
1. Introduction

Let Ω be a domain in RN , N ≥ 2, and let F = (f1, . . . , fN ) : Ω → RN be a Schwartz

distribution on Ω with values in RN . The divergence operator

div : D′(Ω,RN )→ D′(Ω,R)

and its formal adjoint

curl : D′(Ω,RN )→ D′(Ω,RN×N )

are defined, respectively, by

divF =
∂f1

∂x1
+ . . .+

∂fN

∂xN
, curlF =

[
∂f i

∂xj
− ∂f j

∂xi

]
i,j=1,...,N

.

A div-curl couple on Ω is a pair of distributions Φ = [B,E] satisfying the conditions

divB = 0, curlE = 0.

For each couple Φ = [B,E] ∈ Lp(Ω,RN )×Lq(Ω,RN ), 1 < p, q <∞ and pq = p+ q, it is

possible to consider its norm

|Φ(x)| = (|B(x)|p + |E(x)|q)1/2(1.1)

and its Jacobian

J(x, Φ) = 〈B(x), E(x)〉.(1.2)

A fundamental example is given by considering a mapping f = (f1, . . . , fN ) : Ω → RN
in the Sobolev space W 1,N (Ω,RN ): the vector fields B = ∇f2× . . .×∇fN and E = ∇f1
are respectively in LN/(N−1)(Ω,RN ) and LN (Ω,RN ), and [B,E] is a div-curl couple. In

this case, the inner product 〈B,E〉 is exactly the Jacobian determinant of f .

A div-curl couple Φ ∈ Lp(Ω,RN ) × Lq(Ω,RN ) is called a K-quasiharmonic field if

there exists a distortion function 1 ≤ K = K(x) <∞ such that

|Φ(x)|2 ≤ [K(x) +K−1(x)]J(x, Φ), a.e.

Obviously, if f = (f1, . . . , fN ) ∈W 1,N (Ω,RN ) is a mapping of finite distortion, that is

|Df(x)|N ≤ K(x)J(x, f) a.e.

for some 1 ≤ K(x) <∞, then the couple [B(x), E(x)] ∈ LN/(N−1)(Ω,RN )× LN (Ω,RN )

of the previous example yields a K-quasiharmonic field.

To every solution of an elliptic PDE there corresponds a quasiharmonic field. Consider,

for example, the linear equation

divA(x)∇u = 0

[5]
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where A(x) is a measurable function on Ω with values in the space of symmetric matrices

in RN×N satisfying the ellipticity condition

m(x)|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤M(x)|ξ|2(1.3)

where 0 ≤ m(x) ≤M(x) <∞. It is possible to express condition (1.3) by using just one

inequality

|ξ|2 + |A(x)ξ|2 ≤ K〈A(x)ξ, ξ〉(1.4)

for almost every x ∈ Ω and all ξ ∈ RN , where K = K(x) ≥ 1 depends on the ellipticity

bounds m(x) and M(x).

Inequality (1.4) can be used to formulate the ellipticity condition for the nonlinear

equation

divA(x,∇u) = 0,

namely

|ξ|2 + |A(x, ξ)|2 ≤ K〈A(x, ξ), ξ〉.

Since u is a solution of one of the equations above, the couple Φ = [A(x,∇u),∇u] is a

K-quasiharmonic field in L2(Ω,RN×N ).

The relevance of quasiharmonic fields to the theory of elliptic partial differential equa-

tions is therefore evident.

More generally, we look at an elliptic complex of first order differential operators

D′(RN ,U)
P→ D′(RN ,V)

Q→ D′(RN ,W)(1.5)

where U,V and W are finite-dimensional inner product spaces and the symbols P = P(ξ)

and Q = Q(ξ) are linear functions in ξ = (ξ1, . . . , ξN ) ∈ RN such that

imP(ξ) = kerQ(ξ) for all ξ 6= 0.

Such complexes, called elliptic, can be viewed in many ways as generalizations of the

complex

D′(RN ,R)
∇→ D′(RN ,RN )

curl−→ D′(RN ,RN × RN ).

An elliptic couple associated to the complex (1.5) is a pair

F = [Pα,Q∗β]

where α ∈ W 1,p
loc (Ω,U), β ∈ W 1,p

loc (Ω,W), and Q∗ is the formal adjoint operator of Q.

Notice that if P = ∇ and Q = curl, then the elliptic couple F = [Pα,Q∗β] is none

other than a div-curl couple. Therefore, in analogy with the definitions (1.1) and (1.2),

we introduce the norm

|F| = (|Pα|2 + |Q∗β|2)1/2

and the Jacobian

J(x,F) = 〈Pα,Q∗β〉.

Moreover, an elliptic couple F = [Pα,Q∗β] is called K-quasiharmonic, with 1 ≤ K =

K(x) <∞, if

|F(x)|2 ≤ K(x)J(x,F)
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where K(x) = K(x)+K−1(x) ≥ 2. This more general setting allows us to give a definition

of polyconvexity that can be viewed as a generalization of the classical one.

In analogy with the calculus of variations we prove that

Polyconvexity ⇒ Quasiconvexity ⇒ Rank one convexity.

Continuing this analogy one can conjecture that convexity in singular directions might

imply quasiconvexity. Let us refer the interested reader to Chapter 3 for more details.

Chapter 4 is dedicated to the question of the integrability of the Jacobian determinant

of some Sobolev mappings. Our main result asserts that if f ∈ W 1,N−1(Ω,RN ), N > 2,

is an orientation preserving (reversing) mapping whose cofactor matrix |D]f |N/(N−1) is

in the space LP (Ω), with the function P satisfying the divergence condition

∞�

1

P (t)

t2
dt =∞,

then the Jacobian determinant of f is locally integrable and obeys the rule of integration

by parts
�

Ω

ϕ(x)J(x, f) dx = −
�

Ω

df1 ∧ . . . ∧ df i−1 ∧ f i dϕ ∧ df i+1 ∧ . . . ∧ dfN =: Jf [ϕ](1.6)

for all indices i = 1, . . . , n and all test functions ϕ ∈ C∞0 (Ω).

It is worth pointing out that both nonlinear elasticity and the theory of mappings

of finite distortion are drawn on integral estimates of J(x, f) in terms of D]f . In quasi-

conformal theory the ratio |D]f |N/|J(x, f)|N−1 is none other than the inner distortion

function of f .

Chapter 5 is mainly dedicated to some regularity results for vector fields of bounded

distortion. Starting from some inequalities for div-curl couples, under the assumption of

bounded distortion, we get a family of reverse Hölder inequalities. Applications to the

theory of quasiconformal mappings and PDEs are given. In particular, we recover the

celebrated result of Bojarski concerning higher integrability of functions f = (f1, f2) :

Ω → R2 of bounded distortion:

f ∈W 1,2−ε ⇒ f ∈W 1,2+ε.

The end of this chapter also contains some further regularity results for mappings having

unbounded distortion in the exponential class Expγ(Ω) for some γ > 1.

In Chapter 6, we discuss lower semicontinuity of integral functionals of the type

F (u) =
�

Ω

f(x, u,Lu) dx

where u = (v, w) is a pair of Sobolev functions, f is a nonnegative integrand satisfying

the growth condition

0 ≤ f(x, s, ξ) ≤ c(1 + |ξ|q),

q ≥ p > 1, and Lu = [Pv,Q∗w] with P,Q linear differential operators forming an elliptic

complex.
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The conclusion is dedicated to the lower semicontinuity in the setting of functions of

bounded variation. It is well known that if one considers an integral functional of the type�

Ω

f(x, u(x), Du(x)) dx

with f : Ω ×R×RN → [0,∞], then the convexity in the last variable is needed in order

to have lower semicontinuity in W 1,1(Ω). However, since the first result of this kind

appeared in the celebrated paper by Serrin [55], it is well known that some regularity (or

growth) assumptions on f must be present. In fact, there are counterexamples showing

that the above functional is not lower semicontinuous in L1 if f is merely a Carathéodory

integrand controlled by a term like c(1 + |Du|). In this paper we extend a recent result

by Marcellini–Gori [44] to the BV setting by showing that no growth assumptions on f

are needed, as long as we assume f nonnegative and locally Lipschitz.

2. Requisites from analysis and function spaces

This chapter is dedicated to establishing notation and an exposition of some requisites

from functional analysis.

2.1. Orlicz spaces. The Orlicz spaces turn out to be instrumental in observing and

formulating the phenomenon of higher integrability properties of certain nonlinear differ-

ential quantities such as the Jacobian determinant or, more generally, wedge products of

differential forms.

Let Ω be an open subset of RN . Throughout this text we shall work with the Lebesgue

measure. All functions f : Ω → V with values in a finite-dimensional inner product space

will be measurable.

By an Orlicz function we mean any P : [0,∞]→ [0,∞] continuously increasing from

P (0) = 0 to P (∞) =∞. The Orlicz space, denoted by LP (Ω, V ), consists of all mappings

f : Ω → V such that �

Ω

P (ε|f |) <∞ for some ε = ε(f) > 0.

This is a complete linear metric space in which the distance between f and g is defined

as

dist(f, g) = inf
{
K > 0 :

�

Ω

P (K−1|f − g|) ≤ K
}
.

A slight change in this formula gives us a nonlinear functional on LP (Ω, V ),

‖f‖P = inf
{
K > 0 :

�

Ω

P (K−1|f |) ≤ 1
}
.

In general ‖ · ‖P need not be a norm, but it is a norm whenever P is convex. We refer to

such P as Young function. In this case LP (Ω, V ) becomes a Banach space and ‖ · ‖P is

called Luxemburg norm.
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Taking P (t) = tp/p, 0 < p < ∞, we recover the Lebesgue spaces Lp(Ω, V ) for which

the usual notation is

‖f‖p =
( �

Ω

|f |p
)1/p

.

In order to follow the lead of the Lp spaces, it will be necessary to put some restrictions

on the Orlicz function P . In particular, we assume that P is C∞-smooth and log-convex.

The latter means that P can be represented by the integral

P (t) =

t�

0

%(s)

s
ds

where % ∈ C∞[0,∞) is an increasing function with %(0) = 0 and %(∞) =∞. For example

%(s) = sp with p > 0. Without loss of generality we can normalize P by requiring %(1) = 1.

Note that the inverse function %−1 : [0,∞)→ [0,∞) also meets those conditions.

Now, given a set of such functions, say {%1, . . . , %k}, it is legitimate to define % by the

equation

%−1(t) = %−11 (t) . . . %−1k (t).

Then the corresponding Orlicz functions

P (t) =

t�

0

%(s)

s
ds, Pi(t) =

t�

0

%i(s)

s
ds, i = 1, . . . , k,

satisfy Young’s inequality

P (t1, . . . , tk) ≤ P1(t1) . . . Pk(tk)

for all nonnegative numbers t1, . . . , tk. Because of this we refer to P as Young’s conjuga-

tion of P1, . . . , Pk.

The inequality above proves extremely useful in deriving the following analogue of

Hölder’s inequality: ∥∥|f1| . . . |fk|∥∥P ≤ ‖f1‖P1
. . . ‖fk‖Pk

for fi ∈ LPi(Ω, Vi) with i = 1, . . . , k.

Now a complementary couple (P1, P2) is a pair of Orlicz functions for which P defined

as above is the identity function. Many analytically pleasing functions fail to be increasing.

To handle this problem we introduce the following concept.

Two functions Φ, Ψ ∈ C∞[0,∞) are said to be equivalent if for every ε > 0 there

exists a constant K = K(ε) ≥ 1 such that

Ψ

(
t

K

)
≤ εΦ(t) ≤ Ψ(Kt), t ≥ 0.

Denote it briefly Φ ∼ Ψ .

When two equivalent functions happen to be increasing they yield the same Orlicz

space.

Basic examples we can recall are the Zygmund classes, corresponding to P (t) ∼
tp logα(e+t), p ≥ 1 and α ∈ R. These spaces are traditionally denoted by Lp logα L(Ω, V ).

Furthermore, for each λ ∈ R and 1 < p, q < ∞, 1/p + 1/q = 1, the pair P (t) ∼
tp logλp(e+ t) and Q(t) = tq log eλq(e+ t) is a complementary couple; the complementary
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function to P (t) = t logα(e + t), α > 0, is a function Q(t) ∼ exp(t1/α) − 1. Finally, Ψ is

stronger than Φ, Ψ 4 Φ for short, if for every ε > 0 there exists K = K(ε) > 0 such that

Φ(t) ≤ εΨ(t) ∀t ≥ 0.

We write Ψ ≺ Φ if Ψ is stronger than Φ but they are not equivalent.

2.2. Schwartz distributions. For an arbitrary set Ω ⊂ RN we denote by C∞0 (Ω) the

algebra of all infinitely differentiable functions φ : RN → RN with compact support

contained in Ω.

The N -term multiindex is any ordered system α = (α1, . . . , αN ) of nonnegative inte-

gers α1, . . . , αN . The length of α is defined as |α| = α1 + . . . + αN . The differential of

order α is the operator ∂α = ∂α1+...+αN /∂xα1
1 . . . ∂xαNN which can be applied to suffi-

ciently smooth functions.

Let Ω be an open set of RN and V a finite-dimensional inner product space. A

distribution f in Ω with values in V is a linear form f : C∞0 (Ω)→ V such that for every

compact set K ⊂ Ω and any test function φ ∈ C∞0 (K) we have the estimate

f [φ] ≤ C(K)
∑
|α|≤m

‖∂αφ‖∞.

In general, the integer m may depend on the compact set K. If not, we say that f has

finite order in Ω, and the smallest such integer m is called the order of f in Ω. The space

of all distributions will be denoted by D′(Ω,V).

It is immediate from the definition above that the space of distributions in Ω is com-

plete under pointwise convergence. Specifically, given a sequence {fj} of distributions inΩ

such that limj→∞ fj [φ] exists for every test function φ ∈ C∞0 (Ω), define f : C∞0 (Ω)→ V

by f [φ] = limj→∞ fj [φ]. Then f ∈ D′(Ω,V), as is easy to see. We then say that

f = lim
j→∞

fj in the sense of distributions.

This simple notion of convergence has far reaching applications.

The reason for calling elements of D′(Ω,V) generalized functions is that every locally

integrable function f ∈ L1
loc(Ω,V) can be viewed as a distribution (of order zero), defined

by the rule

φ 7→
�

Ω

φ(x)f(x) dx for φ ∈ C∞0 (Ω).

Hence the notation L1
loc(Ω,V) ⊂ D′(Ω,V).

Quite often locally integrable functions are referred to as regular distributions. Al-

though it is not apparent at this point, the regular distributions are dense in D′(Ω,V).

Of fundamental importance is the Dirac delta δa ∈ D′(Ω) at the point a ∈ Ω which

assigns to each φ ∈ C∞0 (Ω) its value at a, δa[φ] = φ(a). It has order zero but it is not a

regular distribution.

Distributions of order zero, like the Dirac delta, are all represented by integration

with respect to a suitable V-valued Radon measure on Ω. This fact is usually referred to

as the Riesz representation theorem. It asserts that each f ∈ D′(Ω,V) can be written as

f [φ] =
�

Ω

φ(x) dµ(x) for all φ ∈ C∞0 (Ω).
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Also, let us recall that a Radon measure µ on Ω is such that the absolute value |µ| is a

Borel measure which is finite on compact subsets. In this way we identify Radon measures

with distributions of order zero. The regular distributions are the ones having no singular

part with respect to the Lebesgue measure. A distribution f ∈ D′(Ω,R) is said to be

positive if f [φ] ≥ 0 whenever φ ≥ 0. Positive distributions have order zero, and therefore

are represented by Borel measures.

Let f ∈ C∞(Ω,V). By integration by parts we have
�

Ω

φ(∂αf) = (−1)|α|
�

Ω

(∂αφ)f ∀φ ∈ C∞0 (Ω).

This procedure can be extended to all f ∈ D′(Ω,V) by setting

∂αf [φ] = (−1)|α|f [∂αφ].

Let us point out that the original purpose of the theory of distributions was to make

it possible to differentiate locally integrable functions. From this point of view Schwartz

distributions offer us the most economical extension of the space L1
loc(Ω,V) carrying out

this task.

2.3. The maximal operator. The concept of the maximal function can be traced back

to G. H. Hardy and J. E. Littlewood [31] and has been under study since then. This is

partly due to the interest in Fourier analysis.

The objective of the present section is to describe some maximal inequalities that are

crucial for the higher integrability results in PDEs and quasiconformal mappings.

Let Q0 be a fixed cube in RN with sides parallel to the axes, and, for every set E ⊂ Q0,

denote by |E| the Lebesgue measure of E and by |f |Q the integral mean of |f | over E:

|f |E =
1

|E|

�

E

|f(x)| dx =
�

E

|f(x)| dx.

For f ∈ L1(Q0) define the local maximal function

Mf(x) = sup
Q⊂Q0

{ �

Q

|f(y)| dy
}
∀x ∈ Q0

where the supremum extends over all cubes Q ⊂ Q0 containing x with sides parallel to

the coordinates axes. Note that the maximal operator is sublinear and homogeneous, that

is, M(f + g) ≤Mf +Mg and M(λf) = λ(Mf) for all λ ≥ 0.

The Hardy–Littlewood maximal theorem plays a fundamental role in the theory of

maximal functions. It ensures higher degree of integrability of some functions f as com-

pared to that of Mf . In particular, it asserts that if f ∈ L logL(Q0) then Mf ∈ L1(Q0).

In [56] E. M. Stein showed that the converse of this theorem is also true; namely he

proved that �

Q0

|f(x)| log

(
e+
|f(x)|
|f |Q0

)
dx ≤ 2N

�

Q0

Mf(x) dx

for all f ∈ L logL(Q0), f 6= 0.
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The following estimate strengthens the maximal theorem:

|{x ∈ Q0 : Mf(x) > 2t}| ≤ c(N)

t

�

|f |>t

|f(x)| dx(2.1)

for all f ∈ L1(Q0). This is a simple consequence of the weak-type inequality

|{x ∈ Q0 : Mg(x) > t}| ≤ c(N)

t

�

Q0

|g(x)| dx(2.2)

applied to

g(x) =

{
f(x) if x ∈ Q0 ∩ {|f | > t},
0 otherwise,

where we notice that Mf(x) ≤ t+Mg(x), so

{x ∈ Q0 : Mf(x) > 2t} ⊂ {x ∈ Q0 : Mg(x) > t}.

The proof of (2.2) involves Vitali’s covering lemma.

Notice that an inverse estimate also holds, namely

|{x ∈ Q0 : Mf(x) > 2t}| ≥ c(N)

t

�

|f |>t

|f(x)| dx.(2.3)

The proof of (2.3) is obtained using the well known Calderón–Zygmund decomposition

lemma.

2.4. Hardy spaces. Delicate cancellation properties of various nonlinear differential

and integral forms cannot be discussed without introducing the Hardy spaces. It is the

objective of this section to give a brief account of these spaces.

The Hardy space H1(RN ), introduced by E. Stein and G. Weiss in [57], can be char-

acterized as follows (see [13], [8]):

H1(RN ) = {f ∈ L1(RN ) : sup
t≥0
|ht ? f | ∈ L1(RN )}

where ht = 1/tNh(·/t), h ∈ C∞0 (RN ), h ≥ 0, supph ⊂ B(0, 1).

Notice, of course, that H1(RN ) is a proper subspace of L1(RN ). In particular in [7] the

authors proved that H1(RN ) is the minimal linear subspace of L1(RN ) which contains

the range of the mapping

f ∈W 1,N (RN ,RN ) 7→ detDf ∈ L1(RN ).

In this connection it is worth introducing also the function spaces BMO and VMO.

Definition 2.1. A function h ∈ L1
loc(RN ) is said to have bounded mean oscillations if

‖h‖BMO = sup
Q⊂RN

�

Q

|h(x)− hQ| dx <∞.

Observe that ‖ · ‖BMO is a norm in the space BMO(RN ) modulo constant functions.

Clearly, bounded functions lie in BMO(RN ), but they are not dense.

Indeed, for example, it is possible to show that the function h(x) = log |x| on the

real line has bounded mean oscillation, but cannot be approximated in BMO by bounded

functions.
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The closure of C∞0 (RN ) in the BMO-norm is the space VMO(RN ) introduced by

Sarason [53]. It consists of functions with vanishing mean oscillations.

Precisely, this space is characterized by the condition:

lim
Q⊂RN

�

Q

|h− hQ| = 0, uniformly as |Q|+ |Q|−1 →∞.

In words, the infinitesimal oscillations of h vanish everywhere.

Finally, there are two central facts we want to note here. The first is the result of

Coifman and Rochberg [9] asserting that the logarithm of a maximal function belongs

to BMO with norm bounded by a universal constant. Thus the maximal operator has a

certain smoothing property.

Theorem 2.2. Let µ be a Radon measure on Ω, an open domain in RN , such that Mµ

is finite at some point ; consequently at almost every point. Then

‖log(Mµ)‖BMO(Ω) ≤ C(N).

The second is the duality theorem of C. Fefferman which states that BMO(RN ) is the

dual space of H1(RN ), and also a result of Sarason asserting that H1(RN ) is the dual

space of VMO(RN ). In particular, we note the following

Proposition 2.3 (H1-BMO duality). There is a constant C = C(N) such that if h ∈
H1(RN ) and b ∈ L∞(RN ), then∣∣∣ �

RN
h(x)b(x) dx

∣∣∣ ≤ C(N)‖h‖H∞‖b‖BMO.

3. Elliptic complexes

3.1. Introduction. The aim of this chapter is to discuss and develop my recent joint

paper with A. Verde [21] in which we have continued, from a more general perspective,

some themes discussed in [39] where the theory of quasiharmonic fields is formulated

using singular integrals, in particular the N -dimensional Hilbert transform. This more

general setting provides a better understanding of several unanswered questions in [39],

especially those concerning the Lp-norm of the Hilbert transform and sharp estimates for

elliptic PDEs.

We start with an exposition of some basic definitions and concepts that will be useful

in what follows.

Let Ω be a domain in RN , N ≥ 2. We shall consider Schwartz distributions on Ω

with values in RN , including the Lebesgue space Lp(Ω,RN ), 1 ≤ p <∞, equipped with

the norm

‖F‖p =
( �

Ω

|F (x)|p dx
)1/p

.

If F ∈ D′(Ω,RN ) we can speak of its differential

DF = [∂f i/∂xj ] ∈ D′(Ω,RN×N ).
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Then F is said to be in the Sobolev class W 1,p(Ω,RN ) provided DF ∈ Lp(Ω,RN×N ).

Let us emphasize explicitly that in this definition we do not require F itself to be in

Lp(Ω,RN ).

Clearly, W 1,p(Ω,RN ) is a Banach space equipped with the seminorm

‖F‖1,p =
( �

Ω

|DF (x)|p dx
)1/p

.

The following two operators will be of fundamental importance to the arguments pre-

sented later: the divergence operator

div:D′(Ω,RN )→ D′(Ω,R)

defined by

div f =
∂f1

∂x1
+ . . .+

∂fN

∂xN
for f = (f1, . . . , fN ),

and its formal adjoint, denoted by curl:D′(Ω,RN ) → D′(Ω,RN×N ), which is a matrix

distribution

curlF =

[
∂f i

∂xj
− ∂f j

∂xi

]
, i, j = 1, . . . , N.

Note that a vector field F = (f1, . . . , fN ) of divergence zero and curl zero (irrotational

field) satisfies the generalized Cauchy–Riemann system{
∂f1/∂x1 + . . .+ ∂fN/∂xN = 0,

∂f i/∂xj = ∂f j/∂xi, i, j = 1, . . . , N.
(3.1)

Locally, such a field F is the gradient of a harmonic function, which makes it a C∞-

smooth vector field in Ω. However, distributions which are only divergence free or curl

free need not be even locally integrable. The duality between div and curl can be stated

as �

Ω

〈B(x), E(x)〉 dx = 0

whenever B,E are divergence free and curl free vector fields in Lq(Ω,RN ) and Lp(Ω,RN )

respectively, where 1 ≤ p, q ≤ ∞ is any Hölder conjugate pair.

Definition 3.1. A div-curl couple on Ω consists of a pair of distributions Φ = [B,E]

with divB = 0 and curlE = 0.

A div-curl couple Φ = [B,E] which satisfies the equation B = E consists of two

copies of a vector field satisfying the system of the Cauchy–Riemann equations (3.1), and

because of this we refer to such a couple as a harmonic field. Denote by Hp(Ω,RN×N ),

1 ≤ p ≤ ∞, the Lp-space of div-curl couples. This space is easily seen to be a closed

subspace of Lp(Ω,RN×N ). For Φ = [B,E] ∈ Hploc(Ω,RN×N ) we can introduce the norm

|Φ| = (|B(x)|2 + |E(x)|2)1/2

and the Jacobian

J(x, Φ) = 〈B(x), E(x)〉.

Clearly, we have 2J(x, Φ) ≤ |Φ|2, where equality occurs if and only if B = E.
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Definition 3.2. A div-curl couple Φ = [B,E] ∈ Hploc(Ω,RN×N ) is called a K-quasihar-

monic field with distortion 1 ≤ K = K(x) <∞ if

|Φ(x)|2 ≤ (K(x) +K−1(x))J(x, Φ) a.e.(3.2)

The distortion functionK = K(x) tells us how far Φ is from a harmonic field. Precisely,

inequality (3.2) yields

|Φ−(x)| ≤ K(x)− 1

K(x) + 1
|Φ+(x)|

where the ± components of Φ are defined by the rules

Φ− =
1

2
(E −B), Φ+ =

1

2
(E +B).

Hence, harmonic fields are precisely those with the vanishing minus component, corre-

sponding to K(x) ≡ 1 (no distortion).

Example 3.3. Let f = (f1, . . . , fN ) : Ω → RN be a mapping whose coordinates f i are

in W 1,pi(Ω) where 1 < p1, . . . , pN <∞. With f we associate two vector fields E = ∇f1
and B = ∇f2 × . . . × ∇fN . The latter stands for the cross product of N − 1 gradient

fields in RN .

It is well known that divB = 0 provided 1/p2 + . . .+1/pN ≤ 1. The product 〈B,E〉 is

none other than the Jacobian determinant of f , that is, 〈B,E〉 = det(Df(x)) = J(x, f).

Thus the couple Φ = [B,E] is a quasiharmonic field if and only if

|∇f1|2 + |∇f2 × . . .×∇fN |2 ≤ (K(x) +K−1(x)) det(Df).

Example 3.4. Let f : Ω×RN → R be a Carathéodory function such that for a.e. x ∈ Ω
the function ξ ∈ RN → f(x, ξ) is convex. Denote by f∗(x, η) = sup{〈η, ξ〉 − f(x, ξ); ξ ∈
RN} the Young conjugate of f(x, ·). Throughout this example we assume the quadratic

growth and coercivity condition which we express by a single inequality

|ξ|2 + |η|2 ≤ (K +K−1)[f(x, ξ) + f∗(x, η)]

where K ≥ 1. Let u ∈W 1,2(Ω) be a local minimum of the variational integral

I[v] =
�

Ω

f(x,∇v) dx.

Precisely we mean that I[u] = min{I[v] : v ∈ u + W 1,2
0 (Ω)}. Consider the solution B ∈

L2(Ω,RN ) of the dual problem in the sense of Ekeland–Temam [12]. That is, divB = 0

in Ω and�

Ω

[〈B,∇u〉 − f∗(x,B)] = max
{ �

Ω

[〈X,∇u〉 − f∗(x,X)] : X ∈ L2(Ω,RN ),divX = 0
}
.

Then the extremality relation takes the form

〈B,∇u〉 = f(x,∇u) + f∗(x,B) a.e. in Ω.

Setting E = ∇u we obtain the K-quasiharmonic field [B,E], which satisfies the distortion

inequality

|B|2 + |E|2 ≤ (K +K−1)〈B,E〉.
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Given a vector field F = (f1, . . . , fN ) ∈ Lp(RN ,RN ), consider the Poisson equation

F = ∆U = (∆u1, . . . ,∆uN )(3.3)

for U = (u1, . . . , uN ) ∈ D′(RN ,RN ). Equation (3.3) yields the div-curl (also known as

Hodge) decomposition of F :

F = B + E

where

B = ∆U +∇ divU, E = ∇divU.

These fields are easily seen to be divergence and curl free, respectively.

Explicit calculations are possible by means of the Riesz transform

R : Lp(RN )→ Lp(RN ,RN )

where

(Rf)(x) =
Γ
(
N+1
2

)
πN+1

2

�

RN

(x− y)f(y)

|x− y|N+1
dy

for which the following identities hold:

∂2U

∂xi∂xj
= −Ri,j(F ) ∈ Lp(Rn × Rn) for i, j = 1, . . . , N

where Ri,j = Ri ◦Rj are the second order Riesz transforms.

Next, F can also be written as

F = ∇(divU) + div(curlU).

Note that the divergence of the matrix function curlU is a vector field whose coordinates

are obtained by simply computing the divergence of the column vectors of this matrix.

For fixed F ∈ Lp(RN ,RN ), we can also define an N -dimensional version of the Hilbert

transform by

S(F ) = E −B.

Thus S acts as identity on gradient fields and as minus identity on divergence free vector

fields. Let us list basic properties of the operator S:

(i) S is an involution, that is, S ◦ S = I.

(ii) S is self-adjoint, that is, �

RN
〈SF,G〉 =

�

RN
〈F,SG〉

for F ∈ Lp(RN ,RN ) and G ∈ Lq(RN ,RN ), with 1 < p, q <∞, p+ q = pq.

Thus, in particular

(iii) S is an isometry in L2(RN ,RN ).

The calculation of its p-norms remains an open problem, even in the case N = 2. A

lot of implications in the regularity theory of PDEs would follow if the exact value of

‖S‖p could be established.
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The setting presented in [21] is the one of elliptic complexes of the first order differ-

ential operators

D′(RN ,U)
P→ D′(RN ,V)

Q→ D′(RN ,W)

where U,V and W are finite-dimensional inner product spaces.

Such complexes are viewed, in many ways, as generalizations of the classical exact

sequence of the gradient and rotation operator

D′(RN ,R)
∇→ D′(RN ,RN )

curl−→ D′(RN ,RN×N ).

3.2. Elliptic complexes. Let U, V and W be finite-dimensional vector spaces over the

field of real numbers. We assume that they are equipped with inner products.

We consider a sequence of differential operators of first order in N independent vari-

ables with constant coefficients

D′(RN ,U)
P→ D′(RN ,V)

Q→ D′(RN ,W).(3.4)

More precisely, if u ∈ D′(RN ,U) and v ∈ D′(RN ,V), then

Pu =

N∑
k=1

Ak
∂u

∂xk
, Qv =

N∑
k=1

Bk
∂v

∂xk
,(3.5)

where Ak ∈ L(U,V) and Bk ∈ L(V,W) for k = 1, . . . , N . The symbols P = P(ξ)

and Q = Q(ξ) are linear functions in ξ = (ξ1, . . . , ξN ) ∈ RN valued in L(U,V) and in

L(V,W), respectively. They are given explicitly by

P(ξ) =

N∑
k=1

ξkAk, Q(ξ) =

N∑
k=1

ξkBk.(3.6)

The complex (3.4) is said to be elliptic if the sequence of symbols

U
P(ξ)−→ V

Q(ξ)−→W(3.7)

is exact, i.e.

imP(ξ) = kerQ(ξ) for all ξ 6= 0.(3.8)

The dual sequence consists of the formal adjoint operators

D′(RN ,U)
P∗←− D′(RN ,V)

Q∗←− D′(RN ,W),(3.9)

P∗v = −
N∑
k=1

A∗k
∂v

∂xk
, Q∗w = −

N∑
k=1

B∗k
∂w

∂xk
.(3.10)

Since inner products on U, V and W have been given, the dual spaces U∗, V∗ and W∗

are identified with U, V and W, respectively. The dual complex is elliptic if the original

complex is.

Given an elliptic complex we define the associated Laplace–Beltrami operator

−∆ = PP∗ +Q∗Q : D′(RN ,V)→ D′(RN ,V).(3.11)

Its symbol is a quadratic form with values in L(V,V),

∆(ξ) =
( N∑
j=1

ξjAj

)
◦
( N∑
k=1

ξkA
∗
k

)
+
( N∑
j=1

ξjB
∗
j

)
◦
( N∑
k=1

ξkBk

)
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=

N∑
j,k=1

ξjξk(AjA
∗
k +B∗jBk)

=

N∑
j,k=1

ξjξk(AjA
∗
k +AkA

∗
j +B∗jBk +B∗kBj).

If we fix an arbitrary vector field F = (f1, . . . , fN ) ∈ L2(RN ,V), we can solve the Poisson

equation

∆ϕ = F(3.12)

for ϕ whose second derivatives are L2-integrable on RN . As a matter of fact, these deriva-

tives can be expressed in terms of F by using singular integrals. Indeed it is possible to

prove that
∂2ϕ

∂xi∂xj
=

�

RN
Kij(x− y)F (y) dy(3.13)

where Kij(x): V → V are Calderón–Zygmund type singular integrands. The Lp-theory

yields ∥∥∥∥ ∂2ϕ

∂xi∂xj

∥∥∥∥
p

≤ cp‖F‖p for 1 < p <∞.(3.14)

Next observe that for every vector v ∈ V, we have

〈∆(ξ)v, v〉 =
∑
j,k

ξjξk〈AjA∗kv, v〉+
∑
j,k

ξjξk〈B∗jBkv, v〉 =
∑
j,k

ξjξk[〈A∗kv,A∗jv〉+〈Bkv,Bjv〉]

=
∣∣∣∑
j

ξjA
∗
jv
∣∣∣2 +

∣∣∣∑
j

ξjBjv
∣∣∣2 = |P∗(ξ)v|2 + |Q(ξ)v|2 ≥ 0.

It is important to realize that equality occurs if and only if v = 0. Indeed,

{P∗(ξ)v = 0 and Q(ξ)v = 0} ⇔ {v ∈ kerQ(ξ) and v ∈ kerP∗(ξ)}.

By ellipticity of the complex (3.4), kerQ(ξ) = imP(ξ). It is well known in algebra that

imP(ξ) is orthogonal to kerP∗(ξ), therefore the vector v, being orthogonal to itself, is

zero. Summarizing, the operator ∆(ξ): V→ V is positive for ξ 6= 0.

In analogy with the div-curl decomposition of a vector field, the Poisson equation

F = ∆ϕ(3.15)

for ϕ ∈W 2,p(RN ,V), 1 < p <∞, yields a decomposition of F ,

F = Pu+Q∗w(3.16)

where u = P∗ϕ ∈W 1,p(RN ,U) and w = Qϕ ∈W 1,p(RN ,W). In view of (3.14) we have

the following estimate:

‖∇u‖p + ‖∇w‖p ≤ cp‖F‖p.(3.17)

Lemma 3.5 (orthogonality property). For α ∈ W 1,p(RN ,U) and β ∈ W 1,q(RN ,W),

1/p+ 1/q = 1, the vector fields Pα ∈ Lp(Rn,V) and Q∗β ∈ Lq(RN ,V) are orthogonal.

Proof. Using the equality imP = kerQ, we have�
〈Pα,Q∗β〉 =

�
〈QPα, β〉 = 0
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if α ∈ W 2,p(RN ,U) and β ∈ W 1,q(RN ,W), with 1/p + 1/q = 1. Since W 2,p(RN ,U) is

dense in W 1,p(RN ,U), the lemma follows by an approximation.

By this lemma, we are able to prove

Theorem 3.6. Each vector field F ∈ Lp(Rn,V), 1 < p <∞, admits a unique decompo-

sition

F = Pu+Q∗w(3.18)

with u ∈W 1,p(Rn,U) and w ∈W 1,p(Rn,W). In symbols,

Lp(Rn,V) = PW 1,p(Rn,U)⊕Q∗W 1,p(Rn,W).(3.19)

We also have a uniform bound for the components,

‖Pu‖p + ‖Q∗w‖p ≤ Cp‖F‖p.(3.20)

Remark 3.7. Let us emphasize explicitly that u,w need not be unique, only their images

Pu and Q∗w are unique.

In case of the elliptic complex

D′(RN , Λ)
d→ D′(Rn, Λ)

d→ D′(RN , Λ)

formula (3.18) provides us with the familiar decomposition of a differential form as a sum

of an exact and coexact form (no harmonic fields in RN ). Because of this analogy we call

(3.18) the Hodge decomposition associated with the given elliptic complex.

It is also possible to develop a theory of Hodge decomposition on domains Ω ⊂ RN .

But this requires some regularity of Ω if one wants to go beyond L2-theory. The interested

reader can consult [24] and the references given there.

The following inequalities allow us to improve regularity of some distributions without

affecting their image under the operator Q or P∗, respectively.

Lemma 3.8. For each distribution F ∈ D′(RN ,V) with QF ∈ L2(RN ,W), there exists

F0 ∈ kerQ such that F − F0 ∈W 1,2(RN ,V) and we have a uniform bound

‖F − F0‖1,2 ≤ C‖QF‖2.

We argue similarly for the dual statement.

Lemma 3.9. For each distribution F ∈ D′(RN ,V) with P∗F ∈ L2(RN ,W), there exists

F0 such that P∗F0 = 0 and F − F0 ∈W 1,2(RN ,V) and we have a uniform bound

‖F − F0‖1,2 ≤ C‖P∗F‖2.

Proof of Lemma 3.8. By Hodge decomposition,

F = PP∗ϕ+Q∗Qϕ.

Consider F0 = F − Q∗Qϕ. Then QF0 = 0 and F − F0 = Q∗Qϕ ∈ L2(Rn,V). Hence

Q(F − F0) = QF ∈ L2. Applying the Fourier transform we find that Q(ξ)Φ̂(ξ) ∈ L2 and

P∗(ξ)Φ̂(ξ) ∈ L2, where we have set Φ = F − F0.

Let us observe the following inequality:

|Q(ξ)y|+ |P∗(ξ)y| ≥ c0|ξ| · |y|
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with a positive constant c0. In fact, suppose that |ξ| = 1 , |y| = 1 (by homogeneity).

If Q(ξ)y = 0 and P∗(ξ)y = 0, then y ∈ kerQ(ξ) ∩ kerP∗(ξ). This implies that y = 0,

contradicting the assumption that y was a unit vector.

Applying the above inequality to Φ̂(ξ) we have

c0|ξ| · |Φ̂(ξ)| ≤ |Q(ξ)Φ̂(ξ)|+ |P∗(ξ)Φ̂(ξ)|.

This implies |ξ|Φ̂(ξ) ∈ L2. Hence Φ ∈W 1,2(RN ,V) and

‖Φ‖1,2 ≤ c(N)‖QF‖2.

Let us mention that certain Lp-variants of the above inequalities are also available.

Guided by [39], we define the Hilbert transform S:Lp(RN ,V) → Lp(RN ,V) by the

rule

SF = Pu−Q∗w(3.21)

with the following properties:

(i) S is an involution;

(ii) S is self-adjoint;

(iii) S is an isometry in L2(RN ,RN ).

Let us stress again that one fundamental question of interest in the Lp-theory of PDEs

concerns the sharp constant in the inequality

‖SF‖p ≤ Ap‖F‖p, 1 < p <∞.(3.22)

Several examples suggest the following conjecture of Iwaniec [34]:

Ap = max

{
p− 1,

1

p− 1

}
.(3.23)

The interested reader is referred to Burkholder’s work [6] to find that inequality (3.22)

with constant (3.23) would follow if one proves that

E [F ] =
�
[Ap|SF | − |F |][|SF |+ |F |]p−1 ≥ 0.(3.24)

A reason for preferring (3.24) to the inequality (3.22) is that the latter functional is

convex in the so-called singular directions (see Section 4 for the definition). In light of

the conjecture at (3.23) it may very well be that E is also quasiconvex and, consequently,

inequality (3.24) would follow.

3.3. Elliptic couples and quasiharmonic fields. Following the definitions in [39] we

study an extension of the notion of div-curl couples. An elliptic couple is the pair

F = [Pα,Q∗β]

where α ∈ W 1,p
loc (Ω,U) and β ∈ W 1,p

loc (Ω,W). Here Ω is any domain in RN , N ≥ 2,

and 1 < p < ∞. The Lp-space of elliptic couples [Pα,Q∗β] with α ∈ W 1,p(Ω,U), and

β ∈ W 1,p(Ω,W), denoted by Ep(Ω,V × V) , 1 < p < ∞, is a closed subspace of

Lp(Ω,V ×V).

Furthermore, we introduce the norm

|F(x)|2 = |Pα|2 + |Q∗β|2



Elliptic complexes in the calculus of variations 21

and the Jacobian

J(x,F) = 〈A(x), B(x)〉V = 〈Pα,Q∗β〉

for x ∈ Ω. Then the following, rather obvious, relation can be viewed as an analogue of

the Hadamard inequality for determinants:

2J(x,F) ≤ |F(x)|2.

Definition 3.10. An elliptic couple F = [Pα,Q∗β] is called K-quasiharmonic with

1 ≤ K = K(x) <∞ if

|F(x)|2 ≤ K(x)J(x,F)

where K(x) = K(x) +K−1(x) ≥ 2.

This inequality yields

|F−(x)| ≤ K(x)− 1

K(x) + 1
|F+(x)|

where the ± components of F are defined by the rules

F− = 1
2 (Pα−Q∗β), F+ = 1

2 (Pα+Q∗β).

The following result on higher integrability for the Jacobian is desired.

Theorem 3.11. Let F ∈ L2(Ω,V ×V) be an elliptic couple. Then J(x,F) ∈ H1
loc(Ω).

We only sketch the proof as it is similar to the one in [7].

Proof. Fix an arbitrary subdomain Ω′ compactly contained in Ω, and fix an arbitrary

η ∈ C∞0 (Ω) which is equal to 1 on Ω
′
. For each test function ϕ ∈ C∞0 (Ω

′
) we shall

estimate the integral of the Jacobian�

Ω

ϕ(x)J(x,F) dx =
�

Ω

〈ϕPα,Q∗β〉 =
�

RN
〈ϕP(ηα),Q∗(ηβ)〉

because η equals 1 on the support of ϕ.

Now, we use Hodge decomposition in the entire space RN to write

ϕP(ηα) = Pα′ +Q∗β′.

Observe that the component Q∗β′ can be expressed as a singular integral of ϕP(ηα),

say Q∗β′ = B[ϕP(ηα)]. The singular integral operator B : Lp(RN ,V) → Lp(RN ,V),

projection onto Q∗W 1,p(RN ,W) ⊂ Lp(RN ,V), is bounded for all 1 < p < ∞. It is also

important to observe that B vanishes on the subspace PW 1,p(Rn,U). Therefore, we can

look at Q∗β′ as the image of P(ηα) under the commutator of B with the multiplication

by ϕ, namely

Q∗β′ = (Bϕ− ϕB)(P(ηα)).

Next, we apply the celebrated commutator result of R. Coifman, R. Rochberg and

G. Weiss [8], which implies that

‖Q∗β′‖2 ≤ C(N)‖ϕ‖BMO‖P(ηα)‖2.

Since Pα′ is orthogonal to Q∗(ηβ), by Hölder’s inequality we obtain�

Rn
ϕ(x)J(x,F) dx =

�

Rn
〈Pα′,Q∗(ηβ)〉+

�

Rn
〈Q∗β′,Q∗(ηβ)〉 ≤ ‖Q∗β′‖2‖Q∗(ηβ)‖2
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≤ C(N)‖ϕ‖BMO‖P(ηα)‖2‖Q∗(ηβ)‖2 ≤ c(N, η)‖ϕ‖BMO‖F‖22.
In conclusion, �

Ω

ϕ(x)J(x,F)dx ≤ C(N, η)‖ϕ‖BMO‖F‖22.

In view of the BMO-H1 duality it follows that J(x,F) ∈ H1
loc(Ω). We also have the

following local bounds:
‖J(x,F)‖H1(Ω′) ≤ CΩ′‖F‖22.

Further, if J(x,F) ≥ 0, by Theorem of E. Stein [56] we find that the Jacobian belongs

to the Zygmund class L logLloc(Ω).

Just as in the theory of quasiconformal mappings, constructions of quasiharmonic

fields rely on limiting processes. Therefore it is of interest to know that such fields are

closed under weak convergence. The following theorem addresses this issue.

Theorem 3.12. Let Fν be a sequence of quasiharmonic fields converging to F weakly

in L2(Ω,V ×V) and suppose that the distortion functions Kν converge to K weakly in

L1(Ω). Then F is a quasiharmonic field of distortion K.

For the proof we will need the following two lemmas.

Lemma 3.13 (lower semicontinuity of the norm). For every η ∈ L∞(Ω), η ≥ 0 and Fν
converging to F weakly in L2(Ω,V ×V),�

Ω

η(x)|F(x)| dx ≤ lim inf
ν→∞

�

Ω

η(x)|Fν(x)| dx.

Lemma 3.14 (weak continuity of the Jacobian). Under the assumptions of Theorem

3.12, for every λ ∈ L∞• (Ω),�

Ω

λ(x)J(x,F) dx = lim
ν→∞

�

Ω

λ(x)J(x,Fν) dx.

Hereafter L∞• (Ω) denotes the space of bounded functions supported in a compact

subset of Ω. The interested reader can find the proof of the two lemmas above in [21].

Proof of Theorem 3.12. Fix ε > 0 and δ > 0. Then

|Fν |2

δ + ε|F|+ J(x,Fν)
≤ Kν(x).

Algebraic calculations reveal that

|Fν |2

δ + ε|F|+ J(x,Fν)
− |F|2

δ + ε|F|+ J(x,F)

≥ 2|F|(|Fν | − |F|)
δ + ε|F|+ J(x,F)

− |F|
2[J(x,Fν)− J(x,F)]

(δ + ε|F|+ J(x,F))2
.

For every nonnegative test function ϕ ∈ L∞• (Ω), we can write
�

Ω

ϕ|Fν |2

δ + ε|F|+ J(x,Fν)
dx−

�

Ω

ϕ|F|2

δ + ε|F|+ J(x,F)
dx

≥
�

Ω

2ϕ|F|(|Fν | − |F|)
δ + ε|F|+ J(x,F)

dx−
�

Ω

ϕ|F|2[J(x,Fν)− J(x,F)]

(δ + ε|F|+ J(x,F))2
dx.
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Applying the lemmas above this estimate yields
�

Ω

ϕ|F(x)|2

δ + ε|F(x)|+ J(x,F)
dx ≤ lim inf

ν→∞

�

Ω

ϕ|Fν(x)|2

δ + ε|F(x)|+ J(x,Fν)
dx,

and from the distortion inequality

≤ lim inf
ν→∞

�

Ω

ϕKν(x)dx =
�

Ω

ϕ(x)K(x) dx.

By the monotone convergence theorem we can pass to the limit as ε goes to zero:
�

Ω

ϕ|F(x)|2

δ + J(x,F)
dx ≤

�

Ω

ϕ(x)K(x) dx.

Since ϕ was arbitrary and nonnegative in L∞• (Ω), it follows that

|F(x)|2

δ + J(x,F)
≤ K(x) a.e.

Hence

|F(x)|2 ≤ K(x)[δ + J(x,F)].

The last inequality holds for every δ > 0, so for δ = 0 as well:

|F(x)|2 ≤ K(x)J(x,F) a.e.,

completing the proof.

Let us conclude the present section with one more definition (see [37]). Consider a

short elliptic complex

D′(RN ,U)
P→ D′(RN ,V)

Q→ D′(RN ,W)

of first order differential operators P and Q and its dual

D′(RN ,U)
P∗← D′(RN ,V)

Q∗← D′(RN ,W).

The p-harmonic couple associated with such a sequence is a pair F = [B,E] with B ∈
kerP∗ and E ∈ kerQ such that

|E|p

p
+
|B|q

q
≤ K(x)〈B,E〉

where 1 < p, q < ∞ are Hölder conjugate exponents and the distortion function K =

K(x) ≥ 1 satisfies �

Ω

eγK(x)dx <∞ for some constant γ > 0.

We say that K lies in the exponential class Expγ(Ω). The right spaces for E and B are

Lp logα L(Ω,V) and Lq logα L(Ω,V), respectively.

3.4. Variational integrals. This section is concerned with variational integrals defined

on elliptic couples. The integrals in question take the form

I[F ] =
�

RN
f(X,Y ) for F = [X,Y ] ∈ Lp(RN ,V ×V).

We assume here that the integrand f : V ×V→ R is at least continuous.
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Here are three basic definitions adopted from the calculus of variations (see for exam-

ple [10]). Observe that the notation W 1,∞
• (RN ,V) for the space of Lipschitz V-valued

functions with compact support in Ω ⊂ RN is being used in the definition below.

Definition 3.15. f is said to be quasiconvex if for any constant vectors A,B ∈ V we

have �

RN
[f(A+ Pα,B +Q∗β)− f(A,B)] dx ≥ 0

whenever α ∈W 1,∞
• (RN ,V) and β ∈W 1,∞

• (RN ,W).

The next notion seems to be a nice extension of rank-one convexity.

Definition 3.16. We say that f is convex in singular directions if the real variable

function

t 7→ f(A+ tX,B + tY )

is convex whenever A,B,X, Y ∈ V and X is orthogonal to Y in V.

Finally, we give

Definition 3.17. f is said to be polyconvex if it can be expressed as

f(X,Y ) = g(X,Y, 〈X,Y 〉)

where g : V ×V × R→ R is convex.

In the recent years a fairly large amount of work has been done trying to understand

all possible connections between these notions of convexity.

It is not difficult to see that polyconvexity implies quasiconvexity. Indeed, given A,B ∈
V and given arbitrary functions α ∈W 1,∞

• (D,U) and β ∈W 1,∞
• (D,W), supported in a

bounded domain D, we can use Jensen’s inequality to obtain

1

|D|

�

RN
[f(A+ Pα,B +Q∗β)− f(A,B)] dx

=
�

D

[g(A+ Pα,B +Q∗β, 〈A+ Pα,B +Q∗β〉)− g(A,B, 〈A,B〉)] dx

≥ g
[ �
D

(A+ Pα,B +Q∗β, 〈A+ Pα,B +Q∗β〉)
]
− g(A,B, 〈A,B〉)

= g
(
A+

�

D

Pα,B +
�

D

Q∗β, 〈A,B〉+
�

D

〈A,Q∗β〉+
�

D

〈Pα,B〉+
�

D

〈Pα,Q∗β〉
)

− g(A,B, 〈A,B〉) = 0.

The first four integral averages vanish, by the divergence theorem, the latter vanishes due

to L2-orthogonality of Pα and Q∗β (cf. Lemma 3.5). Thus f is quasiconvex.

It is worth pointing out that without an additional hypothesis about the elliptic

complex quasiconvexity need not imply convexity in singular directions, in contrast to

the classical setting.
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Precisely, we have

Theorem 3.18. Suppose that the elliptic complex (3.4) satisfies the condition⋃
|ξ|=1

kerQ(ξ) = V.

Then every quasiconvex function is convex in singular directions.

For the proof we need to show the inequality

f(λΦ+ (1− λ)Ψ) ≤ λf(Φ) + (1− λ)f(Ψ)

whenever 0 < λ < 1 and Φ− Ψ = [X,Y ] with X orthogonal to Y in V.

We can argue with the aid of the following

Lemma 3.19. There exist u ∈W 1,∞(RN ,U), w ∈W 1,∞(RN ,W) and a partition RN =

Ω ∪Ω′ into disjoint measurable subsets such that

[Pu,Q∗w] = [(1− λ)χΩ − λχΩ′ ](Φ− Ψ),

lim
R→∞

|Ω ∩BR|
|BR|

= λ,(3.25)

and therefore

lim
R→∞

|Ω′ ∩BR|
|BR|

= 1− λ.(3.26)

Proof of Theorem 3.18. Consider concentric balls BR ⊂ BR+1 and a cut-off function

η ∈ C∞0 (BR+1) such that 0 ≤ η ≤ 1, η ≡ 1 on BR and |∇η(x)| ≤ 2 in RN . The functions

α = ηu and β = ηw are Lipschitz with support in BR+1, and therefore can be used as

the test functions in the definition of quasiconvexity. Accordingly,

|BR+1|f(λΦ+ (1− λ)Ψ) ≤
�

BR+1

f(λΦ+ (1− λ)Ψ + F)

where F = [Pα,Q∗β] is an elliptic couple. We split the integral as�

BR+1

=
�

Ω∩BR

+
�

Ω′∩BR

+
�

BR+1−BR

.

It is important to observe that

F =

{
(1− λ)(Φ− Ψ) on Ω ∩BR,

−λ(Φ− Ψ) on Ω′ ∩BR,

and ‖F‖L∞(RN ) <∞. Hence, we obtain

|BR+1|f(λΦ+ (1− λ)Ψ) ≤ |Ω ∩BR|f(Φ) + |Ω′ ∩BR|f(Ψ) + c|BR+1 −BR|

where c is a constant independent of R.

Finally, dividing the inequality by |BR| and letting R go to infinity, we conclude with

the desired inequality

f(λΦ+ (1− λ)Ψ) ≤ λf(Φ) + (1− λ)f(Ψ)

by the density relations (3.25) and (3.26).



26 F. Giannetti

4. Jacobian determinants

4.1. Introduction. Let Ω be a domain in RN , N ≥ 2, and f = (f1, . . . , fN ) : Ω → RN
a mapping of Sobolev class W 1,p

loc (Ω,RN ), 1 ≤ p <∞. We denote by Df(x) : RN → RN
the differential matrix and by J = J(x, f) = detDf(x) the Jacobian determinant of f .

We say that f is an orientation preserving mapping if J(x, f) ≥ 0 almost everywhere

in Ω.

Determinants of differential matrices occur in many different contexts, such as the

geometric function theory, calculus of variations, nonlinear elasticity, etc. because of their

improved integrability properties. A natural question now arises: under what conditions

on f is the Jacobian function locally integrable?

By Hadamard’s inequality

|J(x, f)| ≤ |Df1(x)| . . . |DfN (x)|

it follows that J is integrable as soon as f ∈W 1,N (Ω,RN ).

Stefan Müller [50] was the first to observe that under just one condition, that J(x, f)

does not change sign in Ω, the degree of integrability of the Jacobian of f is better than

that of |Df(x)|N . More precisely, Müller showed that the Jacobian of an orientation

preserving mapping f ∈W 1,N (Ω,RN ) belongs to the Zygmund class L logL(K) for each

compact set K ⊂ Ω.

In its most general form, the result can be stated as follows:
�

K

J(x, f) log

(
e+
|J(x, f)|
JK

)
dx ≤ C(N,K)

�

Ω

|Df(x)|N dx

where JK denotes the integral mean of the Jacobian over K.

Remark 4.1. Müller’s theorem is sharp for more than one reason. A counterexample by

J. M. Ball and F. Murat (see [4]) shows that the condition on the sign of J cannot be

removed and that the compact set K cannot be replaced by the set Ω; a counterexample

by Müller himself shows that the Orlicz function P (t) = t log(e + t) cannot be replaced

by a function Q(t) such that Q(t)/t log(e+ t)→∞ as t→∞.

In [29], L. Greco and T. Iwaniec showed a somewhat stronger estimate by proving the

local L1-integrability of the function J log |Df |.
The following theorem, obtained by T. Iwaniec and C. Sbordone and published in

[38], can be viewed as dual to that of Müller:

|Df(x)|N ∈ L log−1 L(Ω)

J ≥ 0

}
⇒ J ∈ L1

loc(Ω).(4.1)

A precise estimate reads as follows:
�

K

J(x, f) dx ≤ C(N,K)
�

Ω

|Df(x)|N

log
(
e+ |Df(x)|

|Df(x)|Ω

) dx
where K is any compact subset of Ω and |Df |Ω denotes the integral mean of |Df | over Ω.

This was the first time an estimate below the natural Sobolev exponent (the dimension N)

had been achieved.
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Inspired by [50] and [38], H. Brezis, N. Fusco and C. Sbordone showed how to inter-

polate between these two results (see [5]). They proved that

|Df(x)|N ∈ L log−α L(Ω)

J ≥ 0

}
⇒ J ∈ L log1−α Lloc(Ω)(4.2)

for 0 ≤ α ≤ 1 and gave the estimate
�

K

J(x, f) log1−α
(
e+
|J(x, f)|
JK

)
dx ≤ C(N,K)

�

Ω

|Df(x)|N

logα
(
e+ |Df(x)|N

|Df |Ω

) dx.
Let Φ be a nondecreasing function on [0,∞] which is locally absolutely continuous

and satisfies the following conditions:

(i) there exist constants a > 0 and t0 > 0 such that Φ(t) ≥ at/ log(e + t) for all

t ≥ t0;

(ii) there exist constants α > 1 and k > 0 such that Φ(αt) ≤ kΦ(t) for all t ≥ 0;

(iii) Φ′(t)/t is integrable in a neighborhood of zero.

Consider the function

Θ(t) = t

t�

0

Φ′(s)

s
ds.

In [48], G. Moscariello proved that

|Df(x)|N ∈ LΦ(Ω)

J ≥ 0

}
⇒ J ∈ LΘloc(Ω).(4.3)

This result is a generalization of the one by H. Brezis, N. Fusco and C. Sbordone. Indeed,

if Φ(t) = t/ logα(e+ t) for all t ≥ 1, with 0 < α < 1, we see that

Θ(t) ∼ t log1−α(e+ t)

where ∼ denotes the usual equivalence notation between convex real functions. Moreover,

(4.3) is stronger than (4.1). Indeed, if Φ(t) = t/ log(e+ t), t ≥ 1, then by easy calculations

one can deduce that

Θ(t) ∼ t log(log(e+ t))

and so that LΘ = L log logL. In other words

|Df(x)|N ∈ L log−1 L(Ω)

J ≥ 0

}
⇒ J ∈ L log logLloc(Ω).(4.4)

Let φ1, . . . φm : [0,∞]→ [0,∞] be log-convex functions such that:

(a) φi � tpi log−1(e+ t), i = 1, . . .m, for some 1 < p1, . . . , pm <∞, 1/p1 + . . .+ 1/pm
= 1.

(b) There exist exponents αi ∈ (1, pi) with 1/α1 + . . . + 1/αm < 1 + 1/n, for which

the functions t 7→ t−αiΦi(t) are increasing, i = 1, . . . ,m.

Next let Φ denote the log-convex function determined from the formula

(tΦ′)−1 = (tΦ′1)−1 . . . (tΦ′m)−1
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and let Ψ be defined by

Φ(t) = Ψ(t)−
t�

0

Ψ(s)

s
ds.(4.5)

Let us notice that condition (a) yields

Φ(t) <
t

log(e+ t)
,

which, in turn, reveals that

Ψ(t) < t log log(e+ t).

In [30], L. Greco, T. Iwaniec and G. Moscariello proved that

|Df(x)|N ∈ LΦ(Ω)

J ≥ 0

}
⇒ J ∈ LΨloc(Ω).(4.6)

An analogous theorem in the concave case, that is, Ψ(t) ≺ t, also holds (see [30]).

Suppose that Ψ : [0,∞]→ [0,∞] can be represented by the following Stieltjes integral

Ψ(t) =

a�

0

(1− λ)t1−λdh(λ)

where h : [0, a] → [0,∞], 0 < a < 1/(n + 1), is an arbitrary nondecreasing function.

Thus Ψ is concave and Ψ(t) ≺ t. To each such Ψ there corresponds a log-convex function

Φ : [0,∞]→ [0,∞] defined by a formula analogous to (4.5)

Φ(t) = −Ψ(t) +

t�

0

Ψ(s)

s
ds.

We write it in terms of h:

Φ(t) =

a�

0

λt1−λdh(λ).

In particular Φ(t) 4 Ψ(t) ≺ t. Therefore, Φ and Ψ are concave and

|Df(x)|N ∈ LΦ(Ω)

J ≥ 0

}
⇒ J ∈ LΨloc(Ω).(4.7)

Remark 4.2. It is of interest to know whether an improvement of integrability of the

Jacobian truly takes place. To see this, we introduce the quotient

L(t) =
Ψ(t)

Φ(t)
≥ 1

which measures the degree of the improvement. An easy computation shows that

Ψ(t) ∼ t exp

[ t�
1

ds

sL(s)

]
when Ψ is convex

and

Ψ(t) ∼ t exp

[
−
t�

1

ds

sL(s)

]
when Ψ is concave.
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It is clear that L cannot grow too fast. Indeed, in order to guarantee Ψ(t) < t and

Ψ(t) 4 t, respectively, we should have

∞�

1

ds

sL(s)
=∞.(4.8)

Roughly speaking, every function L, continuously increasing and satisfying (4.8), repre-

sents as an improvement quotient Ψ/Φ. Of course, growth conditions imposed on Φ and

Ψ yield other, rather minor, restrictions for L.

Observe that the case t 4 Ψ(t) ≺ t log log t is not setted by the theorems above.

However, further studies have filled this gap; see for example [42].

Theorem 4.3. Let f : Ω → RN be an orientation preserving mapping in the Sobolev

class W 1,1(Ω,RN ) with |Df |N ∈ LΦ(Ω) where Φ is an Orlicz function satisfying the

divergence condition
∞�

1

Φ(t)

t2
dt =∞.(4.9)

Then J(x, f) belongs to LΨloc(Ω) with

Ψ(t) = Φ(t) + t

t�

0

Φ(s)

s2
ds.

Thus, in particular , J(x, f) is locally integrable.

Let us point out here that the condition (4.9) is also necessary in order to deduce the

local integrability of the Jacobian. It is in this way that we consider the last result as

optimal in the category of Orlicz–Sobolev spaces.

4.2. Distributional Jacobian. One of the most important concepts that occur in the

theory of nonlinear differential forms and their applications to the modern theory of

mappings is the distributional Jacobian. This pertains to the situations in which we

impose (a priori) lesser degree of integrability of the differential with the aid of integration

by parts.

Let f = (f1, . . . , fN ) be a mapping of Sobolev class W 1,N (Ω,RN ). According to

the differential forms theory, the volume form J(x, f)dx can be expressed as the wedge

product of the linear forms df1, . . . , dfN

J(x, f)dx = df1 ∧ . . . ∧ dfN .(4.10)

Now, by the Stokes theorem�

Ω

ϕJ(x, f) dx =
�

Ω

ϕ(df1 ∧ . . . ∧ dfN )(4.11)

= −
�

Ω

f i df1 ∧ . . . ∧ df i−1 ∧ dϕ ∧ df i+1 ∧ . . . ∧ dfN

for each i = 1, . . . , N and for all test functions ϕ ∈ C∞0 (Ω).
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The distributional Jacobian, denoted by Jf , is a Schwartz distribution acting on a

test function ϕ ∈ C∞0 (Ω) by the rule

Jf [ϕ] = −
�

Ω

f i df1 ∧ . . . ∧ df i−1 ∧ dϕ ∧ df i+1 ∧ . . . ∧ dfN(4.12)

where different choices of indices 1, . . . , N yield the same value of the integral.

It is clear that for the definition above, in view of the Sobolev imbedding theorem, one

only needs that |Df |N ∈LN/(N+1)
loc (Ω,RN ), or equivalently, that f ∈W 1,N2/(N+1)(Ω,RN ).

On the other hand, the identity (4.10) suggests investigating the partial products

df i1 ∧ . . . ∧ df il corresponding to l-tuples 1 ≤ i1 < . . . < il ≤ N . Note that

df i1 ∧ . . . ∧ df il =
∑

1≤j1<...<jl≤N

∂(f i1 , . . . , f il)

∂(xj1 , . . . , xjl)
dxj1 ∧ . . . ∧ dxjl .(4.13)

Let us denote the ordered collection (say in the lexicographical order) of all such wedge

products by ∧l
f = {df il ∧ . . . ∧ df il : 1 ≤ i1 < . . . < il ≤ N}(4.14)

and identify it with the
(
N
l

)
×
(
N
l

)
matrix of all l × l-subdeterminants∧l
f =

[
∂f I

∂xJ

]
I=(i1,...,il)
J=(j1,...,jl)

.(4.15)

Thus
∧N

f = J(x, f) and
∧N−1

is none other than the matrix D]f of cofactors of Df .

We shall make use of the Hilbert–Schmidt norm in the space R(Nl )×(Nl ) of such matrices.∥∥∥∧lf∥∥∥2 =
∑

1≤i1<...<il≤N

|df i1 ∧ . . . ∧ df il |2 =
∑

1≤i1<...<il≤N
1≤j1<...<jl≤N

∣∣∣∣∂(f i1 , . . . , f il)

∂(xj1 , . . . , xjl)

∣∣∣∣2.(4.16)

It is important to realize that the l-forms at (4.14) are exact if f ∈W 1,l
loc(Ω,RN ). Precisely,

we have ‖
∧l

f‖ ∈ L1
loc(Ω) and for each k = 1, . . . , l,

df i1 ∧ . . . ∧ df il = dωk, ωk = (−1)k−1f ik df i1 ∧ . . . ∧ df ik−1 ∧ df ik+1 ∧ . . . ∧ df il .

By Sobolev’s imbedding f ∈ L
Nl/(N−l)
loc (Ω,RN ). Hence, ωk is an (l − 1)-form of class

L
N/(N−1)
loc (Ω). Various algebraic bounds for subdeterminants follow from the Hadamard-

type inequality (
N

l

)k∥∥∥∧kf∥∥∥2l ≤ (N
k

)l∥∥∥∧lf∥∥∥2k, 1 ≤ l ≤ k ≤ N.(4.17)

Thus, in particular

|J(x, f)| ≤
(
N

l

)−N/(2l)∥∥∥∧lf∥∥∥N/l,
|D]f | ≤ C(N)

∥∥∥∧lf∥∥∥(N−1)/l, 1 ≤ l < N.

It is immediate that the distributional Jacobian can be defined whenever

|f | |D]f | ∈ L1
loc(Ω).
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Precisely we have

|Jf [ϕ]| ≤
�

Ω

|∇ϕ| |f | |D]f | <∞.(4.18)

We record for later use the following elementary identity:

Jf [ϕN ] =
�

Ω

[ϕN (x) J(x, f)− J(x, ϕf)] dx(4.19)

whenever ϕ ∈ C∞0 (Ω) and f ∈W 1,N−1
loc (Ω,RN ) are such that

|f | |D]f | ∈ L1
loc(Ω).(4.20)

In the remainder of this section we assume f to be in W 1,N2/(N+1)(Ω,RN ), or in

W 1,N−1(Ω,RN ) with |D]f | ∈ Lq(Ω), q = (N2 −N)/(N2 −N − 1). In either case condi-

tion (4.20) is fulfilled. It is generally a nontrivial question how the distributional Jacobian

relates to the pointwise Jacobian J(x, f). First of all, it is clear that the Jacobian has

to be locally integrable. Moreover, the identity between the distributional Jacobian and

the pointwise Jacobian is valid whenever f ∈ W 1,N . If we assume any lesser degree of

integrability, the Jacobian need not be locally integrable. Even more, identity (4.19) may

fail if the Jacobian is a priori integrable (see [3, 4]). In [49], S. Müller proved a conjecture

of J. Ball that if Jf ∈ L1, then Jf = detDf . Furthermore, in [38], the validity of this

identity is proved under the assumptions |Df(x)|N ∈ L log−1 L(Ω) and J ≥ 0. In [27],

L. Greco obtained the same identity for f an orientation preserving mapping with |Df(x)|
belonging to a class of functions, called ΣN , which is strictly larger than LN/ logL. The

reader should notice that in Müller’s result it is assumed that the distribution Jf is

represented by a locally integrable function. This rather strong assumption is practically

impossible to verify without integration by parts, a vicious circle. In this sense the result

by L. Greco is more practical.

Now fix a nonnegative Φ ∈ C∞0 (B) with integral 1, and define Φt(x) = t−nΦ(t−1x),

t > 0. Given any J ∈ D′(Ω) we can speak of the convolution J ∗ Φt, defined for 0 < t <

dist(x, ∂Ω) by the rule

(J ∗ Φt)(x) = J [Φt(· − x)].(4.21)

This is legitimate because the function ϕ(y) = Φt(x − y) lies in C∞0 (Ω). It should be

reasonably evident that

J ∗ Φt → J in D′(Ω), as t→ 0.

Precisely this means

J [η] = lim
t→0

�

Ω

η(x)(J ∗ Φt) dx(4.22)

for every η ∈ C∞0 (Ω). The following useful approximation result holds.

Proposition 4.4. For almost every x ∈ Ω we have

J(x, f) = lim
t→0

(Jf ∗ Φt)(x).(4.23)

Let us end this section with the following estimate:
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Lemma 4.5. Given f ∈ W 1,N2/(N+1)(Ω,RN ) and a test function ϕ ∈ C∞0 (Q) supported

in a cube Q ⊂ Ω. Then

|Jf [ϕ]| ≤ C(N)‖∇ϕ‖∞|Q|
N+1
N

( �

Q

|Df(x)|
N2

N+1 dx
)N+1

N

.

Proof. Let fQ denote the L1-mean of f over the cube Q. We have

|Jf [ϕ]| = |Jf−fQ [ϕ]| ≤
�

Q

|∇ϕ| |f − fQ| |Df |N−1

≤ C(n) ‖∇ϕ‖∞ |Q|
( �

Q

|f − fQ|N
2
) 1
N2
( �

Q

|Df |
N2

N+1

)N2−1

N2

≤ C(N)‖∇ϕ‖∞|Q|
N+1
N

( �

Q

|Df |
N2

N+1

)N+1
N

by the Sobolev imbedding theorem.

4.3. Estimates of Jacobians by subdeterminants. It has become clear that in order

to formulate and fully benefit from higher integrability phenomena one must study map-

pings in the Orlicz–Sobolev spaces W 1,Φ(Ω,RN ), but not too far from the natural class

W 1,N (Ω,RN ). Recall that W 1,Φ(Ω,RN ) consists of vector fields f = (f1, . . . , fN ) whose

coordinate functions have gradient in the Orlicz space LΦ(Ω). It is obvious that J(x, f)

is integrable whenever |Df |N ∈ L1(Ω) or |D]f |N/(N−1) ∈ L1(Ω). We wish to investigate

whether L1(Ω) can be replaced by a slightly larger Orlicz space LP (Ω). It involves very

little loss of generality to assume that

L1(Ω) ⊂ LP (Ω).(4.24)

This latter inclusion is guaranteed if P is concave, or simply sup t−1P (t) <∞. However,

the critical assumption throughout this section will be the following divergence condition:
∞�

1

P (s) ds

s2
=∞,(4.25)

which yields information about the growth of P at infinity. Examples that we have in

mind are furnished by the iterated logarithms

P (t) =
t

log(e+ t) log log(ee + t) · · · log · · log(ee·
·

+ t)
.(4.26)

Moreover, in order to define the distributional Jacobian it suffices to have |D]f | in the

space Lq(Ω), q = (N2 −N)/(N2 −N − 1). Clearly, 1 < q < N/(N − 1) for N > 2. As

a matter of fact our standing assumption (in Theorem 4.6) will be that |D]f |N/(N−1) ∈
LP (Ω). Practically this condition is stronger than |D]f | ∈ Lq(Ω), but not always. To fill

this gap we really need that P (t) ≥ c · ts, s = (N2 − 2N + 1)/(N2 −N − 1), for large

values of t. Another condition on P will be needed in the proof of Theorem 4.6, namely

[t(1−N)/NP (t)]′ ≥ 0. For esthetical reasons we condense all of it into one hypothesis

[t−1P (t)]′ ≤ 0 ≤ [t−sP (t)]′, s =
N2 − 2N + 1

N2 −N − 1
.(4.27)
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Such a hypothesis does not affect the behaviour of P near ∞, and therefore, we refer to

it as a technical assumption.

Theorem 4.6. Let f ∈W 1,N−1(Ω,RN ), N > 2, be an orientation preserving (reserving)

mapping such that

|D]f |
N
N−1 ∈ LP (Ω)(4.28)

where P satisfies (4.25) and (4.27). Then the Jacobian determinant of f is locally inte-

grable and obeys the rule of integration by parts
�

Ω

ϕ(x)J(x, f) dx = −
�

Ω

df1 ∧ . . . ∧ df i−1 ∧ f idϕ ∧ df i+1 ∧ . . . ∧ dfN =: Jf [ϕ](4.29)

for all indices i = 1, . . . , n and test functions ϕ ∈ C∞0 (Ω).

The case P (t) = t has been treated in [51].

The following theorem is a refinement of some earlier results [28, 40, 36].

Theorem 4.7. Assume, in addition to the above properties of the Orlicz function, that

the function

t 7→ t−
N
N+1P (t)(4.30)

is increasing. Let f = (f1, . . . , fN ) : Ω → RN be an orientation preserving (reversing)

map, with

|Df |N ∈ LP (Ω).(4.31)

Then the Jacobian determinant is locally integrable and satisfies (4.29).

In [20] we demonstrate that both Theorems 4.7 and 4.6 are sharp, that is, they

fail if the integral at (4.25) converges. Our approach relies on the effective interplay

between familiar results and classical tools such as Whitney cubes, maximal functions

and elementary integration theory. Even the isoperimetric inequality, of fundamental

importance to us, is used here only for smooth mappings.

4.3.1. Whitney cubes. An N -rectangle R ⊂ RN is a Cartesian product of N intervals

R = (a1, b1]× . . .× (an, bn](4.32)

= {x = (x1, . . . , xN ) : aν < xν ≤ bν for ν = 1, . . . , N}.

One property such rectangles have is that any intersection of a finite number of rectangles

is either empty or a rectangle again. A cube in RN with side s > 0 is simply a rectangle

R such that bi − ai = s for i = 1, . . . , N . To every integer k and a lattice point j =

(j1, . . . , jN ) ∈ Z× . . .× Z there corresponds a dyadic cube

Q = Qkj = {x ∈ RN : 2kjν < xν ≤ 2k + 2kjν for ν = 1, . . . , N}.

Dyadic cubes are very useful for constructing various disjoint covers. Any two dyadic

cubes are either disjoint or one of them contains the other. This brings us to the well

known Whitney decomposition.
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Lemma 4.8. Let F be a non-empty closed set in RN and Ω its complement. There exists

a disjoint collection {Q1, Q2, . . .} of dyadic cubes such that

Ω =

∞⋃
i=1

Qi,(4.33)

diamQi ≤ dist(Qi, F ) ≤ 4 diamQi.(4.34)

4.3.2. Isoperimetric inequality. Our proof of Theorem 4.6 relies on local estimates similar

to those in Lemma 4.5, but with cofactors replacing the differential matrix. A device for

establishing such estimates is the isoperimetric inequality. The familiar geometric form

of this inequality reads

NN−1ωN−1|U |N−1 ≤ |∂U |N(4.35)

where |U | stands for the volume of a region U ⊂ RN while |∂U | is its (N−1)-dimensional

surface area. Now, if f : R → U is a smooth diffeomorphism of a “regular” domain

R ⊂ RN onto U then |U | =
	
R
J(x, f) dx, while |∂U | is dominated by

	
∂R
|D]f(x)| dx. In

this way we obtain what is known as the integral form of the isoperimetric inequality:∣∣∣ �
R

J(x, f) dx
∣∣∣ ≤ C(N)

( �

∂R

|D]f(x)| dx
) N
N−1

(4.36)

with C(N) = (N N−1
√
ωN−1)−1. The point to make here is that (4.36) remains valid for

all smooth mappings f : R→ RN , not necessarily diffeomorphisms.

We shall confine ourselves to the following less general but precise statement.

Lemma 4.9. Let f : Ω → RN be a C∞-smooth mapping and R ⊂ Ω a closed N -

rectangle. Then inequality (4.36) holds with some constant C(N) depending only on the

dimension.

In the proof of Theorem 4.6 we will be dealing with Whitney’s cubes, as described by

Lemma 4.8, and a smooth mapping f ∈ C∞(Ω,RN ). In order to estimate the integral

�

Ω

J(x, f) dx =

∞∑
i=1

�

Qi

J(x, f) dx

in terms of the cofactors of f one would naturally try to use isoperimetric inequalities∣∣∣ �
Qi

J(x, f) dx
∣∣∣ ≤ C(N)

( �

∂Qi

|D]f(x)| dx
) N
N−1

.

In general, unfortunately, we cannot control the boundary integrals by the volume inte-

grals. The way out of difficulty is to expand slightly the cubes and choose most favourable

ones, the ones with minimal boundary integral. Here is the precise construction of such

cubes.

Consider concentric cubes Qi ⊂ λQi ⊂ Q∗i = (5/4)Qi with the factor λ varying from

1 to 5/4. As the function λ 7→
	
∂λQi

|D]f | is continuous we may choose a concentric cube,

denoted by �i, such that �

∂�i

|D]f(x)| dx ≤
�

∂(λQi)

|D]f(x)| dx
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for all 1 ≤ λ ≤ 5/4. Integrating with respect to the parameter λ, by Fubini’s theorem,

we have �

∂�i

|D]f(x)| dx ≤ 4|Qi|−
1
N

�

Q∗
i
\Qi

|D]f(x)| dx.

We summarize this construction in the following

Lemma 4.10. Given Whitney’s decomposition Ω =
⋃∞
i=1Qi and f ∈ C∞(Ω,RN ), there

exist concentric cubes Qi ⊂ �i ⊂ Q∗i ⊂ 7NQi such that( �

∂�i

|D]f(x)| dx
) N
N−1 ≤ C(n)|Qi|

( �

7NQi

|D]f(x)| dx
) N
N−1

for all i = 1, 2, . . .

Throughout this section it will be required that a mapping f ∈W 1,N−1(RN ,RN ) has

compact support. For abbreviation, we introduce the function

h = |D]f | ∈ L1(RN )(4.37)

which controls all the cofactors of Df(x). Recall that the Hardy–Littlewood maximal

function of h belongs to the Marcinkiewicz space:

Mh ∈ weak-L1(RN ).(4.38)

We have the pointwise inequality for the Jacobian

|J(x, f)| ≤ |D]f(x)|
N
N−1 ≤ [Mh(x)]

N
N−1 .(4.39)

The following estimate is crucial:

Theorem 4.11. For all but a countable number of parameters t > 0, we have∣∣∣ �

Mh≤2t

J(x, f) dx
∣∣∣ ≤ C(N)t

N
N−1 |{x ∈ RN : Mh > 2t}|(4.40)

≤ C(N)t
1
N

�

h>t

h(x) dx.

The parameters for which this inequality holds are precisely those which satisfy the

equation

|{x ∈ RN : Mh(x) = t}| = 0.(4.41)

4.4. Proof of Theorem 4.7. We shall make use of the following lemma:

Lemma 4.12. Suppose P : [0,∞)→ [0,∞) is continuously differentiable and satisfies
∞�

A

P (s)ds

s2
=∞(4.42)

and

[t−1 P (tα)]′ ≥ 0(4.43)

for all t ≥ A, where A ≥ 1 and α > 1 are given numbers. Let u : X → R be a measurable

function on a σ-finite measure space X such that�

X

P (|u|α) <∞.(4.44)
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Then

inf
t≥A

tα−1
�

|u|>t

|u| = 0.(4.45)

Fix a nonnegative test function η ∈ C∞0 (Ω) equal to 1 on the support of ϕ. It is clear

that the mapping

f̃ = (ϕf1, ηf2, . . . , ηfN )(4.46)

lies in the Sobolev space W 1,1(RN ,RN ). As a matter of fact we have |Df̃ |N ∈ LP (RN ).

Indeed, |Df̃ |N ≤ C(N)|Df |N + C(N)|f |N where |f |N ∈ L1(Ω) ⊂ LP (Ω), by (4.24).

Condition (4.30) ensures that

g̃ = |Df̃ |p ∈ L1(RN ) for p =
N2

N + 1
.

This justifies the use of the inequality∣∣∣ �

Mg̃≤2t

J(x, f̃) dx
∣∣∣ ≤ C(N)t

1
N

�

g̃>t

g̃(x) dx(4.47)

for all but a countable number of the parameters t > 0.

Next, we apply Lemma 4.12 with α = (N + 1)/N and u = g̃ to infer that for some

A ≥ 1

inf
t≥A

t
1
N

�

g̃>t

g̃(x) dx = 0.(4.48)

Combining this fact with inequality (4.47) yields

lim
t→∞

inf
∣∣∣ �

Mg̃≤2t

J(x, f̃) dx
∣∣∣ = 0.(4.49)

The rest of the proof is a simple application of the monotone convergence theorem. To

this end, we split the Jacobian determinant as

J(x, f̃) dx = dϕf1 ∧ dηf2 ∧ . . . ∧ dηfN = dϕf1 ∧ df2 ∧ . . . ∧ dfN

= ϕ(x)J(x, f) dx+ f1 dϕ ∧ df2 ∧ . . . ∧ dfN .
Observe that

|f1 dϕ ∧ df2 ∧ . . . ∧ dfN | ≤ |∇ϕ| |f | |Df |N−1 ∈ L1(Ω).

It is at this point that we use J(x, f) ≥ 0, precisely to ensure that the function t 7→	
Mg̃≤2t ϕ(x)J(x, f) dx is increasing, and therefore, has a limit at infinity

lim
t→∞

�

Mg̃≤2t

ϕ(x)J(x, f) dx = −
�

RN
f1 dϕ ∧ df2 ∧ . . . ∧ dfN = Jf [ϕ].

Passing to the limit in the domain of integration we infer that J(x, f) is locally integrable,

and we obtain the identity �

Ω

ϕ(x)J(x, f) dx = Jf [ϕ].(4.50)

Once we know that J(x, f) is locally integrable, formula (4.50) remains valid for all test

functions ϕ ∈ C∞0 (Ω), not necessarily nonnegative. We again can move the limit under the

domain of integration, this time by using the Lebesgue dominated convergence theorem.
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4.5. Proof of Theorem 4.6. Fix a nonnegative test function η ∈ C∞0 (Ω) equal to 1 on

the support of ϕ. It is clear that the mapping

f̃ = (ϕf1, ηf2, . . . , ηfN )

lies in the Sobolev space W 1,N−1(RN ,RN ). Indeed,

|Df̃ |N−1 ≤ C(N)|Df |N−1 + C(N)|f |N−1.(4.51)

Regarding the cofactors of Df̃ we observe that

|D]f̃ | ≤ C(N)|d(ηf2) ∧ . . . ∧ d(ηfN )|(4.52)

+C(N)

∞∑
i=2

|d(ϕf1) ∧ df2 ∧ . . . ∧ df i−1 ∧ df i+1 ∧ . . . ∧ dfN |.

The first term takes the form

(f2dη + ηdf2) ∧ . . . ∧ (fNdη + ηdfN )

= ηN−1df2 ∧ . . . ∧ dfN + ηN−2
N∑
i=2

df2 ∧ . . . ∧ df i−1 ∧ f idη ∧ df i+1 ∧ . . . ∧ dfN

because the other possible terms in this expansion vanish, due to the identity dη∧dη = 0.

Therefore, the first term in (4.52) is dominated by

|η|N−1|D]f |+ |η|N−2|dη| |f | |Df |N−2.

The second term is easily seen to be bounded by

|ϕ| |D]f |+ |dϕ| |f | |Df |N−2.

Summarizing, we obtain the inequality

|D]f̃ | ≤ C(|ϕ|+ |η|N−1)|D]f |+ C(|dϕ|+ |dη| |η|N−2)|f | |Df |N−2

with C depending only on the dimension. On the right hand side the first term belongs

to L1(Ω) while the second lies in L
N/(N−1)
loc ⊂ L1

loc(Ω). Since f̃ has compact support we

see that the function h̃(x) = |D]f̃ | lies in L1(RN ). With these preliminaries we can apply

inequality (4.40): ∣∣∣ �

Mh̃≤2t

J(x, f̃) dx
∣∣∣ ≤ C(n)t

1
N−1

�

h̃>t

h̃(x) dx(4.53)

for all but a countable number of the parameters t > 0. Next we observe that

|h̃|
N
N−1 ∈ LP (RN ).

To see this we begin with the inequality

|h̃|
N
N−1 ≤ A |D]f |

N
N−1 +A |f |

N
N−1 |Df |

N2−2N
N−1

where A depends on N , ϕ and η. The first term belongs to LP (Ω) by assumption at

(4.28). The second term lies in L1
loc(Ω) ⊂ LPloc(Ω), by Sobolev imbedding and Hölder’s

inequality. Indeed, for f ∈ W 1,N−1(Ω,RN ) we have |f |N/(N−1) ∈ LN
2−2N+1

loc (Ω), while

|Df |(N2−2N)/(N−1) lies in L(N2−2N+1)/(N2−2N)(Ω), the dual to LN
2−2N+1(Ω). Since f̃
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has compact support we conclude that |h̃|N/(N−1) ∈ LP (RN ). At this point we appeal to

Lemma 4.12, with α = N/(N − 1), to infer that for some A ≥ 1,

inf
t≥A

t
1

N−1

�

h̃>t

h̃(x) dx = 0.(4.54)

This combined with inequality (4.53) yields

lim
t→∞

inf
∣∣∣ �

Mh̃≤2t

J(x, f̃) dx
∣∣∣ = 0.(4.55)

The rest of the proof is almost identical to that of Theorem 4.7. The only point to clarify

is that the term

|f1dϕ ∧ df2 ∧ . . . ∧ dfN | ≤ |∇ϕ| |f | |D]f |

is integrable, by (4.18).

4.6. Examples. In this section we give quite explicit examples of Sobolev mappings with

nonintegrable Jacobian and having a desired degree of regularity. They illustrate that

both Theorem 4.7 and Theorem 4.6 are sharp in the Orlicz–Sobolev category. Although

similar examples of radial stretchings are well known in the literature there are many

interesting features still unknown.

We discuss mappings f defined on the unit ball B with values in RN belonging to the

Sobolev class W 1,N−1(B,RN ) of the form

f(x) = λ(|x|)x.(4.56)

The function t 7→ tλ(t), for 0 ≤ t ≤ 1, will be decreasing from the value ∞ at t = 0,

to 1 at t = 1. Thus f will map homeomorphically the unit ball B onto its exterior. In

particular, f will be an orientation reversing map (J(x, f) ≤ 0) with�

B

J(x, f) dx = −∞.

Of course, if needed one may compose f with a reflection in an (N − 1)-dimensional

hyperplane to make f orientation preserving.

We may calculate the differential matrix of f and its determinant by using the familiar

formulas:

Df(x) = λ(|x|)I + |x|λ′(|x|)x⊗ x
|x|2

.

Hence

J(x, f) = λN (|x|) + |x|λ′(|x|)λN−1(|x|) ≤ 0,

because λ(t) + tλ′(t) = [tλ(t)]′ ≤ 0. The cofactor matrix is then computed to be

D]f(x) = (λN−1 + tλ′λN−2)I− tλ′λN−2 x⊗ x
|x|2

where we have denoted λ(|x|) and |x| briefly by λ and t. This formula can easily be seen

by checking the identity defining the cofactor matrix

D]f(x)Df(x) = J(x, f)I.



Elliptic complexes in the calculus of variations 39

Let us disclose in advance that we shall have

λ(t) ≤ −tλ′(t) ≤ 2λ(t).(4.57)

Consequently, the norms of the matrices in question will satisfy

|Df(x)| ≤ 3λ(|x|),(4.58)

|D]f(x)| ≤ 5λN−1(|x|).(4.59)

In this way the question concerning integrability of |Df | and |D]f | reduces to the com-

putation of integrals for λ(t). One integral is obvious by using polar coordinates:

�

B

J(x, f) dx = ωN−1

1�

0

tN−1(λN + tλ′λN−1) dt

=
ωN−1
N

1�

0

d[tλ(t)]N = |B|(1−∞) = −∞.

Example 4.13. Let Φ : [0,∞) → [0,∞) be an arbitrary concave function, continuously

increasing from 0 to ∞, and such that
∞�

1

Φ(s) ds

s2
= 1.(4.60)

Define λ by the equation

tλ(t) =

( ∞�

t−N

Φ(s) ds

s2

)− 1
N2

for 0 < t ≤ 1.

Then the radial stretching at (4.56) lies in the Sobolev class W 1,N−1(B,RN ) and its

cofactor matrix satisfies

|D]f |
N
N−1 ∈ LΦ(B).

In spite of that the Jacobian determinant of f fails to be locally integrable.

Proof. It is immediate from the definition of λ(t) and (4.60) that the function t 7→ tλ(t)

decreases from ∞ to 1. We also have

tλ(t) ≤
( ∞�

t−N

Φ(1) ds

s2

)− 1
N2

= (Φ(1))−
1
N2 t−

1
N .(4.61)

Next we compute the logarithmic derivative of tλ:

(tλ)′

tλ
=
−(

	∞
t−N

s−2Φ(s) ds)′

N2
	∞
t−N

s−2Φ(s) ds
=

−tN−1Φ(t−N )

N
	∞
t−N

s−2Φ(s) ds

≥ −tN−1Φ(t−N )

N
	∞
t−N

s−2Φ(t−N ) ds
= − 1

Nt
.

This shows − 1
n λ(t) ≤ (tλ)′ ≤ 0, and hence (4.57) follows. Another estimate for λ follows

by using concavity of Φ, namely

KΦ(t−N ) ≥ Φ(K t−N ) for every K ≥ 1.
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We apply this to

K = K(t) =

( ∞�

t−N

Φ(s) ds

s2

)− 1
N

≥ 1

for t ≤ 1, to obtain

λN (t) ≤ Φ−1[K(t)Φ(t−N )].(4.62)

Having disposed of these preliminary inequalities we are able to integrate the derivatives

of f : �

B

|Df(x)|N−1 dx ≤ 3N−1
�

B

λN−1(|x|) dx = 3N−1ωN−1

1�

0

[tλ(t)]N−1 dt

≤ C(N)

1�

0

t−
N−1
N dt = NC(N) <∞

by (4.58) and (4.61). Regarding the cofactors of Df , we make use of (4.59) and concavity

of Φ to obtain

�

B

Φ(|D]f |
N
N−1 ) ≤ 5

N
N−1

�

B

Φ(λN (|x|)) dx ≤ 25ωN−1

1�

0

K(t)Φ(t−N )tN−1 dt,

by (4.62). Finally with the aid of the substitution τ = t−N , we arrive at the desired

estimate
�

B

Φ(|D]f |
N
N−1 ) ≤ 25ωN−1

N

∞�

1

Φ(τ) dτ

τ2(
	∞
τ
s−2Φ(s) ds)

1
N

= −25ωN−1
N

∞�

1

d
(∞�
τ

s−2Φ(s) ds
)1− 1

N

=
25ωN−1
N − 1

<∞,

completing the proof of Example 4.13.

4.7. Further results. Under some additional technical assumptions to Theorem 4.6 the

Jacobian determinant enjoys even higher degree of integrability.

Suppose that the Orlicz function P : [0,∞)→ [0,∞) satisfies the divergence condition

(4.25) and the following technical assumptions:

[t−1−
1
N3 P (t)]′ ≤ 0 ≤ [t−1+

1
N3 P (t)]′(4.63)

for large values of t, and t−2 P (t) integrable near zero. The improvement of the degree of

integrability of the Jacobian will be described by the Orlicz function Ψ : [0,∞)→ [0,∞)

defined by

Ψ(t) := tL(t) := P (t) + t

t�

0

P (s) ds

s2
.

Theorem 4.14. Let f ∈ W 1,N−1(Ω,RN ) be an orientation preserving mapping such

that

(|D]f |+ |f | |Df |N−2)
N
N−1 ∈ LP (Ω).(4.64)
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Then detDf ∈ LΨloc(Ω); we actually have�

Ω′

Ψ(J(x, f)) dx ≤
�

Ω′

J(x, f)L(|D]f(x)|
N
N−1 ) dx <∞(4.65)

for every compact Ω′ ⊂ Ω.

The interested reader can find the proof in [20].

In the same paper the authors depart from the divergence condition to investigate

higher integrability properties of the Jacobian in spaces weaker than L1
loc(Ω). If the

integral
	∞
0
s−2P (s) ds is finite then, without getting into technicalities, the Jacobian

belongs to LΨloc(Ω) with

Ψ(t) = −P (t) + t

∞�

t

P (s) ds

s2
,

More precisely, if we impose the convergence condition
∞�

0

P (s)ds

s2
<∞(4.66)

and the following technical one:

[t−1−
N−2

N2 P (t)]′ ≤ 0 ≤ [t−1+
N−2

N2 P (t)]′(4.67)

for large values of t, then the following theorem holds:

Theorem 4.15. Let f ∈W 1,N−1(Ω,RN ), N > 2, be an orientation preserving mapping

such that

(|f | |Df |N−2 + |D]f |)
N
N−1 ∈ LP (Ω)(4.68)

Then detDf ∈ LΨloc(Ω).

In the study of Jacobians the so called grand Lebesgue spaces have emerged. Let Ω be

a bounded domain in RN . The space BLp(Ω) consists of the functions h ∈
⋂

1≤s<p L
s(Ω),

p > 1, whose modulus of integrability

Lp(h; ε) =
[
ε
�

Ω

|h|p−ε
] 1
p−ε

(4.69)

is bounded for 0 < ε ≤ p − 1 (see [38]). BLp(Ω) is a Banach space equipped with the

norm

‖h‖p) = sup
0<ε≤p−1

Lp(h; ε).(4.70)

We say that h has vanishing modulus of integrability if Lp(h; ε)→ 0 as ε→ 0. We write

h ∈ V Lp(Ω). This latter space is none other than the completion of Lp(Ω) in BLp(Ω).

Some of the arguments presented here may further be extended to include the spaces of

bounded or vanishing modulus of integrability (grand Lebesgue spaces).

Corollary 4.16. Let f ∈W 1,N−1(Ω,RN ) be an orientation preserving map satisfying

the condition

|D]f | ∈ BL
N
N−1 (Ω).(4.71)
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Then J(x, f) is locally integrable. Moreover , J(x, f) coincides with the distributional

Jacobian whenever

|D]f | ∈ V L
N
N−1 (Ω).(4.72)

5. Mappings of finite distortion

5.1. Introduction. In this chapter we study mappings f = (f1, . . . , fN ) : Ω → RN
in the Sobolev class W 1,N

loc (Ω,RN ), where Ω is a connected, open subset of RN , N ≥ 2.

Thus, the differential matrix Df(x) ∈ RN×N and its Jacobian determinant J(x, f) are

defined almost everywhere in Ω . Here RN×N denotes the space of all N ×N matrices,

equipped with the norm

|A| = max{|Aξ| : ξ ∈ SN−1}.

Throughout we assume that f is an orientation preserving mapping, that is, J(x, f) ≥ 0.

Definition 5.1. A map f ∈W 1,N
loc (Ω,RN ) is said to be of finite distortion if

|Df(x)|N ≤ KO(x) J(x, f) a.e.(5.1)

for some 1 ≤ KO(x) <∞.

Note that Hadamard’s inequality asserts that pointwise

J(x, f) ≤ |Df(x)|N ,

thus the assumption KO(x) ≥ 1 is imposed on us. Moreover it is fundamental that the

Sobolev exponent is at least the dimension of Ω so that we can integrate the Jacobian.

In this case the mappings of finite distortion are actually continuous [26].

The smallest such function defined by

KO(x, f) =

{
|Df(x)|N/J(x, f) if J(x, f) 6= 0,

1 if J(x, f) = 0,
(5.2)

is called the outer distortion function of f .

Geometrically this means that at the points where J(x, f) > 0 the differential Df(x)

maps the unit ball to an ellipsoid E and

KO(x, f) =
volBO
volE

where BO is the smallest ball circumscribed about E. In the same way, we may define

the inner distortion of f by

KI(x, f) =
volE

volBI

where BI is the largest ball inscribed in E. We set KI(x, f) = 1 at degenerate points

where Df(x) = 0 and we call

K(x, f) = max{KO(x, f),KI(x, f)}

the maximal distortion,

KM (x, f) =
KO(x, f)

KI(x, f)
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the mean distortion and

H(x, f) = (KO(x, f),KI(x, f))1/N

the linear distortion.

The linear distortion has the representation

H(x, f) =
max{|Df(x)ξ| : ξ ∈ SN−1}
min{|Df(x)ξ| : ξ ∈ SN−1}

at points where Df(x) 6= 0.

All of these distortion functions coincide when N = 2; this is not the case when N > 2.

Many constructions in analysis, geometry and topology rely on limiting processes;

the existence, uniqueness and compactness properties of families of mappings with finite

distortion make them ideal tools for solving various problems in these areas. For instance

in studying deformations of elastic bodies and the related extremals for variational in-

tegrals in certain degenerate settings, mappings of finite distortion are often the natural

candidates to consider because they are closed under uniform convergence [52].

The following limit theorem holds [19]:

Theorem 5.2. Suppose that fn : Ω → RN is a sequence of mappings of finite distortion

which converges weakly in W 1,N
loc (Ω,RN ) to f and suppose that

KO(x, fn) ≤M(x) <∞ a.e.(5.3)

for n = 1, 2, . . . Then f has finite distortion and

KO(x, f) ≤M(x) a.e.(5.4)

This is a refinement of Reshetnyak’s theorem concerning mappings fn of bounded

distortion, that is, mappings which satisfy (5.3) with M(x) ≤ K where K is a constant.

In this case, weak convergence in W 1,N
loc (Ω,RN ) implies uniform convergence on compact

sets and hence, by Reshetnyak’s theorem, the limit mapping f satisfies KO(x, f) ≤ K

instead of the pointwise bound given in (5.4).

Theorem 5.3. Theorem 5.2 remains valid with KI(x, f), KM (x, f) and K(x, f) in place

of KO(x, f).

This is not true for the linear distortion H(x, f) when N > 2.

While substantial progress has been made on the limit theorems, many questions still

remain unanswered.

5.2. The Beltrami equation. The Beltrami equation has a long history. Gauss first

studied the equation in the 1820’s while investigating the problem of existence of isother-

mal coordinates on a given surface. The complex Beltrami equation was intensively stud-

ied by Morrey in the late 1930’s, and he established the existence of homeomorphic L2-

solutions. It took another 20 years before Bers recognized that homeomorphic solutions

are quasiconformal mappings.

Studying quasiconformal mappings via the Beltrami equation is a particularly valuable

idea because from this point of view the mapping is the solution of an elliptic equation

and as such enjoys various nice properties not obvious from the definition.
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Directly from the analytic definition we see that an orientation preserving mapping

of finite distortion solves the Beltrami equation

Dtf(x)Df(x) = J(x, f)
2
NG(x)

where Dtf(x) stands for the transpose to Df(x) and G(x) is the distortion tensor of f , a

symmetric positive definite matrix of determinant one. If G(x) is the identity everywhere

the Beltrami equation reduces to the N -dimensional Cauchy–Riemann system

Dtf(x)Df(x) = J(x, f)
2
N I.

We have the pointwise almost everywhere estimate

1

K(x)
|ξ|2 ≤ 〈G(x)ξ, ξ〉 ≤ K(x)|ξ|2

for vectors ξ ∈ RN and thus the distortion function K = K(x) provides ellipticity bounds

for the equation. The case of K bounded gives uniform ellipticity estimates on G.

The Beltrami equation implies a number of first order differential equations analogous

to the complex Cauchy–Riemann equations.

Associated with G(x) is the energy integral

E [h] =
�

Ω

E(x,Dh) dx

where E(x,M) = 〈MG−1(x),M〉2/N . Here we have used the inner product of matrices

defined by

〈X,Y 〉 = TraceXtY.

It is the essence of the analytic theory of mappings with finite distortion that these

mappings minimize the energy functional, subject to a Dirichlet boundary condition. The

Euler–Lagrange equation takes the form

divA(x,Df) = 0(5.5)

where A : Ω × RN×N → RN×N is given by

A(x,M) = 〈MG−1(x),M〉
N−2
N MG−1(x).

Let us stress that the equation (5.5) is of second order whereas the minimizers (map-

pings of finite distortion) solve the first order Beltrami equation. It is also of particular

importance that each component u = f i, i = 1, . . . , N , of a mapping of finite distortion

satisfies the equation

divA(x,∇u) = 0

called the A-harmonic equation. In the case that the distortion K ≡ 1 this reduces to

div(|∇u|N−2∇u) = 0

which is a special case of the p-harmonic equation

div(|∇u|p−2∇u) = 0, p ∈ (1,∞).

At this point the so-called div-curl fields assume particular relevance to our study.
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Let us first illustrate how such fields relate to the theory of linear elliptic PDEs of the

form

divA(x)∇u = 0

where A : Ω → RN×N is a measurable function with values in symmetric matrices such

that for all ξ ∈ RN

K−1(x)|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ K(x)|ξ|2 a.e.(5.6)

Uniform ellipticity means that 1 ≤ K(x) ≤ K for some constant K.

Now the pair Φ = [B,E] with E = ∇u and B = A(x)∇u is a div-curl field. Although

it is not apparent at this point, condition (5.6) is equivalent to the so-called distortion

inequality for Φ:

|Φ|2 ≤ [K(x) +K−1(x)]J(x, Φ)(5.7)

where, by analogy to mappings of finite distortion in the plane, we use the notation

|Φ|2 = |B|2 + |E|2 and J(x, Φ) = 〈B,E〉.
An arbitrary div-curl field Φ ∈ Lploc(Ω,RN ) × Lploc(Ω,RN ) is said to have finite dis-

tortion function K(x) if (5.7) holds almost everywhere in Ω. Φ is said to be of bounded

distortion if 1 ≤ K(x) ≤ K. Obviously the natural integrability exponent here is p = 2.

Thus it is interesting considering fields with exponent p different from 2. In [14], together

with A. Fiorenza, we prove higher integrability results for div-curl fields of bounded

distortion

Φ = [B,E] ∈ L2−ε(Ω,RN )× L2−ε(Ω,RN )

with 0 < ε < 1.

5.3. Regularity results for vector fields of bounded distortion. This section is

concerned with regularity results for vector fields of bounded distortion contained in [14]

already mentioned at the end of the previous section.

The following basic estimates are established in [32] (see also [54] for the present

formulation). We denote by Q0, Q open cubes in RN with sides parallel to the coordinate

axes, and by 2Q the cube with the same centre as Q and double side-length.

Theorem 5.4. Let 1 < p, q < ∞ be a Hölder conjugate pair , 1/p + 1/q = 1, and let

1 < r, s < ∞ be a Sobolev conjugate pair , 1/r + 1/s = 1 + 1/N . Then there exists a

constant cN = cN (p, s) such that for each cube Q satisfying 2Q ⊂ Q0 ⊂ RN we have∣∣∣∣ �
Q

〈B,E〉
|B|ε|E|ε

dx

∣∣∣∣ ≤ cNε
[ �

2Q

|E|(1−ε)p dx
] 1
p
[ �

2Q

|B|(1−ε)q dx
] 1
q

(5.8)

+ cN

[ �

2Q

|E|(1−ε)s dx
] 1
s
[ �

2Q

|B|(1−ε)r dx
] 1
r

whenever 0≤2ε≤min{(p−1)/p, (q−1)/q, (r−1)/r, (s−1)/s} and divB=0, curlE=0.

The next proposition by Giaquinta–Modica ([23], [25]) will be useful.

Proposition 5.5. Let g ∈ Lα(Q0), α > 1, and f ∈ Lr(Q0), r > α, be two nonnegative

functions and suppose that for every cube Q such that 2Q ⊂ Q0 the following estimate
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holds: �

Q

gα dx ≤ b
{( �

2Q

g dx
)α

+
�

2Q

fα dx
}

+ θ
�

2Q

gα dx(5.9)

with b > 1. There exist constants θ0 = θ0(α,N), σ0 = σ0(b, θ, α, r,N) such that if θ < θ0,

then g ∈ Lα+σloc (Q0) for all 0 < σ < σ0 and( �

Q

gα+σ dx
) 1
α+σ ≤ c

{( �

2Q

gα dx
) 1
α

+
( �

2Q

fα+σ dx
) 1
α+σ
}

(5.10)

where c is a positive constant depending on b, θ, α, r,N .

A variant of the result established in Proposition 5.5 can be proved. We remark that

in our assumption we will consider a family of inequalities in which both the exponent

of integrability of the function g and the coefficient on the right hand side depend on ε.

Nevertheless, even if Proposition 5.5 cannot be applied a priori, in the theorem we are

going to prove we get a higher integrability result for g and an estimate of the type (5.10).

Theorem 5.6. Let g ∈ L2(1−ε)(Q0) and f ∈ Lr(Q0), 0 ≤ ε < 1/2, r > 2(1 − ε), be

nonnegative functions such that�

Q

g2(1−ε) dx ≤ c1ε
�

2Q

g2(1−ε) dx(5.11)

+ c2

{( �

2Q

g2(1−ε)
N
N+1 dx

)N+1
N

+
( �

2Q

f2(1−ε) dx
)}

for every cube Q ⊂ 2Q ⊂ Q0, for some constants c1 ≥ 0, c2 > 0. Then there exist

ε = ε(c1, N) and η = η(c1, c2, r, ε,N) such that if 0 ≤ ε < ε, then g ∈ L2(1−ε)+η
loc (Q0) for

all 0 ≤ η < η and( �

Q

g2(1−ε)+η dx
) 1

2(1−ε)+η ≤ c
{( �

2Q

g2(1−ε) dx
) 1

2(1−ε)
+
( �

2Q

f2(1−ε)+η dx
) 1

2(1−ε)+η
}

where c is a positive constant depending on c2, r, ε,N .

Proof. Since the functions gε = g2(1−ε)N/(N+1), fε = f2(1−ε)N/(N+1) satisfy the inequality
�

Q

g
N+1
N

ε dx ≤ c2
{( �

2Q

gε dx
)N+1

N

+
( �

2Q

f
N+1
N

ε dx
)}

+ c1ε
�

2Q

g
N+1
N

ε dx(5.12)

we can apply Proposition 5.5 with α = (N + 1)/N , b = c2. We get θ0 = θ0(N) and

σ0 = σ0(c2, r, ε,N) such that if (5.12) holds with c1ε < θ0/2, then gε ∈ Lα+σloc (Q0) for

every 0 < σ < σ0, i.e.

[g2(1−ε)
N
N+1 ]

N+1
N +σ ∈ L1

loc(Q0) ∀0 < σ < σ0

and ( �

Q

g
N+1
N +σ

ε dx
) 1
N+1
N

+σ ≤ c
{( �

2Q

g
N+1
N

ε dx
) N
N+1

(5.13)

+
( �

2Q

f
N+1
N +σ

ε dx
) N
N+1+σ

}
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with c depending on c2, r, ε,N . Set

0 < ε <
θ0
2c1

, 0 < η < (1− ε) 2Nσ0
N + 1

.

If 0 ≤ ε < ε and 0 ≤ η < η, we have

ε < ε < 1− η N + 1

2Nσ0
< 1− η N + 1

2Nσ0

or, equivalently,

2(1− ε) + η < 2(1− ε) N

N + 1

[
N + 1

N
+ σ0

]
,

therefore we get g ∈ L2(1−ε)+η
loc (Q0) and inequality (5.13) becomes( �

Q

g2(1−ε)+η dx
) 1

2(1−ε)+η ≤ c
{( �

2Q

g2(1−ε) dx
) 1

2(1−ε)
+
( �

2Q

f2(1−ε)+η dx
) 1

2(1−ε)+η
}
.

Let us observe that, upon a closer look at the proof of Theorem 5.6, one can note

that the gain of integrability given by σ0 = σ0(c2, r, ε,N) is actually dependent only

on c2, r/(2(1− ε)), N . Nevertheless, if f ≡ 0 a.e. in Q0, the number σ0, and therefore

also η and c, do not depend on ε. This remark is crucial to proving the following

Corollary 5.7. Let 0 ≤ ε < 1/2 and g ∈ L2(1−ε)(Q0), Q0 ⊂ RN , be such that

�

Q

g2(1−ε) dx ≤ c1ε
�

2Q

g2(1−ε) dx+ c2

( �

2Q

g2(1−ε)
N
N+1 dx

)N+1
N

for every cube Q ⊂ 2Q ⊂ Q0. Then there exists ε = ε(c1, N) such that if 0 ≤ ε < ε, then

g ∈ L2+2ε
loc (Q0) and ( �

Q

g2(1+ε) dx
) 1

2(1+ε) ≤ c
( �

2Q

g2(1−ε) dx
) 1

2(1−ε)
(5.14)

where c is a positive constant depending on c2, N .

Proof. Let us apply Theorem 5.6 with f ≡ 0 a.e. in Q0. If ε < min(ε, η/4), choosing

η = 4ε, from inequality (5.11) we get g ∈ L2+2ε
loc (Q0) and inequality (5.14) holds.

Now we are in a position to prove our higher integrability results.

Proposition 5.8. Let Ω ⊂ RN , 0 < ε < 1 and Φ = [E,B] belonging to L2−ε(Ω,RN )×
L2−ε(Ω,RN ) such that divB = 0, curlE = 0 and

|B(x)|2 + |E(x)|2 ≤ (K +K−1)〈B(x), E(x)〉 a.e. in Ω(5.15)

where K ≥ 1. Then there exists ε = ε(K,N) such that Φ ∈ L2+ε
loc (Ω,RN )× L2+ε

loc (Ω,RN )

for all 0 < ε < ε and( �

Q

|Φ|2+ε dx
) 1

2+ε ≤ c
( �

2Q

|Φ|2−ε dx
) 1

2−ε ∀Q, 2Q ⊂ Ω

where c is a positive constant depending on K,N .
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Proof. Fix Q a cube such that 2Q ⊂ Ω. Applying Theorem 5.4 with p = q = 2 and

r = s = 2N/(N + 1), from inequality (5.8) we get�

Q

(|B|2 + |E|2)1−ε dx

≤ cN,Kε
�

2Q

(|B|2 + |E|2)1−ε dx+ cN,K

( �

2Q

(|B|2 + |E|2)(1−ε)
N
N+1 dx

)N+1
N

for ε sufficiently small. Set g2 = |B|2 + |E|2. The last inequality implies
�

Q

g2−2ε dx ≤ cN,K ε
�

2Q

g2−2ε dx+ cN,K

( �

2Q

g(2−2ε)
N
N+1 dx

)N+1
N

.

By Corollary 5.7 there exists ε = ε(K,N) such that if 0 ≤ ε < ε, then g ∈ L2+2ε
loc (Ω) and( �

Q

g2+2ε dx
) 1

2+2ε ≤ c
( �

2Q

g2−2ε dx
) 1

2−2ε

,

proving the assertion.

Now consider Φ = (E,B) ∈ L2−2ε(Ω,RN )× L2−2ε(Ω,RN ) such that

divB = 0, curlE = 0,(5.16)

|B(x)|2 + |E(x)|2 ≤ (K +K−1)〈B(x), E(x)〉+ |F |2(5.17)

where F is a function in Lr(Ω,RN ), r > 2− 2ε, for ε sufficiently small.

Theorem 5.9. Let 0 ≤ ε < 1/2 and E,B vector fields as in (5.16), (5.17). Then there

exist ε = ε(K,N) and η = η(K, r, ε,N) such that if 0 ≤ ε < ε, then Φ = (E,B) ∈
L2−2ε+η
loc (Ω,RN )× L2−2ε+η

loc (Ω,RN ) for all 0 ≤ η < η and( �

Q

|Φ|2−2ε+η dx
) 1

2−2ε+η ≤ c
{( �

2Q

|Φ|2−2ε dx
) 1

2−2ε

+
( �

2Q

(|F |2)
2−2ε+η

2 dx
) 1

2−2ε+η
}

where c is a positive constant depending on K, r, ε,N .

Proof. Fix a cube Q such that 2Q ⊂ Ω and set

Q+ = {x ∈ Q | 〈B,E〉 ≥ 0 a.e.}, Q− = {x ∈ Q | 〈B,E〉 ≤ 0 a.e.}.

Observe that by (5.17), replacing |F | with f , we have
�

Q−

−〈B,E〉
|B|ε|E|ε

dx ≤
�

Q−

(|B‖E|)1−ε dx ≤
�

Q−

(|B|2 + |E|2)1−ε dx

≤
�

Q−

[(
K +

1

K

)
〈B,E〉+ f2

]1−ε
dx ≤

�

Q−

f2−2ε dx ≤
�

Q

f2−2ε dx

and therefore �

Q

〈B,E〉
|B|ε|E|ε

dx =
�

Q+

〈B,E〉
|B|ε|E|ε

dx+
�

Q−

〈B,E〉
|B|ε|E|ε

dx

≥
�

Q+

〈B,E〉
(|B|2 + |E|2 + f2)ε

dx−
�

Q

f2−2ε dx.
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Applying Theorem 5.4 with p = q = 2 and r = s = 2N/(N + 1), for ε sufficiently small,

we get
�

Q

〈B,E〉
(|B|2 + |E|2 + f2)ε

dx ≤ cNε
�

2Q

(|B|2 + |E|2 + f2)1−ε dx

+ cN

( �

2Q

(|B|2 + |E|2 + f2)(1−ε)
N
N+1 dx

)N+1
N

+
�

2Q

f2−2ε dx.

By (5.17)

〈B,E〉 ≥ cK(|B|2 + |E|2 − f2) = cK(|B|2 + |E|2 + f2)− 2cKf
2

and therefore�

Q

(|B|2 + |E|2 + f2)1−ε dx

≤ cN,Kε
�

2Q

(|B|2 + |E|2 + f2)1−ε dx+ cN,K

( �

2Q

(|B|2 + |E|2 + f2)(1−ε)
N
N+1 dx

)N+1
N

+ cK

�

2Q

f2

(|B|2 + |E|2 + f2)ε
dx+

�

2Q

f2−2ε dx

≤ cN,Kε
�

2Q

(|B|2 + |E|2 + f2)1−ε dx+ cN,K

( �

2Q

(|B|2 + |E|2 + f2)(1−ε)
N
N+1 dx

)N+1
N

+ (cK + 1)
�

2Q

f2−2ε dx.

If we set g2 = |B|2 + |E|2 + f2, the last inequality implies
�

Q

g2−2ε dx ≤ cN,Kε
�

2Q

g2−2ε dx+ cn,K

( �

2Q

g(2−2ε)
N
N+1 dx

)N+1
N

+ (cK + 1)
�

2Q

f2−2ε dx.

By Theorem 5.4 there exist ε = ε(K,N) and η = η(K, r, ε,N) such that if 0 ≤ ε < ε,

then g ∈ L2−2ε+η
loc (Ω) for all 0 ≤ η < η and( �

Q

g2−2ε+η dx
) 1

2−2ε+η ≤ c
{( �

2Q

g2−2ε dx
) 1

2−2ε

+
( �

2Q

(f2)
2−2ε+η

2 dx
) 1

2−2ε+η
}
,

proving the assertion.

In [14] we give some applications to the theory of quasiconformal mappings and to

the theory of regularity for very weak solutions of nonlinear elliptic equations in diver-

gence form. In particular, the following celebrated result of Bojarski concerning higher

integrability of functions f = (f1, f2) : Ω ⊂ R2 → R2 with bounded distortion holds:

f ∈W 1,2−ε(Ω,R2) ⇒ f ∈W 1,2+ε(Ω,R2).

Moreover, our method provides, for ε sufficiently small, a new proof of the regularity

result

u ∈W 1,2−ε(Ω) ⇒ u ∈W 1,2+ε(Ω)
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for very weak solutions of equations of the type

div a(x,∇u) = divF

where F is a function in Lr(Ω,Rn), r > 2− 2ε, and a : Ω×RN → RN is a mapping such

that {
x 7→ a(x, z) is measurable for all z ∈ RN ,

z 7→ a(x, z) is continuous for almost every x ∈ Ω,

satisfying

|a(x, z)|2 + |z|2 ≤ (K +K−1)〈a(x, z), z〉
for some K ≥ 1 and x, z arbitrary vectors in RN .

Remark 5.10. The assumptions in Theorem 5.6 cannot be weakened. Indeed, consider

f, g nonnegative functions on a cube Q0 satisfying assumptions of the type of Theorem 5.6

with c1 = 0, namely, f, g are such that g ∈ Lα(Q0), f ∈ Lλα(Q0) for some α > 1, λ > 1

and ( �

Q

gα dx
) 1
α ≤ a

�

2Q

g dx+ b
( �

2Q

fα dx
) 1
α ∀Q, 2Q ⊂ Q0.(5.18)

In this case it is known ([33]) that if λ is sufficiently close to 1, then g ∈ Lλαloc(Q0) and( �

Q

gλα dx
) 1
λα ≤ aλ

( �

2Q

gλ dx
) 1
λ

+ bλ

( �

2Q

fλα dx
) 1
λα

(5.19)

where aλ and bλ are constants depending only on N,α, a, b.

We show that even if it is still true that g ∈ Lλαloc(Q0) for any λ < 1 (sufficiently

small), one cannot find any λ < 1, aλ > 0, bλ > 0 such that estimate (5.19) holds for any

g ∈ Lα(Q0), f ∈ Lλα(Q0) satisfying (5.18).

By a contradiction argument, we are able to prove that there exists λ < 1 such that

any function g0 ∈ Lλα(Q0), g0 > 0, satisfies a certain reverse Hölder type inequality,

which is generally false.

5.4. Further results. The aim of the present section is to illustrate some continuity

properties of mappings of finite distortion. We wish to investigate them under minimal

possible assumptions on the degree of integrability of the differential. It is worth pointing

out that the first result in this sense is due to V. Goldstein and S. K. Vodopyanov [26]. We

have already observed that they showed that mappings of finite distortion in the Sobolev

class W 1,N
loc (Ω,RN ) are actually continuous. We have repeatedly stressed that the natural

Sobolev setting for mappings of finite distortion is the space W 1,N
loc (Ω,RN ), largely due

to the wish to integrate the Jacobian determinant by parts. However, matters are quite

complicated if one does not know a priori that the Jacobian is locally integrable or, even

if so, whether it coincides with the so-called distributional Jacobian. The first regularity

results below the natural setting were recently established by K. Astala, T. Iwaniec,

P. Koskela and G. Martin in [2]. Assuming that J(x, f) ∈ L1
loc(Ω) and eλK ∈ L1

loc(Ω) for

some sufficiently large λ = λ(N) they proved, in even dimensions, that f ∈W 1,N
loc (Ω,RN ).

The standing conjecture is that one can take λ(N) = 1 as the critical exponent for the

regularity conclusions; it is known that the LN -integrability of the differential fails for

any λ < 1.
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In [35] the authors continue this theme of the regularity properties of mappings of

finite distortion, refining and extending the earlier paper [2] to all dimensions.

Before illustrating the result proved in [35] it is worth recalling some results due to

L. Migliaccio and G. Moscariello [45]. Consider the p-harmonic equation

div(|∇u|p−2∇u) = 0 p ∈ (1,∞).

Setting E = ∇u and B = |∇u|p−2∇u we obtain

|E|p

p
+
|B|q

q
= 〈B,E〉.

Now let us consider div-curl fields [B,E] coupled by the distortion inequality

|E|p

p
+
|B|q

q
≤ K(x)〈B,E〉 a.e. in Ω(5.20)

where, as usual, 1 ≤ K(x) ≤ ∞ is a measurable function in Ω and 1 < p, q < ∞ are

conjugate Hölder exponents, p + q = pq. In this setting, in [45], the following higher

integrability result is proved:

Theorem 5.11. Let Φ = [B,E] be a div-curl field satisfying (5.20). If K(x) ∈ Expγ(Ω)

for some γ > 1, then B ∈ Lp logα L(σΩ,RN ) and E ∈ Lq logα L(σΩ,RN ) for any α > 0

and 0 < σ < 1. Moreover for any α > 1,

‖|E|p + |B|q‖L logα−1/γ L(σΩ) ≤ c‖〈B,E〉‖L logα−1 L(Ω)

where c = c(σ, p, α,N, ‖K‖Expγ(Ω)).

Note that Expγ(Ω) denotes the Orlicz space defined by the function Φ(t) = exp(tγ)−1.

The proof is obtained by using well known inequalities for nonnegative div-curl prod-

ucts and maximal theorems in Orlicz spaces. It is also proved that the theorem fails if

K(x) is assumed merely in Exp(Ω) = Exp1(Ω).

We also wish to mention an application to mappings with unbounded distortion:

Proposition 5.12. If f ∈W 1,N
loc (Ω,RN ) and satisfies the distortion inequality

|Df(x)|N ≤ K(x)J(x, f) a.e.

with K(x) ∈ Expγ(Ω) for some γ > 1, then |Df | ∈ LN logα L(σΩ) for any α ≥ 0 and

0 < σ < 1.

As a consequence they also get the following continuity result:

Corollary 5.13. Under the assumptions of Proposition 5.12, for any α > N and any

ball B ⊂ Ω, there exists c = c(α,B) such that

|f(x)− f(y)| ≤ c(α,B)(‖f‖LN logα L + ‖Df‖LN logα L)(log(e+ |x− y|−N ))1−
α
N

for any x 6= y ∈ B.

The arguments above prove rather clearly that the class of mappings with exponen-

tially integrable distortion function is optimal in many respects.

Let us conclude with one more result contained in [35].

Assume f ∈ W 1,1
loc (Ω,RN ). Thus the differential matrix Df(x) ∈ RN×N is defined at

almost every point x ∈ Ω.
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Definition 5.14. A mapping f ∈W 1,1
loc (Ω,RN ) is said to have finite distortion if

(i) the Jacobian determinant is locally integrable;

(ii) there is a measurable function K = K(x) ≥ 1, finite almost everywhere, such that

|Df(x)|N ≤ K(x)J(x, f).

Every mapping of finite distortion solves a nonlinear system of first order PDEs, the

so-called Beltrami system. This in turn gives rise to a degenerate elliptic equation of

the second order. We then come to the idea to approximate these second order equa-

tions by more regular ones whose solutions yield an approximation of the mapping f .

Consequently, the authors of [35] proved the following result.

Theorem 5.15. For each dimension N ≥ 2 and α ≥ 0 there exists λα(N) ≥ 1 such that

if the distortion function K = K(x) of f satisfies�

Ω

eλK(x) dx <∞

for some λ ≥ λα(N), then
�

B

|Df(x)|N logα
(

1 +
|Df(x)|
|Df |B

)
dx ≤ Cα(N)

�

2B

J(x, f) dx

for any concentric balls B ⊂ 2B ⊂ Ω, where |Df |B stands for the integral average of

|Df | over the ball B.

Let us give an idea of the proof. Consider the Beltrami equation corresponding to the

mapping f , that is,

Dtf(x)Df(x) = J(x, f)2/NG(x).

Associated with G(x) is the energy integral

E [f ] =
�

Ω

E(x,Df) dx

where

E(x,Df) = 〈DfG−1(x), Df〉N/2.

The Euler–Lagrange equation takes the form

divA(x,Df) = 0(5.21)

where

A(x,Df) = 〈DfG−1(x), Df〉(N−2)/2DfG−1(x).

The energy integrand takes the form

E(x,Df) = NN/2J(x, f) dx.

From the elementary inequality

1

N
|M |N +

N − 1

N
|A(x,M)|N/N−1 ≤ K(x)E(x,M)

valid for every matrix M ∈ RN×N it is possible to deduce that a mapping of distortion

K = K(x) gives rise to an N -harmonic couple Φ = [A(x,Df), Df ] (see Chapter 3).
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A suitable approximation of equation (5.21) leads to a sequence of solutions for which

the following a priori estimate holds concerning integrability properties of p-harmonic

couples. This is provided in [37].

Theorem 5.16. Let h ∈W 1,p(Ω,RN ) be a mapping of finite distortion. For every inte-

ger m ≥ 0 there exists λp(m,N) ≥ 1 such that if the distortion function K(x) satisfies�

Ω

eλK(x) dx <∞

with some λ ≥ λp(m,N) then

‖Dh‖pLp logm L(Ω′) ≤ Cp(Ω
′)
�

Ω

〈A(x,Dh), Dh〉 dx(5.22)

for every compact subset Ω′ ⊂ Ω.

Let us emphasize explicitly that this result requires the left hand side to be finite and

this can be ensured by assuming that the exponent p is close to N . More specifically,

N − 1/2 ≤ p ≤ N .

It is important to observe that the estimates are preserved in passing to the limit. As a

consequence, the following modulus of continuity estimate for mappings of exponentially

integrable distortion holds:

Corollary 5.17. For each dimension N ≥ 2 and s ≥ 0 there exists λs(N) ≥ 1 such

that if the distortion function K = K(x) of f : Ω → RN satisfies�

Ω

eλK(x) dx <∞

for some λ ≥ λs(N), then

|f(x)− f(y)| ≤ c(N, s)

logs
(

2R
|x−y|

)[ �

B(a,6R)

J(x, f) dx
]1/N

whenever x, y ∈ B(a,R) ⊂ B(a, 6R) ⊂ Ω.

6. Lower semicontinuity of a class of multiple integrals

6.1. Introduction. In this chapter we discuss the lower semicontinuity of an integral

functional of the type

F (u) =
�

Ω

f(x, u,Lu) dx

where u ∈W 1,p(Ω,Rd), f is a nonnegative integrand satisfying the growth condition

0 ≤ f(x, s, ξ) ≤ c(1 + |ξ|q)(6.1)

q ≥ p > 1, and L is a linear differential operator of first order, L : C∞(Ω,Rd) →
C∞(Ω,Rm).

In the special case Lu = ∇u and q = p, there is a vast literature on the lower

semicontinuity properties of F (see for instance [46, 47, 1, 43, 41]).



54 F. Giannetti

More recently, in connection with the applications to materials exhibiting nonstandard

elastic and magnetic behaviours, researchers have been interested in lower semicontinuity

also when p < q and L is a general linear operator of first order (see [15–17]). To fix ideas

assume that L : C∞(RN ,Rd)→ C∞(RN ,Rm) is defined by

Lu =

N∑
k=1

Ak
∂u

∂xk
(6.2)

where Ak, k = 1, . . . , N , are given linear transformations of Rd into Rm. In [22] our main

result, when f depends only on ξ, is the following.

Theorem 6.1. Assume q ≥ p > max{1, q(N − 1)/N}. Let f = f(ξ) : Rm → [0,∞) be

a function satisfying (6.1) and L a linear differential operator of the type (6.2). Assume

that for any A ∈ RN×d and any u ∈ C∞0 (Q,Rd) we have�

Q

[f(L(Ax+ u(x))− f(L(Ax))] dx ≥ 0

where Q = (0, 1)N is the unit cube. Then for any u ∈ W 1,p(Ω,Rd) and any sequence

un ∈W 1,q(Ω,Rd) such that un ⇀ u weakly in W 1,p(Ω,Rd) we have�

Ω

f(Lu(x)) dx ≤ lim inf
n→∞

�

Ω

f(Lun(x)) dx.

This result, very much in the spirit of the lower semicontinuity results of Fonseca–

Malý and Fonseca–Marcellini, is proved by a blow-up argument. Similar arguments are

also used to extend the result to the case when f depends both on x and s.

In this framework it is natural to consider the particular case u = (v, w) and Lu =

(Pv,Q∗w) where P,Q are linear differential operators of first order with constant coeffi-

cients forming an elliptic complex (see Chapter 3 for the definition).

It is easy to check that any functional of the type

G(u) =
�

Ω

g(〈Pv,Q∗w〉) dx,(6.3)

where g : R → [0,∞) is convex, is quasiconvex in u. Hence Theorem 6.1 implies the

lower semicontinuity of G with respect to the weak convergence in W 1,p for all p >

(2(N − 1))/N . Functionals of type (6.3) can be viewed as a generalization of the usual

polyconvex functionals. In fact if N = 2, taking

Pu = ∇u, Qv = curl v =
∂v2

∂x
− ∂v1

∂y
,

u ∈ C∞(R2,R), v ∈ C∞(R2,R2), one has an elliptic complex and 〈Pu,Q∗w〉 is equal to

the determinant of the matrix whose rows are given by ∇u and ∇w.

We shall make use of the following definition of quasiconvexity:

Definition 6.2. Let f : Ω ×Rd ×Rm → R be a Carathéodory function. We say that f

is quasiconvex with respect to the operator L if for almost every x0 ∈ Ω, for any s0 ∈ Rd
and any matrix A ∈ RN×d we have�

Q

[f(x0, s0,L(Ax+ u(x)))− f(x0, s0,L(Ax))] dx ≥ 0(6.4)

for all u ∈ C∞0 (Q,Rd), where Q = (0, 1)N is the unit cube.
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Notice that by a density argument it follows that if |f(x, s, ξ)| ≤ c(1+ |ξ|q), then (6.4)

holds with u ∈W 1,q
0 (Q,Rd).

6.2. Main result. This section is devoted to the proof of Theorem 6.1. We consider

fixed exponents r, q ≥ 1 and p > max{1, r(N − 1)/N, q(N − 1)/N}. The following lemma,

proved by Fonseca–Malý [15], is very useful in what follows.

Lemma 6.3. Let V ⊂⊂ Ω and W ⊂ Ω be open sets, Ω = V ∪W , v ∈ W 1,q(V ) and

w ∈ W 1,q(W ). Let m ∈ N. There exist a function z ∈ W 1,q
loc (Ω) and open sets V ′ ⊂ V

and W ′ ⊂W , such that V ′ ∪W ′ = Ω, z = v on Ω −W ′, z = w on Ω − V ′,

LN (V ′ ∩W ′) ≤ Cm−1

and

‖z‖Lr(V ′∩W ′) + ‖z‖W 1,q(V ′∩W ′)

≤ Cm−τ (‖v‖W 1,p(V ∩W ) + ‖w‖W 1,p(V ∩W ) +m‖w − v‖Lp(V ∩W ))

where C = C(p, q, r, V,W ) and τ = τ(N, p, q, r) > 0.

In what follows we denote by B%(x) the ball {y ∈ RN : |y − x| < %}; if the centre of

the ball is the origin we will simply write B% instead of B%(0).

Proof of Theorem 6.1. The proof falls naturally into two parts.

Step 1. We prove the result in the special case that Ω = B1 and u is linear, u(x) = Ax

for A ∈ RN×d. According to Rellich’s compact imbedding theorem, we may assume that

‖un − u‖Lp ≤ n−1.

Let R < 1 and % = (R+ 1)/2. We apply the lemma above to v = un, w = u, V = B%
and W = B1 \ B%. Accordingly, we obtain zn ∈ W 1,q(B1,Rd) and open sets Vn ⊂⊂ V ,

Wn ⊂W such that Vn ∪Wn = B1,

zn = un on B1 \Wn, zn = u on B1 \ Vn
and

LN (Vn ∩Wn) ≤ c(R)

n
,

�

Vn∩Wn

|Lzn|q ≤
c(R,M)

nτq

where M = sup ‖un‖W 1,p and τ > 0 is the exponent provided by Lemma 6.3. Since

zn − u ∈W 1,q
0 (B1,Rd), from the growth condition and the quasiconvexity of f , we have�

B1

f(Lu) ≤
�

B1

f(Lzn).

Therefore�

B1

f(Lu)−
�

B1

f(Lun) ≤
�

B1

f(Lzn)−
�

B1

f(Lun) ≤
�

B1\Vn

f(Lu) +
�

Vn∩Wn

f(Lzn)

≤ cLN (B1 \ Vn) +
�

Vn∩Wn

(1 + |Lzn|q)

≤ c(LN (B1 \B%) + n−1 + n−τq) ≤ c(1−R+ n−1 + n−τq).

The conclusion follows by letting first n→∞ and then %→ 1.
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Step 2. Let u ∈ W 1,p(Ω,Rd), un ∈ W 1,q(Ω,Rd), un ⇀ u in W 1,p(Ω,Rd). With no loss

of generality we may assume that

lim inf
n→∞

�

Ω

f(Lun) dx = lim
n→∞

�

Ω

f(Lun) dx <∞.

Passing to a subsequence if necessary, we obtain the existence of finite Radon nonnegative

measures µ and ν such that

f(L(un(x)))→ µ w∗-M(Ω), |Lun|p → ν w∗-M(Ω),

where M(Ω) is the space of all Radon measures. Now our purpose is to prove that for

LN -a.e. x0 ∈ Ω,
dµ

dLN
(x0) = lim

%→0+

µ(B%(x0))

ωN%N
≥ f(Lu(x0)).(6.5)

In fact if (6.5) is true, then for any ϕ ∈ Cc(Ω), 0 ≤ ϕ ≤ 1, we have

lim
n→∞

�

Ω

f(Lun) ≥ lim
n→∞

�

Ω

ϕf(Lun) =
�

Ω

ϕdµ ≥
�

Ω

ϕ
dµ

dLN
dx ≥

�

Ω

ϕf(Lu).

Therefore letting ϕ → 1 and applying the monotone convergence theorem we may con-

clude that

lim
n→∞

�

Ω

f(Lun) ≥
�

Ω

f(Lu).

It remains to prove (6.5). Let x0 ∈ Ω be such that the limits

dµ

dLN
(x0) = lim

%→0+

µ(B%(x0))

ωN%N
,

dν

dLN
(x0) = lim

%→0+

ν(B%(x0))

ωN%N

exist and are finite and

lim
%→0+

1

%

�

B%(x0)

|u(y)− u(x0)−∇u(x0)(y − x0)| dy = 0.

Note that the last three conditions are satisfied by all points x0 ∈ Ω, except maybe

on a set of LN -measure zero. Then we select %k → 0+ such that µ(∂B%k(x0)) = 0,

ν(∂B%k(x0)) = 0. Thus

lim
k→∞

µ(B%k(x0))

ωN%Nk
≥ lim
k→∞

lim sup
n→∞

�

B%k (x0)

f(Lun(x)) dx = lim
k→∞

lim sup
n→∞

�

B1

f(Lvn,k(y)) dy

where

vn,k =
un(x0 + %k)− u(x0)

%k
.

It follows that vn,k ∈W 1,q(B1,Rd),

lim
k→∞

lim
n→∞

‖vn,k −∇u(x0)x‖L1(B1) = 0

and

lim sup
k→∞

lim sup
n→∞

‖Lvn,k‖Lp(B1) ≤
dν

dLN
(x0) <∞.

Hence, we may extract a subsequence such that

vnk,k = vk ⇀ ∇u(x0)x weakly in W 1,p(B1,Rd)
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and
dµ

dLN
(x0) = lim

k→∞

�

B1

f(Lvk(y)) dy.

Therefore from Step 1 we get

dµ

dLN
(x0) = lim

k→∞

�

B1

f(Lvk(y))dy ≥ f(Lu(x0))

and this concludes the proof.

It is possible to show the following extension of Theorem 6.1:

Theorem 6.4. Suppose that f(x, s, ξ) satisfies the following conditions:

(i) f(x, s, ξ) is quasiconvex ;

(ii) 0 ≤ f(x, s, ξ) ≤ c(1 + |ξ|q);
(iii) for any (x0, s0) ∈ Ω × Rd and any ε > 0, there exists δ > 0 such that if |x− x0|

< δ, |s− s0| < δ and ξ ∈ RN×d then f(x, s, ξ) ≥ (1− ε)f(x0, s0, ξ).

Let un ∈ W 1,q(Ω,Rd) and u ∈ W 1,p(Ω,Rd) be such that un ⇀ u in W 1,p(Ω,Rd).
Then �

Ω

f(x, u,Lu) dx ≤ lim inf
n→∞

�

Ω

f(x, un,Lun) dx.

6.3. Polyconvex case. Now let the operator L be defined by means of a pair of differ-

ential operators of first order in N independent variables with constant coefficients

C∞(RN ,Rd) P→ C∞(RN ,Rm)
Q→ C∞(RN ,Rk)

forming an elliptic complex.

The notion of polyconvex integrands, already given in the book of Morrey [47], was

deeply studied by Ball [3] providing a better understanding of several problems, especially

those concerning the theory of finite elasticity.

In [22] we prove that Theorem 6.1 still holds if the function f is polyconvex according

to the definition given in [21], see Chapter 3.

Note that our definition of polyconvexity agrees with the one given by Ball in dimen-

sion two, provided that we take Pu = ∇u, Qv = curl v.

Let f(x, y, z, η, ξ) : Ω × Rd+k × R2m → [0,∞) be a Carathéodory function such that

(i) for all x ∈ Ω, (y, z) ∈ Rd × Rk the function (η, ξ)→ f(x, y, z, η, ξ) is polyconvex;

(ii) for any (x0, y0, z0) ∈ Ω × Rd × Rk and any ε > 0, there exists δ > 0 such

that if |x − x0| < δ, |(y, z) − (y0, z0)| < δ and η, ξ ∈ RN×d then f(x, y, z, η, ξ) ≥
(1− ε)f(x0, y0, z0, η, ξ).

Theorem 6.5. Suppose that f(x, y, z, η, ξ) satisfies conditions (i) and (ii) and suppose

p > 2(N − 1)/N . Let αn ∈ W 1,2(Ω,Rd), βn ∈ W 1,2(Ω,Rk) and α ∈ W 1,p(Ω,Rd),
β ∈ W 1,p(Ω,Rk) be such that αn ⇀ α in W 1,p(Ω,Rd) and βn ⇀ β in W 1,p(Ω,Rk).

Then �

Ω

f(x, α, β,Pα,Q∗β) dx ≤ lim inf
n→∞

�

Ω

f(x, αn, βn,Pαn,Q∗βn) dx.
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Proof. There exists a sequence of continuous nonnegative functions gj(x, y, z, η, ξ) such

that each gj is polyconvex in (η, ξ) and

0 ≤ gj(x, y, z, η, ξ) ≤ cj(1 + |〈η, ξ〉|), gj(x, y, z, η, ξ) ≤ gj+1(x, y, z, η, ξ),

f(x, y, z, η, ξ) = sup
j
gj(x, y, z, η, ξ)

(see Lemma 3.2 in [18]). Observe that polyconvexity implies quasiconvexity (see Chap-

ter 3) and that
gj(x, y, z, η, ξ) ≤ c(1 + |η|2 + |ξ|2).

Therefore, Theorem 6.1 holds and we have�

Ω

gj(x, α, β,Pα,Q∗β) dx ≤ lim inf
n

�

Ω

gj(x, αn, βn,Pαn,Q∗βn) dx

≤ lim inf
n

�

Ω

f(x, αn, βn,Pαn,Q∗βn) dx.

Now notice that since gj is increasing, we get�

Ω

f(x, α, β,Pα,Q∗β) dx = lim
j

�

Ω

gj(x, α, β,Pα,Q∗β) dx

≤ lim inf
n

�

Ω

f(x, αn, βn,Pαn,Q∗βn) dx.

This concludes the proof.

6.4. Further results. We conclude this chapter with a new result on lower semiconti-

nuity with respect to the strong convergence in L1
loc(Ω) for integral functionals defined

on BV (Ω), the subspace of L1(Ω) of functions having bounded variation. Let us consider

the functional

F (u,Ω) =
�

Ω

f(x,Du(x)) dx(6.6)

where the integrand f = f(x, ξ) satisfies the conditions:
f is continuous in Ω × RN ,
f is nonnegative in Ω × RN ,
f(x, ξ) is convex in ξ ∈ RN for every x ∈ Ω.

(6.7)

It is known that the functional (6.6) is not strongly lower semicontinuous if f satisfies

only the above continuity and convexity properties.

In 1961 Serrin was the first to give some sufficient conditions for strong lower semi-

continuity in the case u ∈ W 1,1
loc (Ω), see [55]. Later many authors attempted to weaken

Serrin’s assumption on f , also in the more general setting of BV (Ω). Nevertheless in all

these results some assumptions of uniform continuity, or of uniform lower semicontinuity

of f(x, ξ) with respect to x have been made.

In a recent paper [44], the usual additional hypotheses have been replaced by the

more general assumption of local Lipschitz continuity in the independent variable x,

when u ∈W 1,1
loc (Ω).

Following the same idea we are able to extend this result to u ∈ BVloc(Ω), as follows

[22].
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Theorem 6.6. Assume that f = f(x, ξ) satisfies conditions (6.7) and that , for every

compact set K ⊂ Ω × RN , there exists a constant L = L(K) such that

|f(x1, ξ)− f(x2, ξ)| ≤ L|x1 − x2|

for every (x1, ξ), (x2, ξ) ∈ K. Then for every uh ∈ W 1,1
loc (Ω), u ∈ BVloc(Ω) such that

uh → u in L1
loc(Ω), we have

lim inf
h→∞

�

Ω

f(x,∇uh) dx ≥
�

Ω

f(x,∇u) dx+
�

Ω

f∞(x,Dsu)

where f∞ is the recession function of f and Dsu is the singular part of the distributional

derivative Du with respect to the Lebesgue measure.

For the proof we will need the following two lemmas. The first one is an approximation

result given by De Giorgi [11].

Lemma 6.7. Let f = f(x, ξ) : Ω × RN → R satisfies conditions (6.7). Then there exists

an increasing sequence of functions {fj(x, ξ)}j∈N that converges to f(x, ξ) uniformly on

the compact sets of Ω × RN .

The functions fj can be defined as the maximum between the zero functions and a

finite number of affine (with respect to ξ ∈ RN ) functions

a0,j(x) +

N∑
i=1

a
(i)
j (x)ξi

where {
a
(i)
j (x) = −

	
RN f(x, ξ)Diαj(ξ) dξ ∀i = 1, . . . , N

a0,j(x) =
	
RN f(x, ξ){(N + 1)αj(ξ) +

∑N
i=1 ξiDiαj(ξ)} dξ

(6.8)

for αj ∈ C∞0 (RN ), αj ≥ 0,
	
RN αj(ξ) dξ = 1.

Lemma 6.8. Let µ be a positive σ-finite Borel measure in Ω and let fi : Ω → [0,∞],

i ∈ N, be Borel functions. Then�

Ω

sup
i
fi dµ = sup

∑
i∈I

�

Ai

fi dµ

where the supremum ranges over all finite sets I ⊂ N and all families {Ai}i∈I of pairwise

disjoint open sets with compact closure in Ω.

Proof of Theorem 6.6. Let {fj(x, ξ)}j∈N be the increasing sequence that converges to

f(x, ξ) uniformly on the compact sets of Ω × RN , as in Lemma 6.7.

For each j ∈ N the coefficients a(i), i = 0, . . . , N , in (6.8) are locally Lipschitz contin-

uous with respect to x; in fact, for a fixed i,

|a(i)j (x1)− a(i)j (x2)| =
∣∣∣ �

RN
{f(x1, ξ)− f(x2, ξ)}Diαj(ξ) dξ

∣∣∣ ≤ mi,jL(K)|x1 − x2|

for every x1, x2 which vary on a compact set KO of Ω and mi,j given by

mi,j =
�

RN
|Diαj(ξ)| dξ.
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Let further k ∈ N and let A0, . . . , Ak be pairwise disjoint open subsets of Ω. For any

j ∈ {0, . . . , k} and any φj ∈ C1
0 (Aj), 0 ≤ φj ≤ 1, we have�

Ω

f(x,∇uh) dx ≥
�

Aj

a0,j(x)φj(x) dx+
�

Aj

〈aj(x),∇uh〉φj(x) dx

=
�

Aj

a0,j(x)φj(x) dx+
�

Aj

〈
∂aj
∂x

(x), uh

〉
φj(x) dx

+
�

Aj

〈aj(x), uh〉∇φj(x) dx.

By Lipschitz continuity of the functions a
(i)
j (x), i = 1, . . . , N , we have∣∣∣∣∂a(i)j∂x (x)

∣∣∣∣ ≤ L.
Therefore, since uh → u in L1

loc(Ω), we get

lim inf
h→∞

�

Ω

f(x,∇uh) dx

≥
�

Aj

a0,j(x)φj(x) dx+
�

Aj

〈
∂aj
∂x

(x), u

〉
φj(x) dx+

�

Aj

〈aj(x), u〉∇φj(x) dx

=
�

Aj

a0,j(x)φj(x) dx+
�

Aj

〈aj(x), Du〉φj(x) dx

=
�

Aj

[a0,j(x) + 〈aj(x),∇u〉]φj(x) dx+
�

Aj

〈aj(x), Dsu〉φj(x).

Taking supremum with respect to the φj above we have

lim inf
h

�

Ω

f(x,∇uh) dx ≥
�

Aj

[a0,j(x) + 〈aj(x),∇u〉]+ dx+
�

Aj

〈aj(x), Dsu〉+.

Since k and Aj are arbitrary, by Lemma 6.8 we conclude that

lim inf
h

�

Ω

f(x,∇uh) dx ≥
�

Ω

f(x,∇u) dx+
�

Ω

f∞(x,Dsu).
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