Now, defining the sequence
{rk}k∈Z by (4.32), we have {rk}k∈Z ⊂ (0, x0) and analogues of the approaches used in
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(i-2.1) and (i-2.2) (where the role of the interval (0,∞) is now played by (0, x0)) yield
the result.

Proof of Theorem 4.1. The proof that parts (i) and (ii) of Theorem 4.1 are equivalent is

clear from what we said at the beginning of this section. This also shows that part (i)

is equivalent to the validity of inequalities (4.9) and (4.10) onM+(0,∞; ↓). However, by
Lemmas 4.4 and 4.5, this is equivalent to the conditions mentioned in part (iii).

Remark 4.6. If f ∈ M(Rn) \ Lsloc(Rn), then there is a cube Q0 ⊂ Rn such that f /∈
Ls(Q0). Now, if x ∈ Rn, we take a cube Q such that x ∈ Q and Q0 ⊂ Q. Hence

‖fχQ‖s = ∞, which implies that (Ms,γ;Af)(x) = ∞. Since x ∈ Rn was an arbitrary
point, we have Ms,γ;Af ≡ ∞ on Rn. Consequently, (Ms,γ;Af)

∗ ≡ ∞, and so, there
are no q ∈ (0,∞) and w ∈ W (0,∞) such that Ms,γ;Af ∈ Λq(w). This shows that if

Λp(v) 6⊂ Lsloc(R
n), then the operator (4.1) is not bounded for any q ∈ (0,∞) and any

w ∈ W (0,∞).
On the other hand, if the operator (4.1) is bounded and p ≤ q, then it should be

somehow hidden in the conditions of Theorem 4.1 that

(4.50) Λp(v) ⊂ Lsloc(Rn).
To see it take a cube Q ⊂ Rn with T = |Q|, and f ∈ Λp(v). Substituting ψ = (f∗)s in
(4.15), we get

(4.51)
{∞\
0

(
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

[f∗(σ)]s dσ
)q/s

w(t) dt
}1/q

.
{∞\
0

[f∗(t)]pv(t) dt
}1/p

.

However,

LHS(4.51) ≥
(
T γ/n−1ℓ−sA(T )

T\
0

[f∗(y)]s dy
)1/s( T\

0

w(t) dt
)1/q

,

which, together with (4.51), implies that

(4.52)
{ \
Q

|f(x)|s dx
}1/s

CT ≤
{ T\
0

[f∗(y)]s dy
}1/s

CT . ‖f‖Λp(v),

with CT = T
(1/s)(γ/n−1)ℓ−A(t)(

TT
0
w(t) dt)1/q, and (4.50) follows.

We now turn our attention to the conditions of part (iii) of Theorem 4.1. Again, let

Q ⊂ Rn be a cube with T = |Q|.
First consider the case when p ≤ s. Then (4.18) implies that

(4.53)
( r\
0

1 dt
)1/s

. CT

( r\
0

v(t) dt
)1/p

for all r ∈ (0, T ),

where CT = (
T∞
T
t(q/s)(γ/n−1)ℓ−qA(t)w(t) dt)−1/q. However (cf. [Stp, Proposition 1(a)]),

(4.53) yields Λp(v) →֒ Ls(Q) and (4.50) follows.

Consider now the case when s < p and put 1/r = 1/s− 1/p. Then
[ T\
0

(
t−1

t\
0

v(τ ) dτ
)p/(s−p)

v(t) dt
]1/s−1/p

=
[ T\
0

( t\
0

1 dτ
)r/s( t\

0

v(τ ) dτ
)−r/s

v(t) dt
]1/r
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and, by condition (4.17),

(4.54)
[ T\
0

( t\
0

1 dτ
)r/s( t\

0

v(τ ) dτ
)−r/s

v(t) dt
]1/r

. CT <∞,

where CT = (
T∞
T
t(q/s)(γ/n−1)ℓ−qA(t)w(t) dt)−1/q. But, by [Stp, Proposition 1(b)], (4.54)

implies that Λp(v) →֒ Ls(Q), and (4.50) follows.

5. Boundedness of Ms,γ;A : Λ
p(v)→ Λq,∞(w), 0 < p, q <∞

Theorem 3.1 and the definitions of the quasi-norms in the classical and weak-type Lorentz

spaces imply that the operator

(5.1) Ms,γ;A : Λ
p(v)→ Λq,∞(w), 0 < p, q <∞,

is bounded if and only if

(5.2) sup
t>0

{
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

[ϕ(σ)]s dσ
}1/s( t\

0

w(τ ) dτ
)1/q

.
{∞\
0

[ϕ(t)]pv(t) dt
}1/p

for all ϕ ∈M+(0,∞; ↓).

On using (4.3) and (4.5), we can rewrite (5.2) as

(5.3) sup
t>0
(T ψ)(t)

( t\
0

w(τ ) dτ
)1/Q

.
{∞\
0

[ψ(t)]P v(t) dt
}1/P

for all ψ ∈M+(0,∞; ↓).

Together with the estimate (4.6), this shows that (5.1) is satisfied if and only if both

inequalities

(5.4) sup
t>0
(Sψ)(t)

( t\
0

w(τ ) dτ
)1/Q

.
{∞\
0

[ψ(t)]P v(t) dt
}1/P

and

(5.5) sup
t>0
(Rψ)(t)

( t\
0

w(τ ) dτ
)1/Q

.
{∞\
0

[ψ(t)]P v(t) dt
}1/P

hold onM+(0,∞; ↓).
Our main result in this section is the following theorem, which provides us with

a characterization of (5.1).

Theorem 5.1. Let s ∈ (0,∞), n ∈ N, γ ∈ [0, n), A = (A0, A∞) ∈ R2 and let v, w ∈
W (0,∞) satisfy

(5.6)

x\
0

v(t) dt <∞ and

x\
0

w(t) dt <∞ for every x ∈ (0,∞).

Assume that 0 < p, q <∞ and
(5.7) either γ ∈ (0, n), or γ = 0 and A0 ≥ 0 ≥ A∞.
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Then the following statements are equivalent :

(i) The operator Ms,γ;A : Λ
p(v)→ Λq,∞(w) is bounded.

(ii) For all ψ ∈M+(0,∞; ↓),

sup
t>0

{
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

ψ(σ) dσ
}1/s( t\

0

w(τ ) dτ
)1/q

.
{∞\
0

[ψ(t)]p/sv(t) dt
}1/p

.

(iii) For all r ∈ (0,∞),

(5.8) rγ/(ns)ℓ−A(r)
( r\
0

w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

and either

(5.9) r(1/s)(γ/n−1)ℓ−A(r)
( r\
0

w(t) dt
)1/q

×
[ r\
0

(
t−1

t\
0

v(τ ) dτ
)p/(s−p)

v(t) dt
]1/s−1/p

. 1 if s < p,

or

(5.10) rγ/(ns)ℓ−A(r) sup
t∈(0,r)

(
t

r

)1/s (
Tr
0
w(τ ) dτ )1/q

(
Tt
0
v(τ ) dτ )1/p

. 1 if p ≤ s.

To prove Theorem 5.1, we shall characterize the validity of inequalities (5.4) and (5.5)

on M+(0,∞; ↓). To find necessary and sufficient conditions under which (5.4) holds on
M+(0,∞; ↓), we shall use the following lemma, which is an obvious consequence of [CS2,
Theorem 3.3].

Lemma 5.2. Suppose that 0 < P,Q <∞ and that ṽ, w̃ ∈ W (0,∞) satisfy
Tx
0
ṽ(t) dt <∞,Tx

0
w̃(t) dt <∞ for all x > 0. Let Φ ∈M+((0,∞)× (0,∞)) and let

(5.11)

∞\
0

Φ(t, τ )ψ(τ ) dτ ∈M+(0,∞; ↓) for every ψ ∈M+(0,∞; ↓).

Then the inequality

(5.12) sup
t>0

(∞\
0

Φ(t, τ )ψ(τ ) dτ
)( t\
0

w̃(τ ) dτ
)1/Q

.
{∞\
0

[ψ(t)]P ṽ(t) dt
}1/P

holds for all ψ ∈M+(0,∞; ↓) if and only if either P > 1 and for all r ∈ (0,∞),

(5.13)
[∞\
0

( t\
0

Φ(r, τ ) dτ
)P ′( t\

0

ṽ(τ ) dτ
)−P ′

ṽ(t) dt
]1/P ′( r\

0

w̃(τ ) dτ
)1/Q

. 1

and

(5.14)
(∞\
0

Φ(r, τ ) dτ
)(∞\
0

ṽ(τ ) dτ
)−1/P( r\

0

ṽ(τ ) dτ
)1/Q

. 1,

or P ≤ 1 and for all r ∈ (0,∞),

(5.15)
[
sup
t>0

( t\
0

Φ(t, τ ) dτ
)( t\
0

ṽ(τ ) dτ
)−1/P ]( r\

0

w̃(τ ) dτ
)1/Q

. 1.
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Now, we are able to characterize inequality (5.4).

Lemma 5.3. Let all the assumptions of Theorem 5.1 be satisfied and P = p/s, Q = q/s.

Then inequality (5.4) holds on M+(0,∞; ↓) if and only if either s < p and , for all

r ∈ (0,∞),

(5.16) rγ/(ns)ℓ−A(r)
( r\
0

w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

and

(5.17) r(1/s)(γ/n−1)ℓ−A(r)
( r\
0

w(t) dt
)1/q[ r\

0

(
t−1

t\
0

v(τ ) dτ
)p/(s−p)

v(t) dt
]1/s−1/p

. 1,

or p ≤ s and , for all r ∈ (0,∞), condition (5.16) holds and

(5.18) rγ/(ns)ℓ−A(r) sup
t∈(0,r)

(
t

r

)1/s (
Tr
0
w(τ ) dτ )1/q

(
Tt
0
v(τ ) dτ )1/p

. 1.

Proof. Our intent is to rewrite (5.4) in the form (5.12) and then apply Lemma 5.2.

First, to satisfy the monotonicity demand (5.11), we put Φ(t, τ ) = χ(0,t)(τ )/t for t, τ ∈
(0,∞). Then

(5.19) LHS(5.4) = sup
t>0

(∞\
0

Φ(t, τ )ψ(τ ) dτ
)
tγ/nℓ−sA(t)

( t\
0

w(τ ) dτ
)1/Q

.

Next, the function g given by g(0) = 0 and g(t) = tγ/nℓ−sA(t), t ∈ (0,∞), is absolutely
continuous and equivalent to a non-decreasing function on [0,∞). Hence, there is w̃ ∈
W (0,∞) such that for all t ∈ (0,∞),

t\
0

w̃(τ ) dτ ≈ tγ/nℓ−sA(t)
( t\
0

w(τ ) dτ
)1/Q

.

Together with (5.19), this shows that

LHS(5.4) ≈ sup
t>0

(∞\
0

Φ(t, τ )ψ(τ ) dτ
) t\
0

w̃(τ ) dτ.

Therefore, applying Lemma 5.2 (with ṽ = v and Q = 1), we find that (5.4) holds on

M+(0,∞; ↓) if and only if either P > 1 and, for all r ∈ (0,∞), (5.13) and (5.14) are
satisfied (with Q = 1), or P ≤ 1 and (5.15) holds (again with Q = 1) for all r ∈ (0,∞).
However, after some calculations one can verify that conditions (5.13) and (5.14) are

equivalent to (5.16) and (5.17) while condition (5.15) is equivalent to (5.16) and (5.18).

We now turn our attention to inequality (5.5).

Lemma 5.4. Let all the assumptions of Theorem 5.1 be satisfied and P = p/s, Q = q/s.

Then inequality (5.5) holds onM+(0,∞; ↓) if and only if , for all r ∈ (0,∞),

(5.20) rγ/(ns)ℓ−A(r)
( r\
0

w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

.
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Proof. Necessity. Using (4.28), we obtain (5.20) by testing inequality (5.5) with ψ =

χ(0,r), r ∈ (0,∞).
Sufficiency. (Note that the result follows from the embedding ΛQ(w) →֒ ΛQ,∞(w)

and Lemma 4.5 provided that p ≤ q.)
(i) First consider the case (4.30), which (together with (5.20)) implies (4.31). Define

{rk}k∈Z ⊂ (0,∞) by (4.32). Again, it is sufficient to verify (5.5) for continuous ψ ∈
M+(0,∞; ↓) having compact support in [0,∞) and ψ 6≡ 0. Define the set B by (4.33)
and the sequence {zk}k∈B by (4.34). Then, by (4.35), (5.20), (4.32) and the monotonicity
of ψ,

sup
t>0
(Rψ)(t)

( t\
0

w(τ ) dτ
)1/Q
= sup
k∈B

sup
t∈[zk,rk)

(Rψ)(t)
( t\
0

w(τ ) dτ
)1/Q

(5.21)

. sup
k∈B

sup
t∈[zk,rk)

ψ(rk−1)r
γ/n
k ℓ−sA(rk)

( t\
0

w(τ ) dτ
)1/Q

= sup
k∈B

ψ(rk−1)r
γ/n
k ℓ−sA(rk)

( rk\
0

w(τ ) dτ
)1/Q

. sup
k∈B

ψ(rk−1)
( rk\
0

v(t) dt
)1/P

≤ 41/P sup
k∈B

( rk−1\
rk−2

[ψ(t)]P v(t) dt
)1/P

and the result follows.

(ii) Second, consider the case (4.37). If (4.31) holds, then the method of part (i) gives

the result. Therefore we assume now that (4.38) is satisfied. Put Z0 = {k ∈ Z; k ≤ k0},
where k0 is given by (4.39), define the increasing sequence {rk}k∈Z0 ⊂ (0,∞) by (4.32),
and the set B0 by (4.40).

(ii-1) If B0 6= ∅, we assign to any k ∈ B0 the point zk just as in (4.34) and put

kM = maxB0. Then the method of part (i) implies that

(5.22) sup
0<t<rkM

(Rψ)(t)
( t\
0

w(τ ) dτ
)1/Q

. 41/P sup
k∈B0

( rk−1\
rk−2

[ψ(τ )]P v(τ ) dτ
)1/P

.

Put I = [rkM ,∞). If ψ ≡ 0 in I, then Rψ ≡ 0 in I as well and the result follows from
(5.22). Thus we assume that ψ 6≡ 0 in I. Since, by (5.20) and (4.32),

( lim
τ→∞

τγ/nℓ−sA(τ ))
(∞\
0

w(τ ) dτ
)1/Q

= lim
τ→∞

τγ/nℓ−sA(τ )
( τ\
0

w(σ) dσ
)1/Q

(5.23)

. lim
τ→∞

( τ\
0

v(σ) dσ
)1/P

≤ (2k0+1)1/P

= 81/P
( rk0−1\
rk0−2

v(t) dt
)1/P

,
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applying (4.44), (5.23) and the monotonicity of ψ, we obtain

sup
t∈I
(Rψ)(t)

( t\
0

w(τ ) dτ
)1/Q

. sup
t∈I

ψ(rk0)( limτ→∞
τγ/nℓ−sA(τ ))

( t\
0

w(τ ) dτ
)1/Q

(5.24)

= ψ(rk0)( limτ→∞
τγ/nℓ−sA(τ ))

(∞\
0

w(τ ) dτ
)1/Q

. ψ(rk0)8
1/P
( rk0−1\
rk0−2

v(t) dt
)1/P

≤ 81/P
( rk0−1\
rk0−2

[ψ(t)]P v(t) dt
)1/P

,

which, together with (5.22), yields the result.

(ii-2) Assume now that B0 = ∅. Put I = (0,∞). Estimates (4.47) and (4.43) imply
(4.44). Consequently, using also (5.23) and the monotonicity of ψ, we arrive at

sup
t>0
(Rψ)(t)

( t\
0

w(τ ) dτ
)1/Q

. sup
t>0

ψ(rk0)( limτ→∞
τγ/nℓ−sA(τ ))

( t\
0

w(τ ) dτ
)1/Q

. ψ(rk0)8
1/P
( rk0−1\
rk0−2

v(t) dt
)1/P

≤ 81/P
( rk0−1\
rk0−2

[ψ(t)]P v(t) dt
)1/P

and the result follows.

Proof of Theorem 5.1. The proof that parts (i) and (ii) of Theorem 5.1 are equivalent

is clear from the remarks at the beginning of this section. This also shows that part (i)

is equivalent to the validity of inequalities (5.4) and (5.5) onM+(0,∞; ↓). However, by
Lemmas 5.3 and 5.4, this is equivalent to the conditions of part (iii).

6. Boundedness of Ms,γ;A : Λ
p,∞(v)→ Λq,∞(w), 0 < p, q <∞

By Theorem 3.1 and the definition of the quasi-norms in weak-type Lorentz spaces, the

operator

(6.1) Ms,γ;A : Λ
p,∞(v)→ Λq,∞(w), 0 < p, q <∞,

is bounded if and only if

(6.2) sup
t>0

{
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

[ϕ(σ)]s dσ
}1/s( t\

0

w(τ ) dτ
)1/q

. sup
t>0

ϕ(t)
( t\
0

v(τ ) dτ
)1/p

for all ϕ ∈M+(0,∞; ↓).
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On using (4.3) and (4.5), inequality (6.2) can be rewritten as

(6.3) sup
t>0
(T ψ)(t)

( t\
0

w(τ ) dτ
)1/Q

. sup
t>0

ψ(t)
( t\
0

v(τ ) dτ
)1/P

for all ψ ∈M+(0,∞; ↓).

Our main result in this section provides a characterization of (6.1) and reads as follows.

Theorem 6.1. Let s ∈ (0,∞), n ∈ N, γ ∈ [0, n), A = (A0, A∞) ∈ R2 and let v, w ∈
W (0,∞) satisfy

(6.4)

x\
0

v(t) dt <∞ and

x\
0

w(t) dt <∞ for every x ∈ (0,∞).

Assume that 0 < p, q <∞ and
(6.5) either γ ∈ (0, n), or γ = 0 and A0 ≥ 0 ≥ A∞.
Then the following statements are equivalent :

(i) The operator Ms,γ;A : Λ
p,∞(v)→ Λq,∞(w) is bounded.

(ii) For all ψ ∈M+(0,∞; ↓),

sup
t>0

{
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

ψ(σ) dσ
}1/s( t\

0

w(τ ) dτ
)1/q

. sup
t>0
[ψ(t)]1/s

( t\
0

v(τ ) dτ
)1/p

.

(iii) supt>0 t
γ/n−1ℓ−sA(t)(

Tt
0
w(τ ) dτ )s/q

Tt
0
(
Tτ
0
v(σ) dσ)−s/p dτ <∞.

To prove Theorem 6.1, we shall apply the next lemma, where the following notation

is used. If 0 < p <∞ and v ∈ W (0,∞) is such that

(6.6)

x\
0

v(t) dt <∞ for every x ∈ (0,∞),

we put

(6.7) Lp,∞dec (v) :=
{
f ∈M+(0,∞; ↓); ‖f‖Lp,∞dec (v) := sup

t>0
f(t)
( t\
0

v(τ ) dτ
)1/p

<∞
}
.

Lemma 6.2 (cf. [So, Proposition 2.7]). Let N be a non-negative functional defined on

M(0,∞) and
(6.8) X := {f ∈M(0,∞); ‖f‖X := N(f) <∞}.
Assume that N satisfies :

(i) There exists C > 0 such that N(f) ≤ CN(g) if f, g ∈ X, 0 ≤ f ≤ g.
(ii) There exists C > 0 such that N(λf) ≤ CλN(f) if f ∈ X and λ ≥ 0.

Let 0 < P <∞, let v ∈ W (0,∞) satisfy (6.6) and let
L : LP,∞dec (v)→M+(0,∞)

be an operator with the property :

(iii) There exists C > 0 such that L (f) ≤ CL (g) if 0 ≤ f ≤ g.
Then L : LP,∞dec (v)→ X is bounded , that is ,

(6.9) ‖Lψ‖X . ‖ψ‖LP,∞dec (v) for all ψ ∈ LP,∞dec (v),



Boundedness of fractional maximal operators 31

if and only if

(6.10) N(L (V −1/P )) <∞,
where V (t) :=

Tt
0
v(τ ) dτ, t ∈ (0,∞).

Now, we are able to characterize inequality (6.3).

Lemma 6.3. Let all the assumptions of Theorem 6.1 be satisfied and P = p/s, Q = q/s.

Then inequality (6.3) holds onM+(0,∞; ↓) if and only if condition (iii) of Theorem 6.1
is satisfied.

Proof. Define the operator L : LP,∞dec (v)→M+(0,∞) by L = T , where T is given by

(4.5), and the non-negative functional N onM(0,∞) by

(6.11) N(f) := sup
t>0
|f(t)|

( t\
0

w(τ ) dτ
)1/Q

.

By Lemma 6.2, the operator L : LP,∞dec (v) → X is bounded, that is, (6.9) holds, if and

only if (6.10) is satisfied. But, by (6.8), (6.11), (6.7) and the definition of L , estimate

(6.9) coincides with inequality (6.3). Moreover, since

N(L (V −1/P )) = sup
t>0
(T (V −1/P ))(t)

( t\
0

w(σ) dσ
)1/Q

= sup
t>0

[
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

( ξ\
0

v(σ) dσ
)−1/P

dξ
]( t\
0

w(σ) dσ
)1/Q

= sup
τ>0

[
sup
0<t<τ

( t\
0

w(σ) dσ
)1/Q]

τγ/n−1ℓ−sA(τ )

τ\
0

( ξ\
0

v(σ) dσ
)−1/P

dξ

= sup
τ>0

τγ/n−1ℓ−sA(τ )
( τ\
0

w(σ) dσ
)1/Q τ\

0

( ξ\
0

v(σ) dσ
)−1/P

dξ,

we see that (6.9) and statement (iii) of Theorem 6.1 coincide.

Proof of Theorem 6.1. Theorem 6.1 is a consequence of Lemma 6.3 and the facts stated

at the beginning of this section.

Remarks 6.4. (i) Note that statement (iii) of Theorem 6.1 is equivalent to the following

pair of conditions: For all r ∈ (0,∞),

(6.12) rγ/(ns)ℓ−A(r)
( r\
0

w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

and

(6.13) r(1/s)(γ/n−1)ℓ−A(r)
( r\
0

w(t) dt
)1/q[ r\

0

( t\
0

v(σ) dσ
)−s/p

dt
]1/s

. 1.

Indeed, using (4.6), we see that (6.3) is satisfied if and only if both

(6.14) sup
t>0
(Sψ)(t)

( t\
0

w(τ ) dτ
)1/Q

. sup
t>0

ψ(t)
( t\
0

v(τ ) dτ
)1/P
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and

(6.15) sup
t>0
(Rψ)(t)

( t\
0

w(τ ) dτ
)1/Q

. sup
t>0

ψ(t)
( t\
0

v(τ ) dτ
)1/P

hold on M+(0,∞; ↓). Now, applying Lemma 6.2, one can show that (6.15) or (6.14),
respectively, holds on M+(0,∞; ↓) if and only if (6.12) or (6.13) is satisfied for all r ∈
(0,∞).
(ii) To characterize (6.15) onM+(0,∞; ↓) one can also proceed similarly to the proof

of Lemma 5.4. Indeed, necessity of (6.12) follows by testing (6.15) with ψ = χ(0,r),

r ∈ (0,∞). To prove sufficiency of (6.12), consider, for example, the case (4.30). Then,
proceeding as in (5.21) without applying the monotonicity of ψ in the last step of this

estimate, we arrive at

sup
t>0
(Rψ)(t)

( t\
0

w(τ ) dτ
)1/Q

. sup
k∈B

ψ(rk−1)
( rk\
0

v(t) dt
)1/P

≤ sup
t>0

ψ(t)
( t\
0

v(τ ) dτ
)1/P

and (6.15) follows. The proof in the case (4.37) is left to the reader.

(iii) Suppose that the assumptions of Lemma 5.4 are satisfied. Then Lemma 5.4 and

part (i) of this remark imply that any of inequalities (5.5) and (6.15) holds onM+(0,∞; ↓)
if and only if (6.12) is satisfied for all r ∈ (0,∞). Moreover, by Lemma 4.5, the last
condition also characterizes the validity of (4.10) onM+(0,∞; ↓) provided that 0 < p ≤
q <∞.

7. Boundedness of Ms,γ;A : Λ
p,∞(v)→ Λq(w), 0 < p, q <∞

As in the previous sections, we observe that the operator

(7.1) Ms,γ;A : Λ
p,∞(v)→ Λq,∞(w), 0 < p, q <∞,

is bounded if and only if

(7.2)
{∞\
0

(
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

[ϕ(σ)]s dσ
)q/s

w(t) dt
}1/q

. sup
t>0

ϕ(t)
( t\
0

v(τ ) dτ
)1/p

for all ϕ ∈M+(0,∞; ↓).

On using the notation (4.3) and (4.5), we see that (7.2) is equivalent to

(7.3)
{∞\
0

[(T ψ)(t)]Qw(t) dt
}1/Q

. sup
t>0

ψ(t)
( t\
0

v(τ ) dτ
)1/P

for all ψ ∈M+(0,∞; ↓).

Our main result in this section is the following theorem.

Theorem 7.1. Let s ∈ (0,∞), n ∈ N, γ ∈ [0, n), A = (A0, A∞) ∈ R2, v, w ∈ W (0,∞)
and let

(7.4)

x\
0

v(t) dt <∞ for every x ∈ (0,∞).
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Assume that 0 < p, q <∞ and
(7.5) either γ ∈ (0, n), or γ = 0 and A0 ≥ 0 ≥ A∞.
Then the following statements are equivalent :

(i) The operator Ms,γ;A : Λ
p,∞(v)→ Λq(w) is bounded.

(ii) For all ψ ∈M+(0,∞; ↓),
{∞\
0

[
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

ψ(σ) dσ
]q/s

w(t) dt
}1/q

. sup
t>0
[ψ(t)]1/s

( t\
0

v(τ ) dτ
)1/p

.

(iii)
T∞
0
[supt<τ<∞ τ (q/s)(γ/n−1)ℓ−qA(τ )(

Tτ
0
(
Tσ
0
v(ξ) dξ)−s/p dσ)q/s]w(t) dt <∞.

To prove Theorem 7.1, we shall characterize the validity of inequality (7.3) on

M+(0,∞; ↓).
Lemma 7.2. Let all the assumptions of Theorem 7.1 be satisfied and P = p/s, Q = q/s.

Then inequality (7.3) holds onM+(0,∞; ↓) if and only if condition (iii) of Theorem 7.1
is satisfied.

Proof. We apply Lemma 6.2 with

N(f) =
{∞\
0

|f(x)|Qw(t) dt
}1/Q

and L = T (recall that T is given by (4.5)). First we observe that

(7.6) L : LP,∞dec (v)→ X is bounded,

that is,

N(Lψ) . ‖ψ‖LP,∞
dec

(v) for all ψ ∈M+(0,∞; ↓),
if and only if (7.3) holds. Second, by Lemma 6.2, statement (7.6) is equivalent to (6.10).

Since

N(L (V −1/P )) =
{∞\
0

[(T (V −1/P ))(t)]Qw(t) dt
}1/Q

=
{∞\
0

[
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

( σ\
0

v(ξ) dξ
)−1/P

dσ
]Q
w(t) dt

}1/Q
,

we see that (6.10) and statement (iii) of Theorem 7.1 coincide.

Proof of Theorem 7.1. Theorem 7.1 is a consequence of Lemma 7.2 and the facts stated

at the beginning of this section.

Remark 7.3. Just as in Remark 6.4(i), we can see that statement (iii) of Theorem 7.1

is equivalent to the following pair of conditions:

(7.7)

∞\
0

[
sup
t<τ<∞

τγq/(ns)ℓ−qA(τ )
( τ\
0

v(σ) dσ
)−q/p]

w(t) dt <∞

and

(7.8)

∞\
0

t(q/s)(γ/n−1)ℓ−qA(t)
[ t\
0

( τ\
0

v(σ) dσ
)−s/p

dτ
]q/s

w(t) dt <∞.
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Note that (7.7) characterizes inequality (7.3) with T replaced by R while (7.8) is equiv-

alent to (7.3) with T replaced by S .

8. Boundedness of Ms,γ;A : Λ
p(v)→ Λq(w), 0 < q < p <∞

We have already seen in Section 4 that (4.1) is satisfied if and only if inequality (4.4) holds

onM+(0,∞; ↓) and that the latter statement is satisfied if both (4.9) and (4.10) hold on
M+(0,∞; ↓). In contrast to Theorem 4.1, we now consider the case when 0 < q < p <∞.
In such a case characterization of the validity of inequality (4.10) onM+(0,∞; ↓) is a more
difficult problem than that with 0 < p ≤ q < ∞. Nevertheless, in [GOP] an even more
general result was proved. The next lemma is a particular case of [GOP, Theorem 3.4].

Lemma 8.1. Let v, w ∈ W (0,∞) and suppose
Tx
0
v(t) dt < ∞ for every x ∈ (0,∞).

Assume that 0 < Q < P < ∞ and 1/R = 1/Q − 1/P . Then inequality (4.10) holds on
M+(0,∞; ↓) if and only if

(8.1)
{∞\
0

( x\
0

w(t) dt
)R/P

w(x)
(
xγ/nℓ−sA(x)

)R( x\
0

v(t) dt
)−R/P

dx
}1/R

<∞.

Using known results on weighted inequalities for the averaging operator

(8.2) (A ψ)(t) := t−1
x\
0

ψ(τ ) dτ

on M+(0,∞; ↓), one can find characterizations of (4.9) on M+(0,∞; ↓) when 0 < Q <

P < ∞ with the exception of the case 0 < Q < P < 1. Combining these results with

Lemma 8.1, one can obtain a characterization of (4.4) on M+(0,∞; ↓) when 0 < Q <

P < ∞ with the exception of the case 0 < Q < P < 1. We omit details since this is a

particular case of [GOP, Theorem 3.5 and Remark 3.6]. In such a way we arrive at the

following theorem.

Theorem 8.2. Let s ∈ (0, n), n ∈ N, γ ∈ [0, n), A = (A0, A∞) ∈ R2 and let either
γ ∈ (0, n), or γ = 0 and A0 ≥ 0 ≥ A∞. Assume that v, w ∈ W (0,∞) and

x\
0

v(t) dt <∞ and

x\
0

w(t) dt <∞ for every x ∈ (0,∞).

Let 0 < q < p < ∞, P = p/s, Q = q/s and 1/R = 1/Q − 1/P . Then the following
statements are equivalent :

(i) The operator Ms,γ;A : Λ
p(v)→ Λq(w) is bounded.

(ii) For all ψ ∈M+(0,∞; ↓),

(8.3)
{∞\
0

[
sup
t<τ<∞

τγ/n−1ℓ−sA(τ )

τ\
0

ψ(σ) dσ
]q/s

w(t) dt
}1/q

.
{∞\
0

[ψ(t)]p/sv(t) dt
}1/p

.

Moreover , if P ≥ 1, then the statement (ii) is equivalent to:

(8.4)
{∞\
0

( x\
0

w(t) dt
)R/P

w(x)(xγ/nℓ−sA(x))R
( x\
0

v(t) dt
)−R/P

dx
}1/R

<∞
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and either

(8.5)
{∞\
0

(∞\
x

t(γ/n−1)Qℓ−sQA(t)w(t) dt
)R/Q[ x\

0

(
t−1

t\
0

v(τ ) dτ
)−P ′

v(t) dt
]R/Q′

×
(
x−1

x\
0

v(t) dt
)−P ′

v(x) dx
}1/R

<∞ if Q 6= 1 < P,

or

(8.6)
{∞\
0

( x\
0

v(t) dt
)1−P ′( x\

0

t(γ/n)Qℓ−sQA(t)w(t) dt+x

∞\
x

t(γ/n)Q−1ℓ−sQA(t)w(t) dt
)P ′−1

×
(∞\
x

t(γ/n)Q−1ℓ−sQA(t)w(t) dt
)
dx
}1/P ′

<∞ if Q = 1,

or

(8.7)
{∞\
0

(∞\
x

t(γ/n−1)Qℓ−sQA(t)w(t) dt
)−Q′

×
(
sup
0<t<x

t−1
t\
0

v(τ ) dτ
)Q′

x(γ/n−1)Qℓ−sQA(x)w(x) dx
}−1/Q′

<∞ if P = 1.

Remark 8.3. There is a gap in Theorem 8.2 since no characterization of (ii) is given if

0 < Q < P < 1. This corresponds to the fact that a characterization of the weighted

inequality, involving the averaging operator A from (8.2),

(8.8)
{∞\
0

[(A ψ)(t)]Qw(t) dt
}1/Q

.
{∞\
0

[ψ(t)]P v(t) dt
}1/P

on M+(0,∞; ↓) is not available in the literature when 0 < Q < P < 1. In this case

only sufficient conditions for the validity of (8.8) on M+(0,∞; ↓) are known (cf. [Stp,
Proposition 2]). Using this result, one can obtain conditions that guarantee the validity of

(4.9) and, at the end, (8.3) onM+(0,∞; ↓). In such a way one can prove that statement
(i) of Theorem 8.2 holds if 0 < Q < P < 1 and both condition (8.4) and

(8.9)
{∞\
0

(∞\
x

t(γ/n−1)Qℓ−sQA(t)w(t) dt
)R/Q( x\

0

v(t) dt
)−R/P

xR−1 dx
}1/R

<∞

are satisfied.

9. Local results

Now we indicate the changes which result from the assumption that we consider the local

version of the fractional maximal operator Ms,γ;A given by

(9.1) (Ms,γ;αf)(x) = sup
Q∋x
Q⊂Ω

‖fχQ‖s
‖χQ‖sn/(n−γ);α

, f ∈M(Ω), x ∈ Ω.

Here s ∈ (0,∞), γ ∈ [0, n), α ∈ R and the supremum is extended over all cubes Q (with
sides parallel to the coordinate axes) contained in a domain Ω ⊂ Rn with |Ω| <∞, and
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‖ · ‖q;α = ‖ · ‖q;α,Ω, 0 < q <∞, stands for the quasi-norm in the space

Lq(logL)α(Ω) := Λq(Ω;u), u ∈ W (0, |Ω|), u(t) = ℓαq(t), t ∈ (0, |Ω|).

If Ω ⊂ Rn is a domain, |Ω| < ∞, we denote by W0(0, |Ω|) the subset of all weights
w ∈ W (0, |Ω|) which have singularities or degeneracies only at the origin, that is, w ∈
W (0, |Ω|) belongs to W0(0, |Ω|) if and only if for any a ∈ (0, |Ω|) there is a positive
constant c = c (a,w) such that c−1 < w(x) < c for all x ∈ (a, |Ω|).
We can see that our global results of Sections 4–8 can be easily adapted to give analo-

gous local results provided that the weights v and w belong to W0(0, |Ω|). This essentially
involves replacing the intervals (0,∞), (r,∞), (x,∞) by (0, 1), (r, 1), (x, 1) respectively,
the vector exponents by their first components, and omitting all the assumptions on their

second components. For example, the local result corresponding to Theorem 4.1 reads as

follows.

Theorem 4.1∗. Let s ∈ (0,∞), n ∈ N, γ ∈ [0, n) and α ∈ R. Let Ω be a domain in Rn,
|Ω| <∞, and v, w ∈ W0(0, |Ω|). Assume that 0 < p ≤ q <∞ and

(4.14∗) either γ ∈ (0, n), or γ = 0 and α ≥ 0.

Then the following statements are equivalent :

(i) The operator Ms,γ;α : Λ
p(Ω; v)→ Λq(Ω;w) is bounded.

(ii) For all ψ ∈M+(0, 1; ↓),

(4.15∗)
{ 1\
0

[
sup
t<τ<1

τγ/n−1ℓ−sα(τ )

τ\
0

ψ(σ) dσ
]q/s

w(t) dt
}1/q

.
{ 1\
0

[ψ(t)]p/sv(t) dt
}1/p

.

(iii) For all r ∈ (0, 1),

(4.16∗) rγ/(ns)ℓ−α(r)
( r\
0

w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

and either

(4.17∗)
( 1\
r

t(q/s)(γ/n−1)ℓ−qα(t)w(t) dt
)1/q

×
[ r\
0

(
t−1

t\
0

v(τ ) dτ
)p/(s−p)

v(t) dt
]1/s−1/p

. 1 if s < p,

or

(4.18∗) r1/s
( 1\
r

t(q/s)(γ/n−1)ℓ−qα(t)w(t) dt
)1/q

.
( r\
0

v(t) dt
)1/p

if p ≤ s.

In the case of general weights v, w ∈ W (0, |Ω|) the above-mentioned replacement
yields only sufficient conditions for the boundedness of the operator Ms,γ;α since an

analogue of the lower estimate (3.4) is available only for small t.
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10. Applications

In this section we apply our general results to describe mapping properties of some

maximal operators in a limiting situation. For simplicity, we restrict ourselves to a local

case.

Our first theorem deals with a local version of the usual fractional maximal operator

Mγ from (1.1); we use the same notation for this local operator.

Theorem 10.1. Let Ω be a domain in Rn, |Ω| <∞, γ ∈ (0, n) and ̺ ∈ [1,∞).
(i) Let δ, θ ∈ R. Then the operator

(10.1) Mγ : L
n/γ,̺(logL)δ(Ω)→ L∞,̺(logL)θ−1/̺(Ω)

is bounded if and only if θ < 0 and δ ≥ θ.
(ii) Let δ ∈ R and θ < 0. Then the operator

(10.2) Mγ : L
n/γ,̺(logL)δ(Ω)→ expL−1/θ(Ω)

is bounded if and only if δ ≥ θ.
(iii) Let δ ∈ R and θ < 0. Then the operator

(10.3) Mγ : L
n/γ,∞(logL)δ(Ω)→ expL−1/θ(Ω)

is bounded if and only if δ ≥ θ.
(iv) Let β, δ ∈ R. Then the operator

(10.4) Mγ : L
n/γ,∞(logL)δ(Ω)→ L∞,̺(logL)β(Ω)

is bounded if and only if either δ < 0 and β < δ − 1/̺, or δ ≥ 0 and β < −1/̺.
Corollary 10.2. Let Ω be a domain in Rn, |Ω| <∞, γ ∈ (0, n), ̺ ∈ [1,∞), θ < 0 and
β < θ − 1/̺. Then the following operators are bounded :

Mγ : L
n/γ,̺(logL)θ(Ω)→ L∞,̺(logL)θ−1/̺(Ω),(10.5)

Mγ : L
n/γ,̺(logL)θ(Ω)→ expL−1/θ(Ω),(10.6)

Mγ : L
n/γ,∞(logL)θ(Ω)→ expL−1/θ(Ω),(10.7)

Mγ : L
n/γ,∞(logL)θ(Ω)→ L∞,̺(logL)β(Ω).(10.8)

Proof of Theorem 10.1. (i) Since

Ln/γ,̺(logL)δ(Ω) = Λ̺(Ω; v) with v(t) = t̺γ/n−1ℓ̺δ(t), t ∈ (0, |Ω|),(10.9)

L∞,̺(logL)θ−1/̺(Ω) = Λ̺(Ω;w) with w(t) = t−1ℓ̺(θ−1/̺)(t), t ∈ (0, |Ω|),(10.10)

and

(10.11) Mγ =M1,γ;(0,0),

the result follows on applying (a local version of) Theorem 4.1 (cf. Section 9) with p =

q = ̺, s = 1, A = (0, 0) and the weights v and w from (10.9) and (10.10), respectively.
(ii) Since

(10.12) expL−1/θ(Ω) = Λ1,∞(Ω;w) with w(t) = t−1ℓθ−1(t), t ∈ (0, |Ω|),
the result follows on applying (a local version of) Theorem 5.1 with p = ̺, q = 1, s = 1,

A = (0, 0) and the weights v and w from (10.9) and (10.12), respectively.



38 D. E. Edmunds and B. Opic

(iii) Since

(10.13) Ln/γ,∞(logL)δ(Ω) = Λ1,∞(Ω; v) with v(t) = tγ/n−1ℓδ(t), t ∈ (0, |Ω|),
the result follows on using (a local version of) Theorem 6.1 (cf. Section 9) with p = q = 1,

s = 1, A = (0, 0) and the weights v and w from (10.13) and (10.12), respectively.
(iv) Since

(10.14) L∞,̺(logL)β(Ω) = Λ̺(Ω;w) with w(t) = t−1ℓ̺β(t), t ∈ (0, |Ω|),
the result follows on applying (a local version of) Theorem 7.1 (cf. Section 9) with p = 1,

q = ̺, s = 1, A = (0, 0) and the weights v and w from (10.13) and (10.14), respectively.

Compare Corollary 10.2 with the next sharp results on the Riesz potential Iγ , γ ∈
(0, n), defined by

(Iγf)(x) =
\
Ω

f(y)

|x− y|n−γ dy, x ∈ Ω.

Theorem 10.3. Let Ω be a domain in Rn, |Ω| < ∞, γ ∈ (0, n), ̺ ∈ [1,∞), θ < 0 and
β < θ − 1/̺. Then the following operators are bounded :

Iγ : L
n/γ,̺(logL)θ+1/̺

′

(Ω)→ L∞,̺(logL)θ−1/̺(Ω),(10.15)

Iγ : L
n/γ,̺(logL)θ+1/̺

′

(Ω)→ expL−1/θ(Ω),(10.16)

Iγ : L
n/γ,∞(logL)θ+1(Ω)→ expL−1/θ(Ω),(10.17)

Iγ : L
n/γ,∞(logL)θ+1(Ω)→ L∞,̺(logL)β(Ω).(10.18)

Proof. Assertion (10.15) follows from [EOP1, (12.2.1)] with p = n/(n− γ), r = ̺ and

β = 0. Similarly, (10.17) is a consequence of [EOP1, (12.2.1)] with p = n/(n− γ), r =∞
and β = 0 since

(10.19) expL−1/θ(Ω) = L∞,∞(logL)θ(Ω)

(cf. [EOP1, Lemma 2.2(iv)]). Assertion (10.16) follows from [EOP1, Theorem 4.5(ii)] with

p1 = 1, q1 = n/(n− γ), p2 = n/γ, q2 =∞, r = ̺, s =∞ and β = 0. Finally, (10.18) is a
consequence of [EOP1, Theorem 4.2(ii)] with p1 = 1, q1 = n/(n− γ), p2 = n/γ, q2 =∞,
r =∞, s = ̺, δ = θ + 1 and γ = β.
Remark 10.4. Note that (10.6) is a consequence of (10.5) and the embedding

L∞,̺(logL)θ−1/̺(Ω) →֒ expL−1/θ(Ω)
(cf. [EOP1, Theorem 6.3]). Similarly, (10.8) follows from (10.7). On the other hand, (10.6)

follows from (10.7) since Ln/γ,̺(logL)θ(Ω) →֒ Ln/γ,∞(logL)θ(Ω). Finally, using (10.19),

we see that (10.7) (and hence (10.8)) remains true if θ = 0 since then statement (10.7)

coincides with the endpoint estimate Mγ : L
n/γ,∞(Ω)→ L∞(Ω) (cf. (1.6)).

In our next result we establish the behaviour of the local maximal operator M0,α :=

M1,0;1+α, α > 0 (cf. (9.1)), on spaces close to L1(Ω), where Ω is a domain in Rn with
|Ω| <∞. This operator satisfies the following endpoint estimates (cf. Lemma 3.2):

M0,α : L1(Ω)→ L1,∞(logL)1+α(Ω),(10.20)

M0,α : L∞(logL)−1−α(Ω)→ L∞(Ω).(10.21)
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It is worthwhile to compare (10.20) and (10.21) with the sharp endpoint estimates for

the corresponding Riesz-type potential operator I0,α, α > 0, defined by

(10.22) (I0,αf)(x) =
\
Ω

f(y)

|x− y|n ℓ1+α(|x− y|) dy, x ∈ Ω.

By [OT2, (3.34)], for any domain Ω in Rn with |Ω| <∞,
I0,α : L1(Ω)→ L(1,∞;α)(Ω),(10.23)

I0,α : L∞,1(logL)−1−α(Ω)→ L∞(Ω).(10.24)

Here the symbol L(p,q;β)(Ω), p, q ∈ (0,∞], β ∈ R, stands for the space given by

L(p,q;β)(Ω) = {f ∈M(Ω); ‖f‖(p,q;β),Ω := ‖t1/p−1/qℓβ(t)f∗∗(t)‖q,(0,|Ω|) <∞}
(recall that f∗∗(t) := t−1

Tt
0
f∗(τ ) dτ ).

While the operators Iγ and Mγ , γ ∈ (0, n), have the same behaviour on the space L1
(cf. (1.3) and (1.5)), in the limiting case when γ = 0 the behaviour of I0,α and M0,α on

the space L1(Ω) is different since, by [OP, Theorem 3.16(iii)],

L1,∞(logL)1+α(Ω) $ L(1,∞;α)(Ω).

Theorem 10.5. Let Ω be a domain in Rn, |Ω| <∞, α > 0, β, δ, θ ∈ R and ̺ ∈ [1,∞).
(i) The operator

(10.25) M0,α : L1,̺(logL)δ+1/̺
′

(Ω)→ L1,̺(logL)α+θ+1/̺
′

(Ω)

is bounded if and only if δ > 0 and θ ≤ δ, or ̺ = 1, δ = 0 and θ < 0.
(ii) The operator

(10.26) M0,α : L1,̺(logL)δ+1/̺
′

(Ω)→ L1,∞(logL)α+θ+1(Ω)

is bounded if and only if δ > 0 and θ ≤ δ, or ̺ = 1, δ = 0 and θ ≤ 0.
(iii) The operator

(10.27) M0,α : L1,∞(logL)δ(Ω)→ L1,∞(logL)α+θ(Ω)

is bounded if and only if δ > 1 and θ ≤ δ.
(iv) The operator

(10.28) M0,α : L1,∞(logL)δ(Ω)→ L1,̺(logL)β(Ω)

is bounded if and only if δ > 1 and β < α+ δ − 1/̺.
Corollary 10.6. Let Ω be a domain in Rn, |Ω| < ∞, α > 0, ̺ ∈ [1,∞), θ > 0, δ > 1
and β < α+ δ − 1/̺. Then the following operators are bounded :

M0,α : L1,̺(logL)θ+1/̺
′

(Ω)→ L1,̺(logL)α+θ+1/̺
′

(Ω),(10.29)

M0,α : L1,̺(logL)θ+1/̺
′

(Ω)→ L1,∞(logL)α+θ+1(Ω),(10.30)

M0,α : L1,∞(logL)δ(Ω)→ L1,∞(logL)α+δ(Ω),(10.31)

M0,α : L1,∞(logL)δ(Ω)→ L1,̺(logL)β(Ω).(10.32)

Proof of Theorem 10.5. (i) Since

(10.33) L1,̺(logL)δ+1/̺
′

(Ω) = Λ̺(Ω; v) with v(t) = t̺−1ℓ̺(δ+1/̺
′)(t), t ∈ (0, |Ω|),
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(10.34) L1,̺(logL)α+θ+1/̺
′

(Ω) = Λ̺(Ω;w)

with w(t) = t̺−1ℓ̺(α+θ+1/̺
′)(t), t ∈ (0, |Ω|),

(10.35) M0,α =M1,0;1+α,

the result follows on applying (a local version of) Theorem 4.1 (cf. Section 9) with p =

q = ̺, s = 1, γ = 0, A = (1+α, 1+α) and the weights v and w from (10.33) and (10.34),
respectively.

(ii) Since

(10.36) L1,∞(logL)α+θ+1(Ω) = Λ1,∞(Ω;w) with w(t) = ℓα+θ+1(t), t ∈ (0, |Ω|),
the result follows on applying (a local version of) Theorem 5.1 with p = ̺, q = 1, s = 1,

γ = 0, A = (1+α, 1+α) and the weights v and w from (10.33) and (10.36), respectively.
(iii) Since

L1,∞(logL)δ(Ω) = Λ1,∞(Ω; v) with v(t) = ℓδ(t), t ∈ (0, |Ω|),(10.37)

L1,∞(logL)α+θ(Ω) = Λ1,∞(Ω;w) with w(t) = ℓα+θ(t), t ∈ (0, |Ω|),(10.38)

the result follows on using (a local version of) Theorem 6.1 with p = q = 1, s = 1, γ = 0,

A = (1 + α, 1 + α) and the weights v and w from (10.37) and (10.38), respectively.
(iv) Since

(10.39) L1,̺(logL)β(Ω) = Λ̺(Ω;w) with w(t) = t̺−1ℓ̺β(t), t ∈ (0, |Ω|),
the result follows on applying (a local version of) Theorem 7.1 with p = 1, q = ̺, s = 1,

γ = 0, A = (1+α, 1+α) and the weights v and w from (10.37) and (10.39), respectively.

For the Riesz-type potential I0,α we have the following sharp result (see [OT2, The-

orem 6.8 (a)]).

Theorem 10.7. Let Ω be a domain in Rn, |Ω| <∞, α > 0, ̺ ∈ [1,∞], and θ > 0. Then
the operator

(10.40) I0,α : L1,̺(logL)θ+1/̺
′

(Ω)→ L(1,̺;α+θ−1/̺)(Ω)

is bounded.

Remarks 10.8. (i) By [EOP1, Theorem 6.3], there is no embedding between the target

spaces in (10.29) and (10.30). Consequently, under the assumption of Corollary 10.6,

M0,α : L1,̺(logL)θ+1/̺
′

(Ω)→ L1,̺(logL)α+θ+1/̺
′

(Ω) ∩ L1,∞(logL)α+θ+1(Ω).
In particular,

(10.41) M0,α : L1(logL)θ(Ω)→ L1(logL)α+θ(Ω) ∩ L1,∞(logL)α+θ+1(Ω).
This should be compared with [EOP1, (12.3.6)] which asserts that the local version MΩ
of the classical Hardy–Littlewood maximal operator M satisfies

(10.42) MΩ : L
1(logL)θ(Ω)→ L1(logL)θ−1(Ω) ∩ L1,∞(logL)θ(Ω) if θ > 0.

(ii) By [EOP1, Theorem 6.3],

L1,∞(logL)α+δ(Ω) →֒ L1,̺(logL)β(Ω), ̺ ∈ [1,∞),
if and only if β < α+ δ − 1/̺. Consequently, (10.32) follows from (10.31).
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(iii) Since, by [OP, Theorem 3.16(ii)],

L(1,1;α+θ−1)(Ω) = L
1(logL)α+θ(Ω),

the source and target spaces in (10.40) and (10.29) coincide if ̺ = 1. On the other hand,

the target spaces in (10.40) and (10.29) (resp. in (10.40) and (10.30)) are different if

̺ ∈ (1,∞) (resp. if ̺ =∞) since, by [OP, Theorem 3.16(iii)],
L1,̺(logL)α+θ+1/̺

′

(Ω) $ L(1,̺;α+θ−1/̺)(Ω) if ̺ ∈ (1,∞].
(iv) Compare (10.31) (and (10.27)) with the following result involving the local version

MΩ of the classical Hardy–Littlewood maximal operator M :

Let Ω be a domain in Rn, |Ω| <∞, and let β, δ ∈ R. Then the operator

(10.43) MΩ : L
1,∞(logL)δ(Ω)→ L1,∞(logL)β(Ω)

is bounded if and only if δ > 1 and β ≤ δ − 1. In particular, the operator
MΩ : L

1,∞(logL)δ(Ω)→ L1,∞(logL)δ−1(Ω)

is bounded if and only if δ > 1.

Note that (10.43) is a consequence of the next assertion.

Lemma 10.9. Let Ω be a domain in Rn, |Ω| <∞, let s ∈ (0,∞) and β, δ ∈ R. Put

(Ms,Ωf)(x) = sup
Q∋x
Q⊂Ω

‖fχQ‖s
‖χQ‖s

, f ∈M(Ω), x ∈ Ω.

Then the operator

Ms,Ω : L
s,∞(logL)δ(Ω)→ Ls,∞(logL)β(Ω)

is bounded if and only if δ > 1/s and β ≤ δ − 1/s.
Proof. Since

Ls,∞(logL)δ(Ω) = Λs(Ω; v) with v(t) = ℓsδ(t), t ∈ (0, |Ω|),(10.44)

Ls,∞(logL)β(Ω) = Λs(Ω;w) with w(t) = ℓsβ(t), t ∈ (0, |Ω|),(10.45)

the result follows on applying (a local version of) Theorem 6.1 with γ = 0, A = (0, 0),
p = q = s and with the weights v and w from (10.44) and (10.45), respectively.

Remark 10.10. Let Ω be a domain in Rn, |Ω| <∞, and consider the operatorM1,0;1(Ω)

:= M1,0;1 given by (9.1). (Note that it coincides with the operator M
0,α from Theo-

rem 10.5 provided that α = 0.) Applying Theorem 4.1, one can prove that

M1,0;1(Ω) : L
2(Ω)→ L2(logL)β(Ω)

is bounded if and only if β ≤ 1. In particular,
(10.46) M1,0;1(Ω) : L

2(Ω)→ L2(Ω)

is bounded.

Now, let G = Ω × Ω. Using (10.46) and Fubini’s theorem, one can show that the
operator

M1,0;1(Ω) : L
2(G)→ L2(G)
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is bounded. Consequently, for any f ∈ L2(G), the function M1,0;1(Ω)f ∈ L2(G). Note
that this result corresponds to that of [AV, p. 1189].

11. Appendix

In the previous sections we have found necessary and sufficient conditions for the bound-

edness of fractional maximal operators between classical and weak-type Lorentz spaces.

Therefore, our results are the best possible within these scales of spaces, which are general

enough for most applications.

The aim of this section is to show that some of our results can be improved if we

consider spaces which are outside the scales mentioned above. For simplicity, we shall

consider the local version of the usual fractional maximal operator Mγ from (1.1) (cf.

also (9.1)); we use the same notation for this local operator.

Putting q = ̺ and θ = α+ 1/q in (10.5)–(10.7), we see that the operators

Mγ : L
n/γ,q(logL)α+1/q(Ω)→ L∞,q(logL)α(Ω), q ∈ [1,∞),(11.1)

Mγ : L
n/γ,q(logL)α+1/q(Ω)→ L∞,∞(logL)α+1/q(Ω), q ∈ [1,∞],(11.2)

are bounded provided that Ω ⊂ Rn is a domain with |Ω| <∞, γ ∈ (0, n) and α+1/q < 0.
On the other hand, making use of the endpoint estimates (cf. (1.5) and (1.6))

Mγ : L
1(Ω)→ Ln/(n−γ),∞(Ω),(11.3)

Mγ : L
n/γ,∞(Ω)→ L∞(Ω),(11.4)

and the limiting real interpolation involving logarithmic functors, we arrive at

(11.5) Mγ : (L
1(Ω), Ln/γ,∞(Ω))1,q;α → (Ln/(n−γ),∞(Ω), L∞(Ω))1,q;α

for all q ∈ [1,∞] and α ∈ R. Here, for a compatible couple of quasi-Banach spaces X0
and X1 satisfying X1 →֒ X0, the interpolation space (X0, X1)θ,q;α, θ ∈ [0, 1], q ∈ [1,∞],
α ∈ R, is the set of all f ∈ X0 such that
(11.6) ‖f‖θ,q;α := ‖t−θ−1/qℓα(t)K(f, t;X0, X1)‖q,(0,1) <∞,
whereK is the PeetreK-functional. Note that, by [EOP2, Sect. 9, Th. 2.2∗], (X0, X1)1,q;α
6= {0} if α+ 1/q < 0, or q =∞ and α = 0.
Since

Ln/(n−γ),∞(Ω) = (L1(Ω), L∞(Ω))γ/n,∞;0,

we deduce from [EOP2, Th. 7.1(v) and Sect. 9] (cf. also [D]) that

(Ln/(n−γ),∞(Ω), L∞(Ω))1,q;α = ((L
1(Ω), L∞(Ω))γ/n,∞;0, L

∞(Ω))1,q;α

= (L1(Ω), L∞(Ω))1,q;α

if α+ 1/q < 0, or q =∞ and α = 0. Moreover, one can easily prove that
(11.7) (L1(Ω), L∞(Ω))1,q;α = L

∞,q(logL)α(Ω)

if α + 1/q < 0, or q = ∞ and α = 0. Consequently, (11.7) implies that the target space
in (11.5) coincides with the space L∞,q(logL)α(Ω), which is a member of the scales of

classical and weak-type Lorentz spaces.
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Now, we are going to identify the source space in (11.5). Since

Ln/γ,∞(Ω) = (L1(Ω), L∞(Ω))(n−γ)/n,∞;0,

we infer from [EvO, Th. 5.9∗ (page 950), Lemma 8.6 and Section 7] (cf. also [D]) that

(11.8) (L1(Ω), Ln/γ,∞(Ω))1,q;α = X2,

where

(11.9) X2 = {f ∈ L1(Ω); ‖f‖X2 := ‖t−1/qℓα(t)‖τγ/nf∗∗(τ )‖∞,(t,1)‖q,(0,1) <∞}.
Thus, by (11.5), (11.7)–(11.9), the operator

(11.10) Mγ : X2 → L∞,q(logL)α(Ω)

is bounded provided that Ω ⊂ Rn is a domain with |Ω| <∞ and the numbers q ∈ [1,∞]
and α ∈ R satisfy

α+ 1/q < 0, or q =∞ and α = 0.
On the other hand, the source space in (11.1) and (11.2) is

(11.11) X1 := L
n/γ,q(logL)α+1/q(Ω).

Consequently, a natural question arises: What is the relationship between the spaces X1
and X2?

First, by [EvO, Lemma 4.9, (6.3) and Sect. 9], we observe that

(11.12) X1 = X2 if q =∞ and α ≤ 0.
Thus, in this case (11.10) reads

(11.13) Mγ : L
n/γ,∞(logL)α(Ω)→ L∞,∞(logL)α(Ω) if α ≤ 0,

which is also a consequence of (11.2) and (11.4).

Second, by [EvO, Th. 4.7(i), (6.3) and Sect. 9], we have

(11.14) X1 →֒ X2 if q ∈ [1,∞) and α+ 1/q < 0.
We would like to know whether X1 $ X2 in (11.14). To this end, first we compare the

fundamental functions ϕXi of the spaces Xi, i = 1, 2 (for the definition of this notion we

refer to [BS, p. 65]). By [OP, Lemma 3.14(i)], ϕX1(t) ≈ tγ/nℓα+1/q(t) for all t ∈ [0, |Ω|].
Moreover, after some calculations one can arrive at

(11.15) ϕX2 ≈ ϕX1 .
Thus, we still do not know whether

(11.16) X1 $ X2 if q ∈ [1,∞) and α+ 1/q < 0.
But (11.15) shows that the spaces X1 and X2 are very close to each other.

If we really can prove that (11.16) holds, then (11.10) gives a better result than (11.1).

Since (11.1) is the best possible result within the scale of Lorentz–Zygmund spaces, this

means that the space X2 is outside that scale.

To verify (11.16), it is sufficient to show (cf. (11.14)) that X2 \X1 6= ∅. To this end,
we shall need a very careful analysis. We start with the following assertion.



44 D. E. Edmunds and B. Opic

Lemma 11.1. Let n ∈ N, γ ∈ (0, n), q ∈ [1,∞) and α + 1/q < 0. Assume that {aj}∞j=1
and {bj}∞j=1 are two strictly increasing sequences of positive numbers with b1 = 1. Put
Aj = e

aj , tj = e
−bj , j ∈ N, and define the function g by

(11.17) g(t) =

∞∑

j=1

Ajχ[tj+1,tj)(t), t ∈ [0,∞).

Moreover , let

‖g‖1 = ‖tγ/n−1/qℓα+1/q(t)g∗(t)‖q,(0,1),(11.18)

‖g‖2 =
∥∥t−1/qℓα(t)‖τγ/ng∗∗(τ )

∥∥
∞,(t,1)

‖q,(0,1).(11.19)

If cj = e
aj−(γ/n)bj , j ∈ N, then

(11.20) ‖g‖q1 ≈
∞∑

j=1

(cjb
α
j )
q bj

[
1− e−(γ/n)q(bj+1−bj)

(
bj
bj+1

)−αq−1]

and

(11.21) ‖g‖2 ≈ V (g) +W (g),
where

[V (g)]q =

∞∑

j=1

(cjb
α
j )
q

[
1− e−(γ/n)q(bj+1−bj)

(
bj
bj+1

)−αq]
,(11.22)

W (g) = ‖t−1/qℓα(t) sup{cj ; j ∈ N & tj > t}‖q,(0,1).(11.23)

Remark 11.2. Let all the assumptions of Lemma 11.1 be satisfied. Then, since bj/bj+1
< 1 and α+ 1/q < 0, estimate (11.20) implies that

(11.24) ‖g‖q1 &
∞∑

j=1

(cjb
α
j )
qbj [1− e−(γ/n)q(bj+1−bj)].

Similarly, from (11.22) we obtain

(11.25) [V (g)]q ≤
∞∑

j=1

(cjb
α
j )
q.

Proof of Lemma 11.1. It is clear that g∗ = g. Together with (11.17), this yields

(11.26) ‖g‖q1 =
∞∑

j=1

Aqj

tj\
tj+1

t(γ/n)q−1ℓαq+1(t) dt.

Moreover, for all j ∈ N,
tj\
tj+1

t(γ/n)q−1ℓαq+1(t) dt =

tj\
0

. . . dt−
tj+1\
0

. . . dt

≈ (tj)(γ/n)qℓαq+1(tj)− (tj+1)(γ/n)qℓαq+1(tj+1)
= (tj)

(γ/n)qℓαq+1(tj)[1− (tj+1/tj)(γ/n)q(ℓ(tj+1)/ℓ(tj))αq+1],
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Aj(tj)
γ/n = eaje−(γ/n)bj = cj , ℓ(tj) = 1− ln tj = 1 + bj ≈ bj ,

(tj+1/tj)
(γ/n)q = e−(γ/n)q(bj+1−bj),

and (11.20) easily follows.

To verify (11.21), we define operators T ,S and R on the set M+(0, 1; ↓) by (cf.
(4.5), (4.7) and (4.8))

(T ϕ)(t) = sup
t<τ<1

τγ/nϕ∗∗(τ ),(11.27)

(Sϕ)(t) = tγ/nϕ∗∗(t),(11.28)

(Rϕ)(t) = sup
t<τ<1

τγ/nϕ∗(τ ).(11.29)

Then (cf. (4.6))

T ≈ S +R onM+(0, 1; ↓).
Since

‖g‖2 = ‖t−1/qℓα(t)(T g)(t)‖q,(0,1),
we see that

(11.30) ‖g‖2 ≈ ‖t−1/qℓα(t)(S g)(t)‖q,(0,1) + ‖t−1/qℓα(t)(Rg)(t)‖q,(0,1) =: I + II.
By (11.28),

I = ‖t−1/qℓα(t)tγ/ng∗∗(t)‖q,(0,1),
which, together with the inequality n/γ > 1, implies that (cf. [OP, Th. 3.16(i)])

I ≈ ‖tγ/n−1/qℓα(t)g∗(t)‖q,(0,1).
Moreover, using the fact that g∗ = g and (11.17), we arrive at

(11.31) I ≈
∞∑

j=1

Aqj

tj\
tj+1

t(γ/n)q−1ℓαq(t) dt,

and the same arguments as those used to calculate ‖g‖1 (cf. (11.31) and (11.26)) show
that

(11.32) I ≈ V (g).
If we prove that

(11.33) II =W (g),

then (11.21) is a consequence of (11.30) and (11.32).

To verify (11.33), we use (11.29) and (11.17), which imply that for all t ∈ (0, 1),
(11.34) (Rg)(t) = sup

j∈N

sup
τ∈(t,1)∩[tj+1,tj)

τγ/nAj .

Let t ∈ (0, 1) and N(t) = {j ∈ N; tj > t}. Then
(t, 1) ∩ [tj+1, tj) 6= ∅ if and only if j ∈ N(t).

Together with (11.34), this yields

(Rg)(t) = sup
j∈N(t)

Aj sup
τ∈(max{t,tj+1},tj)

τγ/n = sup
j∈N(t)

Aj(tj)
γ/n.
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Hence,

II = ‖t−1/qℓα(t) sup
j∈N(t)

Aj(tj)
γ/n‖q,(0,1),

and (11.33) follows since Ajt
γ/n
j = cj for all j ∈ N.

Now, we construct a function g given by (11.17) and such that

(11.35) ‖g‖1 =∞ and ‖g‖2 <∞.
Lemma 11.3. Let n ∈ N, γ ∈ (0, n), q ∈ [1,∞) and α + 1/q < 0. Take ε ∈ (0,min{1/q,
−(α+ 1/q)}), put
(11.36) bj = j, aj = (γ/n)j + (−α− 1/q − ε) ln j, cj = j

−(α+1/q+ε), j ∈ N,

and define g by (11.17). Then (11.35) is satisfied.

Proof. It is easy see that the sequences {aj}∞j=1, {bj}∞j=1 and {cj}∞j=1 given by (11.36)
satisfy the assumptions of Lemma 11.1. Moreover, cj b

α
j = j−(1/q+ε), j ∈ N, which,

together with the fact that 1 + εq > 1, implies
∞∑

j=1

(cjb
α
j )
q =

∞∑

j=1

j−(1+εq) <∞.

This estimate and (11.25) show that

(11.37) V (g) <∞.
Furthermore, (cjb

α
j )
qbj = j

−εq, j ∈ N, and, since εq < 1, we obtain

(11.38)
∞∑

j=1

(cjb
α
j )
q bj =∞.

Our choice of bj , j ∈ N, implies that

1− e−(γ/n)q(bj+1−bj) = 1− e−γ/n > 0 for all j ∈ N,

which, together with (11.38) and (11.24), shows that ‖g‖1 =∞.
Let t ∈ (0, 1) and N(t) = {j ∈ N; tj > t}. Since

tj > t ⇔ j < ln
1

t
,

we have

sup{cj ; j ∈ N(t)} = sup
{
cj ; j ∈ N & j < ln

1

t

}
.

Thus, if j ∈ N(t), then

cj = j
−(α+1/q+ε) <

(
ln
1

t

)−(α+1/q+ε)
< [ℓ(t)]−(α+1/q+ε).

This implies that

(11.39) W (g) = ‖t−1/qℓα(t) sup{cj ; j ∈ N(t)}‖q,(0,1) ≤ ‖t−1/qℓ−ε−1/q(t)‖q,(0,1) <∞
since ε > 0. The inequality ‖g‖2 <∞ now follows from (11.37), (11.39) and (11.21).
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Finally, we are able to verify that

(11.40) X2 \X1 6= ∅.
Indeed, let g be the function from Lemma 11.3. Without loss of generality, we can assume

that |Ω| = 1. By [BS, Chapter 2, Corollary 7.8], there is a function f ∈M(Ω) such that
f∗ = g. This implies that ‖f‖X1 = ‖g‖1 and ‖f‖X2 = ‖g‖2. Therefore, (11.40) is a
consequence of (11.35).

As mentioned above, (11.10) gives a better result than (11.1) since (11.16) holds. The

next theorem provides an interesting characterization of the space X2. In the proof of

this assertion we shall use the following notation: Let f ∈ M(Rn) and let Ω ⊂ Rn be a
domain. Then the symbol f∗ stands for the non-increasing rearrangement of f while f∗Ω
is used to denote the non-increasing rearrangement of the restriction fΩ of the function

f to Ω.

Theorem 11.4. Let n ∈ N, γ ∈ (0, n) and let Ω ⊂ Rn be a domain with |Ω| < ∞.
Assume that the numbers q ∈ [1,∞] and α ∈ R satisfy α+1/q < 0, or q =∞ and α = 0.
Put Y (Ω) = L∞,q(logL)α(Ω) and let X2 = X2(Ω) be the space from (11.9). Then X2 is

the largest rearrangement-invariant Banach function space (abbreviation r.i. B.f.s.) which

is mapped by Mγ into the space Y (Ω).

Proof. First, it is clear that X2 is an r.i. B.f.s. Moreover, by (11.10), X2 is mapped by

Mγ into Y (Ω). Thus, it remains to show that X2 is the largest r.i. B.f.s. with such a

property. To this end, consider another r.i. B.f.s. X = X(Ω) which is mapped by Mγ
into the space Y (Ω). Let f ∈ X. Put ϕ = f∗, choose some point x0 ∈ Ω and define the
function g by

(11.41) g(x) = ϕ(ωn|x− x0|n), x ∈ Rn,

where ωn := |{x ∈ Rn; |x| ≤ 1}|. Then g∗Ω ≤ g∗ = f∗, which implies that ‖gΩ‖X(Ω) ≤
‖f‖X(Ω) <∞. Consequently, gΩ ∈ X(Ω) and, since Mγ maps X(Ω) into Y (Ω), we have
‖MγgΩ‖Y (Ω) <∞. In other words,
(11.42) ‖t−1/qℓα(t)(MγgΩ)∗(t)‖q,(0,1) <∞.
(Note that MγgΩ is defined only on Ω; cf. (9.1).) On the other hand, since Ω is open,

(11.41) and the fact that ϕ = f∗ imply that there is ε ∈ (0, |Ω|) with
g∗Ω(t) = f

∗(t) for all t ∈ (0, ε).
Making use of the ideas of the proof of Lemma 3.5, one can show that there is δ ∈ (0, ε)
such that for all t ∈ (0, δ),

(MγgΩ)
∗(t) & sup

t<τ<δ
τγ/n−1

τ\
0

g∗Ω(σ) dσ = sup
t<τ<δ

τγ/nf∗∗(τ ) & sup
t<τ<1

τγ/nf∗∗(τ ).

Together with (11.42), this yields

∞ > ‖t−1/qℓα(t) sup
t<τ<1

τγ/nf∗∗(τ )‖q,(0,δ) & ‖f‖X2 .

Since f was an arbitrary element of X(Ω), we have proved that X(Ω) ⊂ X2(Ω) and the
proof is complete.
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We conclude this section with the following remark.

Remark 11.5. We have found the space X2 = X2(Ω) by means of limiting real inter-

polation. On the other hand, the proof of Theorem 11.4 clarifies the structure of the

space X2(Ω) (that is, the structure of the largest r.i. B.f.s., which is mapped by Mγ into

Y (Ω)) and shows that the expression defining the norm ‖ · ‖X2(Ω) (and involving the
sharp estimate of the non-increasing rearrangement of Mγf) is quite natural. We have

(cf. (11.9))

(11.43) ‖f‖X2(Ω) = ‖t−1/qℓα(t) sup
t<τ<1

τγ/nf∗∗(τ )‖q,(0,1),

and so (recall that |Ω| <∞)
(11.44) ‖f‖X2(Ω) ≈ ‖ sup

t<τ<∞
τγ/nf∗∗(τ )‖Y (Ω),

where Y (Ω) stands for the (one-dimensional) representation space of the space Y (Ω) (cf.

[BS, pp. 62–64]).

Having in mind formula (11.44) (and its analogues for other operators of harmonic

analysis), the characterization of X2 given in Theorem 11.4 (and its analogues for con-

venient spaces Y (Ω)) and the well known mapping properties of Mγ on some classical

spaces (e.g., on the Lebesgue spaces Lp(Ω) or the Lorentz spaces Lp,q(Ω)), one can

discover equivalent (quasi-)norms on a variety of familiar spaces simply by considering

convenient spaces Y (Ω). For example, such an approach has led to interesting results

mentioned in [EdO], [O2] and [O3].
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