
1. Introduction

In this paper we introduce a new transformation of continuous-time random walks
(CTRW) that we will call “random coarse graining” (RCG for short) since it resem-
bles the coarse-graining methods in statistical physics. We show that this transformation
leads to a new coupled CTRW, and we investigate the asymptotic behavior of this pro-
cess in detail (Theorems 5.1–5.12). Our motivation comes from the theory of relaxation
in disordered systems.

Over the last decade advanced methods of probability theory have been successfully
applied in modeling dielectric relaxation in solids. The phenomenon of approach to equi-
librium of a dipolar system driven out of equilibrium by a step or alternating external
electric field is one of the most intensively researched topics in modern physics. It has
been widely examined experimentally [8, 22, 29, 30] but the problem of understanding its
nature is as yet largely open. It has been observed for hundreds of different materials that
they exhibit very similar time and frequency dependencies of dynamic dielectric charac-
teristics (like the time decay of the depolarization current, or the complex susceptibility
function) [22, 28, 30]. All dielectric data can be represented well enough by a few em-
pirical functions with the power-law asymptotic behavior [8, 29]. However, these various
model functions characterize the relaxation processes without in any way indicating the
physical mechanisms involved.

A considerable effort devoted to finding a theoretical explanation of the empirically
observed results points to the two most widespread and at the same time least understood
properties of the relaxation responses; namely, the characteristic power-law asymptotic
behavior and the fact that this property is common to a wide range of materials with very
different physical and chemical interactions. As a consequence, in theoretical attempts to
model relaxation it has been commonly assumed that the empirical relaxation laws reflect
a kind of general behavior which is independent of the details of systems under study
[7, 10, 11, 38, 40, 62, 64, 66]. In recent attempts to find the origins of the nonexponential
relaxation patterns the idea of complex systems as “structures with variations” [18] that
are characterized through a large diversity of elementary units and strong interactions
between them is of special importance. The time evolution of physical properties of a
complex system is unpredictable or anomalous, and the main feature of all dynamical
processes in such a system is their stochastic background. In the framework of statistical
models the fact that the large scale behavior of complex systems exhibits universality,
i.e., that it is to some extent independent of the precise local nature of the system,
should come as no surprise [24, 36]. Intuitively, one expects “averaging principles” like
the law of large numbers to be in force. However, it turns out to be very hard to make
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this intuition precise in concrete examples of stochastic systems with a large number of
locally interacting components [11, 21, 32, 33, 40, 50, 62, 63, 67].

The empirical facts stress the need for a completely novel approach to the modeling of
dielectric relaxation and, to a certain extent, also mechanical relaxation, photoconduction,
photoluminescence and chemical reaction kinetics (sharing some common features, see
[30]). The need to understand the connections between the macroscopic response of the
relaxing complex system and the statistical properties of individual molecular or dipolar
species requires the introduction into relaxation theory of advanced stochastic methods,
going beyond the classical techniques of statistical physics. As shown by our work [10, 33,
34, 35, 64] a general formalism of limit theorems of probability theory plays an important
role in constructing tools to relate local random characteristics of a complex system to
empirical, deterministic relaxation laws, regardless of the specific nature of the system.
The significance of this approach lies in the fact that no other one has provided in a
simple and plausible way a rigorous explanation for the most widely observed forms of
time and frequency dependencies of dielectric characteristics. Thereby, it opens up a
new and powerful way of interpreting relaxation phenomena not only in the dielectric
context.

The scenario of relaxation proposed and explored in [31, 32, 35, 65] implies a special
construction of random sums involving an operation that resembles the deterministic
coarse-graining and renormalization-group methods of statistical physics, although, unlike
them, has itself a stochastic nature. Limit theorems for such random sums provide the
class of limiting distributions that yield straightforwardly the empirically established
formulas representing the dielectric data, and hence indicate the stochastic reasons for
the applicability of the formulas as fitting functions. In the framework of this model the
dielectric responses related to the formulas considered appear as a result of the statistical
rules the large complex system follows in its spatio-temporal evolution. In this paper
we extend the mathematical construction behind the stochastic scenario of dielectric
relaxation described in [32] to adapt it to the concept of CTRW.

The notion of CTRW was introduced by Montroll and Weiss [53] as a walk with
random time intervals between subsequent jumps. Since then, it has been applied in
physics to model a wide variety of phenomena connected with anomalous diffusion; for
instance, fully developed turbulence, transport in disordered or fractal media, intermittent
chaotic systems, and relaxation processes [9, 15, 19–21, 38, 52, 56, 57, 60].

In applications of the CTRW theory, the asymptotic distribution of the total dis-
tance reached up to a large time t by a walking particle initially at the origin is of great
importance, and hence, the large-time behavior of CTRW has been studied intensively.
In most approaches the analysis is performed by means of the Fourier–Laplace trans-
form for the total distance [47, 57, 61, 69] and often leads to the fractional-differential-
equations description [2, 3, 15, 23, 51, 52, 54, 59]. The inconvenience of this method
is that useful, explicit inversion formulas can be provided only under some restrictive
assumptions. Another method is based directly on the definition of CTRW as a ran-
dom walk subordinated to a renewal counting process, which allows using the tech-
nique of randomly indexed sequences and limit theorems for stochastic processes (see
[4, 5, 19, 20, 25, 41, 42, 48, 49, 66]). In the latter approach, in contrast to the very popu-
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lar Tauberian analysis of the Fourier–Laplace transform of the total distance, the limiting
distribution can be identified precisely and given in an easy-to-follow form, convenient
for further applications. The aim of this paper is to give a contribution to the CTRW
theory by introducing a new RCG transformation of the process. Since, in general, the
proposed operation establishes a stochastic dependence between time and space steps, we
thus provide an interesting class of coupled CTRWs that is general but easy to investi-
gate. Studying the asymptotic behavior of the transformed CTRW we obtain a new class
of possible limiting distributions for the large-time total distance reached by the walk-
ing particle. The mathematical construction proposed in this paper enables us to solve
some open problems in the CTRW theory. Moreover, it allows a natural interpretation in
stochastic models, and hence is promising from the point of view of further applications.

The paper is structured as follows: In Section 2 we gather several results on stable
distributions, renewal processes, and randomly indexed sequences that are needed in what
follows. In Section 3 we recall the definition of CTRW and provide some well known
examples of processes that have a CTRW form. Moreover, in Table 1 we briefly present
what is known about the asymptotic behavior of the walk according to [41]. The form of
presentation allows us to indicate briefly the classes of CTRW already investigated. Also,
it clearly points out the open questions.

The next two sections contain the main results of the paper. Namely, in Section 4 we
introduce a new notion of RCG transformation of CTRWs. We show that, in general, the
transformation leads to a new, coupled CTRW having the form of a random walk sub-
ordinated to a compound counting process different from the renewal counting process
subordinating the walk before. Then we study the limiting properties of the compound
counting process. In Section 5, devoted to investigation of the asymptotic behavior of
randomly coarse grained CTRWs, we prove several limit theorems. For the reader’s con-
venience, we endow the section with a guide (Tables 2 and 3). In the theorems both the
large-time limits in distribution of the normalized total distance reached by the particle
and the normalizing functions are precisely determined. The limiting probability laws
obtained are collected in Tables 4–6 and briefly analyzed.

In the next section we interpret the results of Section 5 in the context of CTRW
theory, and we partly solve the problems pointed out in Table 1. Moreover, we answer
some questions raised in Section 5, concerning the essentiality of some assumptions of
the limit theorems. Finally, in Section 7 we propose a slight modification of the randomly
coarse grained CTRW concept that enlarges the class of the limiting distributions by the
one connected with the model of dielectric relaxation.

Acknowledgements. The author is grateful to Professor Aleksander Weron for his crit-
ical reading of earlier versions of the manuscript and for helpful, stimulating comments.
Thanks are also due to Agnieszka Wyłomańska for preparing the figures.

2. Preliminaries

2.1. Stable distributions. For any sequence X = {Xi, i = 1, 2, . . .} of i.i.d. random
variables define the partial-sum sequence {SX(n), n = 0, 1, 2, . . .}, where
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SX(0) = 0, SX(n) =
n∑

i=1

Xi for n ≥ 1.(2.1)

Let

KX(t) = min{n : SX(n) > t}(2.2)

so that {KX(t), t ≥ 0} is the first-passage process.

The asymptotics of SX(n) for large n has been investigated since the beginnings of
probability theory. The first results, namely, the Bernoulli law of large numbers that was
proved by Jakob Bernoulli (1655–1705) and appeared in his “Ars Conjectandi” published
posthumously in 1713, and the De Moivre–Laplace theorem discovered by Abraham de
Moivre about 1730, are acknowledged the most important early contributions to prob-
ability theory. Their generalizations like Kolmogorov’s strong law of large numbers or
the Lindeberg–Lévy central limit theorem have found important applications in many
areas.

Full information about the possible asymptotic behavior of SX(n) (as n → ∞) is
provided by the theory of stable distributions and their domains of attraction [16, 17, 26,
55, 60, 70]. The distribution of Xi is said to belong to the domain of attraction of the
distribution of the random variable Z if for some constants an > 0, bn we have

SX(n)− bn
an

d−→
n→∞

Z(2.3)

(where “ d→” denotes convergence in distribution). It is well known [16, 17, 70] that among
nondegenerate distributions only the stable ones (with the normal distribution as a special
case) have nonempty domains of attraction. Moreover, Theorem 1 of [16, XVII 5] yields

Proposition 2.1. (a) The distribution of Xi belongs to the domain of attraction of a
stable law with index of stability α, 0 < α < 2, if and only if

lim
x→∞

P (|Xi| > xy)
P (|Xi| > x)

= y−α for each y > 0

and

the limits lim
x→∞

P (Xi > x)
P (|Xi| > x)

and lim
x→∞

P (Xi < −x)
P (|Xi| > xy)

exist.

(b) The distribution of Xi belongs to the domain of attraction of a normal law if and
only if

lim
x→∞

�
|Xi|<xyX

2
i dP

�
|Xi|<xX

2
i dP

= 1 for any y > 0.

There are many different ways to define stable laws (see e.g. [55, 70]). In this paper
we consider the stable distributions as corresponding to the four-parameter family of
characteristic functions

ϕα,β,m,c(t) = exp{imt− |ct|α(1− iβl(t))},(2.4)
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where 0 < α ≤ 2, |β| ≤ 1, m ∈ R, c > 0, and

l(t) =

{
sgn(t) tan(πα/2) for α 6= 1,

− sgn(t)
2
π

ln |t| for α = 1.

The parameter α is the index of stability ; β and m are the skewness and shift parameters,
respectively; and c is the scale parameter (however, in case α = 1 this name is not fully
justified [55]). Putting α = 2 in formula (2.4) one obtains the characteristic function
of the normal distribution, independently of the value of β. Moreover, ϕ2,β,0,c(t) with
c = 1/

√
2 and any β (|β| ≤ 1) corresponds to the standard normal law N (0, 1).

Remark 2.1. Throughout this paper Sα,β with 0 < α < 2 and |β| ≤ 1 denotes a stable
random variable corresponding to the characteristic function ϕα,β,0,1(t), and G is a ran-
dom variable with the standard normal distribution N (0, 1). For any m ∈ R and c > 0
the characteristic function ϕα,β,m,c(t) corresponds to cSα,β+m if α 6= 1, while ϕ1,β,m,c(t)
corresponds to cS1,β +m+ 2β(c ln c)/π (see [55, Section 1.2]).

Stable distributions are completely asymmetric in case 0 < α < 1 and |β| = 1 only. A
random variable Sα,1, with 0 < α < 1, that is positive with probability 1 is often called a
stable subordinator. It can be used to transform one stable random variable to another.
Namely, we have ([55, Section 1.4])

Proposition 2.2. Let 0 < γ < 1.

(a) Let 0 < κ < 2, κ 6= 1, and |β| ≤ 1. If Sκ,β and Sγ,1 are independent , then

(Sγ,1)1/κSκ,β d=
{
c1Sκγ,β1 if κγ 6= 1,
c1S1,0 +m1 if κγ = 1,

where the constants c1, β1, m1 depend on κ, γ, and β; c1 > 0, |β1| ≤ 1 ( d= denotes
equality of distributions).

(b) If G and Sγ,1 are independent , then

(Sγ,1)1/2G d= c2S2γ,0,

where c2 > 0 depends on γ.

The parameters c1, c2, β1, m1 can be shown to be of the form

c1 = (cos(γΘ)/cos(πγ/2))1/(κγ)(1 + β2 tan2(πκ/2))1/(2κ),

c2 = 2−1/2(cos(πγ/2))−1/(2γ),

β1 = tan(γΘ)/tan(γπκ/2),

m1 = (sin(γΘ)/cos(πγ/2))(1 + β2 tan2(π/(2γ)))γ/2,

(2.5)

where
Θ = arctan(β tan(πκ/2)).

Necessary and sufficient conditions for the distribution of Xi to belong to the domain
of attraction of a stable or normal law (given by Proposition 2.1) are often replaced by
simpler sufficient conditions. Namely, in the case of the stable distribution with 0 < α < 2
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it is enough that for some σ0 > 0 and |β| ≤ 1,

lim
x→∞

P (|Xi| > x)
(x/σ0)−α

= 1 and lim
x→∞

P (Xi > x)
P (|Xi| > x)

=
1 + β

2
;(A)

while in the case of the normal law it suffices that the variance of Xi is finite and positive
(in fact, this is the well known Lindeberg–Lévy central limit theorem). Moreover, the
following can be shown ([16, XVII 5, Th. 2]; [17, Ch. 7, Par. 35, Ths. 4 and 5]):

Proposition 2.3. (a) Xi satisfies condition (A) with some α, σ0, and β if and only if
(2.3) holds with

an =
{

(q(α))1/ασ0n
1/α if α 6= 1,

(π/2)σ0n if α = 1,

bn =





0 if α < 1,
n2(π/2)σ0E sin(2Xi/(πσ0n)) if α = 1,
nEXi if α > 1,

(2.6)

and the limit Z equals Sα,β . Here and throughout the paper

q(α) =
Γ (2− α) cos(πα/2)

1− α .

(b) D2Xi = σ2 for some 0 < σ < ∞ if and only if (2.3) holds with an = σn1/2,
bn = nEXi, and the limit Z is G.

Remark 2.2. It is easy to check that if the distribution of Xi satisfies condition (A) with
0 < α < 1, then EXi does not exist or is infinite. On the other hand [17], if 1 < α < 2,
then EXi exists (although D2Xi is infinite) and hence the constant bn in (2.6) is well
defined.

Let us add that condition (A) is necessary and sufficient for the distribution of Xi

to belong to the so-called domain of normal attraction of a stable law if α 6= 1 [16, 17].
There are many different continuous and discrete distributions satisfying (A). Classical
examples of continuous ones are stable laws themselves, and also the Pareto and Burr
distributions with an appropriate choice of parameters (1) [16, 27]. One can get discrete
distributions with property (A) by applying a quantizer transformation to some of the
above continuous examples. Namely, for a fixed real number δ > 0 one can transform any
random variable X into a discrete random variable Xδ by putting

Xδ = δk ⇔ δ(k − 1) < X ≤ δk for k = . . . ,−2,−1, 0, 1, 2, . . . .

We have P (Xδ ≥ δk) = P (X > δ(k − 1)) and P (Xδ ≤ −δk) = P (X ≤ −δk). Therefore
for x > 0,

P (|Xδ| > x) = P

(
|Xδ| > δ

[
x

δ

])
= P

(
X ≤ −δ

([
x

δ

]
+ 1
))

+ P

(
X > δ

[
x

δ

])

(1) The Burr distribution with parameters x0, a, b > 0, given by the distribution function

F (x) =

{
1− (1 + (x/x0)a)−b if x ≥ 0,
0 if x < 0,

satisfies (A) with σ0 = x0, α = ab, and β = 1. We have 0 < α < 2 if and only if 0 < ab < 2. The
Pareto distribution is a special case with a = 1.
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and hence P (|Xδ| > x+2δ) ≤ P (|X| > x+δ) ≤ P (|Xδ| > x) ≤ P (|X| > x−δ). Similarly
P (Xδ > x + 2δ) ≤ P (X > x + δ) ≤ P (Xδ > x) ≤ P (X > x − δ). As a consequence,
X satisfies condition (A) with some σ0 > 0, 0 < α < 2, β such that |β| ≤ 1 if and only if
Xδ does with the same parameters. Moreover, we have 0 ≤ X+ ≤ X+

δ ≤ X++δ ≤ X+
δ +δ

and 0 ≤ X−δ ≤ X− ≤ X−δ + δ ≤ X− + δ, where X+ = max(0, X), X+
δ = max(0, Xδ),

X− = max(0,−X), X−δ = max(0,−Xδ). Hence EX+ < ∞ ⇔ EX+
δ < ∞, and EX− <

∞ ⇔ EX−δ < ∞, so that E|X| < ∞ ⇔ E|Xδ| < ∞. Therefore EX exists if and only if
EXδ exists. Moreover, EX ≤ EXδ ≤ EX + 2δ and E|X| − δ ≤ E|Xδ| ≤ E|X|+ δ.

2.2. Renewal theory. Renewal theory concerns the case when P (Xi > 0) = 1 so that
X can be interpreted as a sequence of lifetimes. In this case the partial-sum sequence
{SX(n), n = 1, 2, . . .} is called a renewal process. Its asymptotic behavior for large n can
obviously be determined, for example by Proposition 2.3. Note that for Xi positive with
probability 1 the expected value is always determined, finite or infinite, and 0 < EXi ≤ ∞.
Moreover, the only possible value of β in (A) for such a random variable is β = 1, and
the condition simplifies to

lim
x→∞

P (Xi>x)
(x/σ0)−α

= 1(B)

for some σ0 > 0 and 0 < α < 2.
The properties of the Laplace transform and the Tauberian theorems (see [16, XIII])

yield:

Proposition 2.4. A random variable Xi (positive with probability 1):

(a) has a finite expected value EXi = µ if and only if

lim
t→0+

1− ψX(t)
µt

= 1;

(b) satisfies condition (B) with some σ0 > 0 and 0 < α < 1 if and only if

lim
t→0+

1− ψX(t)
(σ0t)α

= Γ (1− α).

Here ψX(t) denotes the Laplace transform of Xi (i.e. ψX(t) = Ee−tXi).

In renewal theory the counting renewal process {NX(t), t ≥ 0}, where

NX(t) = max{n : SX(n) ≤ t},(2.7)

is usually studied instead of the first-passage process {KX(t), t ≥ 0}, defined by (2.2).
In fact, the two processes are closely related in this case ([20, III, Th. 3.1]): KX(t) =
NX(t) + 1. Moreover, it is quite easy to show ([20, p. 49])

Proposition 2.5. For any t ≥ 0 we have P (NX(t) <∞) = 1; moreover ,

{NX(t) ≥ n} = {SX(n) ≤ t} for n = 1, 2, . . .(2.8)

and hence NX(t) a.s.−→∞ as t→∞.

More information on the asymptotics of NX(t) is provided by the following limit
theorems:
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Proposition 2.6 ([20, II, Th. 5.1]). NX(t)/t a.s.−→ 1/µ as t → ∞, where µ = EXi. (For
µ =∞ the assertion holds with 1/µ = 0.)

Proposition 2.7. (a) Let Xi satisfy condition (B) with some σ0 > 0 and 0 < α < 2.

(a1) If 0 < α < 1, then

NX(t)
tα

d−→
t→∞

C
1
Sαα,1

, where C = σ−α0 (q(α))−1.

(a2) If 1 < α < 2, then

NX(t)− t/µ
t1/α

d−→
t→∞

CSα,−1, where C =
σ0

µ

(
q(α)
µ

)1/α

.

(b) If D2Xi = σ2 for some 0 < σ <∞, then

NX(t)− t/µ
t1/2

d−→
t→∞

CG, where C =
σ

µ3/2
.

Proof. We follow the idea presented in [16, XI 5]. From (2.8), for any fixed x ≥ 0 we
have
{
NX(t)
tα

> x

}
= {SX([xtα] + 1) ≤ t} =

{(
[xtα] + 1
xtα

)1/α
SX([xtα] + 1)
([xtα] + 1)1/α

≤ 1
x1/α

}

(where [·] denotes the integer part). Applying Proposition 2.3 and Lemma 2 of [16, VIII 2],
in case 0 < α < 1 one obtains

P

(
NX(t)
tα

> x

)
−→
t→∞

P (σ0(q(α))1/αSα,1 < x−1/α),

which yields (a1).
Similarly,

{
NX(t)− t/µ

t1/α
> x

}
= {SX([xt1/α + t/µ] + 1) ≤ t}

=
{
SX([xt1/α + t/µ] + 1)− µ([xt1/α + t/µ] + 1)

([xt1/α + t/µ] + 1)1/α
+
µ([xt1/α + t/µ] + 1)− t
([xt1/α + t/µ] + 1)1/α

≤ 0
}
.

By Proposition 2.3 and Lemma 2 of [16, VIII 2], for 1 < α < 2 one gets

P

(
NX(t)− t/µ

t1/α
> x

)
−→
t→∞

P (σ0(q(α))1/αSα,1 + µ1+1/αx ≤ 0),

proving (a2) since Sα,−1 has the same distribution as −Sα,1. Part (b) can be proved the
same way (or see [20, II, Th. 5.2]).

Remark 2.3. The conclusions of Propositions 2.5–2.7 also hold for the first-passage pro-
cess {KX(t), t ≥ 0} since KX(t) = NX(t) + 1.

The notions of the residual lifetime SX(KX(t))− t and of the age of the object that is
alive at time t, i.e. t−SX(NX(t)), are also of interest in renewal theory. The asymptotics
of these two random variables for t→∞ are presented below.
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Proposition 2.8 ([16, XIV 3]; [20, I, Th. 2.3; II, Ths. 5.1 and 6.2]). (a) Let EXi =
µ <∞. Then

t− SX(NX(t))
t

a.s.−→
t→∞

0,
SX(KX(t))− t

t

a.s.−→
t→∞

0.

Moreover ,

(a1) if Xi has a δ-arithmetic distribution, i.e.
∑∞
n=1 P (Xi = nδ) = 1, and δ > 0

is the largest constant with this property , then

nδ − SX(NX(nδ)) d−→
n→∞

XX , SX(KX(nδ))− nδ d−→
n→∞

XX + δ,

where

P (XX = kδ) =
δ

µ
P (Xi > kδ), k = 0, 1, 2, . . . ;

(a2) otherwise,

t− SX(NX(t)) d−→
t→∞

XX , SX(KX(t))− t d−→
t→∞

XX ,
where

P (XX ≤ x) =
1
µ

x�

0

P (Xi > s) ds, x > 0.

(b) If Xi satisfies condition (B) with some σ0 > 0 and 0 < α < 1 then

t− SX(NX(t))
t

d−→
t→∞

1− Bα,
SX(KX(t))− t

t

d−→
t→∞

1
Bα
− 1,

where Bα has generalized arcsine distribution with parameter α (for details see
Remark 2.4 below).

Remark 2.4. Throughout this paper Bα with 0 < α < 1 denotes a random variable
with generalized arcsine distribution with parameter α, i.e. the beta distribution with
parameters p = α and q = 1− α. Its density function is

fα(x) =

{
sin(πα)

π
xα−1(1− x)−α for 0 < x < 1,

0 otherwise.
The density function of 1/Bα takes the form

gα(x) =

{
sin(πα)

π
x−1(x− 1)−α for x > 1,

0 otherwise.

2.3. Randomly indexed sequences. The random variable SX(NX(t)) is the partial
sum of the sequence X, randomly indexed by NX(t). Asymptotic properties of sequences
of random variables (partial-sum sequences, in particular) with random indices have been
widely investigated (see e.g. [1, 12, 13, 20, 43–46, 63]). Classical results for the case when
the random indices are independent of the sequence are as follows:

Proposition 2.9 ([20, I, Th. 1.1]). Let {Y (n), n = 1, 2, . . .} be a sequence of random

variables such that Y (n) d→ Y as n → ∞. Suppose further that {J(t), t ≥ 0} is a family
of positive, integer-valued random variables , independent of {Y (n), n = 1, 2, . . .} and

such that J(t) a.s.−→∞ as t→∞. Then Y (J(t)) d→ Y as t→∞.
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Proposition 2.10 ([13]). Let {Y (n), n = 1, 2, . . .} be a sequence of random variables

such that Y (n)/(c1nα1) d→ Y as t→∞ for some positive constants c1, α1. Suppose fur-
ther that {J(t), t ≥ 0} is a family of positive, integer-valued random variables , indepen-

dent of {Y (n), n = 1, 2, . . .} and such that J(t)/(c2t
α2) d→ J as n→∞ for some positive

constants c2, α2. Let the limit random variable J be independent of Y. Then

Y (J(t))
c1c

α1
2 tα1α2

d−→
t→∞

J α1Y .

In the general case, we have:

Proposition 2.11 ([20, I, Th. 2.1]). Let {Y (n), n = 1, 2, . . .} be a sequence of random
variables such that Y (n) a.s.−→ Y as n→∞. Suppose further that {J(t), t ≥ 0} is a fam-
ily of positive, integer-valued random variables such that J(t) a.s.−→ ∞ as t→∞. Then
Y (J(t)) a.s.−→ Y as t→∞.

Moreover, Theorem 5.2 of [68] implies

Proposition 2.12. Let {Y (n), n = 1, 2, . . .} be the partial-sum sequence for some se-
quence of independent and identically distributed random variables such that Y (n)/b(n)
d→ Y as n→∞ for some sequence {b(n), n = 1, 2, . . .}, where Y has a stable distribution.

Suppose further that {J(t), t ≥ 0} is a family of positive, integer-valued random variables
such that J(t) a.s.−→ ∞ and J(t)/a(t) a.s.−→ 1 as t→∞ for a normalizing function a(t).

Then Y (J(t))/b(a(t)) d→ Y as t→∞.

Note that a.s. convergence in Propositions 2.9 and 2.12 can be replaced by convergence
in probability. In the next section we present an important example of a randomly indexed
sequence.

3. Continuous-time random walks (CTRW)

The notion of CTRW generalizes a simple random walk by allowing a random waiting
time between jumps. The definition of this stochastic process can be formulated in the
following manner:

Definition 3.1. Let (T,R) = {(Ti, Ri), i = 1, 2, . . .} be a sequence of i.i.d. random
vectors such that P (Ti > 0) = 1. The continuous-time random walk generated by (T,R)
is the stochastic process {R̃(t), t ≥ 0} such that

R̃(t) = SR(NT (t)),

where SR(n) is the partial sum (2.1) of the i.i.d. sequence R = {Ri, i = 1, 2, . . .}, while
NT (t) is obtained via formula (2.7) from the i.i.d. sequence T = {Ti, i = 1, 2, . . .}.

The random variable Ti is usually interpreted as the waiting time of a moving particle
for the ith jump, and Ri as the ith jump parameter (indicating both the length and
direction of the jump). Hence the renewal process {ST (n), n = 1, 2, . . .} represents the
instants of time when the sequential jumps occur, while the process {NT (t), t ≥ 0} counts
the jumps. The random variable R̃(t) represents the total distance covered by the particle
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Fig. 1. An example of the CTRW trajectory

until time t (see Figure 1). The CTRW process is called decoupled if the random variables
Ti and Ri are independent, and coupled otherwise.

As we shall see below, several well known processes can be constructed according to
Definition 3.1. Note that, in view of Example 3.1, CTRW is a discrete-time random walk
subordinated to a renewal counting process.

Example 3.1 (Classical random walk, see e.g. [16]). If Ti = ∆t for some positive constant
∆t then R̃(t) = SR([t/∆t]) so that {R̃(t), t ≥ 0} is an ordinary, discrete-time random
walk. If additionally P (Ri = 1) = p and P (Ri = −1) = 1 − p for some 0 < p < 1, then
for ∆t = 1 we obtain a classical random walk.

Example 3.2 (Poisson process [6]). If Ri = ∆r for some nonzero constant ∆r then
R̃(t) = ∆rNT (t) and the CTRW {R̃(t), t ≥ 0} is just the scaled counting process. If
additionally Ti is exponentially distributed with parameter λ, for ∆r = 1 we find that
{R̃(t), t ≥ 0} is a Poisson process with intensity λ.

Example 3.3 (Compound Poisson process [6]). If Ti and Ri are independent and Ti is
exponentially distributed with parameter λ, then {R̃(t), t ≥ 0} is a compound Poisson
process , known to have independent and stationary increments. If additionally Ri has a
zero-one distribution, i.e. P (Ri = 1) = p and P (Ri = 0) = 1−p for some 0 < p < 1, then
{R̃(t), t ≥ 0} is just a new Poisson process with intensity λp.

Example 3.4 (Lévy flight [9, 52]). If Ti and Ri are independent, ETi is finite and Ri is
a symmetric stable random variable (i.e. with β = m = 0) with index of stability α such
that 1 < α < 2 (so that ERi = 0 and D2Ri = ∞), then the process {R̃(t), t ≥ 0} is
referred to as the Lévy flight.

Example 3.5 (Age of object that is alive at time t [16, 20]). Taking Ri = Ti we obtain
a simple example of a coupled CTRW. In this case t−R̃(t) coincides with the age of the
object that is alive at time t, considered in renewal theory.

Example 3.6 (Lévy walk [38, 42]). Another example of a coupled CTRW is the Lévy
walk , obtained when Ri = YiT

ν
i + m, where ν ≥ 0 and m are constants; {Yi} is a se-
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Table 1. Classes of CTRWs considered in the literature. The cases for which nondegenerate
large-time limiting distributions have been determined are marked by ”+”; and open questions,
by ” ?” and ” ?©” (the latter indicates the questions that are partly answered in this paper).
”Ri ⊥ Ti” means that the random variables Ri and Ti are independent. C0 is a nonzero constant.
Note that in case ETi = τ <∞ and ERi = % 6= 0 a degenerate, nonzero constant limit has been
derived.

ETi = τ ≤ ∞
Ti satisfies (B) with 1 < αT < 2 D2Ti <∞ otherwise

ERi = % 6= 0

Ri = (%/τ)Ti +

otherwise

αR 6=αT +

Ri satisfies (A)
with 1 < αR < 2

αR = αT
Ri − (%/τ)Ti
satisfies (A)

+ +

otherwise ?©1

D2Ri <∞ + +

otherwise ?

ERi = 0

Ri satisfies (A)
with 1 < αR < 2

+

D2Ri <∞ +

otherwise ?
ERi does not exist

Ri satisfies (A)
with 0 < αR < 1

+

otherwise ?

ETi =∞
Ti satisfies (B) with 0 < αT < 1 otherwise

ERi 6= 0 + ?
ERi = 0

Ri satisfies (A)
with 1 < αR < 2

Ri ⊥ Ti +

otherwise ?©2

D2Ri <∞
Ri ⊥ Ti +

otherwise ?©3

otherwise ?

ERi does not exist

Ri = C0Ti +
Ri satisfies (A)
with 0 < αR < 1

Ri ⊥ Ti +

otherwise ?©4

otherwise ?©5
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quence of i.i.d. random variables, independent of {Ti}, such that P (Yi = 1) = p and
P (Yi = −1) = 1− p for some 0 < p < 1; and Ti satisfies condition (B) with α > 0, α 6= 2.

It is very difficult to determine the properties of {R̃(t), t ≥ 0} in general. What is
examined quite well is the behavior of CTRW for t tending to ∞. Recently, a general
representation of the scaling limit of both decoupled and coupled CTRWs has been found,
also in the case of d-dimensional jumps [4, 5, 48, 49]; however, the limiting probability laws
have not been clearly identified there. A systematic study of the possible total-distance
limiting distributions for one-dimensional CTRWs has been done in [41]. In Table 1 we
briefly summarize the considerations presented there. Namely, we collect the assumptions
under which the long-time asymptotic behavior of CTRW has been determined (2), and
we indicate the cases that need to be investigated. As the table shows, some results for
the case ETi = ∞ concern the class of decoupled CTRWs only. In the next section we
propose a new transformation of CTRWs that in most cases leads to a coupled process.
The analysis of the behavior of the transformed process for t → ∞ will enable us to
answer some of the open questions pointed out in Table 1.

4. Random coarse graining (RCG) of CTRW

4.1. Definition. We now introduce a new transformation of a CTRW process that we
call “random coarse graining” (RCG) since it resembles the coarse-graining methods
for rescaling that smooth out relatively small length-scale structures while preserving
larger length-scale ones. The proposed operation is analogous to one of the crucial tools
used by physicists to understand complex phenomena in condensed matter problems;
namely, the renormalization group approach in statistical physics in the form proposed
by Sinai [14, 24, 58]. The RCG transformation has the same feature of averaging the
details of the system, although, in contrast to the deterministic classical methods, has
a stochastic nature. Another stochastic analog of renormalization-group transformation
has been proposed in [61].

Definition 4.1. Let (T,R) = {(Ti, Ri), i = 1, 2, . . .} be a sequence of i.i.d. random
vectors such that P (Ti > 0) = 1, and let M = {Mi, i = 1, 2, . . .} be a sequence of
i.i.d. random variables such that

∞∑

n=1

P (Mi = n) = 1

(i.e. Mi is a positive, integer-valued random variable). Assume that M is independent
of (T,R). The CTRW generated by (T,R) and randomly coarse grained by means of M
is the process {R̃M (t), t ≥ 0} obtained according to Definition 3.1 from the sequence
(T ,R) = {(T j , Rj), j = 1, 2, . . .}, where, with SM (j) being the jth partial sum of M ,

(T j , Rj) =
SM (j)∑

i=SM (j−1)+1

(Ti, Ri).(4.1)

(2) The results themselves are not presented since they follow directly from the theorems
proved in Section 5; see the comment at the beginning of Section 6.
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Fig. 2. An example of the randomly-coarse-grained-CTRW trajectory. The grey line is the tra-
jectory of the CTRW process before the RCG transformation

Observe that P (T j > 0) = 1 and (T ,R) is a sequence of i.i.d. random vectors so that
{R̃M (t), t ≥ 0} is well defined. In most cases, for fixed j the random variables Rj and T j
are not independent (even if Ri and Ti are) (3). Hence the RCG transformation given by
Definition 4.1 converts the CTRW {R̃(t), t ≥ 0}, generated by (T,R), into a new CTRW
{R̃M (t), t ≥ 0}, generated by (T ,R), which, in general, is coupled; see Figure 2. On the
other hand, we obtain

Theorem 4.1. For any t > 0,

R̃M (t) = SR(L(t)),(4.2)

where

L(t) = SM (NM (NT (t)));(4.3)

so that R̃M (t) is the partial sum of the sequence {Ri}, randomly indexed by L(t).

Proof. Observe that T j and Rj , given by (4.1), are equal to

T j = ST (SM (j))− ST (SM (j − 1)), Rj = SR(SM (j))− SR(SM (j − 1)),

and therefore
ST (n) = ST (SM (n)), SR(n) = SR(SM (n)).

As a consequence,
R̃M (t) = SR(SM (NT (t))).(4.4)

Moreover, for k = 0, 1, . . . ,
NT (t) = k ⇔ ST (SM(k)) ≤ t < ST (SM (k + 1))

⇔ SM (k) ≤ NT (t) < SM (k + 1) ⇔ NM (NT (t)) = k.

Hence, NT (t) = NM (NT (t)), which together with (4.4) yields (4.2) and (4.3).

(3) A necessary condition for Rj and T j to be independent (if Ri and Ti are independent)
is that gM (φR(t)φT (t)) = gM (φR(t))gM (φT (t)) for any t, where gM (s) = EsMi is the generating
function of Mi, and φR(t), φT (t) are the characteristic functions of Ri, Ti, respectively. This
condition cannot hold if, for example, Mi has a Poisson distribution, except for the degenerate
case of Ri = 0 with probability 1.
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Theorem 4.1 shows that a randomly coarse-grained CTRW is a discrete-time random
walk {SR([t]), t ≥ 0} subordinated to the compound counting process {L(t), t ≥ 0}
defined by (4.3). The process {L(t), t ≥ 0} is different from the renewal counting process
{NT (t), t ≥ 0} subordinating the walk before the RCG transformation. From this point
of view, RCG is an operation changing the number of jump steps till time t. Taking
Mi = 1 one obtains L(t) = NT (t) and hence R̃M (t) = R̃(t). Therefore the construction
of Definition 4.1 can be considered as a generalization of the concept of CTRW.

4.2. Some properties of the compound counting process. Since Mi is integer-
valued, L(t) = SM (NM (NT (t))) ≥ NM (NT (t)). From Propositions 2.5 and 2.11,
NM (NT (t)) a.s.−→∞ as t→∞, and as a consequence we have

Theorem 4.2. L(t) a.s.−→∞ as t→∞.

Detailed analysis of asymptotic properties of the compound counting process {L(t),
t ≥ 0} leads to the following results:

Theorem 4.3. Let EMi <∞.

(a) If ETi = τ <∞ then
L(t)
t

a.s.−→
t→∞

1
τ
.

(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
then

L(t)
tλ

d−→
t→∞

C
1
Sλλ,1

, where C = τ−λ0 (q(λ))−1.(4.5)

Proof. From Proposition 2.8(a), SM (NM (t))/t a.s.−→ 1 as t→∞. Moreover, NT (t) a.s.−→ ∞
(Proposition 2.5). Hence, according to Proposition 2.11,

L(t)
NT (t)

=
SM (NM (NT (t)))

NT (t)
a.s.−→
t→∞

1.

Thus, in case ETi = τ <∞, we deduce from Proposition 2.6 that

L(t)
t

=
L(t)
NT (t)

· NT (t)
t

a.s.−→
t→∞

1 · 1
τ
.

If instead limt→∞ Pr(Ti > t)/(t/τ0)−λ = 1 for some τ0 > 0 and 0 < λ < 1, then it follows
from Proposition 2.7(a) and from Lemma 2 of [16, VIII 2] that

L(t)
tλ

=
L(t)
NT (t)

· NT (t)
tλ

d−→
t→∞

1 · C 1
Sλλ,1

,

where C is given by (4.5).

Observe that the conclusions of Theorem 4.3 remain true even if the sequences {Mi}
and {Ti} are not independent.

Theorem 4.4. Let the random variable Mi satisfy condition (B) with α = γ for some
0 < γ < 1, and with some σ0 > 0.
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(a) If ETi = τ <∞ then

L(t)
t

d−→
t→∞

CBγ , where C =
1
τ

and Bγ has a generalized arcsine distribution with parameter γ (see Remark 2.4).
(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,

then
L(t)
tλ

d−→
t→∞

CBγ
1
Sλλ,1

,

where C is as in (4.5), and the random variables Bγ and Sλ,1 are independent.

Proof. From Proposition 2.5, NT (t) a.s.−→∞ as t→∞. Moreover, {NT (t)} is independent
of {SM (NM (t))}. From Propositions 2.8(b), 2.9, 2.6 and Lemma 2 of [16, VIII 2], we
obtain

L(t)
t

=
SM (NM (NT (t)))

NT (t)
· NT (t)

t

d−→
t→∞

Bγ ·
1
τ

in case ETi = τ < ∞. If instead limt→∞ Pr(Ti > t)/(t/τ0)−λ = 1 for some τ0 > 0 and
0 < λ < 1, then according to Propositions 2.7(a) and 2.8(b),

SM (NM (t))
t

d−→
t→∞

Bγ and
NT (t)
tλ

d−→
t→∞

C
1
Sλλ,1

,

where C is given by (4.5). From Proposition 2.10 we obtain (b).

As shown in Theorem 4.3(a), L(t)/t tends with probability 1 to the constant 1/τ as
t→∞ if both EMi, ETi are finite (τ = ETi). The next theorem concerns the asymptotic
behavior of the difference L(t)/t− 1/τ .

Theorem 4.5. Let EMi <∞ and ETi = τ <∞.

(a) If Ti satisfies condition (B) with α = λ for some 1 < λ < 2, and with σ0 = τ0 > 0,
then

L(t)− t/τ
t1/λ

d−→
t→∞

CSλ,−1, where C =
τ0
τ

(
q(λ)
τ

)1/λ

.

(b) If D2Ti = σ2 for some 0 < σ <∞ then

L(t)− t/τ
t1/2

d−→
t→∞

CG, where C =
σ

τ3/2
.

Proof. The random variable Mi is integer valued. Let δ > 0 be the largest integer constant
such that

∑∞
n=1 P (Mi = nδ) = 1. Then NM (t) = NM ([t/δ] δ) and we have

L(t)− t/τ = SM

(
NM

([
NT (t)
δ

]
δ

))
−
[
NT (t)
δ

]
δ

+
([

NT (t)
δ

]
− NT (t)

δ

)
δ

+ (NT (t)− t/τ).

(Here [·] denotes the integer part.) From Proposition 2.8(a), nδ − SM (NM (nδ)) d→ XM
as n→∞, where XM is a well defined random variable. Since NT (t) a.s.−→ ∞ as t→∞
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(Proposition 2.5) and {NT (t)} is independent of {SM (NM (t))}, the first term on the
right-hand side above divided by t1/λ (or t1/2) tends almost surely to 0 as t → ∞ from
Proposition 2.9 and Lemma 2 of [16, VIII 2]. The absolute value of the second term is
less than δ so that, divided by t1/λ (or t1/2), it also tends to 0. As a consequence, the
asymptotics of the difference L(t)− t/τ is determined by the behavior of the third term
and the conclusions follow from Proposition 2.7.

5. Asymptotic behavior of randomly coarse grained CTRWs

In this section we prove several limit theorems providing information on the asymptotic
distribution of R̃M (t) for t tending to infinity. We consider different classes of randomly
coarse grained CTRWs. For the reader’s convenience, in Tables 2 and 3 we provide a
guide to the results of this part of the paper.

In the first two theorems we study the case Ri ∝ Ti.
Theorem 5.1. Assume that EMi = µ <∞ and that Ri = CTi for some constant C 6= 0.

(a) If ETi = τ <∞ then
R̃M (t)
t

a.s.−→
t→∞

C.

Moreover :

(a1) if the distribution of Ti is arithmetic then

R̃M (nδ)− Cnδ d−→
n→∞

−CXT,M ,

where δ > 0 is the largest constant such that
∑∞
n=1 P (T j = nδ) = 1, and

P (XT,M = kδ) =
δ

τµ
P (T j > kδ), k = 0, 1, 2, . . . ;

(a2) otherwise,

R̃M (t)− Ct d−→
t→∞

−CX T,M ,

where

P (XT,M ≤ x) =
1
τµ

x�

0

P (T j > s) ds, x > 0.

(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
then

R̃M (t)
t

d−→
t→∞

CBλ.

Theorem 5.2. Assume that Mi satisfies condition (B) with α = γ for some 0 < γ < 1,
and with some σ0 > 0, and that Ri = CTi for some constant C 6= 0.

(a) If ETi = τ <∞ then
R̃M (t)
t

d−→
t→∞

CBγ .
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Table 2. Guide to the limit theorems for randomly coarsed grained CTRWs; case EMi < ∞.
C0 is a nonzero constant.

ETi = τ <∞
Ti satisfies (B) with 1 < αT < 2 D2Ti <∞ otherwise

ERi = % 6= 0 Th. 5.9(a) and

Ri = (%/τ)Ti Th. 5.1(a)

otherwise

αR 6=αT Th. 5.11(a1,a3)

Ri satisfies (A)
with 1 < αR < 2

αR=αT
Ri − (%/τ)Ti
satisfies (A)

Th. 5.11(a2),
Rem. 5.1

Th. 5.11(b)

otherwise ?

D2Ri <∞ Th. 5.12(a) Th. 5.12(b)

otherwise ?

ERi = 0

Ri satisfies (A)
with 1 < αR < 2

Th. 5.5(a)

D2Ri <∞ Th. 5.7(a)

otherwise ?

ERi does not exist

Ri satisfies (A)
with 0 < αR < 1

Th. 5.3(a)

otherwise ?

ETi =∞
Ti satisfies (B) with 0 < αT < 1 otherwise

ERi 6= 0 Th. 5.9(b) ?

ERi = 0

Ri satisfies (A)
with 1 < αR < 2

Ri ⊥ Ti Th. 5.5(b)

otherwise ?

D2Ri <∞
Ri ⊥ Ti Th. 5.7(b)

otherwise ?

otherwise ?

ERi does not exist

Ri = C0Ti Th. 5.1(b)
Ri satisfies (A)
with 0 < αR < 1

Ri ⊥ Ti Th. 5.3(b)

otherwise ?

otherwise ?
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Table 3. Guide to the limit theorems for randomly coarsed grained CTRWs; case when Mi

satisfies (B) with 0 < αM < 1. C0 is a nonzero constant.

ETi <∞
ERi 6= 0 Th. 5.10(a)

ERi = 0

Ri satisfies (A)
with 1 < αR < 2

Ri ⊥ Ti Th. 5.6(a)

otherwise ?

D2Ri <∞
Ri ⊥ Ti Th. 5.8(a)

otherwise ?
otherwise ?

ERi does not exist

Ri satisfies (A)
with 0 < αR < 1

Ri ⊥ Ti Th. 5.4(a)

otherwise ?
otherwise ?

ETi =∞
Ti satisfies (B) with 0 < αT < 1 otherwise

ERi 6= 0 Th. 5.10(b) ?
ERi = 0

Ri satisfies (A)
with 1 < αR < 2

Ri ⊥ Ti Th. 5.6(b)

otherwise ?

D2Ri <∞
Ri ⊥ Ti Th. 5.8(b)

otherwise ?
otherwise ?

ERi does not exist

Ri = C0Ti Th. 5.2(b)
Ri satisfies (A)
with 0 < αR < 1

Ri ⊥ Ti Th. 5.4(b)

otherwise ?
otherwise ?

(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
then

R̃M (t)
t

d−→
t→∞

CBλγ .

Proof of Theorems 5.1 and 5.2. When Ri = CTi, we have Rj = CT j and hence R̃M (t) =
CST (NT (t)). Therefore the conclusions follow directly from Proposition 2.8 and the fol-
lowing lemma:

Lemma 5.1. (a) Assume that EMi = µ <∞.

(a1) If ETi = τ <∞ then ET j = τµ <∞.
(a2) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with

σ0 = τ0 > 0, then so does T j with α = λ and σ0 = τ0µ
1/λ.
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(b) Assume that Mi satisfies condition (B) with α = γ for some 0 < γ < 1, and with
σ0 = µ0 > 0.

(b1) If ETi = τ <∞ then T j satisfies condition (B) with α = γ and σ0 = τµ0.
(b2) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with

σ0 = τ0 > 0, then so does T j with α = λγ and

σ0 = τ0µ
1/λ
0

(
Γ (1− γ)(Γ (1− λ))γ

Γ (1− λγ)

)1/λγ

.

(c) The distribution of T j is δ-arithmetic (for some δ > 0) if and only if Ti has a
δ-arithmetic distribution (with some 0 < δ ≤ δ).

Proof of Lemma 5.1. Part (a1) is a standard result for random sums (see e.g. [16,
V 9-11]). Since the Laplace transform ψT of T j is

ψT (t) = ψM (− lnψT (t)),

where ψM and ψT are the Laplace transforms of Mi and Ti, respectively, parts (a2),
(b1), and (b2) can be obtained by the technique of Proposition 2.4. Namely, for x =
− lnψT (t)→ 0+ as t→ 0+ we have

• in case (a2),
1− ψT (t)
(µ1/λτ0t)λ

=
1− ψM (x)

µx
· x

ex − 1
· 1− ψT (t)

(τ0t)λ
,

and from Proposition 2.4,

lim
t→0+

1− ψT (t)
(σ0t)λ

= Γ (1− λ)

with σ0 of the given form;
• in case (b1),

1− ψT (t)
(µ0τt)γ

=
1− ψM (x)

(µ0x)γ
·
(

x

ex − 1

)γ
·
(

1− ψT (t)
τt

)γ
,

and from Proposition 2.4,

lim
t→0+

1− ψT (t)
(σ0t)γ

= Γ (1− γ)

with σ0 of the given form;
• in case (b2),

1− ψT (t)

(µ1/λ
0 τ0t)λγ

=
1− ψM (x)

(µ0x)γ
·
(

x

ex − 1

)γ
·
(

1− ψT (t)
(τ0t)λ

)γ
,

and from Proposition 2.4,

lim
t→0+

1− ψT (t)
(σ0t)λγ

= Γ (1− λγ)

with σ0 of the given form.

Applying Proposition 2.4 again we obtain the respective conclusions.
In order to prove (c) let us mention the well known fact ([16, XV 1, Lemma 3]) that for

a positive random variable X, we have
∑∞
n=1 P (X = nδ) = 1 if and only if φX(2π/δ) = 1,
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where φX is the characteristic function of X. Hence, if Ti has a δ-arithmetic distribution
then its characteristic function φT satisfies φT (2π/δ) = 1 and as a consequence, for φT ,
the characteristic function of T j , one gets φT (2π/δ) =

∑∞
m=1(φT (2π/δ))mP (Mi = m)

= 1. Therefore
∑∞
n=1 P (T j = nδ) = 1 so that the distribution of T j is δ-arithmetic for

some δ ≥ δ.
On the other hand, if T j has a δ-arithmetic distribution then φT (2π/δ) = 1 and hence∑∞

m=1(1 − |φT (2π/δ)|m)P (Mi = m) = 0. Therefore |φT (2π/δ)| = 1 so that, according
to [16, XV, 1, Lemma 4],

∑∞
n=1 P (Ti = b + nδ) = 1 and φT (2π/δ) = ei2πb/δ for some

b. Moreover, the constant b has to satisfy
∑∞

m=1(1− cos(2πbm/δ))P (Mi = m) = 0, and
hence, b = δk/m0 for some positive integer k and for m0 such that P (Mj = m0) > 0. As
a consequence, we obtain

∑∞
n=1 P (Ti = nδ0) = 1 for δ0 = δ/m0.

Let us now consider more general classes of CTRWs:

Theorem 5.3. Assume that EMi < ∞ and Ri satisfies condition (A) with α = κ for
some 0 < κ < 1, with σ0 = %0 > 0, and some β, |β| ≤ 1.

(a) If ETi = τ <∞ then

R̃M (t)
t1/κ

d−→
t→∞

CSκ,β , where C = %0

(
q(κ)
τ

)1/κ

.(5.1)

(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
and if Ti and Ri are independent , then

R̃M (t)
tλ/κ

d−→
t→∞

C
Sκ,β
Sλ/κλ,1

, where C =
%0

τ
λ/κ
0

(
q(κ)
q(λ)

)1/κ

,(5.2)

and the stable random variables Sκ,β and Sλ,1 are independent.

Proof. From Proposition 2.3,

SR(n)
n1/κ

d−→
n→∞

C1Sκ,β , where C1 = %0(q(κ))1/κ.(5.3)

If ETi = τ < ∞, then L(t)/t a.s.−→ 1/τ as t→∞ by Theorem 4.3(a); and from Proposi-
tion 2.12 and Theorem 4.2 we obtain (a).

If instead limt→∞ Pr(Ti > t)/(t/τ0)−λ = 1 for some τ0 > 0 and 0 < λ < 1, then it

follows from Theorem 4.3(b) that L(t)/tλ d→ C1(1/Sλλ,1) as t→∞, where C1 is as in (4.5).
If Ri and Ti are independent, the family {L(t), t ≥ 0} is independent of {Ri, i = 1, 2, . . .},
and by Proposition 2.10 one obtains (b).

Theorem 5.4. Assume that Mi satisfies condition (B) with α = γ for some 0 < γ < 1,
and with some σ0 > 0. Suppose that Ri and Ti are independent , and Ri satisfies condition
(A) with α = κ for some 0 < κ < 1, with σ0 = %0 > 0, and some β, |β| ≤ 1.

(a) If ETi = τ <∞ then

R̃M (t)
t1/κ

d−→
t→∞

C(Bγ)1/κSκ,β ,

where C is as in (5.1), and the random variables Bγ and Sκ,β are independent.
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(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
then

R̃M (t)
tλ/κ

d−→
t→∞

C(Bγ)1/κ Sκ,β
Sλ/κλ,1

,

where C is as in (5.2), and Bγ , Sκ,β , and Sλ,1 are independent.

Proof. From Proposition 2.3, SR(n)/n1/κ d→ C1Sκ,β as n→∞, where C1 is as in (5.3).

If ETi = τ < ∞, then L(t)/t d→ (1/τ)Bγ as t→∞ from Theorem 4.4(a). If instead
limt→∞ Pr(Ti > t)/(t/τ0)−λ = 1 for some τ0 > 0 and 0 < λ < 1, then it follows from

Theorem 4.4(b) that L(t)/tλ d→ C1Bγ(1/Sλλ,1) as t→∞, where C1 is as in (4.5). Since
Ri and Ti are independent, the family {L(t), t ≥ 0} is independent of {Ri, i = 1, 2, . . .},
and by Proposition 2.10 one obtains both (a) and (b).

Theorem 5.5. Let ERi = 0. Moreover , suppose Ri satisfies condition (A) with α = κ

for some 1 < κ < 2, with σ0 = %0 > 0, and some β, |β| ≤ 1. Assume that EMi <∞.

(a) If ETi = τ <∞ then
R̃M (t)
t1/κ

d−→
t→∞

CSκ,β,

where C is as in (5.1).
(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,

and if Ti and Ri are independent , then

R̃M (t)
tλ/κ

d−→
t→∞

C
Sκ,β
Sλ/κλ,1

,

where C is as in (5.2), and the stable random variables Sκ,β and Sλ,1 are inde-
pendent.

Proof. Since from Proposition 2.3, SR(n)/n1/κ d→ C1Sκ,β as n→∞, where C1 is as
in (5.3), the proof is parallel to that of Theorem 5.3.

Theorem 5.6. Assume that Ri and Ti are independent , ERi = 0, and Ri satisfies con-
dition (A) with α = κ for some 1 < κ < 2, with σ0 = %0 > 0, and some β, |β| ≤ 1.
Moreover , assume that Mi satisfies condition (B) with α = γ for some 0 < γ < 1, and
with some σ0 > 0.

(a) If ETi = τ <∞ then
R̃M (t)
t1/κ

d−→
t→∞

C(Bγ)1/κSκ,β ,

where C is as in (5.1), and the random variables Bγ and Sκ,β are independent.
(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,

then
R̃M (t)
tλ/κ

d−→
t→∞

C(Bγ)1/κ Sκ,β
Sλ/κλ,1

,

where C is as in (5.2), and Bγ , Sκ,β and Sλ,1 are independent.
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Proof. From Proposition 2.3, SR(n)/n1/κ d→ C1Sκ,β as n→∞, where C1 is as in (5.3).
Hence, the proof is parallel to that of Theorem 5.4.

Theorem 5.7. Let ERi = 0, D2Ri = σ2 for some 0 < σ <∞, and EMi <∞.

(a) If ETi = τ <∞ then

R̃M (t)
t1/2

d−→
t→∞

CG, where C =
σ

τ1/2
.(5.4)

(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
and if Ti and Ri are independent , then

R̃M (t)
tλ/2

d−→
t→∞

C
G
Sλ/2λ,1

, where C =
σ

τ
λ/2
0

(q(λ))−1/2,(5.5)

and the random variables G and Sλ,1 are independent.

Proof. Since from Proposition 2.3, SR(n)/n1/2 d→ σG as n→∞, the proof is parallel to
that of Theorem 5.3.

Theorem 5.8. Assume that Ri and Ti are independent , ERi = 0, and D2Ri = σ2 for
some 0 < σ <∞. Moreover , assume that Mi satisfies condition (B) with α = γ for some
0 < γ < 1, and with some σ0 > 0.

(a) If ETi = τ <∞ then
R̃M (t)
t1/2

d−→
t→∞

C(Bγ)1/2G,

where C is as in (5.4), and the random variables Bγ and G are independent.
(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,

then
R̃M (t)
tλ/2

d−→
t→∞

C(Bγ)1/2 G
Sλ/2λ,1

,

where C is as in (5.5), and Bγ , G and Sλ,1 are independent.

Proof. From Proposition 2.3, SR(n)/n1/2 d→ σG as n→∞. Hence, the proof is parallel
to that of Theorem 5.4.

Let us note that Theorems 5.3(b), 5.5(b), 5.6, 5.7(b) and 5.8 have been proved only
for Ti and Ri independent. It follows from Theorem 5.1(b) that this assumption cannot
be just omitted in Theorem 5.3(b). However, it is an open question if it is necessary. For
more comments, see Section 6.

Theorem 5.9. Let ERi = % 6= 0 and let EMi <∞.

(a) If ETi = τ <∞ then
R̃M (t)
t

a.s.−→
t→∞

%

τ
.

(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
then
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R̃M (t)
tλ

d−→
t→∞

C
1
Sλλ,1

, where C =
%

τλ0
(q(λ))−1.(5.6)

Proof. From the strong law of large numbers SR(n)/n a.s.−→ % as n→∞. Since L(t) a.s.−→∞
as t→∞ (Theorem 4.2),

R̃M (t)
L(t)

=
SR(L(t))
L(t)

a.s.−→
t→∞

%

according to Proposition 2.11. Then, in case ETi = τ < ∞, we deduce from Theorem
4.3(a) that

R̃M (t)
t

=
R̃M (t)
L(t)

· L(t)
t

a.s.−→
t→∞

% · 1
τ
.

If instead limt→∞ Pr(Ti > t)/(t/τ0)−λ = 1 for some τ0 > 0 and 0 < λ < 1, then it follows
from Theorem 4.3(b) and from Lemma 2 of [16, VIII 2] that

R̃M (t)
tλ

=
R̃M (t)
L(t)

· L(t)
tλ

d−→
t→∞

% · C1
1
Sλλ,1

,

where C1 is given by (4.5).

Theorem 5.10. Let ERi = % 6= 0. Assume that Mi satisfies condition (B) with α = γ for
some 0 < γ < 1, and with some σ0 > 0.

(a) If ETi = τ <∞ then
R̃M (t)
t

d−→
t→∞

%

τ
Bγ .

(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
then

R̃M (t)
tλ

d−→
t→∞

CBγ
1
Sλλ,1

,

where C is as in (5.6), and Bγ and Sλ,1 are independent.

Proof. The proof is parallel to that of Theorem 5.9 (with Theorem 4.4 used instead of
Theorem 4.3).

Observe that Theorems 5.9(a) and 5.10(a) cover the special case Ri = CTi for which
the conclusions coincide indeed with those of Theorems 5.1(a) and 5.2(a). More detailed
investigations of the case considered in Theorem 5.9(a) lead to the following results on
the asymptotic behavior of the difference between R̃M (t)/t and its constant limit %/τ :

Theorem 5.11. Let EMi < ∞, ERi = % 6= 0 and ETi = τ < ∞. Moreover , suppose Ri
satisfies condition (A) with α = κ for some 1 < κ < 2, with σ0 = %0 > 0, and β = β0 for
some |β0| ≤ 1.

(a) If Ti satisfies condition (B) with α = λ for some 1 < λ < 2, and with σ0 = τ0 > 0,
then

(a1) in case λ > κ,
R̃M (t)− (%/τ)t

t1/κ
d−→

t→∞
CSκ,β0 ,

where C is as in (5.1);
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(a2) in case λ = κ, if Ri and Ti are independent ,

R̃M (t)− (%/τ)t
t1/κ

d−→
t→∞

CSκ,β1 , where C = %1

(
q(κ)
τ

)1/κ

with
%1 = [%κ0 + (|%|τ0/τ)κ]1/κ,

β1 =
β0%

κ
0 − sgn(%)(|%|τ0/τ)κ

%κ0 + (|%|τ0/τ)κ
;

(a3) in case λ < κ,

R̃M (t)− (%/τ)t
t1/λ

d−→
t→∞

CSλ,−1, where C =
%τ0
τ

(
q(λ)
τ

)1/λ

.(5.7)

(b) If D2Ti <∞ then

R̃M (t)− (%/τ)t
t1/κ

d−→
t→∞

CSκ,β0 ,

where C is as in (5.1).

Proof. For any a we have

R̃M (t)− (%/τ)t
ta

=
SR(L(t))− %L(t)

ta
+
%(L(t)− t/τ)

ta
.(5.8)

It follows from Propositions 2.3, 2.12, and Theorems 4.2, 4.3 that

SR(L(t))− %L(t)
t1/κ

d−→
t→∞

C1

τ1/κ
Sκ,β ,

where C1 is as in (5.3); while the nondegenerate asymptotic distribution of L(t) − t/τ
divided by t1/λ (or t1/2) has been determined by Theorem 4.5. By Lemma 2 of [16,
VIII 2], one finds that for a = 1/κ the second term of the right-hand side of (5.8) tends
to 0 with probability 1 if λ > κ or if D2Ti <∞, and hence (a1) and (b) hold. Similarly,
if λ < κ then for a = 1/λ the first summand in (5.8) tends to 0 with probability 1,
proving (a3).

In order to study the case λ = κ consider the random variable R∗i = Ri − (%/τ)Ti.
Observe that ER∗i = 0 and, since Ri and Ti are independent, R∗i satisfies (A) with α = κ,
σ0 = %1, and β = β1 (see [16, VIII 8, Example (c)]. Since (T,R∗) = {(Ti, R∗i )} is an i.i.d.
sequence independent of M and R∗j = Rj − (%/τ)T j , we have

R̃M (t)− (%/τ)t
t1/κ

=
R̃∗M (t)
t1/κ

+
%

τ
(ST (NT (t))− t) · 1

t1/κ
,(5.9)

where {R̃∗M (t)} is the CTRW generated by (T,R∗) and randomly coarse grained by M .
It follows from Theorem 5.1, Proposition 2.8, and Lemma 2 of [16, V 9-11] (4) that the

(4) Moreover, in case Ti has an arithmetic distribution, considerations similar to those used
in the proof of Theorem 4.5 are needed.
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second term on the right-hand side of (5.9) tends to 0 with probability 1. Then one can
apply Theorem 5.5 to the process {R̃∗M (t)} to infer that the first term tends in distribution
to CSκ,β1 , which shows (a2).

Remark 5.1. It can be seen from Theorem 5.1 that the assumption of Theorem 5.11(a2)
that Ti and Ri are independent cannot be just omitted. However, as the proof of this
part suggests, instead of the independence one can assume that Ri − (%/τ)Ti satisfies
condition (A) with α = κ1, σ0 = %1, and β = β1 for some 1 < κ1 < 2, %1 > 0, and
|β1| ≤ 1, to obtain

R̃M (t)− (%/τ)t
t1/κ1

d−→
t→∞

CSκ1,β1 , where C = %1

(
q(κ1)
τ

)1/κ1

.

Theorem 5.12. Let EMi <∞, ERi = % 6= 0, ETi = τ <∞, and D2Ri = σ2 <∞.

(a) If Ti satisfies condition (B) with α = λ for some 1 < λ < 2, and with σ0 = τ0 > 0,
then

R̃M (t)− (%/τ)t
t1/λ

d−→
t→∞

CSλ,−1,

where C is as in (5.7).
(b) If D2Ti <∞ and P (Ri = (%/τ)Ti) < 1, then

R̃M (t)− (%/τ)t
t1/2

d−→
t→∞

CG,

where

C =
(
σ2 + (%/τ)2D2Ti − 2(%/τ)Cov(Ri, Ti)

τ

)1/2

.

Proof. Part (a) can be shown similarly to Theorem 5.11(a3).

For (b) consider R∗i = Ri − (%/τ)Ti. Observe that ER∗i = 0 and

D2R∗i = σ2 +
(
%

τ

)2

D2Ti − 2
(
%

τ

)
Cov(Ri, Ti) <∞;

also D2R∗i > 0 since P (Ri = (%/τ)Ti) < 1. Hence, we can apply Theorem 5.7 to the
randomly coarse grained CTRW {R̃∗M (t)} generated by (Ti, R∗i ) and M , and similarly to
Theorem 5.11(a2), we obtain the conclusion of (b).

Note that, as Theorem 5.1 shows, the assumption that P (Ri = (%/τ)Ti) < 1 is
essential in Theorem 5.12(b).

The probability laws that have been obtained as weak limits of R̃M (t)/(Cta) for
t→∞ with parameters C > 0 and a appropriately chosen are collected in Tables 4 and 5.
Except for the stable, normal, and generalized arcsine distributions one can recognize
there the transstable probability law of 1/Sγγ,1, 0 < γ < 1 [16, 70], and the fractional

stable distributions of G/Sγ/2γ,1 and Sα,β/Sγ/αγ,1 , 0 < α < 2, 0 < γ < 1, |β| ≤ 1 [39, 60].
Other limits in distribution are mixtures of those.
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Fig. 3. ERi 6= 0, ETi <∞, and EMi <∞
(dashed line) orMi satisfies (B) with αM =
0.6 (solid line). The grey lines indicate the
asymptotes.

Fig. 4. ERi = 0, Ri satisfies (A) with
αR = 1.8 ∈ (1, 2) and βR = 0; ETi < ∞;
and EMi <∞ (dashed line) or Mi satisfies
(B) with αM = 0.8 and 0.2 (solid lines); Ri
is independent of Ti if EMi =∞. The grey
line is the asymptote of the density func-
tion corresponding to αM = 0.2 ≤ 0.5.

Fig. 5. ERi = 0, D2Ri < ∞; ETi < ∞;
and EMi <∞ (dashed line) or Mi satisfies
(B) with αM = 0.8 and 0.2 (solid lines);
Ri is independent of Ti if EMi = ∞. The
grey line is the asymptote of the density
function corresponding to αM = 0.2 ≤ 0.5.
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Fig. 6. Ri satisfies (A) with αR = 0.6 < 1
and βR = 0; ETi < ∞; and EMi < ∞
(dashed line) orMi satisfies (B) with αM =
0.2 (solid line); Ri is independent of Ti
if EMi = ∞. The grey line indicates the
asymptote of the density function corre-
sponding to Mi satisfying (B).

Fig. 7. ERi 6= 0; Ti satisfies (B) with αT =
0.7 < 1; and EMi <∞ (dashed line) or Mi

satisfies (B) with αM = 0.2 (solid line).

Fig. 8. ERi = 0, Ri satisfies (A) with
αR = 1.8 ∈ (1, 2) and βR = 0; Ti satis-
fies (B) with αT = 0.6 < 1; Ri is indepen-
dent of Ti; and EMi < ∞ (dashed line)
or Mi satisfies (B) with αM = 0.8 and 0.2
(solid lines). The grey line is the asymp-
tote of the density function corresponding
to αM = 0.2 ≤ 0.5.
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Fig. 9. ERi = 0, D2Ri < ∞; Ti satisfies
(B) with αT = 0.8 < 1; Ri independent
of Ti; and EMi < ∞ (dashed line) or Mi

satisfies (B) with αM = 0.8 (solid line).

Fig. 10. Ri ∝ Ti, Ti satisfies (B) with
αT = 0.8 < 1; and EMi <∞ (dashed line)
or Mi satisfies (B) with αM = 0.8 (solid
line). The grey lines indicate the asymp-
totes.

Fig. 11. Ri satisfies (A) with αR = 0.6 < 1
and βR = 0; Ti satisfies (B) with αT =
0.4 < 1; Ri is independent of Ti; and
EMi <∞ (dashed line) or Mi satisfies (B)
with αM = 0.8 (solid line). The grey line is
the asymptote of the density function cor-
responding to Mi satisfying (B)
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Table 4. Limits in distribution for R̃M (t)/(Cta) as t → ∞ with C > 0 and a appropriately
chosen; case EMi <∞. C0 is a nonzero constant.

ETi <∞
ERi 6= 0 1

ERi = 0

Ri satisfies (A)
with 1 < αR < 2

SαR,βR

D2Ri <∞ G
otherwise ?

ERi does not exist

Ri satisfies (A)
with 0 < αR < 1

SαR,βR

otherwise ?

ETi =∞
Ti satisfies (B) with 0 < αT < 1 otherwise

ERi 6= 0
1
SαTαT ,1

?

ERi = 0

Ri satisfies (A)
with 1 < αR < 2

Ri ⊥ Ti
SαR,βR
SαT /αRαT ,1

otherwise ?

D2Ri <∞
Ri ⊥ Ti G

SαT /2αT ,1

otherwise ?

otherwise ?

ERi does not exist

Ri = C0Ti BαT
Ri satisfies (A)
with 0 < αR < 1

Ri ⊥ Ti
SαR,βR
SαT /αRαT ,1

otherwise ?

otherwise ?

All nondegenerate distributions quoted in Tables 4 and 5 are continuous. Figures 3–11
present their densities, numerically evaluated for some values of the parameters. In each
figure we compare the limiting density functions resulting from the RCG transformation
of CTRWs from the same class in the cases of EMi finite and of Mi satisfying condition
(B) with α = γ for some 0 < γ < 1.
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Table 5. Limits in distribution for R̃M (t)/(Cta) as t → ∞; case when Mi satisfies (B) with
0 < αM < 1. C0 is a nonzero constant.

ETi <∞
ERi 6= 0 BαM
ERi = 0

Ri satisfies (A)
with 1 < αR < 2

Ri ⊥ Ti B1/αR
αM SαR,βR

otherwise ?

D2Ri <∞
Ri ⊥ Ti B1/2

αMG
otherwise ?

otherwise ?

ERi does not exist

Ri satisfies (A)
with 0 < αR < 1

Ri ⊥ Ti B1/αR
αM SαR,βR

otherwise ?
otherwise ?

ETi =∞
Ti satisfies (B) with 0 < αT < 1 otherwise

ERi 6= 0 BαM
1
SαTαT ,1

?

ERi = 0

Ri satisfies (A)
with 1 < αR < 2

Ri ⊥ Ti B1/αR
αM

SαR,βR
SαT /αRαT ,1

otherwise ?

D2Ri <∞
Ri ⊥ Ti B1/2

αM

G
SαT /2αT ,1

otherwise ?
otherwise ?

ERi does not exist

Ri = C0Ti BαTαM
Ri satisfies (A)
with 0 < αR < 1

Ri ⊥ Ti B1/αR
αM

SαR,βR
SαT /αRαT ,1

otherwise ?
otherwise ?

Table 6 concerns the asymptotics of the difference between R̃M (t)/t and its constant
limit %/τ (assuming that % = ERi 6= 0, τ = ETi; and EMi < ∞). The limiting distribu-
tions derived in this case are mainly the stable ones (including the normal law); however,
for Ri ∝ Ti other limits are possible.



36 A. Jurlewicz

Table 6. Limits in distribution for (R̃M (t)− t%/τ)/(Cta) as t→∞ with % = ERi 6= 0, τ = ETi;
case EMi <∞.

ETi = τ <∞
Ti satisfies (B) with 1<αT <2 D2Ti <∞ otherwise

ERi = ρ 6= 0

Ri = (ρ/τ)Ti XT,M
otherwise

αR 6=αT SαR,βR or SαT ,−1

Ri satisfies (A)
with 1<αR<2

αR=αT

Ri − (ρ/τ)Ti
satisfies (A)
with some αRT <2

SαRT ,βRT SαR,βR

otherwise ?
D2Ri <∞ SαT ,−1 G
otherwise ?

6. Consequences of the RCG transformation for CTRW theory

The considerations of Section 5 on the asymptotics of CTRWs randomly coarse grained
by means of M such that EMi <∞ are summarized in Table 2. All limit theorems enu-
merated in this table concern {R̃(t), t ≥ 0}, the CTRW generated by (T,R), as a special
case since R̃(t) = R̃M (t) for Mi = 1 for which obviously EMi < ∞. Moreover, neither
the limiting distributions (quoted in Table 4) nor the normalizing functions derived in
the theorems from Table 2 depend on M . Hence, in case EMi < ∞, the RCG does not
change the asymptotic properties of CTRW. On the contrary, if Mi satisfying condition
(B) with α = γ for some 0 < γ < 1 is applied, the transformation yields a different
limiting distribution as follows from the comparison of Tables 4 and 5. (Note that the
normalizing functions keep the same form.)

As a consequence of the theorems proved in Section 5, some of the open questions
pointed out in Table 1 can be answered. Let us first examine the influence of RCG
on sequences (T,R) generating CTRWs. The transformation converts (T,R) into (T ,R)
given by (4.1). It follows from Lemma 5.1 that RCG keeps the properties of waiting times
in case EMi < ∞; and that it leads to time steps satisfying (B) with α less than 1 if
Mi satisfies (B) with α = γ for some 0 < γ < 1. This remains generally true if jumps
instead of time steps are considered; however, there are some exceptions as shown in the
following generalizations of Lemma 5.1, concerning the properties of the random sum Rj :

Theorem 6.1. Assume that EMi = µ <∞.

(a) If ERi = % exists then ERj = %µ. Moreover :

(a1) In case % 6= 0:

(a1.1) if Ri satisfies condition (A) with α = κ for some 1 < κ < 2, with
σ0 = %0 > 0 and β = β0 for some β0, |β0| ≤ 1, and if Mi satisfies
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condition (B) with α = γ for some 1 < γ < 2, γ 6= κ, and with
σ0 = µ0 > 0, then Rj satisfies (A) with α = min(κ, γ),

σ0 =
{
%µ0 if κ > γ,

%0µ
1/κ if κ < γ,

β =
{

1 if κ > γ,

β0 if κ < γ;

(a1.2) if Ri satisfies condition (A) with α = κ for some 1 < κ < 2, with
σ0 = %0 > 0 and β = β0 for some β0, |β0| ≤ 1; and if D2Mi < ∞,
then Rj satisfies (A) with α = κ, σ0 = %0µ

1/κ and β = β0;
(a1.3) if D2Ri <∞, and if Mi satisfies condition (B) with α = γ for some

1 < γ < 2, and with σ0 = µ0 > 0, then Rj satisfies (A) with α = γ,
σ0 = %µ0 and β = 1;

(a1.4) if D2Ri <∞ and D2Mi <∞, then D2Rj = µD2Ri + %2D2Mi <∞.

(a2) In case % = 0:

(a2.1) if Ri satisfies condition (A) with α = κ for some 1 < κ < 2, with
σ0 = %0 > 0 and β = β0 for some β0, |β0| ≤ 1, then Rj satisfies (A)
with α = κ, σ0 = %0µ

1/κ and β = β0;
(a2.2) if D2Ri <∞, then D2Rj = µD2Ri <∞.

(b) If Ri satisfies condition (A) with α = κ for some 0 < κ < 1, with σ0 = %0 > 0
and β = β0 for some β0, |β0| ≤ 1, then Rj satisfies (A) with α = κ, σ0 = %0µ

1/κ

and β = β0.

Proof. Observe that SR(n) = SR(SM (n)), n = 0, 1, . . . , where the random indices
{SM (n)} are independent of the sequence {SR(n)}. Moreover, from the strong law of
large numbers

SM (n)
n

d−→
n→∞

µ.(6.1)

A classical result for the random sums ERj = %µ can be obtained under the assump-
tions of (a) by means of the conditional-expected-value technique (see e.g. [16, V 9-11]).
Also, (a1.4) and (a2.2) can be shown this way.

Under the assumptions of (a1.1), from Proposition 2.3(a) we have

SM (n)− nµ
(q(γ))1/γµ0n1/γ

d−→
n→∞

Sγ,1.

Moreover, it follows from Propositions 2.3(a) and 2.12, and from (6.1), that

SR(SM (n))− SM (n)%
(µq(κ))1/κ%0n1/κ

d−→
n→∞

Sκ,β0 .

Since for any a

SR(n)− nµ%
na

=
SR(SM (n))− SM (n)%

n1/κ

1
na−1/κ

+ %
SM (n)− nµ

n1/γ

1
na−1/γ

,

by Lemma 2 of [16, VIII 2] one obtains
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• SR(n)− nµ%
(q(γ))1/γµ0n1/γ

d−→
n→∞

Sγ,1 if κ > γ,

• SR(n)− nµ%
(µq(κ))1/κ%0n1/κ

d−→
n→∞

Sκ,β0 if κ < γ;

that yields the conclusion of (a1.1) according to Proposition 2.3(a). Parts (a1.2) and
(a1.3) can be shown in a parallel way.

Under the assumptions of (a2.1) and (b), we have

SR(n)
(q(κ))1/κ%0n1/κ

d−→
n→∞

Sκ,β0 ,

and from (6.1) and Proposition 2.12 we obtain

SR(n)
(µq(κ))1/κ%0n1/κ

d−→
n→∞

Sκ,β0 .

Applying Proposition 2.3(a) we get the assertions of both parts.

Theorem 6.2. Assume that Mi satisfies condition (B) with α = γ for some 0 < γ < 1,
and with σ0 = µ0 > 0.

(a) Suppose ERi = % exists.

(a1) In case % 6= 0, Rj satisfies condition (A) with α = γ, σ0 = %µ0 and β = 1.
(a2) In case % = 0:

(a2.1) if Ri satisfies condition (A) with α = κ for some 1 < κ < 2, with
σ0 = %0 > 0, and β = β0 for some β0, |β0| ≤ 1, then Rj satisfies (A)
with α = κγ,

σ0 =
{
c0(q(κγ))−1/(κγ) if κγ 6= 1,
2c0/π if κγ = 1,

β =
{

tan(γΘ)/tan(γπκ/2) if κγ 6= 1,
0 if κγ = 1,

where

c0 = %0(µ0q(κ))1/κ(Γ (1− γ) cos(γΘ))1/(κγ)(1 + β2
0 tan2(πκ/2))1/(2κ),(6.2)

Θ = arctan(β0 tan(πκ/2)).(6.3)

Moreover , ERj = 0 if κγ > 1;

(a2.2) if D2Ri = σ2 for some 0 < σ < ∞, then Rj satisfies condition (A)
with α = 2γ,

σ0 =
{
c0(q(2γ))−1/(2γ) if 2γ 6= 1,
2c0/π if 2γ = 1,

and β = 0, where c0 = σ(µ0/2)1/2(Γ (1−γ))1/(2γ). Moreover , ERj = 0
if 2γ > 1.
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(b) If Ri satisfies condition (A) with α = κ for some 0 < κ < 1, with σ0 = %0 > 0, and
β = β0 for some β0, |β0| ≤ 1, then so does Rj with α = κγ, σ0 = c0(q(κγ))−1/(κγ)

and β = tan(γΘ)/tan(γπκ/2), where c0 and Θ are of the form (6.2) and (6.3),
respectively.

Proof. Observe that SR(n) = SR(SM (n)), n = 0, 1, . . . , where the random indices
{SM (n)} are independent of {SR(n)}. Moreover, from Proposition 2.3(a),

SM (n)
(q(γ))1/γµ0n1/γ

d−→
n→∞

Sγ,1.

In case % 6= 0 we have SR(n)/n a.s.−→ % as n→∞ from the strong law of large numbers,
and it follows from Proposition 2.12 that

SR(n)
%(q(γ))1/γµ0n1/γ

d−→
n→∞

Sγ,1.

From Proposition 2.3(a) we obtain the assertion of (a1).
In case % = 0, under the assumption of (a2.1), we have

SR(n)
(q(κ))1/κ%0n1/κ

d−→
n→∞

Sκ,β0 ,

and from Proposition 2.10 we obtain

SR(n)
Cn1/(κγ)

d−→
n→∞

(Sγ,1)1/κSκ,β0

for C = %0(µ0q(κ))1/κ(q(γ))1/(κγ). Applying Proposition 2.2 one shows that

• in case κγ 6= 1:
SR(n)

c1Cn1/(κγ)
d−→

n→∞
Sκγ,β1 ,

• in case κγ = 1:
SR(n)−m1c1Cn

c1Cn

d−→
n→∞

S1,0,

where c1, β1, m1 are given by (2.5). Now (a2.1) follows from Proposition 2.3(a).
Parts (a2.2) and (b) can be proved the same way as for (a2.1).

As a consequence of Theorems 6.1 and 6.2 we obtain the following partial answers to
the questions pointed out in Table 1:

?©1 Under the assumptions of Theorem 5.12(b), and if additionally Mi satisfies (B)
with α = γ for some 1 < γ < 2, {R̃M (t), t ≥ 0} is a CTRW generated by (T ,R),
where T j and Rj satisfy conditions (B) and (A), respectively, with αT = αR, both
equal to γ. However, the normalized difference between R̃M (t)/t and its constant
limit has asymptotically normal distribution in this case.

?©2 The processes {R̃M (t), t ≥ 0} considered in Theorems 5.5(b), 5.6, and 5.8 (as-
suming additionally κγ > 1 in Theorem 5.6 and 2γ > 1 in Theorem 5.8) are
examples of CTRWs generated by (T ,R) such that T j satisfies condition (B)
with 0 < αT < 1, Rj satisfies (A) with 1 < αR < 2, and ERj = 0. The large-time
limiting distribution of the total distance reached by the walking particle obtained
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by means of Theorem 5.5(b) is the same as for decoupled walks from this class
although T j and Rj can be stochastically dependent. Hence the independence
between the time and jump steps is not necessary to get this kind of limiting
law. On the other hand, Theorems 5.6 and 5.8 reveal other possibilities for the
asymptotic behavior of this type of CTRW.

?©3 The assumptions of Theorem 5.7(b) lead to the CTRW {R̃M (t), t ≥ 0} generated
by (T ,R), where T j satisfies condition (B) with 0 < αT < 1, while 0 < D2Rj
<∞ and ERj = 0. Moreover, T j and Rj can be stochastically dependent. Since
the resulting limiting distribution is the same as for decoupled walks from this
class, the independence between the time and jump steps is not necessary for this
kind of asymptotic behavior in this case. It remains an open question if other
limiting laws are possible here.

?©4 Taking into account the processes {R̃M (t), t ≥ 0} considered in Theorems 5.3(b),
5.4, 5.6, and 5.8 (assuming additionally κγ < 1 in Theorem 5.6 and 2γ < 1 in
Theorem 5.8) we obtain examples of CTRWs generated by (T ,R) such that T j
satisfies condition (B) with 0 < αT < 1, and Rj satisfies (A) with 0 < αR < 1.
The large-time limiting distribution of the normalized R̃M (t) obtained by means
of Theorem 5.3(b) is the same as for decoupled walks from this class although
T j and Rj can be stochastically dependent; and hence the independent time and
jump steps are not necessarily required to reach the limiting law of that form.
However, different asymptotic behaviors for this type of CTRWs are determined
in Theorems 5.4, 5.6 and 5.8.

?©5 If we take κγ = 1 in Theorem 5.6 or 2γ = 1 in Theorem 5.8, we obtain examples of
CTRWs generated by (T ,R) such that T j satisfies condition (B) with 0 < αT < 1,
while Rj satisfies (A) with αR = 1. Theorems 5.6 and 5.8 thus provide examples
of limiting distribution of the large-time total distance reached by the particle for
the CTRWs from this class, not studied before.

In a similar way we can examine how essential is the independence of Ti and Ri
assumed in some theorems of Section 5 for technical reasons. Namely, take a new sequence
M∗ = {M∗i , i = 1, 2, . . .} of i.i.d. positive integer-valued random variables, independent
of (T,R) and M . By means of M∗, we can convert {R̃M (t), t ≥ 0}, which is a CTRW
generated by (T ,R), into a new randomly coarse grained CTRW, say {R̃MM∗(t), t ≥ 0}.
It is easy to show that the resulting process is equal to the CTRW generated by (T,R)
and transformed by means of the sequence M = {M j , j = 1, 2, . . .}, where

M j =
SM∗ (j)∑

i=SM∗(j−1)+1

Mi.

Hence the asymptotic properties of R̃MM∗(t) can be determined by Lemma 5.1 and the
theorems of Section 5. On the other hand, our construction provides examples of randomly
coarse grained CTRW with dependent time and jump steps.

A detailed analysis, similar to the one for the questions from Table 1, shows that
assuming independence of Ti and Ri in Theorems 5.3–5.8 is not necessary to get the
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conclusions; however, it cannot be completely omitted since other probability laws can
appear as weak limits for randomly coarse grained CTRWs from each class consid-
ered.

7. CTRW-like processes

CTRWs are generated by sequences (T,R) = {(Ti, Ri), i = 1, 2, . . .}, where Ti is a waiting
time of the walking particle for the ith jump determined by Ri. Let us slightly modify
this interpretation of (T,R). Namely, consider Ti as a survival time of the particle at
the level reached in i jump steps determined by R1, . . . , Ri. The modification manifests
itself as the change of the process counting the jumps since the total distance, say R̃0(t),
reached in this case by the particle at time t is equal to SR(KT (t)), where KT (t) is of
the form (2.2). The resulting CTRW-like process {R̃0(t), t ≥ 0} is hence a discrete-time
random walk {SR([t]), t ≥ 0} subordinated to the first-passage process {KT (t), t ≥ 0}
(instead of the renewal counting process {NT (t), t ≥ 0} subordinating the walk in the
case of the original CTRW).

The idea of substituting the corresponding first-passage process for the renewal count-
ing process can be applied to the compound counting process {L(t), t ≥ 0}, shown to
subordinate the random walk {SR([t]), t ≥ 0} after the RCG transformation of CTRW
(Theorem 4.1). We obtain random indices of forms similar to L(t) = SM (NM (NT (t)));
namely,

L1(t) = SM (NM (KT (t))),

L2(t) = SM (KM (NT (t))),

L3(t) = SM (KM (KT (t))),

where {KT (t)}, {KM (t)} are the first-passage processes generated by T , M , respectively.
For each i = 1, 2, 3 the counting process {Li(t), t ≥ 0} leads to a CTRW-like process
{R̃M,i(t)} of the form

R̃M,i(t) = SR(Li(t)).

Moreover, for Mi = 1 we get L1(t) = L2(t) = KT (t) and hence R̃M,1(t) = R̃M,2(t) =
R̃0(t).

Observe that for any t ≥ 0 we have

L(t) ≤ L1(t) ≤ L3(t) and L(t) ≤ L2(t) ≤ L3(t)

so that Li(t)
a.s.−→ ∞ as t→∞, i = 1, 2, 3. Moreover, since KT (t) satisfies the conclusions

of Propositions 2.5–2.7 just as NT (t) does, one can easily show that {L1(t)} and {R̃M,1(t)}
satisfy the conclusions of all theorems of Sections 4 and 5 concerning {L(t)} and {R̃M (t)}
except Theorems 5.1 and 5.2; i.e., in general, the asymptotic behavior of L1(t) and R̃M,1(t)
for t→∞ is the same as the one of L(t) and R̃M (t) except (probably) for the case when
Ri = CTi.

For {Li(t)} and {R̃M,i(t)} with i = 2, 3 it follows from Proposition 2.8 that the
processes satisfy the conclusions of Theorems 4.3, 4.5, 5.3, 5.5, 5.7, 5.9, 5.11, 5.12, and
of theorems similar to 4.4, 5.4, 5.6, 5.8, 5.10 with 1/Bγ instead of Bγ . Moreover, we
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have R̃M,2(t) = SR(KT (t)) and hence, for the process {R̃M,2(t)} one can prove theorems
similar to Theorems 5.1 and 5.2:

Theorem 7.1. Assume that EMi = µ <∞ and Ri = CTi for some constant C 6= 0.

(a) If ETi = τ <∞ then

R̃M,2(t)
t

a.s.−→
t→∞

C.

Moreover ,

(a1) if the distribution of Ti is arithmetic then

R̃M,2(nδ)− Cnδ d−→
n→∞

C(XT,M + δ),

where δ > 0 is the largest constant such that
∑∞
n=1 P (T j = nδ) = 1, and

P (XT,M = kδ) =
δ

τµ
P (T j > kδ), k = 0, 1, 2, . . . ;

(a2) otherwise,

R̃M,2(t)− Ct d−→
t→∞

CXT,M ,

where

P (XT,M ≤ x) =
1
τµ

x�

0

P (T j > s) ds, x > 0.

(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,
then

R̃M,2(t)
t

d−→
t→∞

C
1
Bλ

,

where 1/Bλ is defined in Remark 2.4.

Theorem 7.2. Assume that Mi satisfies condition (B) with α = γ for some 0 < γ < 1,
and with some σ0 > 0. Let Ri = CTi for some constant C 6= 0.

(a) If ETi = τ <∞ then

R̃M,2(t)
t

d−→
t→∞

C
1
Bγ
,

where 1/Bγ is defined in Remark 2.4.
(b) If Ti satisfies condition (B) with α = λ for some 0 < λ < 1, and with σ0 = τ0 > 0,

then
R̃M,2(t)

t

d−→
t→∞

C
1
Bλγ

,

where 1/Bλγ is defined in Remark 2.4.

Let us add that the presented idea of modification of the CTRW concept is justified by
the fact that this way we enlarge the class of limiting distributions by the one connected
with dielectric responses. The construction and results for R̃M,3(t) have already found
an application in modeling dielectric relaxation phenomena (see [32]).
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