
Introduction

There are three main problems for the Navier–Stokes equations: global existence, global
regularity and uniqueness. Global existence of weak solutions for the Cauchy problem was
proved by Leray in 1934 (see [ler]). Next in 1951 Hopf [hop] proved existence of global
weak solutions in a bounded domain for the Dirichlet problem with nonslip boundary
conditions. The other two problems: existence of global regular solutions and uniqueness
are still open. For the last fifty years many mathematicians have been working to solve
these problems (see Kiselev and Ladyzhenskaya [kil], Ladyzhenskaya [lad 1–3], Serrin [ser],
Fujita and Kato [fuk 1], Masuda [mas], Komatsu [kom], Caffarelli, Kohn and Nirenberg
[ckn], Sohr [soh], Wiegner [wie 1–5], Nečas [nen, nrs], Neustupa [nen, nep 1–2, neu, nnp,
npo 1–2], Penel [nnp, nep 1–2] etc.).

We can distinguish the following research directions: conditional regularity, blow-ups,
existence of global regular special solutions (lower-dimensional, under special geometries)
solutions. By conditional regularity we mean that some restrictions are imposed either
on velocity or on pressure which imply regularity of weak solutions. The most important
problem is to impose the weakest restrictions.

In this work we present a proof of existence and uniqueness of global regular special
solutions to the Navier–Stokes equations in a bounded axially symmetric domain with
boundary slip conditions under some restrictions on the initial conditions, the external
force and the shape of the domain considered. The main aim is to prove the existence of
solutions without restrictions on the magnitudes of the initial velocity and the external
force. Hence we generalize [zaj 5] where a similar result in a cylindrical domain and with
the slip coefficient γ equal to zero was proved.

We have to underline that the proofs in this paper and in [zaj 5] are essentially
different. However, in both cases the main step is the energy estimate for the azimuthal
component of vorticity χ (χ = αϕ, α = rot v) which employs an idea of Ladyzhenskaya
[lad 1] who proved such an estimate in the axially symmetric case. To prove this estimate
she needed χ|S = 0 as the boundary condition. In [zaj 5] we showed that χ|S = 0 follows
from the slip boundary conditions with slip coefficient γ equal to zero and the fact that
the domain considered is a cylinder. In this paper we consider the case with nonvanishing
slip coefficient γ and a general axially symmetric domain. Therefore χ|S is proportional
to k − γ/(2ν), where k is the curvature of the boundary in the plane passing through
the axis of symmetry, and ν is the viscosity coefficient. This fact makes the proof of the
energy type estimate for χ much more difficult. Moreover, it implies heavy restrictions
on the boundary and smallness of k − γ/(2ν) in the norm of V 3/2

4,−δ/2(ST ), δ ≥ 1 (see
Section 2 for the definition of the norm and also Lemmas 4.1 and 6.2).
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In this paper, similarly to [zaj 5], the most important estimates follow from the evo-
lutionary problems for vorticity because the velocity v is calculated from the elliptic
problem rot v = α, div v = 0, v · n|S = 0. To obtain such estimates we need appropriate
boundary conditions for vorticity, where by “appropriate” we mean that α|S depends at
most on v|S , and n ·∇α|S at most on v,x|S . This kind of boundary conditions follow from
the slip boundary conditions in [zaj 5] as well as in this paper. Compared with [zaj 5]
the proof of this fact in this paper is much more complicated (see Lemma 3.2). Moreover,
the appropriate boundary conditions for vorticity imply that problems for αr and αz
(αr = α · er, αz = α · ez , er = (cosϕ, sinϕ, 0), ez = (0, 0, 1)) are coupled in boundary
conditions (see (1.7)), in contrast to [zaj 5], where they are decoupled. This implies that
the proof of the energy estimate for components αr, αz of vorticity (solutions to problem
(1.7) (see Lemma 4.4)) is much more difficult than the corresponding one in [zaj 5].

Finally, we underline that all estimates in this paper are done in the L2-approach.
The main results of this paper are formulated in Theorems 1.1 (local existence) and 1.3

(global existence). The proof of global existence is divided into two main parts. First, local
existence of solutions is proved by the method of successive approximations. In Section 6 a
uniform bound for the constructed sequence is found (see Lemmas 6.1, 6.2). We underline
that the time of local existence is inversely proportional to the expression which depends
on norms describing the distance between the solution considered and the axially sym-
metric solution (see Definition 1.1). It is shown in Section 7 that the constructed sequence
converges (see Theorem 7.7). In Section 8 global existence is proved step by step by con-
tinuing the local solution in time. To prove this we need some decay in time of the external
force, and the existence time of the local solution must be sufficiently large. These condi-
tions imply that no norms of initial data necessary for the local existence should increase
with time. This yields global existence, which is shown in a series of lemmas in Section 8.

Inequalities necessary for the proof of local existence in Sections 6, 7 are derived in
Sections 4 and 5.

We underline that the solution whose existence is proved in this paper has a much more
general form than any solution obtained by examining stability of an axially symmetric
solution (for more details see Section 9.7).

The paper is divided into nine sections. In Section 1 we formulate the main problems
examined in this paper and also present the main results. In Section 2 we introduce
notation. In particular, we formulate imbedding theorems for weighted Sobolev spaces.
Boundary conditions for velocity and vorticity, and energy estimates for weak solutions
are found in Section 3. In Section 9 we present a review of results on global solutions to
the Navier–Stokes equations, giving the state of the art in one of the seven millennium
problems. Other sections are described above.

We use the abbreviation r.h.s. (l.h.s.) for right-hand side (left-hand side). Formulas
and theorems are numbered by section, except those in Section 9 which are numbered by
subsection.

Acknowledgments. The author thanks Prof. J. Zabczyk for important remarks which
allowed improving the form of this paper.



1. Formulation of main results

In this work we consider a motion of a viscous incompressible fluid in a bounded axially
symmetric domain Ω ⊂ R3 under the boundary slip conditions (see [lal]):

(1.1)

v,t + v · ∇v − divT(v, p) = f in ΩT = Ω × (0, T ),

div v = 0 in ΩT ,

v · n = 0 on ST = S × (0, T ),

n · T(v, p) · τα + γv · τα = 0, α = 1, 2, on ST ,

v|t=0 = v(0) in Ω,

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity vector field, p =
p(x, t) ∈ R the pressure, f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 the external force
field, n is the unit outward vector normal to S = ∂Ω, τ 1, τ2 are the unit vectors tangent
to S, γ > 0 is the constant slip coefficient and T(v, p) is the stress tensor of the form

(1.2) T(v, p) = {ν(vi,xj + vj,xi)− pδij}i,j=1,2,3 ≡ νD(v)− pI,
where ν is the constant positive viscosity coefficient, D(v) is the dilatation tensor and I

is the unit matrix.
We should underline that another boundary condition for system (1.1)1,2 is the nonslip

condition

(1.3) v|S = 0.

Letting γ →∞ in (1.1)4 we obtain from (1.1)3,4 the nonslip boundary condition (1.3).
Moreover, x = (x1, x2, x3) are the Cartesian coordinates. We assume that Ω ⊂ R3 is

a bounded axially symmetric domain. The cylindrical coordinates (r, ϕ, z) are introduced
by the relation x1 = r cosϕ, x2 = r sinϕ, x3 = z, and the z axis is the axis of symmetry
of Ω. S is described by ψ(r, z) = 0, r ∈ [0, R], z ∈ [−a, a], which in a neighbourhood of
r = R can be expressed by r = ψ1(z) and in a neighbourhood of |z| = a by z = ψ2(r).

Let er = (cosϕ, sinϕ, 0), eϕ = (− sinϕ, cosϕ, 0), ez = (0, 0, 1) be the unit vectors
along the lines r, ϕ, z, respectively. Let k be any vector. Then kr = k · er, kϕ = k · eϕ,
kz = k · ez .

Let us introduce the quantities

h = vr,ϕer + vϕ,ϕeϕ + vz,ϕez , q = p,ϕ, w = vϕ.

Definition 1.1. By an axially symmetric solution to (1.1) we mean a solution such that
h = 0, q = 0, w = 0.

[7]
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To show existence of such solutions we have to assume that h|t=0 = h(0) = 0, w|t=0 =
w(0) = 0, fϕ = 0, g = fr,ϕer + fϕ,ϕeϕ + fz,ϕez = 0.

1.1. Reformulation of the main problem. To prove the existence of solutions to
problem (1.1) we replace it by a system of problems. From [zaj 5, Ch. 4] we have

(1.4)

h,t − ν divD(h) +∇q = −v · ∇h− h · ∇v + g ≡ G in ΩT ,

div h = 0 in ΩT ,

h · n = 0 on ST ,

νn · D(h) · τα + γh · τα = 0, α = 1, 2, on ST ,

h|t=0 = h(0) in Ω,

where g = fr,ϕer + fϕ,ϕeϕ + fz,ϕez , h(0) = vr,ϕer + vϕ,ϕeϕ + vz,ϕez |t=0 and v is treated
as a given vector.

For given v, q, h we have (see [zaj 5, Ch. 4] and (3.2))

(1.5)

w,t + v · ∇w +
vr
r
w − ν∆w + ν

w

r2 =
1
r
q +

2ν
r2 hr + fϕ in ΩT ,

νn · ∇w = −γw + ν
a1

r
w on ST ,

w|t=0 = w(0) in Ω,

where the boundary S is described by the equation ψ(r, z) = 0, so a1 = ψ,r/
√
ψ2
,r + ψ2

,z ,

a2 = ψ,z/
√
ψ2
,r + ψ2

,z .

Let us introduce the cylindrical components of vorticity (see [zaj 5, Ch. 4])

α1 = αr =
1
r

(vz,ϕ − rvϕ,z),
α2 = αϕ = vr,z − vz,r ≡ χ,(1.6)

α3 = α2 =
1
r

[(rvϕ),r − vr,ϕ].

Applying the rot operator to (1.1)1 and using (3.6)–(3.8) (see Lemma 3.2) we obtain

(1.7)

α1,t + v · ∇α1 − α1vr,r −
α2

r
hr − α3vr,z +

2ν
r2 (hr,z − hz,r)

+
να1

r2 − ν∆α1 = F1 in ΩT ,

α3,t + v · ∇α3 − (α1vz,r + α3vz,z)−
α2

r
hz − ν∆α3 = F3 in ΩT ,

τ2 · α = −2a1

r
w +

γ

ν
w ≡ g1 on ST ,

(n · α),n = β1hr + β2hz + β3w,r + β4w,z + β5w ≡ g2 on ST ,

α1|t=0 = α1(0), α3|t=0 = α2(0) in Ω,

where βi, i = 1, . . . , 5, depend on a1, a2 and their derivatives with respect to r and z (see
Lemma 3.2). Moreover, F = rot f , F1 = F · er, F3 = F · ez .
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We shall denote a solution of (1.7) by α′ = (α1, α3). Finally, α2 is a solution to the
problem

(1.8)

α2,t + v · ∇α2 +
w

r
α1 − α · ∇w −

α2

r
vr −

2ν
r2

(
1
r
hz,ϕ − hϕ,z

)

+
να2

r2 − ν∆α2 = F2 in ΩT ,

α2 = 2(k − γ/(2ν))v · τ 2 on ST ,

α2|t=0 = α2(0) ≡ χ(0),

where τ2 = a2er − a1ez , n = a1er + a2ez , τ2 · α = a2α1 − a1α3, n · α = a1α1 + a2α3,
∂n = n · ∇, k is the curvature of a curve S ′ which generates S by rotating around the z
axis and F2 = F · eϕ.

Finally, v and p are calculated from the elliptic problems

(1.9)

rot v = α in Ω,

div v = 0 in Ω,

v · n = 0 on S,

and

(1.10)
∆p = −∇v · ∇v + div f in Ω,

∂p

∂n
= f · n+ νn ·∆v − n · v · ∇v on S.

In [zaj 5, Ch. 3] we showed that (1.10) is necessary and sufficient for equivalence of
problems (1.1) and (1.7), (1.8), (1.9). However to prove global existence with large data
it is not enough to examine problems (1.7)–(1.9) only. To obtain necessary estimates we
also need problems (1.4), (1.5).

Now we express boundary conditions (1.10)2 in the form depending at most on the first
derivatives of velocity. For this we assume that in a neighbourhood of S there is defined
an orthonormal system of vectors n, τ 1, τ2. With these vectors curvilinear coordinates
n, τ1, τ2 such that ∇n · ∇τα = 0, |∇n| = 1, ∇τα · ∇τβ = δαβ , α, β = 1, 2, are connected.
Then in the neighbourhood of S we have

(1.11) ∆v = v,nn + v,τατα + v,n∆n+ v,τα∆τα,

where the summation convention over the repeated indices α is assumed. Next

n · v,nn = vn,nn + vnn · n,nn + 2vτα,nn · τα,n + vταn · τα,nn,
n · v,τατα = vn,τατα + vnn · n,τατα + 2vτβ ,τατβ,τα · n+ vτβ τβ,τατα · n.

Hence

n ·∆v|S = vn,nn + 2vτα,nn · τα,n + vταn · τα,nn(1.12)

+ 2vτβ ,τατβ,τα · n+ vτβτβ,τατα · n+ n · v,n∆n+ n · v,τα∆τα,
where we used (1.1)3.

In the curvilinear coordinates boundary conditions (1.1)4 assume the form

(1.13) vn,τα + vτα,n − vini,τα − viταi,n + γvτα = 0.

Using (1.1)3 and differentiating (1.13) with respect to τβ yields
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(1.14) vτα,nτβ − (vini,τα + viταi,n),τβ + γvτα,τβ = 0,

where α, β = 1, 2. Applying the curvilinear coordinates we obtain

(1.15) div v ≡ vn,n + vτα,τα + vn div n+ vτα div τα = 0.

Hence

(1.16) (div v),n = vn,nn + vτα,ταn + (vn div n+ vτα div τα),n = 0.

In view of (1.14) and (1.16) the expression (1.12) assumes the form

n ·∆v|S = − (vini,τα + viταi,n),τα + γvτα,τα − [n · ∇, τα · ∇]vτα(1.17)

− (v div n+ vτα div τα),n + 2vτα,nn · τα,n + vταn · τα,nn
+ 2vτβ ,τατβ,τα · n+ vτβτβ,τατα · n+ n · v,n∆n+ n · v,τα∆τα

≡ Aijvi,xj +Bivi,

where the summation convention over the repeated indices is used and [·, ·] denotes the
commutator. Finally the last term on the r.h.s. of (1.10)2 equals vivjnj,xi .

Summarizing, problem (1.10) takes the form

(1.18)
∆p = −∇v · ∇v + div f in Ω,

∂p

∂n
= Aijvi,xj +Bivi + vivjnj,xi + f · n on S,

where Aij , Bi are defined by (1.17).

1.2. Main results. The main aim of this paper is to prove existence of global regular
solutions to problem (1.1) with large initial data and external force. In view of the proofs
of existence of global axially symmetric solutions (see [lad 1, ukh 1]) we are able to
prove the existence of such solutions to problem (1.1) which remain close to the axially
symmetric solutions (see Definition 1.1).

Therefore we distinguish two kinds of quantities: large and small. The large quantities
are connected with the corresponding axially symmetric solution and small quantities
measure the distance between the solution considered and the axially symmetric solution.
The large quantities are: vr, vz , fr, fz , p, χ, Fϕ = Fz, vr(0), vz(0), and the small quantities
are: w = vϕ, h, fϕ, αr = α1, αz = α2, Fr = F1, Fz = F2, q, w(0), h(0).

We end this subsection by formulating the main results and outlining the ideas of their
proofs. This paper is devoted to proving two theorems: Theorem 1.1 (local existence with
large existence time T ) and Theorem 1.3 (global existence, T ≤ ∞).

To formulate the theorems we need the notation:

(1.19)

fr = f · er, fϕ = f · eϕ, fz = f · ez ,
er = (cosϕ, sinϕ, 0), eϕ = (− sinϕ, cosϕ, 0), ez = (0, 0, 1),

g = fr,ϕer + fϕ,ϕeϕ + fϕ,zez ,

F = rot v, F1 = F · er, F2 = F · eϕ, F3 = F · ez , F ′ = (F1, F3),

α = rot v, α1 = α · er, α2 = α · eϕ, α3 = α · ez , α′ = (α1, α3), χ = αϕ,

w = vϕ,

where the dots denote the scalar product in R3.
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Moreover, we introduce the necessary weighted spaces. Let ν ∈ R. Then L2,ν(Q) is
the space with the norm ‖u‖L2,ν(Q) = (

�
Q
|u|2r2ν dQ)1/2, Q ∈ {Ω,ΩT , S, ST }, and

H1
ν (Ω) =

{
u : ‖u‖H1

ν(Ω) =
( �

Ω

(|u,x|2r2ν + |u|2r2(ν−1)) dx
)1/2

<∞
}
,

W k
2,ν(Ω) =

{
u : ‖u‖Wk

2,ν(Ω) =
( ∑

|α|≤k

�

Ω

|Dα
xu(x)|2r2ν dx

)1/2
<∞

}
,

W 2,1
2,ν (ΩT ) =

{
u : ‖u‖W 2,1

2,ν (ΩT ) =
( �

ΩT

( ∑

|α|≤2

|Dα
xu|2 + |u,t|2

)
r2ν dx dt

)1/2
<∞

}
,

V lp,δ(Ω
T ) =

{
u : ‖u‖V lp,δ(ΩT ) =

( ∑

|α|≤l

�

ΩT

|Dα
xu|prp(µ−l+|α|) dx dt

)1/p
<∞

}

and finally

Aν(ΩT ) = {u : ‖u‖Aν(ΩT ) = ‖u‖W 2,1
2,ν (ΩT ) + ‖u,x‖W 2,1

2,ν (ΩT ) <∞},

V 0
2 (ΩT ) =

{
u : ‖u‖V 0

2 (ΩT ) = sup
t≤T
‖u(t)‖L2(Ω) +

( T�

0

|∇u(x, t)|2 dx dt
)1/2

<∞
}
.

Now, we enumerate the assumptions necessary to present the main results.

Assumption A1.

fϕ ∈ L2(ΩT ), g ∈ L2,−1(ΩT ), F1 ∈ L2,−µ(ΩT ),

F2 ∈ L2,−1(ΩT ), F3 ∈ L2(ΩT ),

h(0) ∈ H1
−1(Ω), w(0) ∈ H1

0 (Ω), v(0) ∈W 2
2,1−µ(Ω), α′(0) ∈W 1

2,1−µ(Ω),

α1(0) ∈ L2,−µ(Ω), χ(0) ∈ L2,−1(Ω) ∩H1
1−µ(Ω), µ ∈ (1/2, 1).

Assumption A2. Let S′ be a curve described by the equation ψ(r, z) = 0, r ∈ [0, R],
z ∈ [−a, a], where ψ(r, z) is a sufficiently regular function such that ψ(R, z) = R for z
from some neighbourhood of z = 0 and ψ(0, z) = 0 for z ∈ {−a, a}. Let the boundary S
be obtained by rotating S ′ around the x3 axis.

We also use r = ψ1(z), z = ψ2(r). We assume that ψ1, ψ2, ψ ∈ C3. Let a1 =

ψ,r/
√
ψ2
,r + ψ2

,z , a2 = ψ,z/
√
ψ2
,r + ψ2

,z be the coordinates of the normal vector to S for
ϕ = const.

Let

β1 =
k

r
a2 +

1
r

(a2,r + a1,z)a2 +
a1a2

r
, β2 = −k

r
a1 −

1
r

(a2,r + a1,z)a1

β3 =
(
a1

r
− γ

ν

)
a2 − τ2 · ∇a1 + (a2,r − a1,z)a1 +

a1a2

r
,

β4 = −
(
a1

r
− γ

ν

)
a1 − τ2 · ∇a2 + (a2,r − a1,z)a2 +

a2
2

r
,

β5 = τ2 · ∇
(
a1

r
− γ

ν

)
+

1
r

(
n · ∇a2 −

a1a2

r

)
,

where n = a1er + a2ez, τ2 = a2er − a1ez and k is the curvature of S ′.
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Assumption A3. ∣∣∣∣
a1

r

∣∣∣∣+
∣∣∣∣∇
a1

r

∣∣∣∣r +
∣∣∣∣∇2 a1

r

∣∣∣∣r2 ≤ c,

|βi|r3−µ + |∇βi|r4−µ ≤ c, i = 1, 2,

|βj |+ |∇βj |r ≤ c, j = 3, 4,

|β5|r + |∇β5|r2 ≤ c.
Let S2 = {x ∈ S : a2 6= 0}. Then

∣∣∣∣
a1

a2

∣∣∣∣r2 +
∣∣∣∣∇
a1

a2

∣∣∣∣r ≤ c on S2.

In a neighbourhood of r = 0 on S:

1. either γ/r − a1/r ≥ 0 or |a1| ≤ cr on S,
2. either 0 < a1 < cr2 or a1 < 0 and |a1| ≤ cr.
Let us introduce the quantities

X1(t) = ‖g‖L2,−1(Ωt) + ‖fϕ‖L2,−µ(Ωt) + ‖F ′‖L2(Ωt) + ‖F1‖L2,−µ(Ωt),

X2(t) = ‖h(0)‖H1
−1(Ω) + ‖w(0)‖H1

0 (Ω) + ‖α′(0)‖W 1
2,1−µ(Ω) + ‖α1(0)‖L2,−µ(Ω),

Y1(t) = ‖F2‖L2,−1(Ωt) + ‖χ(0)‖L2,−1(Ω),

Y2(t) = ‖F2‖L2,1−µ(Ωt) + ‖χ(0)‖H1
1−µ(Ω) + ‖v(0)‖W 2

2,1−µ(Ω),

X(t) = X1(t) +X2(t), µ ∈ (1/2, 1).

Assumption A4. There exist positive constants A,B and positive increasing functions
ϕ1 and ϕ2 such that

ϕ1(A,B)ectX(t) ≤ 1,

c[Y1(Y1 + 1)7/4 + Y1Y2 + Y1 + Y2] ≤ A,
cY1 ≤ B,

and for some δ ≥ 1 (close to 1) the quantity δ0 = ‖k− γ/(2ν)‖
V

3/2
4,−δ/2(St) is so small that

δ0 ≤ c[Y1(Y1 + 1)7/4 + Y1Y2 + Y1 + Y2]−1.

Theorem 1.1. Let assumptions A1–A4 hold. Then there exists a unique solution to prob-
lem (1.1) such that v ∈ A1−µ(Ωt), χ/r ∈ V 0

2 (Ωt), and

(1.20) ‖v‖A1−µ(Ωt) ≤ A, ‖χ/r‖V 0
2 (Ωt) ≤ B,

for all t ≤ T where T ≤ 1
c ln 1

ϕ1(A,B)X(T )
.

Let us introduce the quantities

γ(t) ≡ ‖g(t)‖L2,−1(Ω) + ‖g,t(t)‖L2(Ω),

γ1(t) ≡ ‖fϕ(t)‖L2(Ω),

γ2(t) ≡ ‖f ′(t)‖L2,1−µ(Ω) + ‖F ′(t)‖L2(Ω) + ‖F1(t)‖L2,−µ(Ω),(1.21)

γ3(t) ≡ ‖Fϕ(t)‖L2,−1(Ω),

γ4(t) ≡ ‖f(t)‖L2(Ω),
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Assumption A5. The external force satisfies the decay estimates

γ(t) ≤ γ(0)e−ν0t, γi(t) ≤ γi(0)e−νit, 1, . . . , 4,

where ν0, . . . , ν4 are positive given numbers.

Introduce the quantities

d1(t) ≡ ‖h(t)‖H1
−1(Ω) + ‖h,t(t)‖L2(Ω) + γ(t) + γ1(t),

d2(t) ≡ d1(t) + γ2(t),

d3(t) ≡ d2(t) + γ3(t) + γ4(t),

d∗ ≡ ‖w(0)‖L2,1(Ω) + ϕ(A)d1(0),

where A is the constant from (1.20) and ϕ is some increasing positive function.

Assumption A6. There exist positive constants A1, A2, A3 such that for all t0 < T ,

‖w(0)‖H1
0 (Ω) ≤ A1, ϕ(A)[d∗ + d1(0) + e−νTA1] ≤ A1,

ϕ(A)[e−ν∗t0d1(0) + d1(0) + e−νTA1] + cγ2(0)e−νT ≡ A2,

‖χ(0)‖L2,−1(Ω) ≤ A3, ϕ(A)[d∗ + d3(0) + e−TA1] + γ3(0) + cδ0A+ e−νTA3 ≤ A3,

where ν∗ = min{ν0, ν1}.
Theorem 1.2. Let T be sufficiently large and let assumptions A1–A6 hold. Then there
exists a constant D, independent of k, such that

(1.22) ‖h(kT )‖H1
−1(Ω) + ‖h,t(kT )‖L2(Ω) + ‖w(kT )‖H1

0 (Ω)

+ ‖χ(kT )‖L2,−1(Ω) + ‖α(kT )‖W 1
2,1−µ(Ω) ≤ D

for all k ∈ N.

From Theorems 1.1 and 1.2 we have

Theorem 1.3 (global existence). Let the assumptions of Theorems 1.1 and 1.2 hold.
Then there exists a global solution to problem (1.1) and constants A and B, independent
of k, such that

(1.23)
‖v‖A1−µ(Ω×(kT,(k+1)T )) ≤ A = A(kT, (k + 1)T ),

‖χ‖V 0
2 (Ω×(kT,(k+1)T )) ≤ B = B(kT, (k + 1)T ),

for all k ∈ N, where A(kT, (k + 1)T ), B(kT, (k + 1)T ) are the corresponding constants
from Theorem 1.1 in the interval (kT, (k + 1)T ).

1.3. Outline of proof of the main results. Now we describe the proofs of the main
results of this paper. Global existence of solutions to problem (1.1) is proved in two steps.
First we prove local existence (see Sections 6 and 7) by the method of successive approx-
imations. In Lemmas 6.1 and 6.2 we show that the constructed sequence is uniformly
bounded.

Next in Theorem 7.7 we prove convergence. In Sections 3, 4, 5 we obtain estimates
necessary for the proofs of Lemmas 6.1, 6.2, Theorem 7.7 and the theorem of global
existence.
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In Section 4 we obtain estimates for the vorticity vector. The main estimate is the
estimate for αϕ = χ. The estimate depends on the quantity δ0 ≡ ‖k− γ/2‖V 3/2

4,−1(S) which

must be small for the proofs of local and global existence. This quantity captures the
main difference between [zaj 5] and this paper. In [zaj 5] the domain Ω is a cylinder so
k = 0 and only the case with γ = 0 is considered. In Section 5 we find estimates for the
azimuthal component of velocity w = vϕ.

Since the proof of existence of a global axially symmetric solution is based on the
estimate for the vorticity vector (see [lad 1, uky]) we also derive the main estimates
from the problems for vorticity (see Lemmas 4.1, 4.4–4.6). For this we obtain appropriate
boundary conditions in Lemma 3.2. The conditions are such that α|S depends on v|S but
(n · α),n is calculated in terms of v|S and v,x|S .

Since v is calculated from the elliptic problem (1.9), the vorticity vector α has one
x-derivative less than v. Therefore, the above boundary conditions for vorticity imply es-
timates for velocity via interpolation inequalities and an energy type estimate for velocity.

We underline that in the case of the nonslip boundary condition (1.3) we are not able
to derive appropriate boundary conditions for α.

The main reason why we are able to prove global existence of solutions to problem
(1.1) which are close to the axially symmetric solution is that the equation for χ (see
(1.8)) is only one equation which is nonlinear with respect to large quantities. For this
equation we are able to obtain a global estimate for large quantities in terms of nonlinear
expressions of norms of small quantities (see Lemma 4.1). Other equations and problems
are linear with respect to large quantities and nonlinear with respect to small ones (see
(1.4), (1.5), (1.7), (1.9)). Note that the problem for pressure (1.10) is nonlinear with
respect to large quantities but to obtain the main estimates in this paper we do not need
any estimate for pressure.

Although problem (1.1) for (v, p) is equivalent to problems (1.7), (1.8), (1.9), (1.10)
for (α, v, p) (see [zaj 5]), to show existence by the method of successive approximations
formulated in Section 6 we also need problems (1.4), (1.5) for (h,w). This is connected
with the fact that we are able to get some additional regularity of (h,w) (see Lemmas 4.2,
4.7, 5.1–5.5) compared to the regularity of v.

In this paper we need two kinds of estimates: energy type estimates and estimates in
either H2,1

1−µ(ΩT ) or W 2,1
2,1−µ(ΩT ), where µ ∈ (1/2, 1). The difference between H2,1

1−µ(ΩT )
and W 2,1

2,1−µ(ΩT ) is that elements of H2,1
1−µ(ΩT ) vanish on the axis of symmetry but ele-

ments of W 2,1
2,1−µ(ΩT ) do not. Therefore the spaces H2,1

1−µ(ΩT ) and W 2,1
2,1−µ(ΩT ) describe

the behaviour of solutions in a neighbourhood of the axis of symmetry. The use of such
spaces is very natural for axially symmetric solutions because the main estimate for χ
derived by Ladyzhenskaya [lad 1] and Ukhovskĭı–Yudovich [uky] is in weighted Sobolev
spaces (see also Lemma 4.1).

The difference between H2,1
1−µ(ΩT ) and W 2,1

2,1−µ(ΩT ) is examined in Section 2.
The weighted spaces are very appropriate to describe solutions which are close to axi-

ally symmetric ones. Therefore in this paper h ∈ H2,1
−1 (ΩT ) (Lemma 4.2), α′ = (α1, α3) ∈

W 2,1
2,1−µ(ΩT ) (Lemma 4.3), α1 ∈ H2,1

1−µ(ΩT ) (Lemma 4.4), χ ∈ L∞(0, T ;L2,−1(Ω)) ∩
L2(0, T ;H1

−1(Ω)) (Lemma 4.1), w ∈ H2,1
1−µ(ΩT ) (Lemma 5.1).
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In [zaj 5] we proved the existence of solutions to the heat equation for the Dirichlet
and Neumann problems in weighted Sobolev spaces.

Finally, we have energy estimates for: h (Lemma 3.6), χ (Lemma 4.1), α′ = (α1, α3)
(Lemmas 4.4, 4.5), w (Lemmas 5.2–5.6).

To show an energy estimate for h we need the Korn inequality (Lemma 3.4).
Finally, we have to stress that to close all estimates in Section 6 we need a very strong

restriction on the shape of S: ‖k − γ/(2ν)‖
V

3/2
4,−1/2(S) must be sufficiently small. We hope

that employing the Lp-approach, this restriction might be relaxed.



2. Notation and auxiliary results

In this part a simplified notation for different weighted Sobolev spaces is introduced.
Moreover the Hardy inequality and some imbedding theorems for weighted Sobolev spaces
are formulated. Next we introduce trace spaces of functions from the weighted Sobolev
spaces and prove direct and inverse trace theorems. Finally, we formulate results on
existence of solutions with corresponding estimates for initial-boundary value problems
for the heat equation, nonstationary Stokes system and for the boundary value problem
for the (rot, div) elliptic system. Since our considerations are restricted to the L2-approach
the above existence results are obtained by applying the Fourier–Laplace transforms and
examining corresponding problems with parameters.

2.1. Spaces and notation. To simplify the writing we set

|u|p,Q = ‖u‖Lp(Q), Q ∈ {Ω,S,ΩT , ST }, p ∈ [1,∞],

‖u‖s,Q = ‖u‖Hs(Q), Q ∈ {Ω,S}, s ∈ N ∪ {0},
‖u‖s,Q = ‖u‖

W
s,s/2
2 (Q), Q ∈ {ΩT , ST }, s ∈ N ∪ {0},

where ‖u‖0,Q = |u|2,Q. We introduce weighted spaces with weight equal to the distance
to the axis of symmetry,

‖u‖Lp,µ(Q) =
( �

Q

|u|prpµ dQ
)1/p

, p ∈ [1,∞), µ ∈ R, Q ∈ {Ω,S,ΩT , ST },

where Ω ⊂ R3 has an axis of symmetry and r is the distance from it in cylindrical
coordinates and for simplicity we define

|u|p,µ,Q = ‖u‖Lp,µ(Q).

Next

‖u‖Hsµ(Q) =
( ∑

|α|≤s

�

Q

|Dα
xu|2r2(µ−s+|α|) dQ

)1/2
,

where Q ∈ {Ω,S}, s ∈ N ∪ {0}, µ ∈ R, and

‖u‖
H
s,s/2
µ (Q) =

( ∑

|α|+2i≤s

�

Q

|Dα
x∂

i
tu|2r2(µ−s+|α|+2i) dQ

)1/2
,

where Q ∈ {ΩT , ST }, s ∈ N ∪ {0}, µ ∈ R. Moreover, for simplicity, we set

‖u‖s,µ,Q =

{‖u‖Hsµ(Q), Q ∈ {Ω,S}, s ∈ N ∪ {0}, µ ∈ R,
‖u‖

H
s,s/2
µ (Q), Q ∈ {ΩT , ST }, s ∈ N ∪ {0}, µ ∈ R.

[16]
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We define

|||u|||l,r,Q =

{
‖u‖

W
l,l/2
r (Q) for Q ∈ {ΩT , ST },

‖u‖W l
r(Q) for Q ∈ {Ω,S}.

We introduce

u p1,p2,ΩT = ‖u‖Lp2 (0,T ;Lp1 (Ω)), u p1,p2,µ,ΩT = ‖u‖Lp2 (0,T ;Lp1,µ(Ω)),

‖u‖W s
p,µ(Ω) =

( ∑

|α|≤s

�

Ω

|Dα
xu|prpµ dx

)1/p
,

and

|||u|||s,p,µ,Ω = ‖u‖W s
p,µ(Ω), |||u|||s,p,µ,ΩT = ‖u‖

W
s,s/2
p,µ (ΩT ).

Moreover

‖u‖Lp1,p2 (ΩT ) =
( T�

0

( �

Ω

|u|p1 dx
)p2/p1

dt
)1/p2

.

We also introduce the space V lp,µ(Q), Q ∈ {Ω,S}, with the norm

‖u‖V lp,µ(Q) =
( ∑

|α|≤l

�

Q

|Dα
xu|prp(µ−l+|α|) dQ

)1/p
,

where µ ∈ R, p ∈ [1,∞). Furthermore, we set

‖u‖l,p,µ,QT = ‖u‖
V
l,l/2
p,µ (QT ), ‖u‖l,p,µ,Q = ‖u‖V lp,µ(Q),

where Q ∈ {Ω,S}, l ∈ N ∪ {0}, p ∈ [1,∞), µ ∈ R. Finally, we introduce

‖u‖Aµ(ΩT ) = ‖u‖W 2,1
2,µ(ΩT ) + ‖u,x‖W 2,1

2,µ(ΩT ),

and

‖u‖0V2
(ΩT ) ≡ u ΩT = sup

t≤T
|u(t)|2,Ω +

( T�

0

|u,x(t)|22,Ω dt
)1/2

.

2.2. Imbedding and trace theorems. For the reader’s convenience we list the esti-
mates and imbeddings which are used in this paper. First,

‖u(t)‖s,Ω ≤ c(‖u‖s+1,Ωt + ‖u(0)‖s,Ω), s ∈ N ∪ {0},(2.1)

‖u(t)‖s,µ,Ω ≤ c(‖u‖s+1,µ,Ωt + ‖u(0)‖s,µ,Ω), s ∈ N ∪ {0}, µ ∈ R,(2.2)

where c does not depend on t.
By c(α), ϕ(α) we denote generic functions which are always positive and increasing

and satisfy

|c(α)| ≤ cαa, c > 0.

From [bin, Ch. 1, Sect. 2.15] we have the Hardy inequality

(2.3) |f |q,−(1/q+α),R+ ≤
(
µ

|α|

)µ
|f,x|p,1−(1/p+α),R+ ,

where α 6= 0, 1 ≤ p ≤ q ≤ ∞, µ = 1 − 1/p + 1/q, and for p = 1, q = ∞ we assume that
(µ/|α|)µ = 1.
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More useful for us is the following Hardy inequality [bin, Ch. 1, Sect. 2.15]:

(2.4) |x−αf |p,R+ ≤
1

|α− 1/p| |x
−α+1f,x|p,R+ , α 6= 1

p
.

Using (2.4) we obtain the Hardy inequality for the domain Ω. For this purpose we write
(2.4) in the form

(2.5)
∞�

0

r−pα|f |p dr ≤ 1
|α− 1/p|p

∞�

0

r−p(α−1)|f,r|p dr.

Using cylindrical coordinates we obtain from (2.5) the inequality

(2.6)
a�

−a
dz

2π�

0

dϕ

∞�

0

r−pα−1|f |pr dr ≤ 1
|α− 1/p|p

a�

−a
dz

2π�

0

dϕ

∞�

0

r−p(α−1)−1|f,r|pr dr.

Hence

(2.7) |f |p,−µ,Ω ≤
1

|α− 1/p| |f,x|p,1−µ,Ω ,

where µ = α+ 1/p.
We also need the imbedding theorem for weighted Sobolev spaces (see Lemma 1.5 in

[map 1])

(2.8) ‖u‖V sq,β+s−l+n/p−n/q(Ω) ≤ c‖u‖V lp,β(Ω), Ω ⊂ Rn,
whenever s− l + n/p− n/q ≤ 0.

Now we introduce some weighted Sobolev spaces, isotropic and anisotropic, with frac-
tional derivatives. We formulate for them trace theorems, both direct and inverse. We
shall do it in the case of n space dimensions, although in this paper the case n = 3 is
considered only.

The space V lp,µ(Ω), Ω ⊂ Rn, has the property that Dβ
xu, u ∈ V lp,µ(Ω), vanishes on

the axis of symmetry if |β| ≤ l − µ − 2/p. Therefore to examine functions which do not
vanish on the axis of symmetry we introduce the space W l

p,µ(Ω) with the norm

‖u‖W l
p,µ(Ω) =

( ∑

|α|≤l

�

Ω

|Dα
xu(x)|prpµ dx

)1/p
.

Let us consider a more general anisotropic space W l
p,µ(Rn+1;M), where M = Rn−2 is

described by x′ = (x1, x2) = 0, and l = (l0, l1, . . . , ln), li ∈ N, i = 0, . . . , n, p ∈ [1,∞],
µ ∈ R, and

‖u‖
W l
p,µ(Rn+1;M) =

n∑

i=0

‖∂lixiu‖Lp,µ(Rn+1;M) + ‖u‖Lp,µ(Rn+1;M),

and

‖u‖Lp,µ(Rn+1;M) =
( �

Rn+1

|u(x)|p|x′|pµ dx
)1/p

,

where x = (x0, x1, . . . , xn), x = (x1, . . . , xn), x′ = (x1, x2).
From [zaj 3] we have
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Lemma 2.0. Assume that u ∈ W l
p,µ(Q), Q ∈ Rn+1, l = (l0, l1, . . . , ln), 1 < p < q < ∞,

µ, ν ∈ R+, 0 < li ∈ Z, 0 ≤ σi ∈ Z, i = 0, 1, . . . , n, l1 = l2 = l∗,

(2.9) κ = 1−
(

1
p
− 1
q

) n∑

i=0

1
li
−

n∑

i=0

σi
li
− 1
l∗

(µ− ν) ≥ 0,

and q satisfies the R(l)-horn condition. Assume µ > ν. Then Dσu ∈ Lq,ν(Q), σ =
(σ0, σ1, . . . , σn), and

(2.10) ‖Dσu‖Lq,ν(Q) ≤ c1δκ‖u‖Llp,µ(Q) + c2δ
κ−1‖u‖Lp,µ(Q)

for all δ ∈ (0, h0), where the constants c1, c2 do not depend on f and h0 = h0(Q).

First we consider the space V kp,µ(Rn+;M), k ∈ N, p ∈ (1,∞), µ ∈ R, M = Rn−2 is
determined by x′ = (x1, x2) = 0 and Rn+ = {x ∈ Rn : xn > 0}. For the weight we take
the power function rµ, where r = |x′|.

We underline that the space (and other spaces introduced later) has a different struc-
ture than the spaces used for elliptic (or parabolic) problems in domains with edges
because the weight is calculated from a subspace intersecting the domain and orthogonal
to the boundary (see [map], [soz]).

By V
k−1/p
p,q (Rn−1;M) we denote the space of traces on xn = 0 of functions from

V kp,µ(Rn+;M), i.e. V k−1/p
p,µ (Rn−1;M) = V kp,µ(Rn+;M) \ V

◦
k
p,µ(Rn+;M), where V

◦
k
p,µ(Rn+;M)

is the closure of the smooth functions vanishing on ∂Rn+. Therefore

(2.11) ‖u‖
V
k−1/p
p,µ (Rn−1;M) = inf{‖v‖V kp,µ(Rn+;M) : v − u ∈ V

◦
k
p,µ(Rn+;M)}.

From Lemma 1.3 of [map] we have

Lemma 2.1. The norm in V
k−1/p
p,µ (Rn−1;M) is equivalent to

(2.12)
( �

Rn−1

�

Rn−1

∑

|α|=k−1

| |x′1|µDα
x1
u(x1)− |x′2|µDα

x2
u(x2)|p dx1 dx2

|x1 − x2|n+p−2

+
�

Rn−1

∑

|α|≤k−1

|Dα
xu(x)|p|x′|p(µ−k+|α|)−1

)1/p

,

where x = (x1, x2, . . . , xn−1), x′ = (x1, x2).

Proof. Let W k−1/p
p (Rn−1) be the space of traces on xn = 0 of functions from W k

p (Rn).
For u such that supp u ⊂ {x ∈ Rn−1 : 1 < |x′| < 2} we have the equivalence

(2.13) c1‖u‖V k−1/p
p,µ (Rn−1;M) ≤ ‖u‖Wk−1/p

p (Rn−1) ≤ c2‖u‖V k−1/p
p,µ (Rn−1;M),

where

(2.14) ‖u‖
W
k−1/p
p (Rn−1) =

( �

Rn−1

�

Rn−1

∑

|α|=k−1

|Dα
x1
u(x1)−Dα

x2
u(x2)|p dx1 dx2

|x1 − x2|n+p−2

+
�

Rn−1

∑

|α|≤k−1

|Dα
xu(x)|p dx

)1/p
,

and in (2.13) the norm ‖u‖
V
k−1/p
p,µ (Rn−1;M) has the form (2.12).
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Using the homothety x 7→ 2νx we find that for u such that supp u ⊂ {x : 2ν−1 <

|x′| < 2ν+1} the norms V k−1/p
p,µ (Rn−1;M) and (2.12) are equivalent. Let us introduce

a partition of unity {ζν}∞ν=−∞ such that supp ζν ⊂ {x ∈ Rn : 2ν−1 < |x′| < 2ν+1} and
|Dα

x ζν(x)| ≤ c2−|α|ν , ν = 0,∓1, . . . .
Lemma 1.1 in [map] implies that the norm (2.11) is equivalent to the norm

(2.15)
( ∞∑

ν=−∞
‖ζνu‖V k−1/p

p,µ (Rn−1;M)

)1/p
.

Using this equivalence we end the proof.

Although the norm (2.12) for traces is commonly used, it is more convenient for us to
employ norms which distinguish directions orthogonal and parallel to M . This happens
when we consider anisotropic spaces for space-time dependent functions. For this purpose
we use [iln], where the following result has been shown:

Lemma 2.2. The norm of W
k−1/p
p (Rn−1) is equivalent to the norm

(2.16)
( �

R2

dx′
∑

|α|=k−1

�

Rn−3

�

Rn−3

|Dα
x′′1
u(x′, x′′1)−Dα

x′′2
u(x′, x′′2)|p dx′′1 dx

′′
2

|x′′1 − x′′2 |n+p−4

+
�

Rn−3

dx′′
∑

|α|=k−1

�

R2

�

R2

|Dα
x′1
u(x′1, x

′′)−Dα
x′2
u(x′2, x

′′)|p dx′1 dx
′
2

|x′1 − x′2|p+1

+
∑

|α|≤k−1

�

Rn−1

|Dα
xu(x)|p dx

)1/p

,

where x = (x1, . . . , xn−1), x′ = (x1, x2), x′′ = (x3, . . . , xn−1).

From Lemma 1.4 in [map] we have

Lemma 2.3. The norm of V k−1/p
p,µ (Rn−1;M) is equivalent to the norm

(2.17)
( �

R2

|x′|pµdx′
∑

|α|=k−1

�

Rn−3

�

Rn−3

|Dα
x′′1
u(x′, x′′1)−Dα

x′′2
u(x′, x′′2)|p dx′′1 dx

′′
2

|x′′1 − x′′2 |n+p−4

+
�

Rn−3

dx′′
∑

|α|=k−1

�

R2

�

R2

| |x′1|µDα
x′1
u(x′1, x

′′)− |x′2|µDα
x′2
u(x′2, x

′′)|p dx′1 dx
′
2

|x′1 − x′2|p+1

+
∑

|α|≤k−1

�

Rn−1

|Dα
xu(x)|p|x′|p(µ−k+|α|)−1

)1/p

.

The proof is similar to the proof of Lemma 2.1.
Now we pass to the anisotropic space V

k,k/2
p,µ (Rn+ × (0, T );M), k ∈ N, p ∈ (1,∞),

µ ∈R. By V
k−1/p,k/2−1/(2p)
p,µ (Rn−1× (0, T );M) we denote the space of traces on xn = 0

of functions from V
k,k/2
p,µ (Rn+ × (0, T );M), i.e. V k−1/p,k/2−1/(2p)

p,µ (Rn−1 × (0, T );M) =

V
k,k/2
p,µ (Rn+×(0, T );M)\V

◦ k,k/2
p,µ (Rn+×(0, T );M), where V

◦ k,k/2
p,µ (Rn+×(0, T );M) is equal to

the closure of the smooth functions vanishing on ∂Rn+×(0, T ), ∂Rn+ = {x ∈ Rn : xn = 0}.
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Therefore

(2.18) ‖u‖
V
k−1/p,k/2−k/(2p)
p,µ (Rn−1×(0,T );M) = inf{‖v‖

V
k,k/2
p,µ (Rn+×(0,T );M) :

v − u ∈ V
◦
k,k/2
p,µ (Rn+ × (0, T );M)}.

Similarly to Lemma 2.3 we have

Lemma 2.4. The norm of V k−1/p,k/2−1/2p
p,µ (Rn−1 × (0, T );M) is equivalent to the norm

(2.19)
( �

R2

|x′|pµ dx′
∑

|α|+2a=k−1

[ T�

0

dt
�

Rn−3

�

Rn−3

|Dα
x′′1
∂at u(x′, x′′1 , t)

−Dα
x′′2
∂at u(x′, x′′2 , t)|p

dx′′1 dx
′′
2

|x′′1 − x′′2 |n+p−4

+
�

Rn−3

dx′′
T�

0

T�

0

|Dα
x′′∂

a
t u(x′, x′′, t)−Dα

x′′∂
a
t′u(x′, x′′, t′)|p dtdt′

|t− t′|1/2+p/2

]

+
�

Rn−1

dx′′
T�

0

dt
∑

|α|+2a=k−1

�

R2

�

R2

| |x′1|µDα
x′1
u(x′1, x

′′, t)− |x′2|µDα
x′2
u(x′2, x

′′, t)|p

· dx′1dx
′
2

|x′1 − x′2|p+1 +
∑

|α|+2a≤k−1

T�

0

�

Rn−1

|Dα
x∂

a
t u(x, t)|p|x′|p(µ−k+|α|+2a)−1

)1/p

.

Finally, we introduce the traces for t = 0 which belong to the space V k−2/p
p,µ (Rn+;M).

A lemma similar to Lemma 2.4 can be formulated.
Applying homothety (see the proof of Lemma 2.1) we can prove the following trace

results (see [map]):

Lemma 2.5. Assume that u ∈ V
k,k/2
p,µ (Rn+ × (0, T );M), k, |α|, a ∈ N, k − |α| − 2a ≥ 1.

Then Dα
x∂

a
t u|xn=0 ∈ V k−|α|−2a−1/p,k/2−|α|/2−a−1/(2p)

p,µ (Rn−1 × (0, T );M) and

(2.20) ‖Dα
x∂

a
t u|xn=0‖V k−|α|−2a−1/p,k/2−|α|/2−a−1/(2p)

p,µ (Rn−1×(0,T );M)

≤ c‖u‖
V
k,k/2
p,µ (Rn+×(0,T );M).

Assume that ϕj ∈ V k−j−1/p,k/2−j/2−1/(2p)
p,µ (Rn−1× (0, T );M), j ≤ k− 1, are given. Then

there exists a function u ∈ V k,k/2p,µ (Rn+ × (0, T );M) such that

∂ju

∂xjn

∣∣∣∣
xn=0

= ϕj , j = 0, . . . , k − 1,

and

(2.21) ‖u‖
V
k,k/2
p,µ (Rn+×(0,T );M) ≤

k−1∑

j=0

‖ϕj‖V k−j−1/p,k/2−j/2−1/(2p)
p,µ (Rn−1×(0,T );M).

To simplify considerations we omit the parameter M in the definitions of norms
introduced below.
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By Lkp,µ(Rn+), Lk−1/p
p,µ (Rn−1), W k−1/p

p,µ (Rn−1), Rn−1 = Rn+|xn=0, k ∈ N, p ∈ [1,∞],
µ ∈ R, we define sets of functions for which the following expressions are finite:

‖u‖Lkp,µ(Rn+) =
( ∑

|α|=k

�

Rn+

|Dα
xu(x)|p|x′|pµ dx

)1/p
, x′ = (x1, x2),

‖u‖
L
k−1/p
p,µ (Rn−1) =

( ∑

|α|=k−1

�

Rn−1

|x′|pµ dx
�

K+(x)

|Dαu(x)−Dαu(x+ y)|p
|y|n+p−2 dy

)1/p
,

where K+(x) = {y ∈ Rn−1 : |y| < |x′|}, and

‖u‖
W
k−1/p
p,µ (Rn−1) =

( ∑

|α|≤k−1

�

Rn−1

|Dα
xu(x)|p|x′|pµ dx

)1/p
+ ‖u‖

L
k−1/p
p,µ (Rn−1).

Similarly we introduce the anisotropic spaces

W k−1/p,k/2−1/(2p)
p,µ (Rn−1 × (0, T )), Lk−1/p,k/2−1/(2p)

p,µ (Rn−1 × (0, T )).

From [soz] we have

Lemma 2.6. Let u ∈ Lkp,µ(Rn+) and |α| < k. Then Dαu|xn=0 ∈ Lk−|α|−1/p
p,µ (Rn−1) and

‖Dαu|xn=0‖Lk−|α|−1/p
p,µ (Rn−1) ≤ c‖u‖Lkp,µ(Rn+).

Let u ∈W k
p,µ(Rn+) and |α| < k. Then

Dαu|xn=0 ∈W k−|α|−1/p
p,µ (Rn−1)

and

‖Dαu|xn=0‖Wk−|α|−1/p
p,µ (Rn−1) ≤ c‖u‖Wk

p,µ(Rn+).

Lemma 2.7. Let ϕj ∈ L
k−j−1/p
p,µ (Rn−1), i = 0, . . . , k − 1, be given. Then there exists

a function u ∈ Lkp,µ(Rn+) such that

∂ju

∂xjn

∣∣∣∣
xn=0

= ϕj , j = 0, . . . , k − 1,

and

‖u‖Lkp,µ(Rn+) ≤ c
k−1∑

j=0

‖ϕj‖Lk−j−1/p
p,µ (Rn−1).

Let ϕj ∈ W
k−j−1/p
p,µ (Rn−1), j = 0, . . . , k − 1, be given. Then there exists a function

u′ ∈W k
p,µ(Rn+) such that

∂ju′

∂xjn

∣∣∣∣
xn=0

= ϕj , j = 0, . . . , k − 1,

and

‖u′‖Wk
p,µ(Rn+) ≤ c

k−1∑

j=0

‖ϕj‖Wk−j−1/p
p,µ (Rn−1).

Similar results hold for anisotropic Sobolev spaces.
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Now we find a relation between V kp,µ(Rn+) and W k
p,µ(Rn+). Assume that u ∈ Lkp,µ(Rn+),

1− 2/p+ s− 1 < µ < 1− 2/p+ s, k > s. Then by the Hardy inequality

‖u− P k−s−1(u)‖L0
p,µ−k(Rn+) ≤ c‖u‖Lkp,µ(Rn+),

where

Pσ(u) =
σ∑

i=0

∂iu

∂ri

∣∣∣∣
r=0

ri

i!
.

Therefore if u ∈W k
p,µ(Rn+) then u− P k−s−1(u) ∈ V kp,µ(Rn+) and

‖u− P k−s−1(u)‖V kp,µ(Rn+) ≤ c‖u‖Wk
p,µ(Rn+).

Now we recall some Hardy inequalities.

Lemma 2.8 (see [kon]). Assume that u ∈ Lm2,µ(Ω), Ω ⊂ R3, Ω is an axially symmetric
domain. Assume that s > µ > s− 1, m, s ∈ N ∪ {0}, m ≥ s. Then

(2.22) ‖u− Pm−s−1(u)‖L2,µ−m(Ω) ≤ c‖u‖Lm2,µ(Ω),

where

P k(u) =
∑

i≤k
u(i)|r=0

ri

i!
,

and u(i) = ∂iu/∂ri.

Proof. Let m = 1, s = 0. Taking u ∈ L1
2,µ(Ω) and using cylindrical coordinates we have

a�

−a
dz

2π�

0

dϕ

ψ1(z)�

0

r2µ+1

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dr <∞,

where Ω = {x ∈ R3 : z ∈ (−a, a), ϕ ∈ (0, 2π), r < ψ1(z)}. To apply the Hardy inequality
it is enough to consider only the integral

I =
R�

0

r2µ+1

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dr.

Since µ ∈ (−1, 0) Lemma 4.2 from [kon] implies that u is a continuous function of r.
Therefore Lemma 4.10 from [kon] implies

I ≥ c
R�

0

r2µ−1|u− u|r=0|2 dr.

Let m ∈ N and s = 0. Then in view of the above considerations we have

I1 =
R�

0

r2µ+1

∣∣∣∣
∂mu

∂rm

∣∣∣∣
2

dr ≥ c
R�

0

r2µ−1

∣∣∣∣
∂m−1u

∂rm−1 −
∂m−1u

∂rm−1

∣∣∣∣
r=0

∣∣∣∣
2

dr

= c

R�

0

r2µ−1

∣∣∣∣
∂m−1

∂rm−1

(
u− u(m−1)|r=0

rm−1

(m− 1)!

)∣∣∣∣
2

dr

≥ c
R�

0

r2µ−3

∣∣∣∣
∂m−2

∂rm−2

(
u− u(m−1)|r=0

rm−1

(m− 1)!

)
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− ∂m−2

∂rm−2

(
u− u(m−1)|r=0

rm−1

(m− 1)!

)∣∣∣∣
r=0

∣∣∣∣
2

dr

= c

R�

0

r2µ−3

∣∣∣∣
∂m−2

∂rm−2

(
u− u(m−1)|r=0

rm−1

(m− 1)!

)
− ∂m−2

∂rm−2u

∣∣∣∣
r=0

∣∣∣∣
2

dr

= c

R�

0

r2µ−3

∣∣∣∣
∂m−2

∂rm−2

(
u− u(m−1)|r=0

rm−1

(m− 1)!
− u(m−2)|r=0

rm−2

(m− 2)!

)∣∣∣∣
2

dr

≥ · · · ≥ c
R�

0

r2µ+1−2m|u− Pm−1(u)|2 dr.

Continuing the procedure for s > 0 we conclude the proof.

From [bin, Ch. 1, Sect. 2.16] we have the Hardy inequality:

Lemma 2.9. Let p ∈ [1,∞], β 6= 1/p, F (x) =
� x
0
f(y) dy for β > 1/p and F (x) =� ∞

x
f(y) dy for β < 1/p. Then

(2.23) |x−βF |p,R1
+
≤ 1
|β − 1/p| |x

−β+1f |p,R1
+
.

From Lemmas 2.8 and 2.9 we have

Lemma 2.10. Assume that u ∈ Lmp,µ(Ω), p ∈ [1,∞), and Ω ⊂ R3 is an axially symmetric
domain. Assume that 1− 2/p+ s− 1 < µ < 1− 2/p+ s, m, s ∈ N∪{0}, m ≥ s+ 1. Then

(2.24) ‖u− Pm−s−1(u)‖Lp,µ−m(Ω ≤
c

|1− 2/p− µ| ‖u‖Lmp,µ(Ω),

where the polynomial P k is defined in Lemma 2.8.

Proof. We shall restrict our considerations to the case m = 1 because the case m > 1
can be considered in the same way as in the proof of Lemma 2.8. Taking u ∈ L1

p,µ(Ω)
and using cylindrical coordinates we have

a�

−a
dz

2π�

0

dϕ

ψ1(z)�

0

rpµ+1

∣∣∣∣
∂u

∂r

∣∣∣∣
p

dr <∞.

To apply the Hardy inequality we consider the integral

I =
ψ1(z)�

0

rpµ+1

∣∣∣∣
∂u

∂r

∣∣∣∣
p

dr.

Applying the Hardy inequality (2.23) with β = 1− 1/p− µ we obtain

I ≥ c
ψ1(z)�

0

rp(µ−1)+1|u− u(0)|p dr

if 1− 2/p− µ 6= 0. Following the proof of Lemma 2.8 we finish the proof.
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2.3. Estimates for some elliptic and parabolic problems. We need

Lemma 2.11. Assume that u ∈ W 2,1
p (Ω × (0, T )), Ω ⊂ Rn. Assume that u has traces

u(t), u(0) ∈ W
2−2/p
p (Ω), t ∈ [0, T ]. Then there exists a constant c0, which does not

depend on T , such that

(2.25) sup
t≤T
‖u(t)‖

W
2−2/p
p (Ω) ≤ c0(‖u‖W 2,1

p (Ω×(0,T )) + ‖u(0)‖
W

2−2/p
p (Ω)).

Proof. Let ũ be an extension of u such that ũ ∈W 2,1
p (Rn × (0, T )) and

‖ũ‖W 2,1
p (Rn×(0,T )) ≤ c‖u‖W 2,1

p (Ω×(0,T )).

In view of the above inequality we have for the trace u(0) a corresponding extension such
that ũ(0) ∈W 2−2/p

p (Rn) and

‖ũ(0)‖
W

2−2/p
p (Rn) ≤ c‖u(0)‖

W
2−2/p
p (Ω).

In the case of bounded Ω, the above extensions can be taken in such a way that supp ũ ⊂
BR, where R <∞, BR is a ball of radius R and Ω ⊂ BR.

Let us introduce a new function v = ũ − ũ(0). Hence v|t=0 = 0. Therefore v can be
extended by zero for t < 0. Denote the extension by ṽ. Then ṽ ∈ W 2,1

p (Rn × (−∞, T ))
and

‖ṽ‖W 2,1
p (Rn×(−∞,T )) ≤ c‖v‖W 2,1

p (Rn×(0,T )).

Next we extend ṽ to t > T . Denote the extension by ˜̃v. Hence we have

‖ ˜̃v‖W 2,1
p (Rn×R) ≤ c‖ṽ‖W 2,1

p (Rn×(−∞,T ))

≤ c‖v‖W 2,1
p (Rn×(0,T )) ≤ c(‖ũ‖W 2,1

p (Rn×(0,T )) + ‖ũ(0)‖
W

2−2/p
p (Rn))

≤ c(‖u‖W 2,1
p (Ω×(0,T )) + ‖u(0)‖

W
2−2/p
p (Ω)),

where the constants c do not depend on T . Taking the trace

‖ ˜̃v(t)‖
W

2−2/p
p (Rn) ≤ c(‖u‖W 2,1

p (Ω×(0,T )) + ‖u(0)‖
W

2−2/p
p (Ω)),

where c does not depend on T , we obtain estimate (2.25). This concludes the proof.

The proof of Lemma 2.11 can also be applied to weighted Sobolev spaces W 2,1
p,µ(ΩT )

because it does not depend on the properties of functions with respect to the x variables.
The extension from Ω to Rn can also be done for functions from weighted Sobolev spaces.
Therefore we have

Lemma 2.12. Assume that u ∈ W 2,1
p,µ(Ω × (0, T )), Ω ⊂ Rn, µ ∈ R, p ∈ (1,∞). Assume

that u(t), u(0) ∈ W 2−2/p
p,µ (Ω), t ∈ [0, T ]. Then there exists a constant c′0, which does not

depend on T , such that

(2.26) sup
t≤T
‖u(t)‖

W
2−2/p
p,µ (Ω) ≤ c

′
0(‖u‖W 2,1

p,µ(Ω×(0,T )) + ‖u(0)‖
W

2−2/p
p,µ (Ω)).

In this paper we consider problem (1.1) in the whole axially symmetric domain so
behaviour of solutions near the axis of symmetry must be taken into account. To prove
existence of solutions to problem (1.1) we need to show existence of solutions of the
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following elliptic and evolution problems. First we examine the elliptic problem

(2.27)

rot v = w in Ω,

div v = 0 in Ω,

v · n = 0 on S.

From [zaj 2] we have

Lemma 2.13. Assume that w ∈ W 2,1
2,µ(ΩT ), µ ∈ R+. Then there exists a solution to

problem (2.27) such that v, vx ∈W 2,1
2,µ(ΩT ) and

(2.28) ‖v‖Aµ(ΩT ) ≤ c‖w‖W 2,1
2,µ(ΩT ).

Let us consider the following problems:

(2.29)
u,t −∆u = f in ΩT ,

u|t=0 = u0 in Ω,

with either the Dirichlet boundary conditions

(2.30) u|S = u1 on ST ,

or the Neumann boundary conditions

(2.31)
∂u

∂n

∣∣∣∣
S

= u2 on ST .

From [zaj 1] we have

Lemma 2.14. Assume that f ∈ L2,µ(ΩT ), u0 ∈ W 1
2,µ(Ω), u1 ∈ W

3/2,3/4
2,µ (ST ), u2 ∈

W
1/2,1/4
2,µ (ST ), µ ∈ R+. Then there exist solutions to problems (2.29), (2.30) and (2.29),

(2.31) such that u ∈W 2,1
2,µ(ΩT ) and

(2.32) ‖u‖W 2,1
2,µ(ΩT ) ≤ c(‖f‖L2,µ(ΩT ) + ‖u0‖W 1

2,µ(Ω) + ‖u1‖W 3/2,3/4
2,µ (ST )),

and

(2.33) ‖u‖W 2,1
2,µ(ΩT ) ≤ c(‖f‖L2,µ(ΩT ) + ‖u0‖W 1

2,µ(Ω) + ‖u2‖W 1/2,1/4
2,µ (ST )).

Finally, we consider the nonstationary Stokes problem

(2.34)

v,t − ν∆v +∇p = f in ΩT ,

div v = 0 in ΩT ,

v|t=0 = v0 in Ω,

v · n = 0 on ST ,

n · D(v) · τα = 0, α = 1, 2, on ST .

Assume that solutions of (2.34) satisfy

(2.35)
�

Ω

vϕ(r, ϕ, z) dx = 0,
�

Ω

p dx = 0.

Then we have
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Lemma 2.15. Assume that v0 ∈ H1
µ(Ω), f ∈ L2,µ(ΩT ), µ ∈ [−1, 0). Assume (2.35). Then

there exists a solution to (2.34) such that v ∈ H2,1
µ (ΩT ) and

(2.36) ‖v‖H2,1
µ (ΩT ) + ‖p‖L2(0,T ;H1

µ(Ω)) ≤ c(‖v0‖H1
µ(Ω) + ‖f‖L2,µ(ΩT )).

2.4. Differential operators in cylindrical coordinates. Finally, we express different
differential operators in the cylindrical coordinates r, ϕ, z. We recall the relations x1 =
r cosϕ, x2 = r sinϕ, x3 = z and the vectors e1 = er = (cosϕ, sinϕ, 0), e2 = eϕ =
(− sinϕ, cosϕ, 0), e3 = ez = (0, 0, 1). The Laplace operator in cylindrical coordinates has
the form

(2.37) ∆u =
1
r
∂r(ru,r) +

1
r2 u,ϕϕ + u,zz = u,rr +

1
r
u,r +

1
r2 u,ϕϕ + u,zz .

Let v be a vector. Then ∆v in cylindrical coordinates takes the form

(2.38)

∆v · e1 = ∆(vαeα) · e1 = ∆vr −
vr
r2 −

2
r2 vϕ,ϕ,

∆v · e2 = ∆(vαeα) · e2 = ∆vϕ −
vϕ
r2 +

2
r2 vr,ϕ,

∆v · e3 = ∆vz ,

where vα = v · eα, α = 1, 2, 3, and the summation convention over repeated indices is
assumed.

Let D(v) = {dij(v)} = {vi,xj + vj,xi}. We calculate

(2.39)

drr = dijerierj = 2vr,r, drϕ = dijerieϕj =
1
r
vr,ϕ −

1
r
vϕ + vϕ,r,

dϕϕ = dijeϕieϕj =
2
r
vϕ,ϕ +

2vr
r
, dzr = dijezierj = vr,z + vz,r,

dzϕ = dijezieϕj = vϕ,z +
1
r
vz,ϕ, dzz = 2vz,z .

Finally,

(2.40) v ·∇h·er = v ·∇hr−
vϕhϕ
r

, v ·∇h·eϕ = v ·∇hϕ+
vϕhr
r

, v ·∇h·ez = v ·∇hz ,

where v · ∇h = (vr∂r + vϕ
r ∂ϕ + ∂z)h. Moreover,

(2.41) div v = vr,r +
1
r
vϕ,ϕ + vz,z +

vr
r
,

and

(2.42)

αr = rot v · e1 =
1
r

[vz,ϕ − rvϕ,z ],

αϕ = rot v · e2 = vr,z − vz,r,

αz = rot v · e3 =
1
r

[(rvϕ),r − vr,ϕ].



3. Boundary conditions for velocity and vorticity

In this section we express the slip boundary condition in cylindrical coordinates (Lemma
3.1), we find the boundary conditions for the vorticity vector (Lemma 3.2) and show the
Korn inequality necessary to prove energy type estimates for v and h.

3.1. Boundary conditions for velocity in cylindrical coordinates. First we ex-
press the boundary conditions (1.1)3,4 in terms of cylindrical components of velocity.

Lemma 3.1. Assume that S is described by the relation ψ(r, z) = 0. Let

a1 =
ψ,r√

ψ2
,r + ψ2

,z

, a2 =
ψ,z√

ψ2
,r + ψ2

,z

.

Then (1.1)3 takes the form

(3.1) a1vr + a2vz = 0,

and (1.1)4 implies

(3.2)
a1vϕ,r + a2vϕ,z +

γ

ν
vϕ =

1
r
a1vϕ,

2a1a2(vr,r − vz,z) + (a2
2 − a2

1)(vr,z + vz,r) +
γ

ν
(a2vr − a1vz) = 0.

Proof. We have ∇ψ = (ψ,r cosϕ, ψ,r sinϕ, ψ,z) = ψ,rer + ψ,zez . Hence

(3.3) n|S = a1er + a2ez, τ1|S = eϕ, τ2|S = a2er − a1ez .

Then (1.1)3 implies ψ,rvr+ψ,zvz = 0, so (3.1) holds. The condition (1.1)4 for j = 1 yields

(3.4) ni(vi,xj + vj,xi)τ1j +
γ

ν
v · τ1 = 0,

where the summation convention over repeated indices is assumed. By (3.3) condition
(3.4) reads

1
r

(a1er + a2ez) · v,ϕ + (a1er + a2ez) · ∇vϕ +
γ

ν
vϕ = 0,

so
1
r

(a1vr,ϕ − a1vϕ + a2vz,ϕ) + a1vϕ,r + a2vϕ,z +
γ

ν
vϕ = 0.

Using (3.1) and the fact that a1, a2 do not depend on ϕ we obtain (3.2)1. The condition
(1.1)4 for j = 2 amounts to

ni(vi,xj + vj,xi)τ2j +
γ

ν
v · τ2 = 0,

[28]
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so in view of (3.3) it implies

(a1er + a2ez) · ∇vi(a2er − a1ez)i + (a2er − a1ez) · ∇vi(a1er + a2ez)i +
γ

ν
v · τ2 = 0,

which gives (3.2)2. This concludes the proof.

3.2. Boundary conditions for vorticity. Now we find the boundary conditions for
the vorticity vector α = rot v. In cylindrical coordinates we have the relations

(3.5)

α1 = αr =
1
r
vz,ϕ − vϕ,z ,

α2 = αϕ = vr,z − vz,r,

α3 = αz = vϕ,r +
1
r
vϕ −

1
r
vr,ϕ.

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Let S ′ be a curve which generates
S by rotating around the z axis. Let S ′ be described also by ψ(r, z) = 0. Let k be the
curvature of S′. Let τ2 be the tangent vector to S described by (3.3). Then

α2 = 2(k − γ/(2ν))v · τ 2 on S,(3.6)

a2α1 − a1α3 = −2a1

r
vϕ +

γ

ν
vϕ on S,(3.7)

αn,n = β1vr,ϕ + β2vz,ϕ + β3vϕ,r + β4vϕ,z + β5vϕ,(3.8)

where βi = βi(∇ψ,∇2ψ), i = 1, . . . , 5, are defined by (3.15).

Proof. Since a2∂r − a1∂z is the tangent operator to S, (3.1) implies

(3.9) (a2∂r − a1∂z)(a1vr + a2vz) = 0.

Calculations yield

(3.10) a1a2(vr,r − vz,z) + a2
2vz,r − a2

1vr,z

= (a1a1,z − a2a1,r)vr + (a1a2,z − a2a2,r)vz = −(a1,r + a2,z)v · τ2,

where the second equality follows by applying the relation a2
1 +a2

2 = 1, and τ2 from (3.3)
is used.

Now we find a geometrical description of the r.h.s. of (3.10). Let r = r(s), z = z(s)
be a curve in the (r, z) plane. Then its curvature equals

k =
ṙz̈ − r̈ż

(ṙ2 + ż2)3/2
,

where the dot denotes the derivative with respect to the parameter s. If the curve is
written in the form ψ(r, z) = 0, its curvature takes the form

k =
ψ2
,zψ,rr + ψ2

,rψ,zz − 2ψ,rψ,zψ,rz
(ψ2
,r + ψ2

,z)3/2
.

Using the form of a1 and a2 we see that

(3.11) a1,r + a2,z = k.

Now from (3.10), (3.11) and (3.2)2 we obtain (3.6).
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Using (3.1), (3.2)1 and (3.5) we calculate

a2α1 − a1α3 =
1
r

(a2vz,ϕ + a1vr,ϕ)− (a1vϕ,r + a2vϕ,z)−
a1

r
vϕ

= −(a1vϕ,r + a2vϕ,z)−
a1

r
vϕ = −2a1

r
vϕ +

γ

ν
vϕ,

which implies (3.7).
Finally, we show (3.8). We have

αn = α · n = a1α1 + a2α3 = a1

(
1
r
vz,ϕ − vϕ,z

)
+ a2

(
1
r
vϕ + vϕ,r −

1
r
vr,ϕ

)
.

Hence

αn,n = (a1er + a2ez) · ∇αn = a1∂rαn + a2∂zαn(3.12)

= a1∂r

[
a1

(
1
r
vz,ϕ − vϕ,z

)
+ a2

(
1
r
vϕ + vϕ,r −

1
r
vr,ϕ

)]

+ a2∂z

[
a1

(
1
r
vz,ϕ − vϕ,z

)
+ a2

(
1
r
vϕ + vϕ,r −

1
r
vr,ϕ

)]

= [−a2
1vϕ,rz + a1a2vϕ,rr − a1a2vϕ,zz + a2

2vϕ,rz ]

+
1
r

[a2
1vz,ϕr − a1a2vr,ϕr + a1a2vz,ϕz − a2

2vr,ϕz ]

+ a1a1,r

(
1
r
vz,ϕ − vϕ,z

)
+ a1a2,r

(
1
r
vϕ + vϕ,r −

1
r
vr,ϕ

)

+ a2a1,z

(
1
r
vz,ϕ − vϕ,z

)
+ a2a2,z

(
1
r
vϕ + vϕ,r −

1
r
vr,ϕ

)
− a2

1

r2 vz,ϕ

+ a1a2∂r

(
1
r
vϕ

)
+
a1a2

r2 vr,ϕ +
a2

2

r
vϕ,z .

Now we shall estimate the particular terms on the r.h.s. of (3.12). The first term equals

a1(−a1∂zvϕ,r + a2∂rvϕ,r) + a2(a2∂rvϕ,z − a1∂zvϕ,z)

= a1τ2 · ∇vϕ,r + a2τ2 · ∇vϕ,z = τ2 · ∇(n · ∇vϕ)− τ2 · ∇a1vϕ,r − τ2 · ∇a2vϕ,z ≡ I1.
Since (3.2)1 takes the form

n · ∇vϕ = −γ
ν
vϕ +

a1

r
vϕ,

we have

I1 = τ2 · ∇
((

a1

r
− γ

ν

)
vϕ

)
− τ2 · ∇a1vϕ,r − τ2 · ∇a2vϕ,z .

The second term on the r.h.s. of (3.12) takes the form (1/r)K,ϕ, where

(3.13) K = a2
1vz,r − a2

2vr,z + a1a2(vz,z − vr,r).
Writing (3.2)2 in the form

2a1a2(vr,r − vz,z) + (a2
2 − a2

1)(vr,z + vz,r) = −γ
ν
τ2 · v
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and applying it to eliminate the last expression in K we obtain

(3.14) K = kv · τ 2.

Finally, we examine the last eight terms on the r.h.s. of (3.12). The terms with vr,ϕ, vz,ϕ
take the form

1
r

(a2,r + a1,z)(τ2 · v),ϕ +
a1a2

r2 vr,ϕ.

The terms with vϕ,r, vϕ,z equal

(a2,r − a1,z)n · ∇vϕ +
a2

r
n · ∇vϕ.

Finally, the remaining term gives the expression

1
r

(
n · ∇a2 −

a1a2

r

)
vϕ.

Summarizing,

αn,n = τ2 · ∇
[(

a1

r
− γ

ν

)
vϕ

]
− τ2 · ∇a1vϕ,r − τ2 · ∇a2vϕ,z

+
1
r

(kv · τ2),ϕ +
1
r

(a2,r + a1,z)(τ2 · v),ϕ +
a1a2

r2 vr,ϕ

+ (a2,r − a1,z)n · ∇vϕ +
a2

r
n · ∇vϕ +

1
r

(
n · ∇a2 −

a1a2

r

)
vϕ

≡ β1vr,ϕ + β2vz,ϕ + β3vϕ,r + β4vϕ,z + β5vϕ,

where

(3.15)

β1 =
k

r
a2 +

1
r

(a2,r + a1,z)a2 +
a1a2

r
,

β2 = −k
r
a1 −

1
r

(a2,r + a1,z)a1,

β3 =
(
a1

r
− γ

ν

)
a2 − τ2 · ∇a1 + (a2,r − a1,z)a1 +

a1a2

r
,

β4 = −
(
a1

r
− γ

ν

)
a1 − τ2 · ∇a2 + (a2,r − a1,z)a2 +

a2
2

r
,

β5 = τ2 · ∇
(
a1

r
− γ

ν

)
+

1
r

(
n · ∇a2 −

a1a2

r

)
.

This gives (3.8) and concludes the proof.

3.3. Energy type estimates for velocity and its angular derivative h. Repeating
the proof of Lemma 3.3 from [zaj 5, Ch. 4] we have

Lemma 3.3. Let η = e0 × x, e0 = (0, 0, 1), x = (x1, x2, x3), η = x,ϕ, and let Ω have the
axis of symmetry e0. Let v be a solution to problem (1.1) and

(3.16)
∣∣∣

�

Ω

v0 · η dx
∣∣∣ <∞,

∣∣∣
�

Ωt

f · η dx dt′
∣∣∣ <∞.
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Then

(3.17)
�

Ω

v · η dx+ γ
�

St

v · η dx dt′ =
�

Ω

v0 · η dx+
�

Ωt

f · η dx dt′.

Proof. Multiplying (1.1)1 by η, integrating the result over Ωt, using the boundary and
initial conditions and the fact that ∇η is antisymmetric tensor we obtain (3.17). This
ends the proof.

Now we examine the Korn inequality which is necessary to prove the estimate for
weak solutions to problem (1.1). By the Korn inequality we mean an estimate such that
the H1 norm of a vector function is bounded in terms of the L2 norm of its dilatation
tensor.

To prove the Korn inequality we introduce

(3.18) EΩ(v) =
�

Ω

(vi,xj + vj,xi)
2 dx,

where the summation convention is assumed.

Lemma 3.4. Let |
�
Ω
rvϕ dx| <∞, EΩ(v) <∞. Then

(3.19) ‖v‖21,Ω ≤ c
(
EΩ(v) +

∣∣∣
�

Ω

rvϕ dx
∣∣∣
2)
.

Proof. Since η = x,ϕ we have rvϕ = v · η ≡ vη. Let α∗ =
�
Ω
vη dx. Then

(3.20) v = v′ +
α∗�

Ω
|η|2 dx η,

where

v′ = vrer +
(
vϕ −

α∗�
Ω
|η|2 dx r

)
eϕ + vzez ,

�

Ω

v′ · η dx = 0.

Since EΩ(v) = 2(|∇v|22,Ω −
�
S
vivjni,xj dS) we have (see also [sos])

(3.21) |∇v|22,Ω ≤ c(EΩ(v) + |v|22,S).

By the trace theorem we obtain

(3.22) |∇v|22,Ω ≤ c(EΩ(v) + |v|22,Ω).

Let s1, s2 ∈ S be two different points such that a1(s1)a2(s2)− a1(s2)a2(s1) 6= 0. By the
Poincaré inequality

|vra1(s1) + vza2(s1)|2,Ω ≤ c|∇(vra1(s1) + vza2(s1))|2,Ω ,
|vra1(s2) + vza2(s2)|2,Ω ≤ c|∇(vra1(s2) + vza2(s2))|2,Ω .

Hence

(3.23) |vr|22,Ω + |vz |22,Ω ≤ c(|∇vr|22,Ω + |∇vz |22,Ω).

Repeating considerations from the proof of Lemma 4.2.4 from [zaj 5] we obtain

(3.24) |v|22,Ω ≤ δ|∇v′|22,Ω +M(δ)EΩ(v) + c|vη |22,Ω ,
where δ can be chosen sufficiently small.
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Employing (3.24) in (3.22) and assuming that δ is sufficiently small we get

|∇v|22,Ω ≤ c(EΩ(v) + |vη |22,Ω).

Next

|vϕ|22,Ω ≤ c
(
|vr|22,Ω + |vz |22,Ω + |v′|22,Ω +

∣∣∣
�

Ω

vη dx
∣∣∣
2)

≤ c
(
EΩ(v) +

∣∣∣
�

Ω

vη dx
∣∣∣
2)
.

Collecting the above considerations implies (3.19). This ends the proof.

Lemma 3.5. Assume that v(0) ∈ L2(Ω), f ∈ L2,1(ΩT ) and |
�
Ωt
vη dx dt

′| <∞. Then

(3.25) |v(t)|2,Ω ≤ f 2,1,Ωt + |v(0)|2,Ω , t ≤ T,
and

(3.26) |v(t)|22,Ω + ν

t�

0

‖v(t′)‖21,Ω dt′ ≤ c(1 + t)( f 2
2,1,Ωt + |v(0)|22,Ω).

Proof. Multiplying (1.1)1 by v, integrating over Ω and applying the boundary conditions
yields

(3.27)
1
2
d

dt
|v|22,Ω + EΩ(v) + γ|vτ |22,S =

�

Ω

f · v dx.

Hence

(3.28)
d

dt
|v|2,Ω ≤ |f |2,Ω .

Integrating (3.28) with respect to t yields (3.25).
Making use of (3.19) in (3.27) implies

(3.29)
1
2
d

dt
|v(t)|22,Ω + ν‖v‖21,Ω ≤ c|v|2,Ω |f |2,Ω + c|v|22,Ω .

Integrating (3.29) with respect to time and using (3.25) gives (3.26). This ends the proof.

Lemma 3.6. Assume that h(0) ∈ L2(Ω), g ∈ L2(ΩT ) and v ∈ L2(0, T ;W 1
3 (Ω)). Then

solutions of problem (1.4) satisfy

(3.30) |h(t)|22,Ω + ν

t�

0

‖h(t′)‖21,Ω dt′ ≤ ec � t
0
|∇v(t′)|23,Ω dt′ [|g|22,Ωt + |h(0)|22,Ω ]

for all t ≤ T .

Proof. Since hη = rvϕ,ϕ we have
�
Ω
hη dx = 0. Therefore repeating the proof of Lemma

3.4 implies

(3.31) ‖h‖21,Ω ≤ cEΩ(h).

Multiplying (1.4)1 by h, integrating over Ω and using (3.31) yields

(3.32)
d

dt
|h|22,Ω + ν‖h‖21,Ω ≤ c(|∇v|23,Ω |h|22,Ω + |g|22,Ω).

Integrating (3.32) with respect to time gives (3.30). This ends the proof.
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3.4. Reformulation of the problem for the azimuthal component of the vor-
ticity χ. To prove global existence of solutions to problem (1.1) we need very delicate
estimates for the vorticity vector. In this paper, in contrast to [zaj 5], problems for α1

and α3 are coupled by boundary conditions (see (1.7)). Similarly to [zaj 5] the most im-
portant is an energy type estimate for α2 which is distinguished by denoting it by χ (see
(1.6)2). However, unlike [zaj 5], we have a nonhomogeneous boundary condition for χ
(see (1.8)2). Hence to apply the energy method to problem (1.8) we introduce a function
β such that

(3.33)

βt − ν∆β = 0 in ΩT ,

β|S = 2(k − γ/(2ν))v · τ 2 ≡ χ1 on ST ,

β|t=0 = 0 in Ω.

Let us introduce the new function

(3.34) χ′ = χ− β.
In view of (3.33) and (1.8), χ′ is a solution to the problem

(3.35)

χ′,t + v · ∇χ′ − w,ϕ
r
χ′ − vr

r
χ′ +

ν

r2 χ
′ − ν∆χ′

= F2 − v · ∇β +
w,ϕ
r
β +

vr
r
β +

2ν
r2

(
1
r
hz,ϕ − hϕ,z

)

− 1
r

(
w,zhr − w,rhz +

w

r
hz

)
+

2
r
wvϕ,z ,

χ′|S = 0,

χ′|t=0 = χ(0).

It is convenient to express the last two terms on the l.h.s. of (3.35)1 in the form

(3.36) −ν∆χ′ + ν

r2 χ
′ = −ν

[(
r

(
χ′

r

)

,r

)

,r

+
1
r2 χ

′
,ϕϕ + χ′,zz + 2

(
χ′

r

)

,r

]
.



4. Estimates for vorticity and azimuthal derivatives of velocity

In this section we find energy estimates and estimates in W 2,1
2,1−µ(ΩT ), µ ∈ (1/2, 1), for

the vorticity vector.

4.1. Energy estimate for χ. Now we obtain an estimate for χ.

Lemma 4.1. Assume that k−γ/(2ν) ∈ V 3/2
4,−δ/2(S), ε, ε1 are small positive numbers , δ ≥ 1,

vϕ,z ∈ L2(0, t;L4,−3/4−ε(Ω)). Assume that h ∈ H2,1
−1 (Ωt), v ∈ A1−µ(Ωt), µ ∈ (1/2, 1),

w ∈ L∞(0, t;H1
0 (Ω)), Fϕ ∈ L2,−1(Ωt), χ(0) ∈ L2,−1(Ω), t ∈ [0, T ]. Then any solution of

(3.35) satisfies

(4.1) |χ|22,−1,Ω + ν

∣∣∣∣∇
χ

r

∣∣∣∣
2

2,Ωt
≤ c(‖h‖22,−1,Ωt + |vr|210/3,Ωt + 1)‖k − γ/(2ν)‖23/2,4,−δ/2,S

· (ε1‖v‖A1−µ(Ωt) + c(ε−3/4)|v|2,Ωt)

+ c
[

sup
t
|hϕ|2,−1,Ω |χ|22,−1,Ωt + (1 + sup

t
‖w‖21,0,Ω)‖h‖22,−1,Ωt

+ sup
t
‖w‖21,0,Ω

t�

0

|vϕ,z(t′)|24,−3/4−ε,Ω dt
′ + |Fϕ|22,−1,Ωt

]
+ |χ′(0)|22,−1,Ω .

Proof. To obtain the estimate we write problem (3.35) in the form

(4.2)

χ′,t + vrχ
′
,r +

vϕ
r
χ′,ϕ + vzχ

′
,z + (vr,r + vz,z)χ′

− ν
(
χ′,rr +

1
r2 χ

′
,ϕϕ + χ′,zz +

1
r
χ′,r −

1
r2 χ

′
)

= −
[
vrβ,r +

vϕ
r
β,ϕ + vzβ,z + (vr,r + vz,z)β + ν

β

r2

]

− 2ν
r2

(
hϕ,z −

1
r
hz,ϕ

)
− 1
r

(
w,zhr − w,rhz +

w

r
hz

)
+

2wvϕ,z
r

+ Fϕ,

χ′|S = 0,

χ′|t=0 = χ′(0).

Multiplying (4.2)1 by χ′/r2, integrating over Ωε = {x ∈ Ω : x 6∈ Ω ∩ {r ≤ ε, z ∈ (−a, a),
ϕ ∈ [0, 2π]}, ε > 0}, and using the boundary condition (4.2)2 we obtain

[35]
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(4.3)
1
2
d

dt
|χ′|22,−1,Ω +

�

Ωε

v · ∇χ′ χ
′

r2 dx+
�

Ωε

(vr,r + vz,z)
χ′2

r2 dx

− ν
�

Ωε

[(
r

(
χ′

r

)

,r

)

,r

+
1
r2 χ

′
,ϕϕ + χ′,zz + 2

(
χ′

r

)

,r

]
χ′

r2 dx

= −
�

Ωε

[
v · ∇β + (vr,r + vz,z)β + ν

β

r2

]
χ′

r2 dx− 2ν
�

Ωε

1
r2

(
hϕ,z −

1
r
hz,ϕ

)
χ′

r2 dx

−
�

Ωε

1
r

(
w,zhr − w,rhz +

w

r
hz

)
χ′

r2 dx+ 2
�

Ωε

wvϕ,z
r

χ′

r2 dx+
�

Ωε

Fϕ
χ′

r2 dx.

Now we examine the particular terms in (4.3). The sum of the second and third terms
on the l.h.s. of (4.3) equals

1
2

�

Ωε

1
r2 v · ∇χ

′2 dx+
�

Ωε

(vr,r + vz,z)
χ′2

r2 dx =
1
2

�

Ωε

div
(
v

r2 χ
′2
)
dx

− 1
2

�

Ωε

χ′2v · ∇
(

1
r2

)
dx+

�

Ωε

(vr,r + vz,z)
χ′2

r2 dx =
1
2

�

∂Ωε

v · n χ
′2

r2 d∂Ωε

+
�

Ωε

(
vr,r + vz,z +

vr
r

)
χ′2

r2 dx =
1
2

�

∂Ωε

v · n χ
′2

r2 d∂Ωε −
�

Ωε

vϕ,ϕ
r

χ′2

r2 dx,

where (2.41) was used.

In view of the above considerations we see that to examine (4.3) we have to add
boundary conditions on the part of the boundary of Ωε determined by r = ε, z ∈ (−a, a),
ϕ ∈ [0, 2π]. The first term on the l.h.s. of (4.3) implies an estimate for |χ′|2,−1,Ω . Since
the norm implies vanishing of χ′ at r = 0 we can assume that χ|r=ε = 0.

Then the sum of the second and third terms on the l.h.s. of (4.3) equals

−
�

Ωε

vϕ,ϕ
r

χ′2

r2 dx.

The last term on the l.h.s. of (4.3) equals

−ν
2π�

0

dϕ
�

Ωε(ϕ)

[[
r

(
χ′

r

)

,r

]

,r

+ 2
(
χ′

r

)

,r

]
χ

r
dr dz − ν

�

Ωε

(
1
r2 χ

′
,ϕϕ + χ′,zz

)
χ′

r2 dx ≡ I1,

where Ωε(ϕ0) = {x ∈ Ωε : ϕ = ϕ0}. Since Ωε(ϕ) is a domain in R2 with measure equal
to

�
Ωε(ϕ)

dr dz, the first term in I1 takes the form

−ν
2π�

0

dϕ
�

Ωε(ϕ)

[
r

(
χ′

r

)

,r

χ′

r
+
(
χ′

r

)2]

,r

dr dz + ν
�

Ωε

(
χ′

r

)2

,r

dx,
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where the first term equals

−ν
2π�

0

dϕ

a�

−a
dz

[
r

(
χ′

r

)

,r

χ′

r
+
(
χ′

r

)2]∣∣∣∣
r=ψ(z)

r=ε
= −ν

2π�

0

dϕ

a�

−a
dz

χ′,rχ
′

r

∣∣∣∣
r=ψ(z)

r=ε
≡ I2,

where r = ψ(z) describes the boundary of Ωε(ϕ), ϕ ∈ (0, 2π).
Since χ′|S = 0 and χ′|r=ε = 0 is assumed as an artificial boundary condition we

examine the expression

I2 = ν

2π�

0

dϕ

a�

−a
dz

χ′,rχ
′

r

∣∣∣∣
r=ε

for ε small.
Expecting that χ′ will belong to L∞(0, T ;H1

−1(Ω)) we will have χ′|r=0 = 0. Without
assuming that χ′|r=ε = 0 we see in a neighbourhood of r = 0 that if χ′ > 0 then χ′,r > 0
and if χ′ < 0 then χ′,r < 0. Therefore I2 > 0 so we do not need any estimate for it because
it remains on the l.h.s. of the expected inequality. Hence to examine I1 we do not need
to assume that χ′|r=ε = 0.

Finally, the second term in I1 takes the form

ν
�

Ωε

(
χ′2,ϕ
r4 +

χ′2,z
r2

)
dx.

The first term on the r.h.s. of (4.3) equals

−
2π�

0

dϕ
�

Ωε(ϕ)

(
vrβ,r +

vϕ
r
β,ϕ + vzβ,z

)
χ′

r
dr dz −

�

Ωε

(vr,r, + vz,z)β
χ′

r2 dx

−
�

Ωε

β

r2

χ′

r2 dx ≡ I3,

where the first term takes the form
�

Ωε

(
vr,r +

vϕ,ϕ
r

+ vz,z

)
βχ′

r2 dx+
�

Ωε

v · ∇
(
χ′

r

)
β

r
dx.

Hence

I3 =
�

Ωε

vϕ,ϕ
r

βχ′

r2 dx+
�

Ωε

v · ∇
(
χ′

r

)
β

r
dx− ν

�

Ωε

β

r2

χ′

r2 dx.

Estimating, we obtain

|I3| ≤ ε1

�

Ωε

(∣∣∣∣∇
χ′

r

∣∣∣∣
2

+
χ′2

r4−δ

)
dx+ c

(
1
ε1

) �

Ωε

(
v2
ϕ,ϕ

r2+δ β
2 +

v2β2

r2 +
β2

r4+δ

)
dx

for any ε1 > 0, δ > 0.
The second term on the r.h.s. of (4.3) equals

2ν
�

Ωε

[
1
r2 hϕ

χ′,z
r2 −

1
r3 hz

χ′,ϕ
r2

]
dx ≡ I4,
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so, for all ε2 > 0,

|I4| ≤ ε2

�

Ωε

[(
χ′

r

)2

,z

+ χ′,ϕ
2
]
dx+ c(1/ε2)

�

Ωε

1
r6 (h2

ϕ + h2
z) dx,

where the last term is bounded by c‖h‖22,−1,Ωε .
By the Hölder and Young inequalities we estimate the third term on the r.h.s. of (4.3)

by

ε3

∣∣∣∣
χ′

r

∣∣∣∣
2

6,Ωε

+ c(1/ε3)‖w‖21,0,Ω |h|23,−2,Ωε

for any ε3 > 0, where we use the imbedding

|h|3,−2,Ω ≤ c‖h‖1,−2,Ω ≤ c‖h‖2,−1,Ω .

Finally, the fourth term on the r.h.s. of (4.3) is bounded by

ε4

∣∣∣∣
χ′

r2−ε′

∣∣∣∣
2

2,Ωε

+ c(1/ε4)|w|24,−1/4,Ωε |vϕ,z |
2
4,−3/4−ε′,Ωε

≤ ε4

∣∣∣∣
χ′

r2−ε′

∣∣∣∣
2

2,Ωε

+ c(1/ε4)‖w‖21,0,Ωε |vϕ,z |24,−3/4−ε′,Ωε

for any ε4, ε
′ > 0. Summarizing the above considerations we obtain

(4.4)
d

dt
|χ′|22,−1,Ωε + ν

�

Ωε

∣∣∣∣∇
χ′

r

∣∣∣∣
2

dx ≤ c|hϕ|2,−1,Ωε |χ′|24,−1,Ωε

+ c‖h‖22,−1,Ωε + c‖w‖21,0,Ωε‖h‖22,−1,Ωε + c‖w‖21,0,Ωε |vϕ,z |24,−3/4−ε′,Ωε

+ c|Fϕ|22,−1,Ωε + c
�

Ωε

(
h2
ϕ

r2+δ β
2 +

v2β2

r2 +
β2

r4+δ

)
dx

for any δ, ε, ε′ > 0.
Integrating (4.4) with respect to time and passing with ε to 0 we obtain

(4.5) |χ′|22,−1,Ω + ν

∣∣∣∣∇
χ′

r

∣∣∣∣
2

2,Ωt
≤ c
[

sup
t
|hϕ|2,−1,Ω

t�

0

∥∥∥∥
χ′

r

∥∥∥∥
2

1,Ω
dt

+ ‖h‖22,−1,Ωt + sup
t
‖w‖21,0,Ω‖h‖22,−1,Ωt + sup

t
‖w‖21,0,Ω

t�

0

|vϕ,z(t′)|24,−3/4−ε′,Ω dt
′

+ |Fϕ|22,−1,Ωt +
�

Ωt

(
h2
ϕ

r2+δ β
2 +

v2β2

r2 +
β2

r4+δ

)
dx

]
+ |χ′(0)|22,−1,Ω .

Let us denote the last integral by I. Then we have

I ≤ c‖h‖22,−1,Ωt |β|22,Ωt + |v|210/3,Ωt |β|25,−1,Ωt + |β|22,−(2+δ/2),Ωt(4.6)

≤ c(‖h‖22,−1,Ωt + |v|210/3,Ωt + 1)‖β‖22,−δ/2,Ωt
for all δ ≥ 1 and
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‖β‖2,−δ/2,Ωt ≤ c‖(k − γ/(2ν))v · τ 2‖3/2,−δ/2,St(4.7)

≤ c
( �

S

|∂3/2
s (k − γ/(2ν))|4r−2δ dS

)1/4( t�

0

dt′ |v(t′)|24,S
)1/2

+ c
( �

S

|k − γ/(2ν)|4r−2δ dS
)1/4
·

·
( t�

0

dt′ (|∂3/2
s (v · τ2)|24,S + |∂3/4

t (v · τ2)|24,S)
)1/2

+ c|(k − γ/(2ν))v · τ 2|2,−2−δ/2,St ≤ c‖k − γ/(2ν)‖3/2,4,−δ/2,S

·
( t�

0

dt′ [ε(|v,xxx|22,1−µ,Ω + |v,tx|22,1−µ,Ω) + c(1/ε)|v|22,Ω ]
)1/2

≤ c‖k − γ/(2ν)‖3/2,4,−δ/2,S(ε‖v‖A1−µ(Ωt) + c(1/ε)|v|2,Ωt)
for all ε > 0, where c(1/ε) = cε−3/4.

Employing the above considerations in (4.5) yields (4.1). This concludes the proof.

4.2. Estimate of h in weighted Sobolev spaces

Lemma 4.2. Assume that h0 ∈ H1
−1(Ω), g ∈ L2,−1(ΩT ), v,x ∈ W 2,1

2,1−µ(ΩT ), µ > 1/2.
Then for solutions of (1.4) we have

(4.8) ‖h‖2,−1,Ωt +
( t�

0

‖∇q(t′)‖20,−1,Ω dt
′
)1/2

≤ ϕ(|||v,x|||2,2,1−µ,Ωt , t1/2|||v,x|||2,2,1−µ,Ωt)

·
[
|h(0)|2,Ω +

t�

0

|g(t′)|2,Ω dt′
]

+ c(‖g‖0,−1,Ωt + ‖h(0)‖1,−1,Ω)

for all t ≤ T , where ϕ is an increasing positive function.

Proof. In view of [zaj 4] solutions of (1.4) satisfy

(4.9) ‖h‖2,−1,Ωt +
( t�

0

‖∇q‖20,−1,Ω dt
′
)1/2

≤ c(‖G‖0,−1,Ωt + ‖h(0)‖1,−1,Ω)

for all t ≤ T . Now we estimate the separate terms in G. First we consider

|v · ∇h|2,−1,Ωt ≤ |v|2p1,−µ,Ωt |∇h|2p2,µ−1,Ωt

≤ c|v,x|2p1,1−µ,Ωt |∇h|2p2,µ−1,Ωt ≡ I1
whenever 1/p1 + 1/p2 = 1, where the Hardy inequality (see Lemma 2.10) was used.

In view of [zaj 3] we have, for all ε > 0,

I1 ≤ ε‖h‖2,µ−1,Ωt + c(1/ε)ϕ(|||v,x|||2,1−µ,Ωt)|h|2,µ−1,Ωt ≡ I,
where the imbeddings DxW

2,1
2,µ−1(ΩT ) ⊂ L2p2,µ−1(ΩT ) and W 2,1

2,1−µ(ΩT ) ⊂ L2p1,1−µ(ΩT ),
which hold together, were used.
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Next we have

|h · ∇v|2,−1,Ωt ≤ |v,x|2p1,−µ,Ωt |h|2p2,µ−1,Ωt ≤ c|v,xx|2p1,1−µ,Ωt |h|2p2,µ−1,Ωt ≡ I2
whenever 1/p1 + 1/p2 = 1; in the second inequality the Hardy inequality was used.

By the imbeddings D2
xW

2,1
2,1−µ(ΩT ) ⊂ L2p1,1−µ(ΩT ), W 2,1

2,µ−1(ΩT ) ⊂ L2p2,µ−1(ΩT ),
which hold together, we obtain I2 ≤ I.

Using the above estimates in (4.9) yields

‖h‖2,−1,Ωt +
( t�

0

‖∇q(t′)‖20,−1,Ω dt
′
)1/2

≤ ϕ(|||v,x|||2,2,1−µ,Ωt)|h|2,µ−1,Ωt(4.10)

+ c(‖g‖0,−1,Ωt + ‖h(0)‖1,−1,Ω).

By [zaj 3] for µ > 1/2 we have

|∇v|∞,Ω ≤ c|||∇v|||2,2,1−µ,Ω ,
so

t�

0

|∇v(t′)|∞, dt′ ≤ ct1/2|||v,x|||2,2,1−µ,Ωt .

Next from (3.30) and by the Hardy inequality (see Lemma 2.8) we have

(4.11)
t�

0

|h(t′)|22,δ−1dt
′ ≤ cϕ(t1/2|||v,x|||2,2,1−µ,Ωt)[|h(0)|22,Ω + |g|22,Ωt ],

where ϕ is an increasing positive function and δ > 0.
Choosing δ = µ in (4.11), we obtain from (4.10) and (4.11) the inequality (4.8). This

concludes the proof.

4.3. Estimates of vorticity in weighted Sobolev spaces. Now we examine problem
(1.7). Let α′ = (α1, α3).

Lemma 4.3. Assume that v∈A1−µ(Ωt), α2/r∈L10/3(Ωt), h∈H2,1
1−µ(Ωt), w∈H2,1

1−µ(Ωt),
F ′ ∈ L2,1−µ(Ωt), α′(0) ∈ W 1

2,1−µ(Ω), µ ≥ 1/2, a1 ∈ C2 and |∇2(a1/r)| ≤ cr−2,
|∇(a1/r)| ≤ cr−1, |a1/r| ≤ c, βi ∈ C1, i = 1, . . . , 5, and |∇βj | ≤ cr−3, |βj | ≤ cr−2, j =
1, 2, |∇βk| ≤ cr−1, |βk| ≤ c, k = 3, 4, |∇β5| ≤ cr−2, |β5| ≤ cr−1, α′ ∈ L∞(0, t;L2,1−µ(Ω))
∩ L2,−(1+µ)(Ωt), t ≤ T . Then

|||α′|||2,2,1−µ,Ωt ≤ c sup
t
|α′|2,1−µ,Ωϕ(‖v‖A1−µ(Ωt)) + c |α2/r|10/3,Ωt‖h‖2,−µ,Ωt(4.12)

+ c(‖h‖2,−µ,Ωt + ‖w‖2,1−µ,Ωt) + c|α1|2,−(1+µ),Ωt

+ c|F ′|2,1−µ,Ωt + c|||α′(0)|||1,2,1−µ,Ω ,
where ϕ is an increasing positive function.

Proof. Applying [zaj 1] to problem (1.7) we obtain

|||α′|||2,2,1−µ,Ωt ≤ c
(
|v · ∇α1|2,1−µ,Ωt(4.13)

+ |v · ∇α3|2,1−µ,Ωt + |α1vr,r + α3vr,z |2,1−µ,Ωt
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+ |α1vz,r + α3vz,z |2,1−µ,Ωt +
∣∣∣∣
α2

r
hr

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣

1
r2 (hr,z − hz,r)

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
α1

r2

∣∣∣∣
2,1−µ,Ωt

+ |F ′|2,1−µ,Ωt +
∣∣∣∣
∣∣∣∣
∣∣∣∣
a1

r
w

∣∣∣∣
∣∣∣∣
∣∣∣∣
3/2,2,1−µ,St

+ |||β1hr + β2hz + β3w,r + β4w,z + β5w|||1/2,2,1−µ,St + |||α′(0)|||1,2,1−µ,Ω
)
.

In view of the proof of Lemma 5.3.1 from [zaj 5] the first four terms are estimated by

ε|α′,xx|22,1−µ,Ωt + c(1/ε) sup
t
|α′|22,1−µ,Ωϕ(‖v‖A1−µ(Ωt))

for any ε > 0, where ϕ is an increasing positive function and µ ≥ 1/2; the fifth term is
estimated by

c|α2/r|10/3,Ωt‖h‖2,−µ,Ωt ,
and the sixth by

c‖h‖2,−µ,Ωt .
In view of the assumptions the ninth term is estimated by

c‖w‖2,1−µ,Ωt
and the tenth term by

I ≡ c(‖h‖2,−µ,Ωt + ‖w‖2,1−µ,Ωt).
To show the above bound we consider

|||β1hr + β2hz |||1/2,2,1−µ,St ≤ c|||β1hr + β2hz|||1,2,1−µ,Ωt ≡ I1.
To examine I1 it is enough to consider

|||β1hr|||1,2,1−µ,Ωt ≤ |∇β1hr|2,1−µ,Ωt + |β1∇hr|2,1−µ,Ωt + |β1hr|2,1−µ,Ωt ≡ I2.
Since |∇βi| ≤ c/r3, i = 1, 2, we have |∇β1hr|2,1−µ,Ωt ≤ c|hr|2,−(2+µ),Ωt) and for |βi| ≤
c/r2, i = 1, 2, we get |β1∇hr|2,1−µ,Ωt ≤ c|∇hr|2,−(1+µ),Ωt . Hence I1 ≤ c‖h‖2,−µ,Ωt . Let
us consider

|||β3w,r + β4w,z‖1/2,2,1−µ,St ≤ c|||β3w,r + β4w,z |||1,2,1−µ,Ωt ≡ I3.
Since |βi| ≤ c, |∇βi| ≤ c/r, i = 3, 4, we have

I3 ≤
4∑

i=3

(|βiw,xx|2,1−µ,Ωt + |βiw,x|2,1−µ,Ωt + |∇βiw|2,1−µ,Ωt)

≤ c(|w,xx|2,1−µ,Ωt + |w,x|2,−µ,Ωt) ≤ c‖w‖2,1−µ,Ωt .
Finally,

|||β5w|||1/2,2,1−µ,St ≤ c|||β5w|||1,2,1−µ,Ωt ≡ I4.
Hence for |β5| ≤ c/r, |∇β5| ≤ c/r2 we obtain

I4 ≤ c(|β5∇w|2,1−µ,Ωt + |∇β5w|2,1−µ,Ωt)
≤ c|∇w|2,−µ,Ωt + |w|2,−(1+µ),Ωt) ≤ c‖w‖2,1−µ,Ωt .

Therefore the bound I follows. In view of the above considerations we obtain (4.12). This
concludes the proof.
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From (4.12) we see that supt |α′|2,1−µ,Ω and |α1|2,−(1+µ),|Ωt must be estimated. Hence
we need

Lemma 4.4. Assume that F ′ ∈ L2(Ωt), v ∈ L2(0, t;W 3
2,1−µ(Ω)), h ∈ H2,1

−1 (Ωt), w ∈
H2,1

1−µ(Ωt), µ∈(1/2, 1), α10, α30 ∈W 1
2,1−µ(Ω), |a1/r| ≤ c, |∇(a1/r)| ≤ cr−1, |∇2(a1/r)| ≤

cr−2, |βi| ≤ c/r3−µ, |∇βi| ≤ cr−(4−µ) i = 1, 2, |βi| ≤ c, |∇βi| ≤ cr−1, i = 3, 4, |∇β5| ≤
cr−2, |β5| ≤ c/r, t ∈ (0, T ). Asume that S contains a part S1 where a1 ≥ a0 > 0 such
that any point of Ω can be reached from points of S1 by a curve. Assume that S2 is a
part of S such that a2 6= 0. Assume that |a1/a2| ≤ cr2, |∇(a1/a2)| ≤ cr, |∇2(a1/a2)| ≤ c
on S2. Then solutions of (1.7) satisfy the estimate

(4.14) |α1|22,Ω + |α3|22,Ω + ν(|α1,x|22,Ωt + |α3,x|22,Ωt) + ν|α1|22,−1,Ωt

≤ c exp
( t�

0

|||v(t′)|||23,2,1−µ,Ω dt′
)[
|α2|210/3,Ωt‖h‖22,−1,Ωt + ‖w‖22,1−µ,Ωt

+ ‖h‖22,−1,Ωt + |F1|22,Ωt + |F3|22,Ωt + |α1(0)|22,Ω + |α3(0)|22,Ω

+ (‖w‖22,1−µ,Ωt + ‖h‖22,−1,Ωt)
t�

0

|||v(t′)|||23,2,1−µ,Ω dt′
]
.

Proof. First we obtain the energy type estimate for solutions of (1.7). For this purpose
we introduce functions α̃1, α̃3 as solutions of the problem

(4.15)

α̃1,t − ν∆α̃1 = 0,
α̃3,t − ν∆α̃3 = 0,

a2α̃1 − a1α̃3 = −2a1

r
w +

γ

ν
w ≡ g1 on S,

(a1α̃1 + a2α̃3),n = β1hr + β2hz + β3w,r + β4w,z + β5w ≡ g2 on S,

α̃1|t=0 = 0,
α̃3|t=0 = 0.

Define the functions

(4.16) α1 = α1 − α̃1, α3 = α3 − α̃3.

Then problem (1.7) takes the form

(4.17)

α1,t + v · ∇α1 −
(
α1vr,r + α3vr,z +

α2

r
hr

)
+

2ν
r2 α2,ϕ + ν

α1

r2 − ν∆α1

= F1 − v · ∇α̃1 + (α̃1vr,r + α̃3vr,z)− ν
α̃1

r2 ,

α3,t + v · ∇α3 −
(
α1vz,r + α3vz,z +

α2

r
hz

)
− ν∆α3

= F3 − v · ∇α̃3 + (α̃1vz,r + α̃3vz,z),

a2α1 − a1α3 = 0 on St,

(a1α1 + a2α3),n = 0 on St,

α1|t=0 = α1(0),

α3|t=0 = α3(0).
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Solving (4.15) we have

(4.18) |||α̃1|||2,2,1−µ,Ωt + |||α̃3|||2,2,1−µ,Ωt ≤ c
[∣∣∣∣
∣∣∣∣
∣∣∣∣
a1

r
w

∣∣∣∣
∣∣∣∣
∣∣∣∣
3/2,2,1−µ,St

+ |||β1hr + β2hz + β3w,r + β4w,z + β5w|||1/2,2,1−µ,St + |||α1(0)|||1,2,1−µ,Ω

+ |||α3(0)|||1,2,1−µ,Ω
]
.

Now we examine the norms on the r.h.s. of (4.18). Assuming |a1/r| ≤ c, |∇(a1/r)| ≤ c,
|∇2(a1/r)| ≤ c/r2 we find that the first term on the r.h.s. is bounded by c‖w‖2,1−µ,Ωt .
This behaviour is imposed in a neighbourhood of the point where the z axis crosses S.
Assuming |βi| ≤ c/r3−µ, |∇βi| ≤ c/r4−µ, i = 1, 2, we have

|||β1hr + β2hz|||1/2,2,1−µ,St ≤ c‖h‖2,−1,Ωt .

Finally, assuming |βi| ≤ c, |∇βi| ≤ c/r, i = 3, 4, |β5| ≤ c/r, |∇β5| ≤ c/r2 we get

|||β3w,r + β4w,z + β5w|||1/2,2,1−µ,St ≤ c‖w‖2,1−µ,Ωt .
Hence, (4.18) takes the form

(4.19) |||α̃1|||2,2,1−µ,Ωt + |||α̃3|||2,2,1−µ,Ωt ≤ c(‖h‖2,−1,Ωt + ‖w‖2,1−µ,Ωt
+ |||α1(0)|||1,2,1−µ,Ω + |||α3(0)|||1,2,1−µ,Ω).

Now we obtain an energy estimate for solutions of (4.17). Multiplying (4.17)1 by α1,
(4.17)2 by α3, integrating the results over Ω and adding yields

(4.20)
1
2
d

dt
(|α1|22,Ω + |α3|22,Ω)−

�

Ω

[α2
1vr,r + α1α3(vr,z + vz,r) + α2

3vz,z ] dx

−
�

Ω

α2

r
(hrα1 + hzα3) dx+ 2ν

�

Ω

1
r2 α2,ϕα1dx+ ν|α1|22,−1,Ω

− ν
�

Ω

(∆α1α1 +∆α3α3) dx =
�

Ω

(F1α1 + F3α3) dx

−
�

Ω

(v · ∇α̃1α1 + v · ∇α̃3α3) dx− ν
�

Ω

α̃1

r2 α1 dx

+
�

Ω

[(α̃1vr,r + α̃3vr,z)α1 + (α̃1vz,r + α̃3vz,z)α3] dx.

The term involving laplacians takes the form

−
�

S

[α1,nα1 + α3,nα3] dS + |α1,x|22,Ω + |α3,x|22,Ω ,

where in view of the boundary conditions (4.17)3,4 the boundary term vanishes.
For completeness we show how to prove this. Let S2 = {x ∈ S : a2 6= 0}. From (4.17)4

we have

I = α1,nα1 + α3,nα3 = α1,nα1 −
a1

a2
α1,nα3 −

1
a2

(a1,nα1 + a2,nα3)α3.
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Employing (4.17)3 yields

I = − 1
a2

(a1,nα1 + a2,nα3)α3.

Using (4.17)3 again gives

I = − 1
a2

2
(a1,na1 + a2,na2)α2

3 = 0

because a2
1 + a2

2 = 1.
Similarly, we show that I(x) = 0 for x ∈ S1 = {x ∈ S : a1 6= 0}.
The second term on the l.h.s. of (4.20) is bounded by

ε(|α1|22,Ω + |α3|22,Ω) + c(1/ε)|||v|||23,2,1−µ,Ω(|α1|22,Ω + |α3|22,Ω)

for any ε > 0. The third term is estimated by

ε|α1|22,−1,Ω + c(1/ε)
�

Ω

α2
2h

2 dx

and the fourth by

ε|α1|22,−1,Ω + c(1/ε)‖h‖22,−1,Ω .

We bound the first term on the r.h.s. of (4.20) by

ε(|α1|22,Ω + |α3|22,Ω) + c(1/ε)(|F1|22,Ω + |F3|22,Ω),

the second by

ε(|∇α1|22,Ω + |∇α3|22,Ω) + c(1/ε)|v|2∞,Ω(|α̃1|22,Ω + |α̃3|22,Ω),

the third by

ε|α1|22,−1,Ω + c(1/ε)|α̃1|22,−1,Ω

and finally the last by

ε(|α1|22,Ω + |α3|22,Ω) + c(1/ε)|v,x|2∞,Ω(|α̃1|22,Ω + |α̃3|22,Ω).

Summarizing the above results we obtain

(4.21)
1
2
d

dt
(|α1|22,Ω + |α3|22,Ω) +

ν

2
(|α1,x|22,Ω + |α3,x|22,Ω) +

ν

2
|α1|22,−1,Ω

≤ c(1/ε)|||v|||23,2,1−µ,Ω(|α1|22,Ω + |α3|22,Ω)

+ c(1/ε)
( �

Ω

α2
2h

2 dx+ ‖h‖22,−1,Ω + |F1|22,Ω + |F3|22,Ω
)

+ c(1/ε)|||v|||23,2,1−µ,Ω(|α̃1|22,Ω + |α̃3|22,Ω) + c|α̃1|22,−1,Ω + ε|α3|22,Ω .
To estimate the last term on the r.h.s. of (4.21) we use the Poincaré inequality. For this
purpose we assume that there exists a part S1 of the boundary S, where a1 is separated
from zero, that is, there exists a positive number a0 such that |a1| ≥ a0 on S1. Moreover
we assume that S1 is so large that any point of Ω can be reached by a straight line from
a point of S1. An example is a domain close to a cylinder but with a smooth boundary.

We write the boundary condition (4.17)3 in the form

(4.22) α3 =
a2

a1
α1,
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and we consider (4.22) on S1 only. Then we introduce a function α̃′3 by

(4.23) α̃′3|S1 =
a2

a1
α1|S1 .

Then α′′3 = α3 − α̃′3 is such that

(4.24) α′′3 |S1 = 0.

By the Poincaré inequality we have

|α3|2,Ω ≤ |α′′3 |2,Ω + |α̃′3|22,Ω ≤ c|∇α′′3 |2,Ω + |α̃′3|2,Ω(4.25)

≤ c|∇α3|2,Ω + c‖α̃′3‖1,Ω ≤ c|∇α3|2,Ω + c‖α1‖1,Ω .
Using (4.25) in (4.21) yields

(4.26)
d

dt
(|α1|22,Ω + |α3|22,Ω) + ν(|α1,x|22,Ω + |α3,x|22,Ω) + ν|α1|22,−1,Ω

≤ c|||v|||23,2,1−µ,Ω(|α1|22,Ω + |α3|22,Ω)

+ c
( �

Ω

α2
2h

2 dx+ ‖h‖22,−1,Ω + |F1|22,Ω + |F3|22,Ω
)

+ c|||v|||23,2,1−µ,Ω(|α̃1|22,Ω + |α̃3|22,Ω) + c|α̃1|22,−1,Ω .

Integrating (4.26) with respect to t yields

(4.27) |α1|22,Ω + |α3|22,Ω + ν(|α1,x|22,Ωt + |α3,x|22,Ωt) + ν|α1|22,−1,Ωt

≤ c exp
( t�

0

|||v(t′)|||23,2,1−µ,Ωdt′
)[
|α2|210/3,Ωt‖h‖22,−1,Ωt + ‖h‖22,−1,Ωt

+ |F1|22,Ωt + |F3|22,Ωt + sup
t

(|α̃1|22,Ω + |α̃3|22,Ω)
t�

0

|||v(t′)|||23,2,1−µ,Ω dt′

+ |α̃1|22,−1,Ωt + |α1(0)|22,Ω + |α3(0)|22,Ω
]
.

To estimate the norms of α̃1 and α̃3 on the r.h.s. of (4.27) we examine problem (4.15).
Multiplying (4.15)1 by α̃1, (4.15)2 by α̃3, integrating the results over Ω and adding we
have

(4.28)
1
2
d

dt
(|α̃1|22,Ω + |α̃3|22,Ω) + ν(|∇α̃1|22,Ω + |∇α̃3|22,Ω)

= ν
�

S

(α̃1,nα̃1 + α̃3,nα̃3) dS ≡ I.

To estimate I we divide S into two parts S1, S2 such that S = S1 ∪ S2, where a1 6= 0 on
S1 and a2 6= 0 on S2. Then we have

I = ν
�

S1

(α̃1,nα̃1 + α̃3,nα̃3) dS1 + ν
�

S2

(α̃1,nα̃1 + α̃3,nα̃3) dS2 ≡ I1 + I2.

Let us consider I1. In view of the boundary conditions (4.15)3,4 we have

α̃3 =
a2

a1
α̃1 −

1
a1
g1, α̃1,n =

1
a1

[
g2 − a2α̃3,n +

a2,n

a1
g1

]
,



46 4. Estimates for vorticity and azimuthal derivatives of velocity

so
I1 = ν

�

S1

1
a1

[(
g2 +

a2,n

a1
g1

)
α̃1 − α̃3,ng1

]
dS1

and

|I1| ≤ ε(|α̃3,n|22,S1
+ |α̃1|22,S1

) + c(1/ε)(|g1|22,S1
+ |g2|22,S1

)(4.29)

≤ ε(|α̃3,xx|22,1−µ,Ω + |α̃3|22,Ω + |α̃1,x|22,Ω + |α̃1|22,Ω)

+ c(1/ε)(|g1|22,S1
+ |g2|22,S1

).

Considering I2 we calculate

α̃1 =
a1

a2
α̃3 +

1
a2
g1, α̃3,n =

1
a2

[
g2 − a1α̃1,n −

a1,n

a2
g1

]
,

and

I2 = ν
�

S2

1
a2

[
α̃1,ng1 +

(
g2 −

a1,n

a2
g1

)
α̃3

]
dS2,

so

|I2| ≤ ε(|α̃1,xx|22,1−µ,Ω + |α̃1|22,Ω + |α̃3,x|22,Ω + |α̃3|22,Ω).(4.30)

+ c(1/ε)(|g1|22,S1
+ |g2|22,S2

).

Applying potential theory to (4.15) yields

(4.31) |||α̃1|||2,2,1−µ,Ωt + |||α̃3|||2,2,1−µ,Ωt ≤ c(|||g1|||3/2,2,1−µ,St + |||g2|||1/2,2,1−µ,St).
From (4.28)–(4.31) we have

|α̃1|22,Ω + |α̃3|22,Ω + |||α̃1|||22,2,1−µ,Ωt + |||α̃3|||22,2,1−µ,Ωt(4.32)

≤ c(‖g1‖23/2,1−µ,St + ‖g2‖21/2,1−µ,St) ≤ c(‖w‖22,1−µ,Ωt + ‖h‖22,−1,Ωt).

To estimate the norm |α̃1|2,−1,Ωt from the r.h.s. of (4.27) we have to examine the be-
haviour of α̃1 in neighbourhoods of points r = 0, z = −a and r = 0, z = a. Assume that
ψ,r vanishes only at these points and ψ,z is different from zero in some neighbourhoods.
We denote these neighbourhoods of points of S by S2, S2 = {x ∈ S : a2 6= 0}. Let us
restrict our considerations to the point r = 0, z = a, because near r = 0, z = −a we
argue similarly. Let us denote the point r = 0, z = a by z0. Let B(z0, λ) be the ball of
radius λ and with centre at z0. Let ζ = ζ(r, z) be a smooth function such that ζ(r, z) = 1
for (r, z) ∈ B(z0, λ) ∩ Ω and ζ(r, z) = 0 for (r, z) 6∈ B(z0, 2λ) ∩ Ω. Defining α̃′1 = α̃1ζ,
g′1 = g1ζ we obtain from (4.15)1,3 the following problem:

(4.33)

α̃′1,t − ν∆α̃′1 = −2ν∇α̃1∇ζ − ν∆ζα̃1,

α̃′1|S2∩supp ζ =
a1

a2
α̃′3 +

1
a2
g′1,

α̃′1|t=0 = 0,

where α̃′3 = α̃3ζ.
Assuming |a1/a2| ≤ cr2, |∇(a1/a2)| ≤ cr, |∇2(a1/a2)| ≤ c in a neighbourhood of

r = 0, z = a we get for solutions of (4.33) the estimate

‖α̃′1‖2,1−µ,Ωt ≤ c(|∇α̃1∇ζ|2,1−µ,Ωt + |∆ζα̃1|2,1−µ,Ωt + |||α̃′3|||2,2,1−µ,Ωt + ‖g′1‖3/2,1−µ,St2)

≤ c(|||α̃1|||2,2,1−µ,Ωt + |||α̃3|||2,2,1−µ,Ωt + ‖w‖2,1−µ,Ωt).
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In view of (4.32) and properties of ζ we have

(4.34) ‖α̃1‖2,1−µ,Ωt ≤ c(|||α̃3|||2,2,1−µ,Ωt + ‖w‖2,1−µ,Ωt + ‖h‖2,−1,Ωt).

In virtue of (4.32) and (4.34) we obtain

(4.35) |α̃1|2,−(1+µ),Ωt ≤ c(‖w‖2,1−µ,Ωt + ‖h‖2,−1,Ωt).

Using (4.32) and (4.35) in (4.27) yields

(4.36) |α1|22,Ω + |α3|22,Ω + ν(|α1,x|22,Ωt + |α3,x|22,Ωt) + ν|α1|22,−1,Ωt

≤ c exp
( t�

0

|||v(t′)|||23,2,1−µ,Ω dt′
)[
|α2|210/3,Ωt‖h‖22,−1,Ωt + ‖h‖22,−1,Ωt

+ |F1|22,Ωt + |F3|22,Ωt + (‖w‖22,1−µ,Ωt + ‖h‖22,−1,Ωt)
t�

0

|||v(t′)|||23,2,1−µ,Ωdt′

+ ‖w‖22,1−µ,Ωt + |α1(0)|22,Ω + |α3(0)|22,Ω
]
.

Using (4.32) and (4.35) in (4.36) implies (4.14). This concludes the proof.

Finally, we obtain an estimate for |α1|2,−(1+µ),Ωt .

Lemma 4.5. Assume that h ∈ H2,1
−1 (Ωt), w ∈ H2,1

1−µ(Ωt), α2/r ∈ L10/3(Ωt), F ′ ∈ L2(Ωt),
F ′ = (F1, F3), F1 ∈ L2,−µ(Ωt), α′(0) ∈ W 2

2,1−µ(Ω), α1(0) ∈ L2,−µ(Ω), v ∈ A1−µ(Ωt),
µ ∈ (1/2, 1), |a1/r| ≤ c, t ≤ T . Assume that |a1| ≤ cr2 on S2 = {x ∈ S : a2 6= 0}. Then

|α1,x|2,−µ,Ωt+|α1|2,−(1+µ),Ωt≤ ϕ(‖v‖A1−µ(Ωt))[|α2/r|10/3,Ωt‖h‖2,−1,Ωt(4.37)

+‖h‖2,−1,Ωt+‖w‖2,1−µ,Ωt+|F ′|2,Ωt+|F1|2,−µ,Ωt
+|||α′(0)|||1,2,1−µ,Ω + |α1(0)|2,−µ,Ω ].

Proof. Since we have already proved estimate (4.35) for |α̃1|2,−(1+µ),Ωt and (4.32) for
|α̃1,x|2,−µ,Ωt we shall restrict ourselves to obtaining an estimate for |α1|2,−(1+µ),Ωt . Mul-
tiplying (4.17)1 by α1r

−2µ and integrating over Ω implies

(4.38)
1
2
d

dt
|α1|22,−µ,Ω +

�

Ω

v · ∇α1α1r
−2µ dx−

�

Ω

(
α1vr,r + α3vr,z +

α2

r
hr

)
α1r
−2µ dx

+ 2ν
�

Ω

1
r2 (hr,z − hz,r)α1r

−2µ dx+ ν|α1|22,−(1+µ),Ω − ν
�

Ω

∆α1α1r
−2µ dx

=
�

Ω

F1α1r
−2µ dx−

�

Ω

v · ∇α̃1α1r
−2µ dx+

�

Ω

(α̃1vr,r + α̃3vr,z)α1r
−2µ dx

− ν
�

Ω

α̃1

r2 α1r
−2µ dx.

Now we examine the particular terms in (4.38). The second term on the l.h.s. equals

1
2

�

Ω

v · ∇α2
1r
−2µ dx =

1
2

�

Ω

v · ∇(α2
1r
−2µ) dx+ µ

�

Ω

α2
1r
−2µ−1v · ∇r dx,
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where the first term vanishes and the second is estimated by

ε|α1|22,−(1+µ),Ω + c(1/ε)|v|2∞,Ω |α1|22,−µ,Ω
for any ε > 0. The third term in (4.38) is estimated by

ε(|α1|22,−µ,Ω + |α3|22,−µ,Ω) + c(1/ε)|v,x|2∞,Ω |α1|22,−µ,Ω + c(1/ε)
�

Ω

∣∣∣∣
α2

r

∣∣∣∣
2

|hr|2r−2µ dx.

The fourth term on the l.h.s. of (4.38) is bounded by

ε|α1|22,−(1+µ),Ω + c(1/ε)|h|22,−1,Ω .

To estimate the last term on the l.h.s. of (4.38) we express boundary conditions (4.17)3,4

in the form

(4.39)
α1 =

a1

a2
α3 for a2 6= 0,

α1,n =
a2

a1
α3,n for a1 6= 0.

Integrating by parts the term including the laplacian yields

(4.40) −ν
�

Ω

div(∇α1α1r
−2µ) dx+ ν

�

Ω

α2
1,xr

−2µ dx− 2µν
�

Ω

∇α1α1r
−2µ−1∇r dx,

where by the Young inequality the last term is bounded by

ε
ν

2
|α1,x|22,−µ,Ω +

2µ2ν

ε
|α1|22,−(1+µ),Ω

for any ε > 0, and in virtue of (4.39) the first term in (4.40) equals

−ν
�

S

n · ∇α1α1r
−2µ dS

= −ν
�

S1

a2

a1
α3,nα1r

−2µ dS1 − ν
�

S2

n · ∇α1
a1

a2
α3r
−2µ dS2 ≡ I1 + I2,

where

|I1| ≤ ε|||α3|||22,2,1−µ,Ω + c(1/ε)‖α1‖21,Ω ,
|I2| ≤ ε|||α1|||22,2,1−µ,Ω + c(1/ε)‖α3‖21,Ω ,

where we used the fact that r > 0 on S1 and |a1r
−2| ≤ c on S2.

We estimate the first term on the r.h.s. of (4.38) by

ε|α1|2,−µ,Ω + c(1/ε)|F1|22,−µ,Ω ,
the second by

ε|∇α̃1|22,−µ,Ω + c(1/ε)|v|2∞,Ω |α1|22,−µ,Ω ,
and the third by

ε(|α̃1|22,−µ,Ω + |α̃3|22,−µ,Ω) + c(1/ε)|v,x|2∞,Ω |α1|22,−µ,Ω .
Finally, the last term on the r.h.s. of (4.38) is estimated by

ε|α1|22,−(1+µ),Ω + c(1/ε)|α̃1|22,−(1+µ),Ω .
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In view of the above considerations, for ε sufficiently small we obtain from (4.38) the
inequality

(4.41)
1
2
d

dt
|α1|22,−µ,Ω + ν(1− ε/2)|α1,x|22,−µ,Ω + ν(1− 2µ2/ε− ε0)|α1|22,−(1+µ),Ω

≤ c(1/ε0)|v|2∞,Ω |α1|22,−µ,Ω + c(1/ε1)|v,x|2∞,Ω |α1|22,−µ,Ω

+ ε1(|α1|22,−µ,Ω + |α3|22,−µ,Ω) + c(1/ε1)
�

Ω

|α2/r|2|h|2r−2µ dx

+ c|h|22,−1,Ω + ε2(|||α1|||22,2,1−µ,Ω + |||α3|||22,2,1−µ,Ω)

+ c(1/ε2)(‖α1‖21,Ω + ‖α3‖21,Ω) + c|F1|22,−µ,Ω + c|∇α̃1|22,−µ,Ω

+ ε1(|α̃1|22,−µ,Ω + |α̃3|22,−µ,Ω) + c(1/ε0)|α̃1|22,−(1+µ),Ω .

From (4.32) we have

(4.42) |α̃1|22,Ω + |α̃3|22,Ω + |||α̃1|||22,2,1−µ,Ωt + |||α̃3|||22,2,1−µ,Ωt
≤ c(‖w‖22,1−µ,Ωt + ‖h‖22,−1,Ωt).

Moreover, (4.36) can be written in the form

(4.43) |α1|22,Ω + |α3|22,Ω + ν(|α1,x|22,Ω + |α3,x|22,Ω)

≤ c exp(c‖v‖2A1−µ(Ωt))[|α2|210/3,Ωt‖h‖22,−1,Ωt

+ (‖h‖22,−1,Ωt + ‖w‖22,1−µ,Ωt)(1 + ‖v‖2A1−µ(Ωt)) + |F ′|22,Ωt + |α′(0)|22,Ω ].

Using (4.43) in (4.12) yields

|||α′|||2,2,1−µ,Ωt ≤ ϕ(‖v‖A1−µ(Ωt))[|α2/r|10/3,Ωt‖h‖2,−1,Ωt(4.44)

+ ‖h‖2,−1,Ωt + ‖w‖2,1−µ,Ωt + |F ′|2,Ωt + |||α′(0)|||1,2,1−µ,Ω ]

+ c|α1|2,−(1+µ),Ωt .

Integrating (4.41) with respect to time yields

(4.45) 1
2 |α1|22,−µ,Ω + ν(1− ε/2)|α1,x|22,−µ,Ωt

+ ν(1− 2µ2/ε− ε0)|α1|22,−(1+µ),Ωt

≤ c exp(c(1/ε0)‖v‖A1−µ(Ωt))[|α1|22,−µ,Ωt + |α3|22,−µ,Ωt

+ |α2/r|210/3,Ωt‖h‖22,−1,Ωt + ‖h‖22,−1,Ωt

+ ε2(|||α1|||22,2,1−µ,Ωt + |||α3|||22,2,1−µ,Ωt) + c(1/ε2)(‖α1‖21,Ω + ‖α3‖21,Ω)

+ |F1|22,−µ,Ωt + |∇α̃1|22,−µ,Ωt + |α̃1|22,−µ,Ωt + |α̃3|22,−µ,Ωt

+ 1
2 |α1(0)|22,−µ,Ω ].
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Using (4.42) and (4.44) in (4.45) we have

(4.46) 1
2 |α1|22,−µ,Ω + ν(1− ε/2)|α1,x|22,−µ,Ωt + ν(1− 2µ2/ε− ε0)|α1|2−(1+µ),Ωt

≤ ϕ(1/ε0, ‖v‖A1−µ(Ωt))[|α1|22,−µ,Ωt + |α3|22,−µ,Ωt

+ |α2/r|210/3,Ωt‖h‖22,−1,Ωt + ‖h‖22,−1,Ωt + ‖w‖22,1−µ,Ωt + |F ′|22,Ωt + |F1|22,−µ,Ωt

+ |||α′(0)|||21,2,1−µ,Ω + 1
2 |α1(0)|22,−µ,Ω + ‖α1‖21,Ω + ‖α3‖1,Ω ].

Employing (4.43) in (4.46) yields

(4.47) 1
2 |α1|22,−µ,Ω + ν(1− ε/2)|α1,x|22,−µ,Ωt + ν(1− 2µ2/ε− ε0)|α1|22,−(1+µ),Ωt

≤ ϕ(1/ε0, ‖v‖A1−µ(Ωt))[|α2/r|210/3,Ωt‖h‖22,−1,Ωt + ‖h‖22,−1,Ωt + ‖w‖22,1−µ,Ωt

+ |F ′|22,Ωt + |F1|22,−µ,Ωt + |||α′(0)|||21,2,1−µ,Ω + |α1(0)|2,−µ,Ω ].

Finally, from (4.47) and (4.35) we obtain (4.37). This concludes the proof.

To obtain estimates for solutions of problem (1.8) we write it in the form

(4.48)

α2,t + v · ∇α2 −
1
r
hϕα2 −

vr
r
α2 +

να2

r2 − ν∆α2

=
2ν
r2

(
1
r
hz,ϕ − hϕ,z

)
− 1
r

(
w,zhr − w,rhz +

w

r
hz

)
+

2
r
wvϕ,z + F2,

α2|S = 2(k − γ/(2ν))v · τ 2,

α2|t=0 = α2(0),

where k and γ are defined in Section 1.
For solutions of (4.48) we have

Lemma 4.6. Assume that v ∈ A1−µ(Ωt), α2/r ∈ L2(0, t;H1(Ω)) ∩ L10/3(Ωt), α2 ∈
L2,−(1+µ)(Ωt), h ∈ H2,1

−1 (Ωt), F2 ∈ L2,1−µ(Ωt), w ∈ L∞(0, t;H1
0 (Ω)), v(0) ∈W 2

2,1−µ(Ω)∩
H1(Ω), α2(0) ∈W 1

2,1−µ(Ω), t ≤ T , µ ∈ (1/2, 1). Then solutions of problem (4.48) satisfy ,
for any ε1, ε2 > 0,

|||α2|||2,2,1−µ,Ωt ≤ [ε1‖v‖A1−µ(Ωt)(4.49)

+ cε
−3/4
1 (sup

t
|v|2,Ω + |v|2,Ωt) + |||v(0)|||2,2,1−µ,Ω ]

·
[
|α2/r|10/3,Ωt +

( t�

0

|∇(α2(t′)/r)|22,Ω dt′
)1/2]

+ c(1 + |α2/r|10/3,Ωt + sup
t
‖w‖1,0,Ω)‖h‖2,−1,Ωt

+ [sup
t
‖w‖1,0,Ω‖v‖A1−µ(Ωt) + |α2|2,−(1+µ),Ωt + |F2|2,1−µ,Ωt

+ δ0(ε2‖v‖A1−µ(Ωt) + (1/ε2)|v|2,Ωt) + |||α2(0)|||1,2,1−µ,Ω ],

where δ1
0 = ‖k − γ/(2ν)‖3/2,S and δ1

0 ≤ cδ0.
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Proof. Applying [zaj 1] to (4.48) yields

(4.50) |||α2|||2,2,1−µ,Ωt ≤ c
[
|v · ∇α2|2,1−µ,Ωt +

∣∣∣∣
1
r
hϕα2

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
vr
r
α2

∣∣∣∣
2,1−µ,Ωt

+ |α2|2,−(1+µ),Ωt +
∣∣∣∣

1
r2

(
1
r
hz,ϕ − hϕ,z

)∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
1
r

(
w,zhr − w,rhz +

w

r
hz

)∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
w

r
vϕ,z

∣∣∣∣
2,1−µ,Ωt

+ |F2|2,1−µ,Ωt + ‖(k − γ/(2ν))v · τ 2‖3/2,1−µ,St + |||α2(0)|||1,2,1−µ,Ω ].

Now we examine the particular terms on the r.h.s. of (4.50). The first and third terms
are estimated by
∣∣∣∣v · ∇

(
α2

r
r

)∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣vr

α2

r

∣∣∣∣
2,1−µ,Ωt

≤ c
(∣∣∣∣v · ∇

α2

r

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣vr

α2

r

∣∣∣∣
2,1−µ,Ωt

)

≤ c sup
t
|vr1−µ|∞,Ω

( t�

0

|∇(α2/r)|22,Ω dt′
)1/2

+ c|vr|5,1−µ,Ωt |α2/r|10/3,Ωt

≡ c(I1 + I2),

where the first factor in I1 is estimated by

sup
t

(ε′1|||v|||2,2,1−µ,Ω + c(1/ε′1)|v|2,Ω)

≤ ε′1‖v‖A1−µ(Ωt) + cε′1
−3/4 sup

t
|v|2,Ω + ε′1|||v(0)|||2,2,1−µ,Ω ,

and the first factor in I2 by

ε′2|||v|||2,2,1−µ,Ωt + cε′2
−3/4|v|2,Ωt .

Summarizing, we dominate the first and third terms on the r.h.s. of (4.50) by

[ε1‖v‖A1−µ(Ωt) + c(1/ε1)(sup
t
|v|2,Ω + |v|2,Ωt) + c|||v(0)|||2,2,1−µ,Ω ]

·
[( t�

0

|∇(α2/r)|22,Ω dt′
)1/2

+ |α2/r|10/3,Ωt

]
.

We bound the second term by

c|α2/r|10/3,Ωt‖h‖2,−1,Ωt

and the sixth by
∣∣∣∣
∣∣∣∣∇w

h

r

∣∣∣∣+
∣∣∣∣
w

r

h

r

∣∣∣∣
∣∣∣∣
2,1−µ,Ωt

≤ c sup
t
‖w‖1,0,Ω

( t�

0

|hr−µ|2∞,Ω dt′
)1/2

≡ I3.
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Employing (2.8) we have

I3 ≤ c sup
t
‖w‖1,0,Ω

( t�

0

‖h(t′)‖22,1/2−µ,Ω dt′
)1/2

≤ c sup
t
‖w‖1,0,Ω‖h‖2,−1,Ωt .

The seventh term is dominated by
∣∣∣∣
w

r
vϕ,z

∣∣∣∣
2,1−µ,Ωt

≤ sup
t

∣∣∣∣
w

r

∣∣∣∣
2,Ω

( t�

0

|vϕ,zr1−µ|2∞,Ω dt′
)1/2

≤ c sup
t
‖w‖1,0,Ω

( t�

0

|||vϕ,z(t′)|||22,2,1−µ,Ω dt′
)1/2

≤ c sup
t
‖w‖1,0,Ω‖v‖A1−µ(Ωt).

Finally, the ninth term is estimated as follows:

|||(k − γ/(2ν))v · τ 2|||3/2,2,1−µ,St

≤ c
[ t�

0

(|∂3/2
s v(t′)|22,1−µ,S + |∂3/4

t′ v(t′)|22,1−µ,S + |v(t′)|22,1−µ,S) dt′
]1/2

δ0

≤
( t�

0

[ε2(|v,xxx|22,1−µ,Ω + |v,tx|22,1−µ,Ω) + c(1/ε2)|v|22,Ω ] dt′
)1/2

δ0

≤ (ε2‖v‖A1−µ(Ωt) + c(1/ε2)|v|2,Ωt)δ0.

Using the above estimates in (4.50) implies (4.49). This ends the proof.

Now we shall estimate the expression

I1 =
( t�

0

|vϕ,z(t′)|24,−3/4−ε,Ω dt
′
)1/2

, ε > 0,

which appears on the r.h.s. of (4.1). Using (1.6) we have

(4.51) vϕ,z = −α1 +
1
r
hz.

In view of (4.51) we get

(4.52) I1 ≤ c
( t�

0

|α1(t′)|24,−3/4−ε,Ω dt
′
)1/2

+ c
( t�

0

‖h(t′)‖22,−1,Ω dt
′
)1/2

for any small positive number ε. To estimate the first term on the r.h.s. of (4.52) we need
(4.47) in the form

|α1,x|22,−µ,Ωt + |α1|22,−(1+µ),Ωt ≤ ϕ(‖v‖A1−µ(Ωt))[|α2/r|210/3,Ωt‖h‖22,−1,Ωt

+ ‖h‖22,−1,Ωt + ‖w‖22,1−µ,Ωt + |F ′|22,Ωt + |F1|22,−µ,Ωt
+ |||α′(0)|||21,2,1−µ,Ω + |α1(0)|22,−µ,Ω ],

where we used the fact that µ ∈ (0, 1), ε ∈ (0, 2), ε0 < 1− 2µ2/ε.
Since α1 = α1 + α̃1 we need (4.35),

(4.54) |α̃1|2,−(1+µ),Ωt ≤ c(‖w‖2,1−µ,Ωt + ‖h‖2,−1,Ωt).
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Moreover, (4.32) and the Hardy inequality imply

(4.55) |α̃1,x|2,−µ,Ωt ≤ c(‖w‖2,1−µ,Ωt + ‖h‖2,−1,Ωt).

Summarizing we have
( t�

0

‖α1‖21,−µ,Ω dt′
)1/2

≤ ϕ(‖v‖A1−µ(Ωt))[|α2/r|10/3,Ωt‖h‖2,−1,Ωt(4.56)

+ ‖h‖2,−1,Ωt + ‖w||2,1−µ,Ωt + |F ′|2,Ωt + |F1|2,−µ,Ωt
+ |||α′(0)|||1,2,1−µ,Ω + |α′1(0)|2,−µ,Ω ],

for any µ ∈ (1/2, 1).
In view of (2.8) the first term on the r.h.s of (4.52) is bounded by

c
( t�

0

‖α1(t′)‖21,−1/2−ε dt
′
)1/2

≡ I2,

and to estimate I2 we use (4.56) with µ = 1/2 + ε, ε > 0 a small number.
Summarizing the above considerations we obtain

Lemma 4.7. Assume that α2/r∈L10/3(Ωt), v∈A1−µ(Ωt), h∈H2,1
−1 (Ωt), w∈H2,1

1−µ(Ωt),
F ′ ∈ L2(Ωt), F1 ∈ L2,−µ(Ωt), α′(0) ∈W 1

2,1−µ(Ω), α1(0) ∈ L2,−µ(Ω), where µ = 1/2 + ε

and ε is an arbitrary small number. Then

(4.57)
( t�

0

|vϕ,z(t′)|24,−3/4−ε dt
′
)1/2

≤ ϕ(‖v‖A1−µ(Ωt))

· [|α2/r|10/3,Ωt‖h‖2,−1,Ωt + ‖h‖2,−1,Ωt + ‖w‖2,1−µ,Ωt + |F ′|2,Ωt

+ |F1|2,−µ,Ωt + |||α′(0)|||1,2,1−µ,Ω + |α1(0)|2,−µ,Ω ].
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In this section we obtain estimates for solutions of problem (1.5).

Lemma 5.1. Assume that fϕ ∈ L2,1−µ(ΩT ), w(0) ∈ H1
1−µ(Ω), w ∈ L2,−(1+µ)(ΩT ), g ∈

L2,−1(ΩT ), h(0) ∈ H1
−1(Ω), µ > 1/2. Then

(5.1) ‖w‖2,1−µ,Ωt ≤ ϕ(‖v‖A1−µ(Ωt))|w|2,−(1+µ),Ωt + ϕ(t1/2‖v‖A1−µ(Ωt))

· [|h(0)|2,Ω + |g|2,Ωt ] + c[|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω + ‖w(0)‖1,1−µ,Ω
+ |fϕ|2,1−µ,Ωt ],

where ϕ is an increasing positive function, t ≤ T .

Proof. Applying [zaj 1] to problem (1.5) we obtain

‖w‖2,1−µ,Ωt ≤ c
(
|v · ∇w|2,1−µ,Ωt +

∣∣∣∣
vrw

r

∣∣∣∣
2,1−µ,Ωt

(5.2)

+ |q|2,−µ,Ωt + |h|2,−(1+µ),Ωt + |w|2,−(1+µ),Ωt + |fϕ|2,1−µ,Ωt

+
∥∥∥∥

1
r
w

∥∥∥∥
1/2,1−µ,ST

+ ‖w(0)‖1,1−µ,Ω
)
.

In view of [zaj 3] we estimate the first term on the r.h.s. of (5.2) by

|v · ∇w|2,1−µ,Ωt ≤ |v|2p1,Ωt |∇w|2p2,1−µ,Ωt

≤ ε‖w‖2,1−µ,Ωt + c(1/ε)ϕ(|||v|||2,2,1−µ,ΩT )|w|2,−(1+µ),Ωt

whenever 1/p1 + 1/p2 = 1; here we used the imbeddings W 2,1
2,1−µ(ΩT ) ⊂ L2p1(ΩT ),

∇H2,1
1−µ(Ωt) ⊂ L2p2,1−µ(ΩT ), which hold together for µ > 1/2.
The second term on the r.h.s. of (5.2) is dealt with as follows:∣∣∣∣

vrw

r

∣∣∣∣
2,1−µ,Ωt

≤ |vr|2p1,Ωt

∣∣∣∣
w

r

∣∣∣∣
2p2,1−µ,Ωt

= |vr|2p1,Ωt |w|2p2,−µ,Ωt

≤ ε‖w‖2,1−µ,Ωt + c(1/ε)ϕ(|||v|||2,2,1−µ,Ωt)|w|2,−(1+µ),Ωt

whenever 1/p1 + 1/p2 = 1; here we used the imbeddings W 2,1
2,1−µ(ΩT ) ⊂ L2p1(Ωt) and

H2,1
1−µ(ΩT ) ⊂ L2p2,−µ(ΩT ) which hold together for µ > 1/2.

To estimate the boundary term in the r.h.s. of (5.2) we use∥∥∥∥
1
r
w

∥∥∥∥
1/2,1−µ,St

= ‖w‖1/2,−µ,St ≤ ε‖w‖2,1−µ,Ωt + c(1/ε)|w|2,−(1+µ),Ωt

for µ > 1/2.
Using the above estimates with sufficiently small ε and (4.8) in (5.2) we obtain (5.1).

This concludes the proof.

[54]
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To estimate the norm |w|2,−(1+µ),Ωt in (5.1) we need

Lemma 5.2. Assume that µ ∈ (1/2, 1), q∈L2(0, T ;L2,−µ(Ω)), h∈L2(0, T ;L2,−(1+µ)(Ω)),
fϕ ∈ L2(0, T ;L2,−µ+1(Ω)), w(0) ∈ L2,−µ(Ω), vr ∈ L2(0, T ;W 2

2,1−µ(Ω)). Assume that
either γ/ν − a1/r|S ≥ 0 or |a1| ≤ cr, for r close to 0. Then

(5.3) |w|22,−µ,Ω + ν(1− ε0/2− ε1)|∇w|22,−µ,Ωt
+ ν(1− 2µ2/ε0 − ε2 − ε3)|w|22,−(1+µ),Ωt + γ|w|22,−µ,St

≤ c(1/ε3) exp
[
c(1/ε1, 1/ε2)

(
t+

t�

0

|||vr|||22,2,1−µ,Ω dt′
)]

· [|q|22,−µ,Ωt + |h|22,−(1+µ),Ωt + |fϕ|22,−µ+1,Ωt + |w(0)|22,−µ,Ω ], t ≤ T,

for any εi, i = 0, . . . , 3, such that 1− ε0/2− ε1 > 0, 1− 2µ2/ε0 − ε2 − ε3 > 0.

Proof. Multiplying (1.5)1 by wr−2µ and integrating over Ω we get

(5.4)
1
2
d

dt
|w|22,−µ,Ω − ν

�

Ω

∆wwr−2µ dx+ ν|w|22,−(1+µ),Ω

= −
�

Ω

(
v · ∇w +

vr
r
w

)
wr−2µ dx+

�

Ω

1
r
qwr−2µ dx+ 2ν

�

Ω

hr
r2 wr

−2µ dx

+
�

Ω

fϕwr
−2µ dx.

The second term on the l.h.s. equals

I1 ≡ ν
�

S

(
γ

ν
− a1

r

)
w2r−2µ dS + ν

�

Ω

|∇w|2r−2µ dx− 2µν
�

Ω

∇wwr−2µ−1∇r dx.

To estimate the boundary term in I1 we consider two cases. For γ/ν − a1/r|S ≥ 0 the
term can be omitted.

For γ/ν − a1/r|S < 0 we use the fact that |a1| ≤ cr, r ≤ r0. Then
∣∣∣

�

S∩{x : r≤r0}

a1

r
r−2µw2 dS

∣∣∣

≤ c(r0)
�

S∩{x : r≤r0}
w2r−2µ dS ≤ ε1|w,x|22,−µ,Ω + c(1/ε1, r0)|w|22,−µ,Ω

and∣∣∣
�

S∩{x : r≥r0}

a1

r
r−2µw2 dS

∣∣∣

≤ c(1/r0)|a1|∞,S |w|22,−µ,S ≤ ε1|w,x|22,−µ,Ω + c(1/ε1, 1/r0, |a1|∞,S)|w|22,−µ,Ω .
We bound the last term in I1 by

ν
ε0

2
|∇w|22,−µ,Ω + ν

2µ2

ε0
|w|22,−(1+µ),Ω .
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The first term on the r.h.s. of (5.4) takes the form

−
�

Ω

(
v · ∇ww +

vr
r
w2
)
r−2µ dx = −

�

Ω

(
1
2
v · ∇w2 +

vr
r
w2
)
r−2µ dx

= −
�

Ω

[
1
2
v · ∇(w2r−2µ) + (1 + µ)

vr
r
w2r−2µ

]
dx = −(1 + µ)

�

Ω

vr
r
w2r−2µ dx

≡ I2.
Hence

|I2| ≤ ε2|w|22,−(1+µ),Ω + c(1/ε2)|vr|2∞,Ω |w|22,−µ,Ω .
Using [zaj 3] we have

|vr|∞,Ω ≤ c|||vr|||2,2,1−µ,Ω
for µ > 1/2.

We apply the above considerations in (5.4) and in addition use the Hölder and Young
inequalities to estimate the last three terms on the r.h.s. of (5.4). Thus we obtain

(5.5)
1
2
d

dt
|w|22,−µ,Ω + ν(1− ε0/2− ε1)|∇w|22,−µ,Ω

+ ν(1− 2µ2/ε0 − ε2 − ε3)|w|22,−(1+µ),Ω

≤ c(1/ε1, 1/ε2)(1 + |||vr|||22,2,1−µ,Ω)|w|22,−µ,Ω
+ c(1/ε3)(|q|22,−µ,Ω + |h|22,−(1+µ),Ω + |fϕ|22,−µ+1,Ω).

Integrating (5.5) with respect to t yields (5.3). This concludes the proof.

Next we need

Lemma 5.3. Assume that q ∈L2(Ωt), h∈L2,−1(Ωt), fϕ ∈L2(Ωt), a1≥ 0,
�
St

(a1/r)w2 dS

<∞, w(0) ∈ L2(Ω), vr ∈ L2(0, t;L∞(Ω)), t ≤ T . Then solutions of (1.5) satisfy

(5.6)
1
2
|w(t)|22,Ω + ν|w,x|22,Ωt +

ν

2
|w|22,−1,Ωt + γ|w|22,St

≤ c exp
[
c

t�

0

|vr(t′)|2∞,Ω dt′
][
|q|22,Ωt + |h|22,−1,Ωt + |fϕ|22,Ωt

+ ν
�

St

a1

r
w2 dS +

1
2
|w(0)|22,Ω

]
.

Proof. Multiplying (1.5)1 by w and integrating over Ω implies

(5.7)
1
2
d

dt
|w|22,Ω +

�

Ω

v · ∇ww dx+
�

Ω

vr
r
w2 dx− ν

�

Ω

∆ww dx+ ν
�

Ω

w2

r2 dx

= −
�

Ω

1
r
qw dx+ 2ν

�

Ω

1
r2 hrw dx+

�

Ω

fϕw dx.

The second term on the l.h.s. vanishes because it equals
1
2

�

Ω

div(vw2) dx =
1
2

�

S

v · nw2 dS = 0.
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The fourth term on the l.h.s. assumes the form

−ν
�

Ω

div(∇ww) dx+ ν
�

Ω

|∇w|2 dx = γ
�

S

w2 dS − ν
�

S

a1

r
w2 dS + ν

�

Ω

|∇w|2dx,

where the boundary condition (1.5)2 was used.
We estimate the third term on the l.h.s. of (5.7) by

ε|w|22,−1,Ω + c(1/ε)|vr|2∞,Ω |w|22,Ω
for any ε > 0, and the terms on the r.h.s. by

ε|w|22,−1,Ω + c(1/ε)(|q|22,Ω + |h|22,−1,Ω + |fϕ|22,Ω).

Using the above estimates in (5.7) implies

(5.8)
1
2
d

dt
|w|22,Ω + ν|w,x|22,Ω +

ν

2
|w|22,−1,Ω + γ|w|22,S

≤ c|vr|2∞,Ω |w|22,Ω + ν
�

S

a1

r
w2 dS + c(|q|22,Ω + |h|22,−1,Ω + |fϕ|22,Ω).

Integrating (5.8) with respect to t yields (5.6). This concludes the proof.

Lemma 5.4. Assume that v ∈ L2(0, T ;L∞(Ω)), q ∈ L2,−1(ΩT ), h ∈ L2,−2(ΩT ), fϕ ∈
L2(ΩT ),

�
S

(a1/r)w2 dS < ∞, w(0) ∈ H1(Ω), w(0) ∈ L2,−1(Ω), a1 ≥ 0. Then solutions
of (1.5) satisfy

(5.9)
1
2
|wt|22,Ωt +

ν

2
|w,x|22,Ω +

γ

2
|w|22,S +

ν

2
|w|22,−1,Ω

≤ c exp
[
c

t�

0

|v(t′)|2∞,Ωdt′
][
|q|22,−1,Ωt + |h|22,−2,Ωt + |fϕ|22,Ωt

+
ν

2
|w,x(0)|22,Ω +

γ

2
|w(0)|22,S +

ν

2
|w(0)|22,−1,Ω +

ν

2

�

S

a1

r
w2 dS

]
, t ≤ T.

Proof. Multiplying (1.5)1 by wt and integrating over Ω yields

(5.10) |wt|22,Ω +
�

Ω

v · ∇wwt dx+
�

Ω

vr
r
wwt dx− ν

�

Ω

∆wwt dx+ ν
�

Ω

wwt
r2 dx

= −
�

Ω

1
r
qwt dx+ 2ν

�

Ω

1
r2 hrwt dx+

�

Ω

fϕwt dx.

We estimate the second and third terms on the l.h.s. by

ε|wt|22,Ω + c(1/ε)|v|2∞,Ω(|w,x|22,Ω + |w|22,−1,Ω)

for any ε > 0. The fourth term on the l.h.s. gives

−ν
�

Ω

div(∇wwt) dx+
ν

2
d

dt

�

Ω

w2
,x dx,

where the first term equals

−ν
�

S

n · ∇wwt dS = γ
�

S

wwt dS − ν
�

S

a1

r
wwt dS =

d

dt

(
γ

2
|w|22,S −

ν

2

�

S

a1

r
w2 dS

)
.
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The terms on the r.h.s. of (5.10) are estimated by

ε|wt|22,Ω + c(1/ε)(|q|22,−1,Ω + |h|22,−2,Ω + fϕ|22,Ω).

In view of the above estimates (5.10) takes the form

(5.11)
1
2
|wt|22,Ω +

d

dt

[
ν

2
|w,x|22,Ω +

γ

2
|w|22,S +

ν

2
|w|22,−1,Ω −

ν

2

�

S

a1

r
w2 dS

]

≤ c|v|2∞,Ω(|w,x|22,Ω + |w|22,−1,Ω) + c(|q|22,−1,Ω + |h|22,−2,Ω + |fϕ|22,Ω).

Integrating (5.11) with respect to time yields (5.9). This concludes the proof.

Let us introduce the quantity

(5.12) A1(t) = |q(t)|22,−1,Ω + |h(t)|22,−2,Ω + |fϕ(t)|22,Ω .

Then we have

Lemma 5.5. Assume that v ∈ A1−µ(Ωt), µ ∈ (1/2, 1), w ∈ L∞(0, t;L2,1(Ω)), w(0) ∈
H1(Ω) ∩ L2,−1(Ω), w(0) ∈ L2(S), t ≤ T and

t�

0

A1(t′) dt′ <∞.

Assume either 0 < a1 ≤ cr2 in a neighbourhood of r = 0, or a1 < 0 and |a1| ≤ cr. Then
for solutions of (1.5) we have

(5.13) ν|w,x(t)|22,Ω + ν|w(t)|22,−1,Ω + γ|w(t)|22,S
≤ cec‖v‖

2
A1−µ(Ωt)

[
(1 + ‖v‖4A1−µ(Ωt)) sup

t′≤t
|w(t′)|22,1,Ω

+ e−t
t�

0

|w(t′)|22,Ωet
′
dt′ +

t�

0

A1(t′) dt′

+ e−t(|w,x(0)|22,Ω + |w(0)|22,−1,Ω + |w(0)|22,S)
]
.

Proof. From (5.8) and (5.11) we have

(5.14)
1
2
d

dt

[
ν|w,x|22,Ω + ν|w|22,−1,Ω + γ|w|22,S − ν

�

S

a1

r
w2 dS

]
+

1
2
d

dt
|w|22,Ω

+
1
2

[
ν|w,x|22,Ω + ν|w|22,−1,Ω + γ|w|22,S − ν

�

S

a1

r
w2 dS

]

+
(
ν

2
|w,x|22,Ω +

γ

2
|w|22,S

)

≤ c|v|2∞,Ω(|w|22,Ω + |w,x|22,Ω + |w|22,−1,Ω) + c
�

S

a1

r
w2 dS

+ c(|q|22,−1,Ω + |h|22,−2,Ω + |fϕ|22,Ω).
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We reformulate (5.14) as

(5.15)
d

dt
|w|22,Ω +

d

dt

[
ν|w,x|22,Ω + ν|w|22,−1,Ω + γ|w|22,S − ν

�

S

a1

r
w2 dS

]

+
[
ν|w,x|22,Ω + ν|w|22,−1,Ω + γ|w|22,S − ν

�

S

a1

r
w2 dS

]
+ ν|w,x|22,Ω + γ|w|22,S

≤ c|v|2∞,Ω
[
ν|w,x|22,Ω + ν|w|22,−1,Ω + γ|w|22,S − ν

�

S

a1

r
w2 dS

]

+ c(1 + |v|2∞,Ω)
�

S

a1

r
w2 dS + cA1(t).

Multiplying (5.15) by et−c � t
0
|v(t′)|2∞,Ω dt′ yields

(5.16)
d

dt
|w|22,Ωet−c � t

0
|v(t′)|2∞,Ω dt′

+
d

dt

[(
ν|w,x|22,Ω + ν|w|22,−1,Ω + γ|w|22,S − ν

�

S

a1

r
w2 dS

)
et−c � t

0
|v(t′)|2∞,Ω dt′

]

+ (ν|w,x|22,Ω + γ|w|22,S)et−c � t
0
|v(t′)|2∞,Ω dt′

≤ c(1 + |v|2∞,Ω)
�

S

a1

r
w2 dS et−c � t

0
|v(t′)|2∞,Ωdt′

+ cA1(t)et−c � t
0
|v(t′)|2∞,Ω dt′ .

This implies

(5.17)
d

dt
(|w|22,Ωet−c � t

0
|v(t′)|2∞,Ω dt′)

+
d

dt

[(
ν|w,x|22,Ω + ν|w|22,−1,Ω + γ|w|22,S − ν

�

S

a1

r
w2 dS

)
et−c � t

0
|v(t′)|2∞,Ω dt′

]

+ (ν|w,x|22,Ω + γ|w|22,S)et−c � t
0
|v(t′)|2∞,Ω dt′

≤ c(1 + |v|2∞,Ω)
�

S

a1

r
w2 dS et−c � t

0
|v(t′)|2∞,Ω dt′

+ (1− c|v(t′)|2∞,Ω)|w|22,Ωet−c � t
0
|v(t′)|2∞,Ω dt′

+ cA1(t)et−c � t
0
|v(t′)|2∞,Ω dt′ .

Integrating (5.17) with respect to time yields

(5.18) |w(t)|22,Ωet−c � t
0
|v(t′)|2∞,Ω dt′

+
[
ν|w,x(t)|22,Ω + ν|w(t)|22,−1,Ω + γ|w(t)|22,S − ν

�

S

a1

r
w2(t)dS

]

· et−c � t
0
|v(t′)|2∞,Ω dt′
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+
t�

0

(ν|w,x(t′)|22,Ω + γ|w(t′)|22,S)et
′−c � t

0
|v(t′′)|2∞,Ω dt′′ dt′

≤ c
t�

0

(1 + |v(t′)|2∞,Ω)
�

S

a1

r
w2(t′) dSet

′−c � t′
0
|v(t′′)|2∞,Ω dt′′ dt′

+
t�

0

(1− c|v(t′)|2∞,Ω)|w(t′)|22,Ωet
′−c � t′

0
|v(t′′)|2∞,Ω dt′′ dt′

+ c

t�

0

A1(t′)et
′−c � t′

0
|v(t′′)|2∞,Ω dt′′ dt′

+ |w(0)|22,Ω + ν|w,x(0)|22,Ω + ν|w(0)|22,Ω + γ|w(0)|22,S − ν
�

S

a1

r
w2(0) dS.

Assuming that 0 < a1 ≤ cr2 in a neighbourhood of r = 0 we obtain

(5.19)
�

S

a1

r
w2 dS ≤ c|w|22,1/2,S ≤ ε|w,x|22,Ω + cε−1|w|22,1,Ω

for any ε > 0. Using (5.19) for 0 < a1 < cr2 we have the inequality

(5.20) |v|2∞,Ω
�

S

a1

r
w2 dS ≤ ε|w,x|22,Ω + cε−1|v|4∞,Ω |w|22,1,Ω .

In view of (5.20) we obtain from (5.18) the inequality

(5.21) |w(t)|22,Ωet−c � t
0
|v(t′)|2∞,Ω dt′

+
[
ν|w,x(t)|22,Ω + ν|w(t)|22,−1,Ω + γ|w(t)|22,S − ν

�

S

a1

r
w2(t) dS

]

· et−c � t
0
|v(t′)|2∞,Ω dt′

+
t�

0

[(ν − ε)|w,x(t′)|22,Ω + γ|w(t′)|22,S ]et
′−c � t′

0
|v(t′′)|2∞,Ω dt′′dt′

≤ cε−1
t�

0

(1 + |v(t′)|4∞,Ω)|w(t′)|22,1,Ωet
′−c � t′

0
|v(t′′)|2∞,Ω dt′′dt′

+ c

t�

0

(1− c|v(t′)|2∞,Ω)|w(t′)|22,Ωet
′−c � t′

0
|v(t′′)|2∞,Ω dt′′dt′

+ c

t�

0

A1(t′)et
′−c � t′

0
|v(t′′)|2∞,Ω dt′′dt′ + |w(0)|22,Ω + ν|w,x(0)|22,Ω

+ ν|w(0)|22,−1,Ω + γ|w(0)|22,S − ν
�

S

a1

r
w2(0) dS,

where the last term can be omitted for a1 ≥ 0. For a1 < 0 we use the fact that |a1| ≤ cr,
and the last term on the r.h.s. of (5.21) is estimated by c|w(0)|22,S .
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In the case a1 ≤ 0 the first term on the r.h.s. of (5.21) can be cancelled. Assuming
that ε is sufficiently small we can omit the last term on the l.h.s. of (5.21). Multiplying
the result by e−t+c � t

0
|v(t′)|2∞,Ω dt′ and exploiting again (5.19) we have

(5.22) ν|w,x(t)|22,Ω + ν|w(t)|22,−1,Ω + γ|w(t)|22,S

≤ cec � t
0
|v(t′)|2∞,Ω dt′ sup

t′≤t
|w(t′)|22,1,Ω

[
1 +

t�

0

|v(t′)|4∞,Ω dt′
]

+ ce−t+c � t
0
|v(t′)|2∞,Ω dt′

t�

0

|w(t′)|22,Ωet
′
dt′ + cec � t

0
|v(t′)|2∞,Ω dt′

t�

0

A1(t′) dt′

+ ce−t+c � t
0
|v(t′)|2∞,Ωdt′ [|w,x(0)|22,Ω + |w(0)|22,−1,Ω + |w(0)|22,S ].

Using the estimate

( t�

0

|v(t′)|4∞,Ω dt′
)1/4

≤ c‖v‖A1−µ(ΩT ), µ ∈ (1/2, 1),

we obtain (5.13). This concludes the proof.

Let us introduce the quantity

(5.23) A2(t) = |q(t)|2,Ω + |h(t)|2,−1,Ω + |fϕ(t)|2,Ω .
Lemma 5.6. Assume that

t�

0

A2(t′) dt′ <∞, |w(0)|2,1,Ω <∞.

Then for solutions of (1.5) we obtain

(5.24) |w(t)|2,1,Ω ≤ |w(0)|2,1,Ω +
t�

0

A1(t′) dt′, t ∈ R+.

Proof. Multiplying (1.5)1 by wr2µ and integrating over Ω we obtain

(5.25)
1
2
d

dt
|w|22,µ,Ω +

�

Ω

v · ∇wwr2µ dx+
�

Ω

vr
r
w2r2µ dx

− ν
�

Ω

∆wwr2µ dx+ ν|w|22,µ−1,Ω

= −
�

Ω

1
r
qwr2µ dx+ 2ν

�

Ω

1
r2 hrwr

2µ dx+
�

Ω

fϕwr
2µ dx.

The sum of the second and third terms on the l.h.s. equals

(1− µ)
�

Ω

vr
r
w2r2µ dx.

The fourth term on the l.h.s. of (5.25) takes the form

−ν
�

Ω

div(∇wwr2µ) dx+ ν
�

Ω

w2
,xr

2µdx+ 2µν
�

Ω

∇wwr2µ−1∇r dx,
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where by using the boundary condition (1.5)2 the first term is expressed in the form

−ν
�

S

n · ∇wwr2µ dS = γ|w|22,µ,S − ν
�

S

a1

r
w2r2µ dS

and the last term is handled as follows:

µν
�

Ω

∇w2r2µ−1∇r dx = µν
�

Ω

∇(w2r2µ−1∇r) dx

− µν(2µ− 1)
�

Ω

w2r2µ−2∇r · ∇rdx− µν
�

Ω

w2r2µ−1∆r dx

= µν
�

S

a1

r
w2r2µ dS − 2µ2ν|w|22,µ−1,Ω .

Finally, the fourth term on the l.h.s. of (5.25) equals

−ν
�

Ω

∆wwr2µ dx = −ν
�

Ω

div(∇wwr2µ) dx+ ν
�

Ω

∇w∇(wr2µ) dx ≡ I1 + I2,

where

I1 = −ν
�

S

n · ∇wwr2µ dS = γ
�

S

w2r2µ dS − ν
�

S

a1

r
w2r2µ dS,

I2 = ν
�

Ω

|∇w|2r2µ dx+ 2µν
�

Ω

∇w · ∇rwr2µ−1 dx ≡ I3 + I4.

We have to examine

I4 = 2µν
�

Ω

∂rwwr
2µ dr dz dϕ = µν

�

Ω

∂rw
2r2µ dr dz dϕ

= µν
�

Ω

∂r(w2r2µ) dr dz dϕ− 2µ2ν
�

Ω

w2r2µ−1 dr dz dϕ,

where the first integral on the r.h.s. equals

µν
�

Ω

[
∂r(w2r2µ−1) +

w2r2µ−1

r

]
r dr dz dϕ

= µν
�

Ω

div(w2r2µ−1er) dx = µν
�

S

n · erw2r2µ−1 dS = µν
�

S

a1

r
w2r2µ dS

Hence the fourth term on the l.h.s. of (5.25) takes the form

ν(µ− 1)
�

S

a1

r
w2r2µ dS − 2µ2ν|w|22,µ−1,Ω + γ|w|22,µ,S + ν|w,x|22,µ,Ω .

In view of the above considerations (5.25) assumes the form

(5.26)
1
2
d

dt
|w|22,µ,Ω + ν|w,x|22,µ,Ω + ν(1− 2µ2)|w|22,µ−1,Ω + γ|w|22,µ,S

+ (1− µ)
�

Ω

vr
r
w2r2µ dx+ ν(µ− 1)

�

S

a1

r
w2r2µ dS

≤ |w|2,µ,Ω(|q|2,µ−1,Ω + |h|2,µ−2,Ω + |fϕ|2,µ,Ω).
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Using the Hardy inequality

(5.27) µ2|w|22,µ−1,Ω ≤ |w,x|22,µ,Ω ,
we obtain from (5.26) the inequality

(5.28)
1
2
d

dt
|w|22,µ,Ω + ν(1− µ2)|w|22,µ−1,Ω + γ|w|22,µ,S

+ (1− µ)
�

Ω

vr
r
w2r2µ dx+ ν(µ− 1)

�

S

a1

r
w2r2µ dS

≤ |w|2,µ,Ω(|q|2,µ−1,Ω + |h|2,µ−2,Ω + |fϕ|2,µ,Ω).

Inserting µ = 1 in (5.28) yields

(5.29)
1
2
d

dt
|w|22,1,Ω + γ|w|22,1,S ≤ A2(t)|w|2,1,Ω .

Hence we have

(5.30)
d

dt
|w|2,1,Ω ≤ A2(t).

Integrating (5.30) with respect to t gives (5.24). This concludes the proof.



6. Local existence: boundedness of the approximating sequence

We construct successive approximations and show that elements of the approximating
sequence are uniformly bounded.

6.1. Formulation of the method of successive approximations. To prove the
existence of local solutions to problem (1.1) we use the following method of successive
approximations. Let vm be given. Then hm and qm are solutions to the problem

(6.1)

hm,t − ν divD(hm) +∇qm + vm · ∇hm + hm · ∇vm = g in ΩT ,

div hm = 0 in ΩT ,

hm · n = 0 on ST ,

n · D(hm) · τα +
γ

ν
hm · τα = 0, α = 1, 2, on ST ,

hm|t=0 = h(0) in Ω.

Let vm, qm, hm be given. Then wm satisfies

(6.2)

wm,t + vm · ∇wm +
vmr
r

wm − ν∆wm + ν
wm
r2

=
qm
r

+
2ν
r2 hmr + fϕ in ΩT ,

n · ∇wm = −
(
γ

ν
− a1

r

)
wm on ST ,

wm|t=0 = w(0) in Ω.

Let vm, qm, hm, wm be given. Then α′m+1 is a solution to the problem

(6.3)

α1m+1,t + vm · ∇α1m+1 − α1m+1vmr,r −
α2m+1

r
hmr − α3m+1vmr,z

+
2ν
r2 (hmr,z − hmz,r) +

να1m+1

r2 − ν∆α1m+1 = F1 in ΩT ,

α3m+1,t + vm · ∇α3m+1 − (α1m+1vmz,r + α3m+1vmz,z)

− α2m+1

r
hmz − ν∆α3m+1 = F3 in ΩT ,

τ2 · α′m+1 = −2a1

r
wm on ST ,

(n · α′m+1),n = β1hmr + β2hmz + β3wm,r + β4wm,z + β5wm on ST ,

α1m+1|t=0 = α1(0), α3m+1|t=0 = α3(0) in Ω,

[64]
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and χm+1 = α2m+1 is a solution to the problem

(6.4)

χm+1,t + vm · ∇χm+1 −
hmϕ
r

χm+1 −
vmr
r

χm+1 − ν∆χm+1 + ν
χm+1

r2

= −1
r

(
wm,zhmr − wm,rhmz +

wm
r
hmz

)
+

2wmvmϕ,z
r

+
2ν
r2

(
1
r
hmz,ϕ − hmϕ,z

)
+ F2 in ΩT ,

χm+1 = 2(k − γ/(2ν))vm · τ2 on ST ,

χm+1|t=0 = α2(0) in Ω.

For a given vm we calculate pm from the elliptic problem

(6.5)
∆pm = −∇vm · ∇vm + div f in Ω,

∂pm
∂n

= f · n+ νn ·∆vm − n · vm · ∇vm on S.

Finally, in the next step we calculate vm+1 from the elliptic problem for a given αm+1,

(6.6)

rot vm+1 = αm+1 in Ω,

div vm+1 = 0 in Ω,

vm+1 · n = 0 on S.

6.2. Estimate of the first step. To start the above method of successive approxima-
tions we assume that v0 = 0. Then h0 and q0 are solutions to the problem

(6.7)

h0,t − ν divD(h0) +∇q0 = g in ΩT ,

div h0 = 0 in ΩT ,

h0 · n = 0 on ST ,

n · D(h0) · τα +
γ

ν
h0 · τα = 0, α = 1, 2, on ST ,

h0|t=0 = h(0) in Ω.

Having h0 and q0 we calculate w0 from the problem

(6.8)

w0,t − ν∆w0 + ν
w0

r2 =
q0

r
+

2ν
r2 h0 + fϕ in ΩT ,

n · ∇w0 = −
(
γ

ν
− a1

r

)
w0 on ST ,

w0|t=0 = w(0) in Ω.

Next we calculate α1 from the following system of problems:

(6.9)

α11,t −
α21

r
h0r +

2ν
r2 (h0r,z − h0z,r) +

να11

r2 − ν∆α11 = F1 in ΩT ,

α31,t −
α21

r
h0z − ν∆α31 = F3 in ΩT ,

τ2 · α′1 = −2a1

r
w0 on ST ,

(n · α′1),n = β1h0r + β2h0z + β3w0,r + β4w0,z + β5w0 on ST ,

α11|t=0 = α1(0), α31|t=0 = α3(0) in Ω,
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and

(6.10)

χ1,t −
h0ϕ

r
χ1 − ν∆χ1 + ν

χ1

r2 = −1
r

(
w0,zh0r − w0,rh0z +

w0

r
h0z

)

+
2ν
r2

(
1
r
h0z,ϕ − h0ϕ,z

)
+ F2 in ΩT ,

χ1 = 0 on ST ,

χ1|t=0 = α2(0) ≡ χ(0) in Ω,

where in the matrix αij the index i corresponds to the coordinate of the vector α and j

corresponds to the step considered.
For the first step we calculate v1 from the problem

(6.11)

rot v1 = α1 in Ω,

div v1 = 0 in Ω,

v1 · n = 0 on S.

The aim of this section is to show that the constructed sequence is bounded. For this
purpose we introduce the quantities

(6.12) Km(t) = ‖vm‖A1−µ(Ωt), m ∈ N, µ ∈ (1/2, 1).

We show that they are bounded by the same constant. From the above considerations we
have K0 = ‖v0‖A1−µ(Ωt) = 0.

First we find a bound for K1.

Lemma 6.1. Assume that g ∈ L2,−1(ΩT ), fϕ ∈ L2(ΩT ), h(0) ∈ H1
−1(Ω), w(0) ∈ H1

0 (Ω),
α′(0) ∈ W 1

2,1−µ(Ω), α1(0) ∈ L2,−µ(Ω), F ′ ∈ L2(ΩT ), F1 ∈ L2,−µ(ΩT ), µ ∈ (1/2, 1),
F2 ∈ L2,−1(ΩT ), χ(0) ∈ L2,−1(Ω). Let

X̃1(t) = |g|2,−1,Ωt + |fϕ|2,Ωt + ‖h(0)‖1,−1,Ω + ‖w(0)‖1,0,Ω ≤ 1,

X̃2(t) = |F ′|2,Ωt + |F1|2,−µ,Ωt + |||α′(0)|||1,2,1−µ,Ω + |α1(0)|2,−µ,Ω ,
Ỹ1(t) = |F2|2,−1,Ωt + |χ(0)|2,−1,Ω .

Assume that there exist constants A and c such that

(6.12′) c[(ectX̃1(t) + Ỹ1(t))t1/2X̃1(t) + X̃2(t) + Ỹ1(t)] < A, t ≤ T.
Then

(6.13) ‖v1‖A1−µ(Ωt) ≤ A, t ≤ T,
and T is defined by (6.12′).

Proof. For solutions of problem (6.11) we have

(6.14) K1(t) = ‖v1‖A1−µ(Ωt) ≤ c|||α1|||2,2,1−µ,Ωt .
Now we estimate the r.h.s. of the above inequality. Applying Lemma 4.2 to problem (6.7)
yields

(6.15) ‖h0‖2,−1,Ωt + ‖q0‖1,−1,Ωt ≤ c(|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω).
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Applying Lemma 5.1 to problem (6.8) gives

(6.16) ‖w0‖2,1−µ,Ωt
≤ c(|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω + ‖w(0)‖1,1−µ,Ω + |fϕ|2,1−µ,Ωt + |w0|2,−(1+µ),Ωt).

To estimate the last term on the r.h.s. of (6.16) we use Lemma 5.2. Hence we have

(6.17) |w0(t)|22,−µ,Ω + |∇w0|22,−µ,Ωt + |w0|22,−(1+µ),Ωt + |w0|22,−µ,St
≤ cect(|q0|22,−µ,Ωt + |h0|22,−(1+µ),Ωt + |fϕ|22,1−µ,Ωt) + |w(0)|22,−µ,Ω
≤ cect(|g|22,−1,Ωt + ‖h(0)‖21,−1,Ω + |fϕ|22,1−µ,Ωt) + |w(0)|22,−µ,Ω ,

where the last inequality follows from (6.15).
Making use of (6.17) in (6.16) yields

(6.18) ‖w0‖2,1−µ,Ωt ≤ cect(|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω + |fϕ|2,1−µ,Ωt) + c‖w(0)‖1,1−µ,Ω .

Next we obtain an estimate for α′1 = (α11, α31). In view of Lemma 4.3 we have

(6.19) |||α′1|||2,2,1−µ,Ωt ≤ c|α21/r|10/3,Ωt‖h0‖2,−µ,Ωt
+ c(‖h0‖2,−µ,Ωt + ‖w0‖2,1−µ,Ωt) + c|α11|2,−(1+µ),Ωt + c|F ′|2,1−µ,Ωt .

Employing estimates (6.15) and (6.18) in (6.19) yields

|||α′1|||2,2,1−µ,Ωt ≤ c|α21/r|10/3,Ωt(|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω)(6.20)

+ cect(|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω + |fϕ|2,1−µ,Ωt)
+ c‖w(0)‖1,1−µ,Ω + c|F ′|2,1−µ,Ωt + c|α11|2,−(1+µ),Ωt .

In view of Lemma 4.5 and (6.15), (6.18) we have

(6.21) |α11|2,−(1+µ),Ωt ≤ c(|α21/r|10/3,Ωt + 1)(|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω)

+ cect(|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω + |fϕ|2,1−µ,Ωt)
+ c(|F ′|2,Ωt + |F1|2,−µ,Ωt) + c(|||α′(0)|||1,2,1−µ,Ω + |α1(0)|2,−µ,Ω)

+ c‖w(0)‖1,1−µ,Ω ≤ c(|α21/r|10/3,Ωt + ect)[X ′1(t) +X ′2]

+ c(X ′3 +X ′4(t)),

where we introduced the quantities

(6.22)

X ′1(t) = |g|2,−1,Ωt + |fϕ|2,Ωt ,
X ′2 = ‖h(0)‖1,−1,Ω + ‖w(0)‖1,0,Ω ,
X ′3 = |||α′(0)|||1,2,1−µ,Ω + |α1(0)|2,−µ,Ω ,

X ′4(t) = |F ′|2,Ωt + |F1|2,−µ,Ωt ,
Y ′1(t) = |F2|2,−1,Ωt ,

Y ′2 = |χ(0)|2,−1,Ω + ‖χ(0)‖1,1−µ,Ω .
Employing (6.21) in (6.20) yields

(6.23) |||α′1|||2,2,1−µ,Ωt ≤ c(|α21/r|10/3,Ωt + ect)(X ′1(t) +X ′2) + c(X ′3 +X ′4(t)).
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To obtain an estimate for α21 we formulate the problem for χ1:

(6.24)

χ1,t − ν
[(
r

(
χ1

r

)

,r

)

,r

+
1
r2 χ1,ϕϕ + χ1,zz + 2

(
χ1

r

)

,r

]

− 2ν
r2

(
1
r
h0z,ϕ − h0ϕ,z

)
− 1
r

(
w0,zh0r − w0,rh0z +

w0

r
h0z

)
= F1 in ΩT ,

χ1 = 0 on ST ,

χ1|t=0 = χ(0) in Ω.

For solutions of (6.24) we have the estimate

(6.25) sup
t
|χ1/r|22,Ω + ν

t�

0

‖χ1/r‖21,Ω dt′ ≤ c sup
t
‖h0ϕ‖1,−1,Ω

t�

0

‖χ1/r‖21,Ω dt′

+ c(1 + sup
t
‖w0‖21,0,Ω)‖h0‖22,−1,Ωt + c|F2|22,−1,Ωt + |χ(0)|22,−1,Ω .

Using (6.15) in (6.25) and assuming that the r.h.s. of (6.15) is sufficiently small we obtain
from (6.25) the inequality

sup
t
|χ1|22,−1,Ω + ν

t�

0

‖χ1/r‖21,Ω dt′≤c(1 + sup
t
‖w0‖21,0,Ω)(|g|22,−1,Ωt+ ‖h(0)‖21,−1,Ω)(6.26)

+ c|F2|22,−1,Ωt + |χ(0)|22,−1,Ω .

To estimate the first factor in the first term on the r.h.s. of (6.26) we use Lemma 5.5
which implies

‖w0(t)‖21,0,Ω ≤ c sup
t′≤t
|w0(t′)|22,1,Ω + ce−t

t�

0

|w0(t′)|22,Ωet
′
dt′(6.27)

+ c

t�

0

(|q0(t′)|22,−1,Ω + |h0(t′)|22,−2,Ω + |fϕ(t′)|22,Ω) dt′

+ e−t(‖w(0)‖21,0,Ω + |w(0)|22,S).

Using (6.15) in (6.27) yields

‖w0(t)‖21,0,Ω ≤ c sup
t′≤t
|w0(t′)|22,1,Ω + ce−t

t�

0

|w0(t′)|22,Ωet
′
dt′(6.28)

+ c(|g|22,−1,Ωt + ‖h(0)‖21,−1,Ω + |fϕ|22,Ωt)
+ ce−t(‖w(0)‖21,0,Ω + |w(0)|22,S).

To estimate the first term on the r.h.s. of (6.28) we use Lemma 5.6. From (5.23) and
(5.24) we have

|w0(t)|2,1,Ω ≤ |w(0)|2,1,Ω +
t�

0

(|q0(t′)|2,Ω + |h0(t′)|2,−1,Ω + |fϕ(t′)|2,Ω) dt′(6.29)

≤ |w(0)|2,1,Ω + t1/2(|g|2,−1,Ωt + ‖h(0)‖1,−1,Ω + |fϕ|2,Ωt)
≤ ct1/2(X ′1 +X ′2), t > 1.
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Moreover, from (5.6) we get the estimate

(6.30)
1
2
|w0(t)|22,Ω + ν|w0,x|22,Ωt +

ν

2
|w0|22,−1,Ωt + γ|w0|22,St

≤ c(|g|22,−1,Ωt + ‖h(0)‖21,−1,Ω + |fϕ|22,Ωt) + ν
�

St

a1

r
w2

0 dS +
1
2
|w(0)|22,Ω .

Remark. For domains close to a cylinder the boundary term on the r.h.s. can be ab-
sorbed by the second and third terms on the l.h.s.

Otherwise we consider (5.8) in the form

(6.31)
1
2
d

dt
|w0|22,Ω + ν|w0,x|22,Ω +

ν

2
|w0|22,−1,Ω + γ|w0|22,S

≤ ν
�

S

a1

r
w2

0 dS + c(|q0|22,Ω + |h0|22,−1,Ω + |fϕ|22,Ω).

Estimating the first term on the r.h.s. by some interpolation inequality we obtain

(6.32)
d

dt
|w0|22,Ω + ν|w0,x|22,Ω + ν|w0|22,−1,Ω + γ|w0|22,S

≤ c1|w0|22,Ω + c(|q0|22,Ω + |h0|22,−1,Ω + |fϕ|22,Ω),

where c1 is a constant which follows from the interpolation inequality and depends on
a1/r.

From (6.32) we have

(6.33)
d

dt
(|w0(t)|22,Ωe−c1t) + (ν|w0,x|22,Ω + ν|w0|22,−1,Ω + γ|w0|22,S)e−c1t

≤ ce−c1t(|q0(t)|22,Ω + |h0(t)|22,Ω + |fϕ(t)|22,Ω).

Integrating (6.33) with respect to time yields

(6.34) |w0(t)|22,Ω + ec1t
t�

0

(ν|w0,x(t′)|22,Ω + ν|w0(t′)|22,−1,Ω + γ|w0(t′)|22,S)e−c1t
′
dt′

≤ cec1t
t�

0

(|q0(t′)|22,Ω + |h0(t′)|22,−1,Ω + |fϕ(t′)|22,Ω)e−c1t
′
dt′ + ec1t|w(0)|22,Ω .

Since ec1(t−t′) ≥ 1 for t ≥ t′, using (6.15) we get

(6.35) |w0(t)|22,Ω + ν|w0,x|22,Ωt + ν|w0|22,−1,Ωt + γ|w0|22,St
≤ cec1t(|g|22,−1,Ωt + ‖h(0)‖21,−1,Ω + |fϕ|22,Ωt + |w(0)|22,Ω)

≤ cec1t(X ′12 +X ′2
2).

Employing (6.29) and (6.35) in (6.27) yields

‖w0(t)‖21,0,Ω ≤ |w(0)|22,1,Ω +
∣∣∣
t�

0

(|q0(t′)|2,Ω + |h0(t′)|2,−1,Ω + |fϕ(t′)|2,Ω) dt′
∣∣∣
2

(6.36)

+ cec1t(|g|22,−1,Ωt + ‖h(0)‖21,−1,Ω + |fϕ|22,Ωt)
+ ec1t|w(0)|22,Ω + e−t(‖w(0)‖21,0,Ω + |w(0)|22,S)

≤ cect(X ′12 +X ′2
2),

where (6.15) was also employed.
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Making use of (6.36) in (6.26) implies

(6.37) sup
t
|χ1/r|22,Ω + ν

t�

0

‖χ1/r‖21,Ω dt′ ≤ c[1 + |w(0)|22,1,Ω

+ ec1t(|g|2,−1,Ωt + ‖h(0)‖21,−1,Ω + |fϕ|22,Ωt + |w(0)|22,Ω)

+ e−t(‖w(0)‖21,Ω + |w(0)|22,S)](|g|22,−1,Ωt + ‖h(0)‖21,−1,Ω)

+ c(|F2|22,−1,Ωt + |χ(0)|22,−1,Ω)

≤ c[1 + ec1t(X ′1
2 +X ′2

2)](X ′1
2 +X ′2

2) + c(Y ′1
2 + Y ′2

2),

where notation (6.22) was used.
For solutions of (6.10) we have

‖χ1‖2,1−µ,Ωt ≤ c|χ1|2,−(1+µ),Ωt + c

∣∣∣∣
h0ϕ

r
χ1

∣∣∣∣
2,1−µ,Ωt

(6.38)

+ c

∣∣∣∣
1
r

(
w0,zh0r − w0,rh0z +

w0

r
h0z

)∣∣∣∣
2,1−µ,Ωt

+ c

∣∣∣∣
1
r2

(
1
r
h0z,ϕ − h0ϕ,z

)∣∣∣∣
2,1−µ,Ωt

+ c|F2|2,1−µ,Ωt + c‖χ(0)‖1,1−µ,Ω .
The fourth term is dominated by

c|∇h0|2,−(1+µ),Ωt ≤ c‖h0‖2,−1,Ωt .

The third term on the r.h.s. of (6.38) is estimated by

sup
t
|w0,x|2,Ω

( t�

0

|h0(t′)|2∞,−µ,Ω dt′
)1/2

+ sup
t
|w0/r|2,Ω

( t�

0

|h0(t′)|2∞,1−µ,Ω
)1/2

≤ c sup
t
‖w0(t)‖1,0,Ω

( t�

0

‖h0(t′)‖22,−1,Ω dt
′
)1/2

≤ c sup
t
‖w0(t)‖1,0,Ω‖h0‖2,−1,Ωt .

The second term on the r.h.s. of (6.38) is bounded by
∣∣∣∣
h0ϕ

r
χ1

∣∣∣∣
2,1−µ,Ωt

=
( t�

0

∣∣∣∣h0ϕ
χ1

r

∣∣∣∣
2

2,1−µ,Ω
dt′
)1/2

=
( t�

0

dt′
�

Ω

|h0ϕ|2
∣∣∣∣
χ1

r

∣∣∣∣
2

r2(1−µ) dx

)1/2

≤
( t�

0

dt′ |h0ϕ(t′)|23,1−µ,Ω
∣∣∣∣
χ1

r
(t′)
∣∣∣∣
2

6,Ω

)1/2

≤ sup
t′≤t
|h0ϕ(t′)|3,1−µ,Ω

( t�

0

∣∣∣∣
χ1(t′)
r

∣∣∣∣
2

6,Ω
dt′
)1/2

.
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Summarizing the above considerations gives

‖χ1‖2,1−µ,Ωt ≤ c|χ1|2,−(1+µ),Ωt + c sup
t′≤t
|h0ϕ(t′)|3,1−µ,Ω

( t�

0

∥∥∥∥
χ1(t′)
r

∥∥∥∥
2

1,Ω
dt′
)1/2

(6.39)

+ c sup
t
‖w0‖1,0,Ω‖h0‖2,−1,Ωt + c‖h0‖2,−1,Ωt

+ c(|F2|2,1−µ,Ωt + ‖χ(0)‖1,1−µ,Ω).

In view of (6.22) we have

(6.40) |χ1|2,−(1+µ),Ωt +
( t�

0

∥∥∥∥
χ1(t′)
r

∥∥∥∥
2

1,Ω
dt′
)1/2

≤ c[1 + ect(X ′1 +X ′2)](X ′1 +X ′2) + c(Y ′1 + Y ′2).

Applying (6.29), (6.36) and (6.40) in (6.39) yields

(6.41) ‖χ1‖2,1−µ,Ωt ≤ c(1 + ectX̃1)t1/2X̃1 + cỸ1,

where

X̃1 = X ′1 +X ′2, Ỹ1 = Y ′1 + Y ′2 ,

and t ≥ t0 > 0.
In view of (6.41) we obtain from (6.23) the inequality

(6.42) |||α′|||2,2,1−µ,Ωt ≤ c(ect + Ỹ1)X̃1 + cX̃2,

where X̃1 ≤ 1 and

X̃2 = X ′3 +X ′4.

From (6.14), (6.41) and (6.42) we obtain

(6.43) K1(t) = ‖v1‖A1−µ(Ωt) ≤ c(ectX̃1 + Ỹ1)t1/2X̃1 + c(ectX̃1 + X̃2 + Ỹ1).

Therefore we can choose a constant A such that the r.h.s. of (6.43) is bounded by A. This
concludes the proof.

6.3. Estimate of the general step. Now we obtain a uniform bound for the con-
structed successive approximations.

Lemma 6.2. Assume that g ∈ L2,−1(ΩT ), fϕ ∈ L2(ΩT ), f ∈ L2,1(ΩT ), F ′ ∈ L2(ΩT ),
F1 ∈ L2,−µ(ΩT ), F2 ∈ L2,−1(ΩT ), µ ∈ (1/2, 1), h(0) ∈ H1

−1(Ω), w(0) ∈ H1
0 (Ω), v(0) ∈

L2(Ω), α′(0) ∈W 1
2,1−µ(Ω), α1(0) ∈ L2,−µ(Ω), χ(0) ∈ L2,−1(Ω)∩H1

1−µ(Ω). Assume that
there exist two positive constants A,B and a positive increasing function ϕ1 such that

ϕ1(A,B)ectX(t) ≤ 1,

c(Y1(Y1 + 1)7/4 + Y1Y2 + Y1 + Y2) ≤ A,(6.44)′

cY1 ≤ B,
and assume that for some δ ≥ 1, δ0 = ‖k − γ/(2ν)‖3/2,4,−δ/2,S is so small that

(6.44)′′ δ0 ≤ (c[Y1(Y1 + 1)7/4 + Y1Y2 + Y1 + Y2])−1,
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where

X(t) = g 2,1,Ωt + |g|2,−1,Ωt + |fϕ|2,−µ,Ωt + |F ′|2,Ωt
+ |F1|2,−µ,Ωt + ‖h(0)‖1,−1,Ω + ‖w(0)‖1,1−µ,Ω + ‖w(0)‖1,0,Ω
+ |||α′(0)|||1,2,1−µ,Ω + |α′1(0)|2,−µ,Ω ,

Y1 = |F2|2,−1,Ωt + |χ(0)|2,−1,Ω ,

Y2 = |F2|2,1−µ,Ωt + ‖χ(0)‖1,1−µ,Ω + |||v(0)|||2,2,1−µ,Ω .
Then

(6.45) ‖vm‖A1−µ(Ωt) ≤ A, χm/r Ωt ≤ B, m ∈ N, t ≤ T,
and (6.44)′1 implies the restriction on time:

(6.46) T ≤ 1
c

ln
1

ϕ1(A,B)X(T )
.

Proof. From (3.30) we have

(6.47) |hm|2,Ω +
( t�

0

‖hm‖21,Ω dt′
)1/2

≤ ϕ(t1/2Km(t))X1,

where

(6.48) X1 = g 2,1,Ωt + |h(0)|2,Ω , Km(t) = ‖vm‖A1−µ(Ωt),

and ϕ will always denote an increasing positive function.
From (4.8) we get

(6.49) ‖hm‖2,−1,Ωt +
( t�

0

‖qm‖21,−1,Ω dt
′
)1/2

≤ ϕ(t1/2Km(t),Km(t))X2,

where

(6.50) X2 = X1 + |g|2,−1,Ωt + ‖h(0)‖1,−1,Ω .

Assume that δ∗ is sufficiently small and

(6.51) sup
t
|hmϕ|2,−1,Ω ≤ δ∗.

Next Lemma 4.1 yields

χm+1/r Ωt ≤ c(‖hm‖2,−1,Ωt + |vm|10/3,Ωt + 1)δ0(ε1Km(t) + c(1/ε1)|vm|2,Ωt)(6.52)

+ c(1 + sup
t
‖wm‖1,0,Ω)‖hm‖2,−1,Ωt

+ c sup
t
‖wm‖1,0,Ω vmϕ,z 4,2,−3/4−ε,Ωt + cY1

for all ε, ε1 > 0, where

(6.53) δ0 = ‖k − γ/(2ν)‖3/2,4,−δ/2,S , Y1 = |χ(0)|2,−1,Ω + |F2|2,−1,Ωt .

To estimate the norms involving vm we use (6.6) for step m. Then we have

(6.54) |vm|σ,Ωt ≤ c|αm|σ,Ωt ≤ c(|α′m|σ,Ωt + |Xm|σ,−1,Ωt)

for σ equal to either 2 or 10/3, and the constant on the r.h.s. depends linearly on R.
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From Lemma 4.4 applied to problem (6.3) in step m we have

α′m Ωt + |α1m|2,−1,Ωt ≤ ϕ(Km−1)[|χm|10/3,Ωt‖hm−1‖2,−1,Ωt(6.55)

+ ‖hm−1‖2,−1,Ωt + ‖wm−1‖2,1−µ,Ωt +X3],

where

(6.56) X3 = |F ′|2,Ωt + |α′(0)|2,Ω .
In view of (6.54) and (6.55) we obtain from (6.52) the inequality

χm+1/r Ωt≤ c[‖hm‖2,−1,Ωt + |χm|10/3,−1,Ωt(6.57)

+ ϕ(Km−1)(|χm|10/3,Ωt‖hm−1‖2,−1,Ωt + ‖hm−1‖2,−1,Ωt

+ ‖wm−1‖2,1−µ,Ωt +X3) + 1]δ0[ε1Km + cε
−3/4
1 |χm|2,−1,Ωt

+ cε
−3/4
1 t1/2ϕ(Km−1)(|χm|10/3,Ωt‖hm−1‖2,−1,Ωt+‖hm−1‖2,−1,Ωt

+ ‖wm−1‖2,1−µ,Ωt +X3)] + c(1 + sup
t
‖wm‖1,0,Ω)‖hm‖2,−1,Ωt

+ c sup
t
‖wm‖1,0,Ω vmϕ,z 4,2,−3/4−ε,Ωt + cY1.

Introducing the notation

(6.58) Lm = χm/r Ωt

and using (3.49) we obtain from (6.57) the inequality

(6.59) Lm+1 ≤ [Lm + 1 + ϕ(Km,Km−1)(Lm + 1)X2 + ϕ(Km−1)(‖wm−1‖2,1−µ,Ωt
+X3)]δ0[ε1Km + cε

−3/4
1 Lm + cε

−3/4
1 t1/2ϕ(Km−1)·

· ((Lm + 1)X2 + ‖wm−1‖2,1−µ,Ωt +X3)] + c(1 + sup
t
‖wm‖1,0,Ω)ϕ(Km)X2

+ c sup
t
‖wm‖1,0,Ω vmϕ,z 4,2,−3/4−ε,Ωt + cY1.

Now we shall estimate the norms involving wm−1 and wm. Lemma 5.2 implies

(6.60) |wm|2,−µ,Ω + |wm,x|2,−µ,Ωt + |wm|2,−(1+µ),Ωt + |wm|2,−µ,St ≤ ϕ(Km(t))ectX4,

where

(6.61) X4 = X2 + |fϕ|2,−µ,Ωt + |w(0)|2,−µ,Ω .
From Lemma 5.1 we have

(6.62) ‖wm‖2,1−µ,Ωt ≤ ϕ(Km(t))X5,

where

(6.63) X5 = X4 + ‖w(0)‖1,1−µ,Ω .
From Lemma 5.5 we get

(6.64) |wm,x(t)|2,Ω + |wm(t)|2,−1,Ω + |wm(t)|2,S
≤ ϕ(Km(t))[sup

t
|wm(t)|2,1,Ω + |wm|2,Ωt +X6],

where

(6.65) X6 = X5 + |w,x(0)|2,Ω + |w(0)|2,−1,Ω + |w(0)|2,S .
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From Lemma 5.6 we obtain

(6.66) |wm(t)|2,1,Ω ≤ |w(0)|2,1,Ω + t1/2X4.

Using (6.60) and (6.66) in (6.64) yields

(6.67) |wm,x(t)|2,Ω + |wm(t)|2,−1,Ω + |wm(t)|2,S ≤ ϕ(Km(t))ectX6.

Employing (6.62) and (6.67) in (6.59) yields

Lm+1 ≤ c[Lm + 1 + ϕ(Km,Km−1)(Lm + 1)X7]δ0(6.68)

· [ε1Km + cε
−3/4
1 Lm + cε

−3/4
1 ϕ(Km−1)t1/2(Lm + 1)X7]

+ ϕ(Km)ectX7 + ϕ(Km)ectX7 vmϕ,z 4,2,−3/4−ε,Ωt + cY1,

where

(6.69) X7 = X2 +X3 +X5 +X6.

Now we shall estimate the last factor in the third term on the r.h.s. of (6.68). Using
formula (4.51) applied to (6.6) for step m we have

(6.70) vmϕ,z = −αm1 +
1
r
hmz.

Then applying (4.52) we have

(6.71) vmϕ,z 4,2,−3/4−ε,Ωt ≤ c( αm1 4,2,−3/4−ε,Ωt + ‖hm‖2,−1,Ωt).

To estimate the first expression on the r.h.s. of (6.71) we apply (4.56) in the form

(6.72)
( t�

0

‖αm1(t′)‖21,−µ,Ω dt′
)1/2

≤ ϕ(‖vm−1‖A1−µ(Ωt))

·[|χm/r|10/3,Ωt‖hm−1‖2,−1,Ωt + ‖hm−1‖2,−1,Ωt + ‖wm−1‖2,1−µ,Ωt +X8],

where

(6.73) X8 = |F ′|2,Ωt + |F1|2,−µ,Ωt + |||α′(0)|||1,2,1−µ,Ω + |α1(0)|2,−µ,Ω .
Using (6.47) and (6.62) in (6.72) implies

(6.74)
( t�

0

‖αm1(t′)‖21,−µ,Ω dt′
)1/2

≤ ϕ(t1/2Km−1)[LmX1 +X5 +X8].

Taking µ = 1/2 + ε, ε > 0, we obtain from (6.71) and (6.74) the estimate

(6.75) vmϕ,z 4,2,−3/4−ε,Ωt ≤ ϕ(t1/2Km−1)[|χm/r|10/3,ΩtX1 +X5 +X8] + ϕ(Km)X1.

Employing (6.75) in (6.68) yields

Lm+1 ≤ c[Lm + 1 + ϕ(Km,Km−1)(Lm + 1)X7]δ0(6.76)

· [ε1Km + cε
−3/4
1 Lm + cε

−3/4
1 ϕ(Km−1)t1/2(Lm + 1)X7]

+ ϕ(Km, t
1/2Km−1)(Lm + 1)X9 + cY1,

where

(6.77) X9 = X1 +X5 +X7 +X8.
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Lemma 4.3 implies

|||α′m+1|||2,2,1−µ,Ωt ≤ ϕ(Km) sup
t
|α′m+1|2,1−µ,Ω + Lm+1ϕ(Km)X2(6.78)

+ ϕ(Km)X5 + c|α1m+1|2,−(1+µ),Ωt + cX8.

Lemma 4.4 yields

(6.79) sup
t
|α′m+1|2,Ω ≤ ϕ(Km)[Lm+1X5 +X9]

and Lemma 4.5 gives

(6.80) |α1m+1|2,−(1+µ),Ωt ≤ ϕ(Km)[Lm+1X5 +X9].

From (6.78)–(6.80) we have

(6.81) |||α′m+1|||2,2,1−µ,Ωt ≤ ϕ(Km)[Lm+1X5 +X9].

Inequality (4.49) implies

(6.82) |||χm+1|||2,2,1−µ,Ωt
≤ [ε3Km(t) + c(1/ε3)(sup

t
|vm|2,Ω + |vm|2,Ωt + c|||v(0)|||2,2,1−µ,Ω ]Lm+1

+ c(1 + Lm+1 + sup
t
‖wm‖1,0,Ω)‖hm‖2,−1,Ωt

+ c[sup
t
‖wm‖1,0,ΩKm + |χm+1|2,−(1+µ),Ωt + ε4Km + c(1/ε4)|vm|2,Ωt + Y2],

where

(6.83) Y2 = |F2|2,1−µ,Ωt + ‖χ(0)‖1,1−µ,Ω + |||v(0)|||2,2,1−µ,Ω .
Using (6.49) and (6.67) in (6.82) implies

(6.84) |||χm+1|||2,2,1−µ,Ωt ≤ [ε3Km + c(1/ε3)(sup
t
|vm|2,Ω + |vm|2,Ωt)

+ c|||v(0)|||2,2,1−µ,Ω ]Lm+1

+ cLm+1ϕ(Km)X6 + ϕ(Km)ectX6 + |χm+1|2,−(1+µ),Ωt

+ ε4Km + c(1/ε4)|vm|2,Ωt + cY2.

From (6.54) and (6.55) we have

(6.85) sup
t
|vm|2,Ω + |vm|2,Ωt ≤ c(t1/2 α′m Ωt + χm/r Ωt)

≤ ϕ(Km−1)t1/2[(Lm + 1)‖hm−1‖2,−1,Ωt + ‖wm−1‖2,1−µ,Ωt +X3] + cLm.

Using (6.49) and (6.62) in (6.85) yields

(6.86) sup
t
|vm|2,Ω + |vm|2,Ωt ≤ ϕ(Km,Km−1)(Lm + 1)t1/2(X2 +X3 +X5) + cLm.

Employing (6.86) in (6.84) gives

|||χm+1|||2,2,1−µ,Ωt ≤ [ε3Km + cε
−3/4
3 (ϕ(Km,Km−1)(Lm + 1)(6.87)

· t1/2(X2 +X3 +X5) + cLm) + c|||v(0)|||2,2,1−µ,Ω ]Lm+1
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+ Lm+1ϕ(Km)X6 + ϕ(Km)ectX6 + |χm+1|2,−(1+µ),Ωt

+ ε4Km + cε
−3/4
4 (ϕ(Km,Km−1)(Lm + 1)t1/2(X2 +X3 +X5) + cLm) + cY2.

From (6.81) and (6.87) we have

(6.88) |||αm+1|||2,2,1−µ,Ωt ≤ [ε5Km + cε
−3/4
5 (ϕ(Km,Km−1)(Lm + 1)

· t1/2(X2 +X3 +X5) + cLm) + c|||v(0)|||2,2,1−µ,Ω ](Lm+1 + 1)

+ ϕ(Km)(Lm+1 + ect)(X6 +X9) + c|χm+1|2,−(1+µ),Ωt + cY2.

Applying [zaj 2] to (6.6) yields

(6.89) ‖vm+1‖A1−µ(Ωt) ≤ c|||αm+1|||2,2,1−µ,Ωt .

Hence (6.88) and (6.89) imply

Km+1 ≤ [ε5Km + cε
−3/4
5 (ϕ(Km,Km−1)(Lm + 1)t1/2X + cLm)(6.90)

+ c|||v(0)|||2,2,1−µ,Ω ](Lm+1 + 1)

+ ϕ(Km)(Lm+1 + ect)X + cLm+1 + cY2,

where

(6.91) X =
9∑

i=1

Xi.

Assume that A and B are constants and

(6.92) Lm ≤ B, Km ≤ A, Km−1 ≤ A.

Then (6.76) and (6.90) imply

Lm+1 ≤ c[B + 1 + ϕ(A)(B + 1)X]δ0[ε1A+ cε
−3/4
1 B(6.93)

+ cε
−3/4
1 ϕ(A)t1/2(B + 1)X] + ϕ(A)(B + 1)X + cY1

and

Km+1 ≤ [ε5A+ cε
−3/4
5 (ϕ(A)(B + 1)t1/2X + cB)(6.94)

+ c|||v(0)|||2,2,1−µ,Ω ](B + 1) + ϕ(A)(B + ect)X + cB + cY2.

To show that Km+1 ≤ A and Lm+1 ≤ B we assume that

(6.95) [ε5A+ cε
−3/4
5 (ϕ(A)(B + 1)t1/2X + cB) + c|||v(0)|||2,2,1−µ,Ω ](B + 1)

+ϕ(A)(B + ect)X + cB + cY2 ≤ A

and

(6.96) c[B + 1 + ϕ(A)(B + 1)X]δ0[ε1A+ cε
−3/4
1 B + cε

−3/4
1 ϕ(A)t1/2(B + 1)X]

+ϕ(A)(B + 1)X + cY1 ≤ B.

To have (6.96) we require that

(6.97) c(B + 1)(ε1A+ cε
−3/4
1 B)δ0 + cY1 ≤

1
2
B, ϕ(A,B)t1/2X ≤ 1

2
B.



6.3. Estimate of the general step 77

and to have (6.95) we introduce the restrictions

(6.98)

ε5(B + 1) ≤ 1
3
,

c(3(B + 1))3/4B(B + 1) + c|||v(0)|||2,2,1−µ,Ω(B + 1) + c(B + Y2) ≤ 1
3
A,

c(3(B + 1))3/4ϕ(A,B)ectX ≤ 1
3
A.

Hence we obtain

(6.99)

δ0 ≤
B

c(B + 1)(A+B)
≤ 1
c(A+B)

,

B ≥ Y1,

cB(B + 1)7/4 + |||v(0)|||2,2,1−µ,Ω(B + 1) + c(B + Y2) ≤ 1
3
A.

Continuing, we have

(6.100)

B ≥ Y1,

1
3
A ≥ cY1(Y1 + 1)7/4 + (Y1 + 1)|||v(0)|||2,2,1−µ,Ω + c(Y1 + Y2),

δ0 ≤
1

c[Y1(Y1 + 1)7/4 + (Y1 + 1)|||v(0)|||2,2,1−µ,Ω + Y1 + Y2]

From the above considerations we obtain (6.45). This concludes the proof.



7. Local existence: convergence of the approximating sequence

In this section we prove that the sequence examined in Section 6 converges. We show
this step by step by dividing the interval [0, T ] into sufficiently small subintervals and by
assuming that X and δ0 (see Lemma 6.2) are sufficiently small.

7.1. Problems for differences. To show convergence of the sequence constructed in
Section 6 we introduce the differences

(7.1)

Hm = hm − hm−1, Qm = qm − qm−1, Wm = wm − wm−1,

Pm = pm − pm−1, Am = αm − αm−1, Vm = vm − vm−1,

Km = χm − χm−1.

Now we formulate problems for the differences. From (6.1) we have

(7.2)

Hm,t − ν divD(Hm) +∇Qm = −(Vm · ∇hm + vm−1 · ∇Hm

+Hm · ∇vm + hm−1 · ∇Vm),

divHm = 0,

Hm · n = 0

n · D(Hm) · τα +
γ

ν
Hm · τα = 0, α = 1, 2,

Hm|t=0 = 0.

From (6.2) we get

(7.3)

Wm,t + Vm · ∇wm + vm−1 · ∇Wm +
Vmr
r

wm +
vm−1 r

r
Wm

− ν∆Wm + ν
Wm

r2 =
Qm
r

+
2νHmr

r2 ,

a1Wm,r + a2Wm,z +
γ

ν
Wm =

1
r
a1Wm,

Wm|t=0 = 0.

From (6.3) we obtain

(7.4)

A1m+1,t + Vm · ∇α1m + vm · ∇A1m+1 −A1m+1vmr,r − α1mVmr,r

− A2m+1

r
hmr −

α2m

r
Hmr −A3m+1vmr,z − α3mVmr,z

+
2ν
r2 (Hmr,z −Hmz,r) +

ν

r2 A1m+1 − ν∆A1m+1 = 0,

[78]
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(7.4)
[cont.]

A3m+1,t + Vm · ∇α3m + vm · ∇A3m+1

−A1m+1vmz,r − α1mVmz,r −A3m+1vmz,z − α3mVmz,z

− A2m+1

r
hmz −

α2m

r
Hmz − ν∆A3m+1 = 0,

a2A1m+1 − a1A3m+1 = −2a1

r
Wm +

γ

ν
Wm,

(a1A1m+1 + a2A3m+1),n = β1Hmr + β2Hmz + β3Wm,r

+ β4Wm,z + β5Wm,

A1m+1|t=0 = 0, A3m+1|t=0 = 0.

From (6.4) we get

(7.5)

Km+1,t + vm · ∇Km+1 + Vm · ∇χm −
hmϕ
r

Km+1 −
Hmϕ

r
χm

− vmr
r

Km+1 −
Vmr
r

χm − ν∆Km+1 + ν
Km+1

r2

= −1
r

(
wm,zHmr +Wm,zhm−1 r − wm,rHmz −Wm,rhm−1 z

+
wm
r
Hmz +

Wm

r
hm−1 z

)
+

2wmVmϕ,z
r

+
2Wmvm−1ϕ,z

r

+
2ν
r2

(
1
r
Hmz,ϕ −Hmϕ,z

)
in ΩT ,

Km+1 = 2(k − γ/(2ν))Vm · τ2 on ST ,

Km+1|t=0 = 0 in Ω.

Problem (6.5) gives

(7.6)
∆Pm = −∇Vm · ∇vm −∇vm−1 · ∇Vm,
∂Pm
∂n

= νn ·∆Vm − n · Vm · ∇vm − n · vm−1 · ∇Vm.

Finally, problem (6.6) implies

(7.7)

rotVm+1 = Am+1,

div Vm+1 = 0,

Vm+1 · n = 0.

7.2. Estimates of differences. Now we obtain estimates for solutions of problems
(7.2)–(7.7). First we obtain an estimate for Am+1.

Lemma 7.1. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then

(7.8) |||A′m+1|||2,2,1−µ,Ωt + |A′m+1|2,Ω + |A1m+1|2,−(1+µ),Ωt

≤ ϕ(A)[X(sup
t
|A2m+1|2,−1,Ω + ‖Vm‖A1−µ(Ωt))

+ ‖Wm‖2,1−µ,Ωt + ‖Hm‖2,−1,Ωt ].
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Proof. For solutions of (7.4) we have

(7.9) |||A′m+1|||2,2,1−µ,Ωt ≤ c[|Vm∇α′m+1|2,1−µ,Ωt + |vm−1∇A′m+1|2,1−µ,Ωt

+ |A′m+1vm,x|2,1−µ,Ωt + |α′mVm,x|2,1−µ,Ωt +
∣∣∣∣
A2m+1

r
hm

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
α2m

r
Hm

∣∣∣∣
2,1−µ,Ωt

+ |A1m+1|2,−(1+µ),Ωt + |Hm,x|2,−(1+µ),Ωt

+ ‖Wm‖2,1−µ,Ωt + ‖Hm‖1,1−µ,Ωt ],
where we assumed that a1 ∼ cr near r = 0. Now we estimate the particular terms of the
r.h.s. of (7.9). The first term is bounded by

sup
t
|Vm|2λ2,Ω

( t�

0

|∇α′m+1(t′)|22λ1,1−µ,Ω dt
′
)1/2

≡ I1,

whenever 1/λ1 + 1/λ2 = 1, λ1 < 3 but λ1 is arbitrarily close to 3. By Lemma 2.0 we have

I1 ≤ ct1/2
( t�

0

|Vm,t′(t′)|22λ2,Ω dt
′
)1/2( t�

0

|||α′m+1(t′)|||22,2,1−µ,Ω dt′
)1/2

≤ ct1/2
( t�

0

|||Vm,t′(t′)|||21,2,1−µ,Ω dt′
)1/2
|||α′m+1|||2,2,1−µ,Ωt

≤ ct1/2‖Vm‖A1−µ(Ωt)|||α′m+1|||2,2,1−µ,Ωt ≤ ct1/2ϕ(A)‖Vm‖A1−µ(Ωt),

where in the last inequality Lemma 6.2 was used.
The second and third terms on the r.h.s. of (7.9) are estimated by (see [zaj 5, Ch. 7])

ε|||A′m+1|||2,2,1−µ,Ωt + c(1/ε)taϕ(A) sup
t
|A′m+1|2,1−µ,Ω , a > 0.

The fourth term on the r.h.s. of (7.9) is bounded by

sup
t
|Vm,x|2,1−µ,Ω

( t�

0

|α′m(t′)|2∞,Ω dt′
)1/2

≤ ct1/2
( t�

0

|Vm,xt′(t′)|22,1−µ,Ω dt′
)1/2( t�

0

|||α′m(t′)|||2,2,1−µ,Ω dt′
)1/2

≤ ct1/2‖Vm‖A1−mµ(Ωt)|||α′m|||2,2,1−µ,Ωt ≤ ct1/2ϕ(A)‖Vm‖A1−µ(Ωt),

where we used Lemma 2.0 for µ > 1/2.
The fifth term is estimated by

sup
t

∣∣∣∣
A2m+1

r

∣∣∣∣
2,Ω

( t�

0

|hm(t′)|2∞,1−µ,Ω dt′
)1/2

≤ c‖hm‖2,1−µ,Ωt sup
t

∣∣∣∣
A2m+1

r

∣∣∣∣
2,Ω
≤ cϕ(A)X(t) sup

t

∣∣∣∣
A2m+1

r

∣∣∣∣
2,Ω

,

where we used Lemma 6.2 and (6.47).
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We bound the sixth term by

sup
t

∣∣∣∣
α2m

r

∣∣∣∣
2,Ω

( t�

0

|Hm(t′)|2∞,1−µ,Ω dt′
)1/2

≤ sup
t

∣∣∣∣
α2m

r

∣∣∣∣
2,Ω
‖Hm‖2,1−µ,Ωt

≤ ϕ(B)‖Hm‖2,1−µ,Ωt .

Summarizing we obtain the estimate

(7.10) |||A′m+1|||2,2,1−µ,Ωt ≤ t1/2ϕ(A)‖Vm‖A1−µ(Ωt) + taϕ(A) sup
t
|A′m+1|2,1−µ,Ω

+ ϕ(A)X sup
t
|A2m+1/r|2,Ω + ϕ(B)‖Hm‖2,1−µ,Ωt

+ c(|A1m+1|2,−(1+µ),Ωt + |Hm,x|2,−(1+µ),Ωt + ‖Wm‖2,1−µ,Ωt
+ ‖Hm‖1,1−µ,Ωt).

Using

sup
t
|A′m+1|2,1−µ,Ω ≤ t1/2

( t�

0

|A′m+1,t′(t
′)|22,1−µ,Ω dt′

)1/2

≤ t1/2|||A′m+1|||2,2,1−µ,Ωt

in the r.h.s. of (7.10) and assuming that t is sufficiently small we obtain from (7.10) the
inequality

(7.11) |||A′m+1|||2,2,1−µ,Ωt ≤ t1/2ϕ(A)‖Vm‖A1−µ(Ωt)

+ ϕ(A)X sup
t
|A2m+1/r|2,Ω + ϕ(B)‖Hm‖2,1−µ,Ωt

+ c(|A1m+1|2,−(1+µ),Ωt + |Hm,x|2,−(1+µ),Ωt + ‖Wm‖2,1−µ,Ωt + ‖Hm‖1,1−µ,Ωt).

To obtain an estimate for |A1m+1|2,−(1+µ),Ωt we introduce functions Ã1m+1, Ã3m+1 as
solutions to the problem

(7.12)

Ã1m+1,t − ν∆Ã1m+1 = 0,

Ã3m+1,t − ν∆Ã3m+1 = 0,

a2Ã1m+1 − a1Ã3m+1 = −2a1

r
Wm +

γ

ν
Wm ≡ G1m,

(a1Ã1m+1 + a2Ã3m+1),n = β1Hmr + β2Hmz + β3Wm,r

+ β4Wm,z + β5Wm ≡ G2m,

Ã1m+1|t=0 = 0,

Ã3m+1|t=0 = 0.

Then

(7.13) A1m+1 = A1m+1 − Ã1m+1, A3m+1 = A3m+1 − Ã3m+1

are solutions to the problem
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(7.14)

A1m+1,t − ν∆A1m+1 + vm · ∇A1m+1 + Vm · ∇α1m

−
(
A1m+1vmr,r + α1mVmr,r +A3m+1vmr,z + α3mVmr,z

+
A2m+1

r
hmr +

α2m

r
Hmr

)
+

2ν
r2 (Hmr,z −Hmz,r) + ν

A1m+1

r2

= − (vm · ∇Ã1m+1 + Vm · ∇α̃1m) + Ã1m+1vmr,r + α̃1mVmr,r

+ Ã3m+1vmr,z + α̃3mVmr,z − ν
Ã1m+1

r2 ,

A3m+1,t − ν∆A3m+1 + vm · ∇A3m+1 + Vm · ∇α3m −A1m+1vmz,r

− α1mVmz,r −A3m+1vmz,z − α3mVmz,z −
A2m+1

r
hmz −

α2m

r
Hmz

= − vm · ∇Ã3m+1 − Vm · ∇α̃3m + Ã1m+1vmz,r + α̃1mVmz,r

+ Ã3m+1vmz,z + α̃3mVmz,z ,

a2A1m+1 − a1A3m+1 = 0,

(a1A1m+1 + a2A3m+1),n = 0.

First we obtain the energy estimate for solutions of problem (7.12). Multiplying (7.12)1

by Ã1m+1, (7.12)2 by Ã3m+1, integrating the results over Ω and adding we have

(7.15)
1
2
d

dt
|Ã′m+1|22,Ω+ν|∇Ã′m+1|22,Ω = ν

�

S

(Ã1m+1,nÃ1m+1 +Ã3m+1,nÃ3m+1) dS ≡ I,

where Ã′m+1 = (Ã1m+1, Ã3m+1).
Making use of the boundary conditions yields

|I| ≤ ε|||Ã′m+1|||22,2,1−µ,Ω + c(ε)|G′m|22,S ,
where G′m = (G1m, G2m).

Applying potential theory to (7.12) implies

(7.16) |||Ã′m+1|||2,2,1−µ,Ωt ≤ c(|||G1m|||3/2,2,1−µ,St + |||G2m|||1/2,2,1−µ,St).
Integrating (7.15) with respect to time with the estimate for I, employing (7.16) and the
explicit form of G′m we obtain

(7.17) |Ã′m+1|2,Ω + |||Ã′m+1|||2,2,1−µ,Ωt ≤ c(‖Wm‖2,1−µ,Ωt + ‖Hm‖2,−1,Ωt).

To estimate |Ã1m+1|2,−(1+µ),Ωt we consider the problem

Ã′1m+1,t − ν∆Ã′1m+1 = −2ν∇Ã1m+1∇ζ − ν∆ζÃ1m+1,

Ã′1m+1|S2 =
a1

a2
Ã′3m+1 +

1
a2
G′1m,(7.18)

Ã1m+1|t=0 = 0,

where Ã′1m+1 = Ã1m+1ζ, Ã′3m+1 = Ã3m+1ζ, G′1m = G1mζ, where ζ is defined before
(4.33).
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Assuming |a1/a2| ≤ cr2, |∇(a1/a2)| ≤ cr, |∇2(a1/a2)| ≤ c in a neighbourhood of the
points r = 0, z ∈ {−a, a}, we have

(7.19) ‖Ã1m+1‖2,1−µ,Ωt ≤ c(|||Ã3m+1|||2,2,1−µ,Ωt + ‖Wm‖2,1−µ,Ωt + ‖Hm‖2,−1,Ωt).

By (7.17) and (7.19) we obtain

(7.20) |Ã1m+1|2,−(1+µ),Ωt ≤ c(‖Wm‖2,1−µ,Ωt + ‖Hm‖2,−1,Ωt).

Our aim is to obtain an estimate for |A1m+1|2,−(1+µ),Ωt . Since (7.20) is already shown
we need to find an estimate for |A1m+1|2,−(1+µ),Ωt . For this purpose we use problem
(7.14). Multiplying (7.14)1 by A1m+1r

−2µ and integrating over Ω implies

(7.21)
1
2
d

dt
|A1m+1|22,−µ,Ω − ν

�

Ω

∆A1m+1A1m+1r
−2µ dx

+
�

Ω

vm · ∇A1m+1A1m+1r
−2µ dx+

�

Ω

Vm · ∇α1mA1mr
−2µ dx

−
�

Ω

(
A1m+1vmr,r + α1mVmr,r +A3m+1vmr,z + α3mVmr,z

+
A2m+1

r
hmr +

α2m

r
Hmr

)
A1m+1r

−2µ dx

+ 2ν
�

Ω

1
r2 (Hmr,z −Hmz,r)A1m+1r

−2µ dx+ ν|A1m+1|22,−(1+µ),Ω

= −
�

Ω

(vm · ∇Ã1m+1 + Vm · ∇α̃1m)A1m+1r
−2µ dx

+
�

Ω

(Ã1m+1vmr,r + α̃1mVmr,r + Ã3m+1vmr,z + α̃3mVmr,z)A1m+1r
−2µ dx.

To examine the second term on the l.h.s. of (7.21) we transform the boundary conditions
(7.14)3,4 to the form

(7.22)
A1m+1 =

a1

a2
A3m+1 for a2 6= 0,

A1m+1,n = −a1,n

a1
A1m+1 −

a2,n

a1
A3m+1 −

a2

a1
A3m+1,n for a1 6= 0.

By integrating by parts, the second term on the l.h.s. of (7.21) takes the form

− ν
�

Ω

div(∇A1m+1A1m+1r
−2µ) dx+ ν|∇A1m+1|22,−µ,Ω

− 2µν
�

Ω

∇A1m+1A1m+1r
−2µ−1∇rdx,

where by the Young inequality the last term is estimated by
ν

2
|A1m+1,x|22,−µ,Ω + 2µ2ν|A1m+1|22,−(1+µ),Ω
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and the first equals

−ν
�

S

n · ∇A1m+1A1m+1r
−2µdS ≡ I.

Hence, we have

|I| ≤ ε|||A1m+1|||22,2,1−µ,Ω + c(ε)|A1m+1|22,1−µ,Ω ,

where we used Lemma 2.6.

The third term on the l.h.s. of (7.21) equals

1
2

�

Ω

vm · ∇A2
1m+1r

−2µ dx

=
1
2

�

Ω

vm · ∇(A2
1m+1r

−2µ) dx+ µ
�

Ω

A2
1m+1r

−2µ−1vm · ∇r dx,

where the first term vanishes and the second is estimated by

ε|A1m+1|22,−(1+µ),Ω + c(ε)
�

Ω

|vmA1m+1|2r−2µ dx,

and we bound the last term by

|vm|2∞,Ω |A1m+1|22,−µ,Ω ≤ c|||vm|||23,2,1−µ,Ω |A1m+1|22,−µ,Ω .

The fourth term on the l.h.s. of (7.21) is estimated by

|Vm · ∇α′1mr−µ|6/5,Ω |A1m+1|6,−µ,Ω ≤ ε‖A1m+1‖21,−µ,Ω
+ c(ε)|Vm|23,Ω |∇α′m|22,−µ,Ω .

The fifth term on the l.h.s. of (7.21) is estimated by

ε‖A′m+1‖21,−µ,Ω + c(1/ε)(|vm,x|23,Ω |A1m+1|22,−µ,Ω + |α′m|22,−µ,Ω |Vm,x|23,Ω
+ |A2m+1|22,−1,Ω |hm|23,−µ,Ω + |α2m|22,−1,Ω |Hm|23,−µ,Ω).

We estimate the sixth term on the l.h.s. of (7.21) by

ε|A1m+1|22,−µ,Ω + c(1/ε)|Hm,x|22,−(1+µ),Ω .

The first term on the r.h.s. is bounded by

ε‖A1m+1‖21,−µ,Ω + c(1/ε)(|vm|23,Ω |∇Ã1m+1|22,−µ,Ω + |Vm|23,Ω |∇α̃1m|22,−µ,Ω).

Finally, the last integral on the r.h.s. of (7.21) is estimated by

ε‖A1m+1‖21,−µ,Ω + c(1/ε)(|vm,x|23,−µ,Ω |Ã′m+1|22,Ω + |Vm,x|23,−µ,Ω |α̃′m|22,Ω).

Employing the above estimates in (7.21) and integrating the result with respect to time
we obtain
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(7.23) |A1m+1|22,−µ,Ω + ν|∇A1m+1|22,−µ,Ωt + ν(1− 2µ2 − ε)|A1m+1|22,−(1+µ),Ωt

≤ exp
( t�

0

(|||vm(t′)|||23,1−µ,Ω + |vm,x|23,Ω) dt′
)[
ε|||A′m+1|||22,2,1−µ,Ωt

+ c(1/ε)
t�

0

‖A′m+1(t′)‖21,Ω dt′ + c
(

sup
t
|Vm|23,Ω |∇α′m|22,−µ,Ωt

+ sup
t
|α′m|22,−µ,Ω

t�

0

|Vm,x|23,Ω dt′ + sup
t
|A2m+1|22,−1,Ω

t�

0

|hm(t′)|23,−µ,Ω dt′

+ sup
t
|α2m|22,−1,Ω

t�

0

|Hm(t′)|23,−µ,Ω dt′ + |Hm,x|22,−(1+µ),Ωt

+ sup
t
|vm|23,Ω |∇Ã1m+1|22,−µ,Ωt + sup

t
|Vm|23,Ω |∇α̃1m|22,−µ,Ωt

+ |vm,x|23,−µ,Ωt sup
t
|Ã′m+1|22,Ω + |Vm,x|23,−µ,Ωt sup

t
|α̃′m|22,Ω

)]
,

where the exponent factor follows from integration of terms which contain |A1m+1|22,−µ,Ω .
Using the imbeddings

(7.23′)

sup
t
|Vm|3,Ω ≤ t1/2

( t�

0

|Vm,t′ |23,Ω dt′
)1/2

≤ t1/2
( t�

0

‖Vm,t′‖21,1−µ,Ω dt′
)1/2

,

t�

0

|Vm,x(t′)|23,Ω dt′ ≤
t�

0

|Vm,xx(t′)|23,1−µ,Ω dt′ ≤
t�

0

|||Vm,x(t′)|||22,2,1−µ,Ω dt′

≤ ‖Vm‖2A1−µ(Ωt),

t�

0

‖A′m+1(t′)‖21,Ω dt′ ≤ ε|||A′m+1|||22,1−µ,Ωt + c(1/ε)|A′m+1|22,Ωt ,

estimate (6.45), estimates for small quantities bounded by X and (7.17) we obtain from
(7.23) the inequality

(7.24) |A1m+1|22,−µ,Ω + ν(1− ε∗/2)|∇A1m+1|22,−µ,Ωt
+ ν(1− 2µ2/ε∗ − ε0)|A1m+1|22,−(1+µ),Ωt

≤ ϕ(A)[ε|||A′m+1|||22,1−µ,Ωt + c(1/ε)|A′m+1|22,Ωt
+X2 sup

t
|A2m+1|22,−1,Ω +X2‖Vm‖2A1−µ(Ωt) + ‖Wm‖22,1−µ,Ωt

+ ‖Hm‖22,−1,Ωt + |Hm,x|22,−(1+µ),Ωt ],

where ε0 is any small positive number, ε∗ ∈ (0, 2).
Finally, we have to estimate the first term on the r.h.s. of (7.24). Applying potential

theory to problem (7.14) yields
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(7.25) |||A′m+1|||2,2,1−µ,Ωt ≤ c[|vm · ∇A′m+1|2,1−µ,Ωt + |Vm · ∇α′m|2,1−µ,Ωt

+ |A′m+1 · vm,x|2,1−µ,Ωt + |α′m · Vm,x|2,1−µ,Ωt +
∣∣∣∣
A2m+1

r
hm

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
α2m

r
Hm

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣

1
r2 Hm,x

∣∣∣∣
2,1−µ,Ωt

+ |A1m+1|2,−(1+µ),Ωt

+ |vm · ∇Ã′m+1|2,1−µ,Ωt + |Ã′m+1vm,x|2,1−µ,Ωt

+ |Vm · ∇α̃′m|2,1−µ,Ωt + |α̃′mVm,x|2,1−µ,Ωt ],
where in the above estimate v,x replaces vr,r, vr,z , vz,r, vz,z and similarly for other
quantities.

Now we estimate the terms on the r.h.s. of (7.25). We estimate the first term by

|vm|∞,Ωt |∇A′m+1|2,1−µ,Ωt ≤ ε|||A′m+1|||2,2,1−µ,Ωt + c(1/ε)ϕ(A)|A′m+1|2,Ωt ,
where we used the imbedding

|vm|∞,Ωt ≤ |vm|∞,ΩT ≤ c‖vm‖A1−µ(ΩT ) ≤ cA;

here we exploit the fact that we examine convergence in a short time interval (0, t) but
quantities like vm, αm and so on are estimated on the large interval [0, T ] in view of
Lemma 6.2. In this way we circumvent the difficulties connected with applying some
imbeddings on small time intervals, which could imply that the imbedding constants
behave as t−a, a > 0, for t small.

The second term on the r.h.s. of (7.25) is estimated by

( t�

0

|Vm|23,Ω |∇α′m|26,1−µ,Ω dt
)1/2

≤ sup
t
|Vm|3,Ω |||α′m|||2,2,1−µ,Ωt ≤ ct1/2‖Vm‖2A1−µ(Ωt)X.

The third term is dominated by

( t�

0

|A′m+1|26′,1−µ,Ω |vm,x|23′,Ω dt′
)1/2

≤ sup
t
|A′m+1|6′,1−µ,Ω

( t�

0

|vm,x|23′,Ω dt′
)1/2

≤ ε sup
t
|||A′m+1|||1,2,1−µ,Ω + ϕ(1/ε,A) sup

t
|A′m+1|2,Ω

≤ ε|||A′m+1|||2,2,1−µ,Ωt + ϕ(1/ε,A) sup
t
|A′m+1|2,Ω ,

where 6′ < 6 and 3′ > 3 are such that 2/6′ + 2/3′ = 1 and

( t�

0

|vm,x|23′,Ω dt′
)1/2

≤ c
( t�

0

|||vm|||22,2,1−µ,Ω dt′
)1/2

≤ cA,

and ϕ(1/ε,A) is an increasing positive function.
Similarly, the fourth term is bounded by

sup
t
|α′m|6′,1−µ,Ω

( t�

0

|Vm,x|23′,Ω dt′
)1/2

≤ c|||α′m|||2,2,1−µ,ΩT ‖Vm‖A1−µ(Ωt)

≤ cX‖Vm‖A1−µ(Ωt).
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The fifth term is estimated by

sup
t

∣∣∣∣
A2m+1

r

∣∣∣∣
2,Ω

( t�

0

|hm|2∞,1−µ,Ω dt′
)1/2

≤ c sup
t
|A2m+1|2,−1,Ω‖hm‖2,1−µ,Ωt

≤ cX sup
t
|A2m+1|2,−1,Ω ,

and similarly the sixth by

sup
t
|α2m|2,−1,Ω‖Hm‖2,1−µ,Ωt ≤ ϕ(A)‖Hm‖2,1−µ,Ωt .

Finally, the last four terms on the r.h.s. of (7.25) are estimated in the following way:

|vm · ∇Ã′m+1|2,1−µ,Ωt ≤ c|vm|∞,ΩT |∇Ã′m+1|2,1−µ,Ωt ≤ ϕ(A)|||Ã′m+1|||2,2,1−µ,Ωt ,

|Ã′m+1vm,x|2,1−µ,Ωt ≤ sup
t
|Ã′m+1|6,1−µ,Ω

( T�

0

|vm,x(t′)|23,Ω dt′
)1/2

≤ c|||Ã′m+1|||2,2,1−µ,Ωt‖vm‖A1−µ(ΩT ) ≤ ϕ(A)|||Ã′m+1|||2,2,1−µ,Ωt ,

|Vm · ∇α̃′m|2,1−µ,Ωt ≤ sup
t
|Vm|3,Ω

( t�

0

|∇α̃′m|26,1−µ,Ω dt′
)1/2

≤ c‖α̃′m‖2,1−µ,Ωtt1/2‖Vm‖A1−µ(Ωt) ≤ cXt1/2‖Vm‖A1−µ(Ωt),

|α̃′mVm,x|2,1−µ,Ωt ≤ sup
t
|α̃′m|6,1−µ,Ω

( t�

0

|Vm,x|23,Ω dt′
)1/2

≤ c|||α̃′m|||2,2,1−µ,Ωt‖Vm‖A1−µ(Ωt) ≤ ϕ(A)X‖Vm‖A1−µ(Ωt).

Summarizing the above estimates we obtain

|||A′m+1|||2,2,1−µ,Ωt ≤ ϕ(A)[sup
t
|A′m+1|2,Ω + |A′m+1|2,Ωt(7.26)

+X(‖Vm‖A1−µ(Ωt) + sup
t
|A2m+1|2,−1,Ω) + ‖Hm‖2,−1,Ωt

+ ‖Wm‖2,1−µ,Ωt + |A1m+1|2,−(1+µ),Ωt ],

where (7.17) was exploited.

Finally, we have to estimate the second term on the r.h.s. of (7.24) and the first two
terms on the r.h.s. of (7.26). For this purpose we multiply (7.14)1 by A1m+1 and (7.14)2

by A3m+1. Adding the results and integrating over Ω we obtain

(7.27)
d

dt
|A′m+1|22,Ω + ν|∇A′m+1|22,Ω + ν|A1m+1|22,−1,Ω ≤ −

�

Ω

vm · ∇A′m+1 ·A′m+1 dx

−
�

Ω

Vm · ∇α′m ·A′m+1 dx+
�

Ω

(|A′m+1|2|vm,x|+ |α′m| |Vm,x| |A′m+1|) dx

+
�

Ω

(∣∣∣∣
A2m+1

r

∣∣∣∣ |hm| |A′m+1|+
∣∣∣∣
α2m

r

∣∣∣∣ |Hm| |A′m+1|
)
dx
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+
�

Ω

(|vm| |∇Ã′m+1| |A′m+1|+ |Vm| |∇α̃′m| |A′m+1|) dx

+
�

Ω

(|Ã′m+1| |A′m+1| |vm,x|+ |α̃′m| |Vm,x| |A′m+1|) dx,

where the first term on the r.h.s. vanishes because
�

Ω

1
2
vm · ∇|A′m+1|2 dx = 0.

Hence applying the Hölder and Young inequalities we obtain

(7.28)
d

dt
|A′m+1|22,Ω + ν|∇A′m+1|22,Ω + ν|A1m+1|22,−1,Ω ≤ ε|A′m+1|26,Ω

+ c(ε)(|Vm|23,Ω |∇α′m|22,Ω + |A′m+1|22,Ω |vm,x|23,Ω + |α′m|22,Ω |Vm,x|23,Ω
+ |A2m+1|22,−1,Ω |hm|23,Ω + |α2m|22,−1,Ω |Hm|23,Ω
+ |vm|23,Ω |∇Ã′m+1|22,Ω + |Vm|23,Ω |∇α̃′m|22,Ω
+ |Ã′m+1|22,Ω |vm,x|23,Ω + |α̃′m|22,Ω |Vm,x|23,Ω).

Choosing ε sufficiently small and integrating the result with respect to time we get

(7.29) |A′m+1|22,Ω + ν|∇A′m+1|22,Ωt + ν|A′1m+1|22,−1,Ωt

≤ exp
( t�

0

|vm,x(t′)|23,Ω dt′
)[
ε|A3m+1|22,Ωt + sup

t
|Vm|23,Ω

t�

0

|∇α′m|22,Ω dt′

+ sup
t
|α′m|22,Ω

t�

0

|Vm,x|23,Ω dt′ + sup
t
|A2m+1|22,−1,Ω

t�

0

|hm|23,Ω dt′

+ sup
t
|α2m|22,−1,Ω

t�

0

|Hm|23,Ω dt′ + sup
t
|vm|23,Ω

t�

0

|∇Ã′m+1|22,Ω dt′

+ sup
t
|Vm|23,Ω

t�

0

|∇α̃′m|22,Ω dt′ + sup
t
|Ã′m+1|22,Ω

t�

0

|vm,x|23,Ω dt′

+ sup
t
|α̃′|22,Ω

t�

0

|Vm,x|23,Ω dt′
]
.

Applying imbeddings (7.23′), Lemma 6.2, estimates for small quantities bounded by X

and (7.17) we obtain

(7.30) |A′m+1|22,Ω + ν|∇A′m+1|22,Ωt + ν|A1m+1|22,−1,Ωt

≤ ε|A3m+1|22,Ωt + ϕ(A)
[
X2‖Vm‖2A1−µ(Ωt) +X2 sup

t
|A2m+1|22,−1,Ω

+ ‖Hm‖22,−1,Ωt + ‖Wm‖22,1−µ,Ωt ].
Now we have to estimate the first term on the r.h.s. of (7.30). For this purpose we consider



7.2. Estimates of differences 89

the boundary condition (7.14)3 in the form

(7.31) A3m+1 =
a2

a1
A1m+1,

so it is defined on S1 only.
Let us introduce a new function Â3m+1 by the relation

(7.32) Â3m+1|S1 =
a2

a1
A1m+1.

Then the function

A′′3m+1 = A3m+1 − Â3m+1

is such that

A′′3m+1|S1 = 0.

Hence by the Poincaré inequality we have

|A3m+1|2,Ω ≤ |Â3m+1|2,Ω + |A′′3m+1|2,Ω(7.33)

≤ c|∇A′′3m+1|2,Ω + c|Â3m+1|2,Ω
≤ c|∇A′′3m+1|2,Ω + c‖Â3m+1‖1,Ω
≤ c|∇A3m+1|2,Ω + c‖A1m+1‖1,Ω .

In view of (7.33) the inequality (7.30) takes the form

(7.34) |A′m+1|22,Ω + ν|∇Am+1|22,Ωt + ν|A1m+1|22,−1,Ωt

≤ ϕ(A)[X2‖Vm‖2A1−µ(Ωt) +X2 sup
t
|A2m+1|22,−1,Ω

+ ‖Hm‖22,−1,Ωt + ‖Wm‖22,1−µ,Ωt ].
Using again (7.33) we obtain

(7.35) |A′m+1|22,Ω + ν

t�

0

‖A′m+1‖21,Ω dt′ + |A1m+1|22,−1,Ωt

≤ ϕ(A)[X2‖Vm‖2A1−µ(Ωt) +X2 sup
t
|A2m+1|22,−1,Ω

+ ‖Hm‖22,−1,Ωt + ‖Wm‖22,1−µ,Ωt ].
From (7.24), (7.26) and (7.35) we have

(7.36) |A1m+1|2,−µ,Ω + |∇A1m+1|2,−µ,Ωt + |A1m+1|2,−(1+µ),Ωt

+ |A′m+1|2,Ω +
( t�

0

‖A′m+1(t′)‖21,Ω dt′
)1/2

+ |||A′m+1|||2,1−µ,Ωt

≤ ϕ(A)[X(sup
t
|A2m+1|2,−1,Ω + ‖Vm‖A1−µ(Ωt)) + ‖Wm‖2,1−µ,Ωt

+ ‖Hm‖2,−1,Ωt ].

Finally, from (7.17), (7.20) and (7.36) we obtain (7.8). This concludes the proof.

For solutions of problem (7.2) we have
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Lemma 7.2. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then

(7.37) ‖Hm‖2,−µ′,Ωt + |∇Qm|2,−µ′,Ωt ≤ ct1/2X‖Vm‖A1−µ(Ωt)

for all µ′ ∈ (0, 1].

Proof. For solutions of problem (7.2) we have

(7.38) ‖Hm‖2,−µ′,Ωt + |∇Qm|2,−µ′,Ωt ≤ c(|Vm∇hm|2,−µ′,Ωt
+ |vm−1 · ∇Hm|2,−µ′,Ωt + |Hm · ∇vm|2,−µ′,Ωt + |hm−1 · ∇Vm|2,−µ′,Ωt)

for all µ′ ∈ (0, 1]. We estimate the first term on the r.h.s. by

|Vm|∞,Ωt |∇hm|2,−µ′,Ωt ≤ ct1/2‖Vm‖A1−µ(Ωt)‖hm‖2,−µ′,ΩT ≤ ct1/2X‖Vm‖A1−µ(Ωt),

the second term by

|vm−1|∞,Ωt |∇Hm|2,−µ′,Ωt ≤ ct1/2ϕ(A)‖Hm‖2,−µ′,Ωt ,
and the third by

sup
t
|Hm|2,−µ′,Ω

( T�

0

|∇vm|2∞,Ω dt′
)1/2

≤ ct1/2|Hm,t|2,−µ′,Ωt‖vm‖A1−µ(ΩT )

≤ cϕ(A)t1/2‖Hm‖2,−µ′,Ωt .
Finally, the last term on the r.h.s. of (7.38) is bounded by

( t�

0

|hm−1|26,−µ′,Ω |Vm,x|23,Ω dt′
)1/2

≤
( t�

0

|hm−1|26,−µ′,Ω‖Vm,x‖21,1−µ,Ω dt′
)1/2

≤ sup
t
‖Vm,x‖1,1−µ,Ω

( t�

0

|hm−1|26,−µ′,Ω dt′
)1/2

≤ c‖Vm‖A1−µ(Ωt)

( t�

0

|hm−1,xx|2,−µ′,Ω |hm−1|2,−µ′,Ω dt′
)1/2

≤ c‖Vm‖A1−µ(Ωt) sup
t
|hm−1|1/22,−µ′,Ωt

1/2‖hm−1‖1/22,−µ′,Ωt

≤ ct1/2‖Vm‖A1−µ(Ωt)(t
1/2|hm−1,t|1/22,−µ′,Ωt + |h(0)|1/22,−µ′,Ω)‖hm−1‖1/22,−µ′,Ωt

≤ ct1/2‖Vm‖A1−µ(Ωt)(t
1/2‖hm−1‖2,−µ′,Ωt + |h(0)|2,−µ′,Ω) ≤ ct1/2X‖Vm‖A1−µ(Ωt).

Employing the above estimates in (7.38) and using the fact that t is sufficiently small we
obtain (7.37). This ends the proof.

For solutions of problem (7.3) we have

Lemma 7.3. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then

(7.39) |Wm|22,−µ,Ω +
( t�

0

‖Wm(t′)‖21,−µ,Ω dt′
)1/2

+ |Wm|2,−µ,St + ‖Wm‖2,1−µ,Ωt

≤ ϕ(A)[ta‖Vm‖A1−µ(Ωt) + |Qm|2,−µ,Ωt + |Hm|2,−(1+µ),Ωt ].
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Proof. For solutions of problem (7.3) we obtain

‖Wm‖2,1−µ,Ωt ≤ c
(
|Vm∇wm|2,1−µ,Ωt + |vm−1 · ∇Wm|2,1−µ,Ωt(7.40)

+
∣∣∣∣
Vmr
r

wm

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
vm−1 r

r
Wm

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
Wm

r2

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
Qm
r

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
Hm

r2

∣∣∣∣
2,1−µ,Ωt

+
∥∥∥∥
a1

r
Wm

∥∥∥∥
1/2,1−µ,St

+
γ

ν
‖Wm‖1/2,1−µ,St

)
.

Now we estimate the particular terms on the r.h.s. of (7.40). We bound the first term by

( t�

0

|Vm∇wm|22,1−µ,Ω dt′
)1/2

≤
( t�

0

|Vm|23,Ω |∇wm|26,1−µ,Ω dt′
)1/2

≤ sup
t
|Vm|3,Ω‖wm‖2,1−µ,Ωt ≤ c sup

t
‖Vm‖1,1−µ,Ωϕ(A)X

≤ ct1/2
( t�

0

‖Vm,t‖21,1−µ,Ω dt′
)1/2

ϕ(A)X ≤ ct1/2Xϕ(A)‖Vm‖A1−µ(Ωt),

the second term by

( t�

0

|vm−1 · ∇Wm|22,1−µ,Ω dt′
)1/2

≤
( t�

0

|vm−1|24,Ω |∇Wm|24,1−µ,Ω dt′
)1/2

≤ c sup
t
|vm−1|4,Ω

( t�

0

|Wm,xx|7/42,1−µ,Ω |Wm|1/42,1−µ,Ω dt
′
)1/2

≤ c sup
t

(|vm−1,xx|θ12,1−µ,Ω |vm−1|1−θ12,1−µ,Ω) sup
t
|Wm|1/82,1−µ,Ω

( t�

0

|Wm,xx|7/42,1−µ,Ω dt
′
)1/2

≤ cta(‖vm−1,x‖2,1−µ,Ωt + ‖v(0)‖2,1−µ,Ω)θ1 |vm−1,t|1−θ12,1−µ,Ωt ·

· |Wm,t|1/82,1−µ,Ωt‖Wm‖7/82,1−µ,Ωt ≤ ctaϕ(A)‖Wm‖2,1−µ,Ωt ,

the third term by

( t�

0

∣∣∣∣
Vm,r
r

wm

∣∣∣∣
2

2,1−µ,Ω
dt′
)1/2

≤
( t�

0

|Vm|24,Ω |wm|24,−µ,Ω dt′
)1/2

≤ sup
t
|Vm|4,Ω

t�

0

|wm|24,−µ,Ω dt′

≤ sup
t

(|Vm,xx|θ12,1−µ,Ω |Vm|1−θ12,1−µ,Ω)
( t�

0

|wm,xx|2θ22,1−µ,Ω |wm|
2(1−θ2)
2,1−µ,Ω dt

′
)1/2
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≤ cta‖Vm,x‖θ12,1−µ,Ωt |Vm,t|1−θ12,1−µ,Ωt |wm,t|1−θ22,1−µ,Ωt
( t�

0

|wm,xx|2θ22,1−µ,Ω

)1/2

≤ cta‖Vm‖A1−µ(Ωt)‖wm‖2,1−µ,Ωt ≤ ctaX‖Vm‖A1−µ(Ωt),

for some a > 0, and the fourth term by

( t�

0

|vm−1|24,Ω |Wm|24,−µ,Ω dt′
)1/2

≤ sup
t
|vm−1|4,Ω

( t�

0

|Wm|24,−µ,Ω dt′
)1/2

≤ c sup
t

(|vm−1,xx|θ12,1−µ,Ω |vm−1|1−θ12,1−µ,Ω)
( t�

0

|Wm,xx|2θ22,1−µ,Ω |Wm|2(1−θ2)
2,1−µ,Ω dt

′
)1/2

≤ cta(‖vm−1,x‖2,1−µ,Ωt + ‖vm−1(0)‖2,1−µ,Ω)

· |Wm,t|1−θ22,1−µ,Ωt‖Wm‖θ22,1−µ,Ωt ≤ ϕ(A)ta‖Wm‖2,1−µ,Ωt .

To estimate the last but one term we assume that
∣∣∣∣
a1

r

∣∣∣∣ ≤ c,
∣∣∣∣
(
a1

r

)

,r

∣∣∣∣ ≤
c

r
.

Then the term is bounded by

c(‖Wm‖1,1−µ,Ωt + |Wm|2,−µ,Ωt) ≤ c‖Wm‖1,1−µ,Ωt
≤ ε‖Wm‖2,1−µ,Ωt + c(1/ε)|Wm|2,1−µ,Ωt
≤ ε‖Wm‖2,1−µ,Ωt + c(1/ε)ta|Wm,t|2,1−µ,Ωt
≤ cta‖Wm‖2,1−µ,Ωt ,

where a > 0. The last term has the same bound.
Employing the above estimates and choosing t sufficiently small we obtain from (7.40)

the inequality

‖Wm‖2,1−µ,Ωt ≤ ctaϕ(A)‖Vm‖A1−µ(Ωt) + c|Wm|2,−(1+µ),Ωt(7.41)

+ |Qm|2,−µ,Ωt + c|Hm|2,−(1+µ),Ωt .

To close the estimate we have to find a bound for the second term on the r.h.s. of
(7.41). For this purpose we multiply (7.3)1 by Wmr

−2µ and integrate over Ω to obtain

(7.42)
1
2
d

dt
|Wm|22,−µ,Ω +

�

Ω

Vm · ∇wmWmr
−2µ dx+

�

Ω

vm−1 · ∇WmWmr
−2µ dx

+
�

Ω

Vmr
r

wmWmr
−2µ dx+

�

Ω

vm−1 r

r
W 2
mr
−2µ dx

− ν
�

Ω

∆WmWmr
−2µ dx+ ν|Wm|22,−(1+µ),Ω

=
�

Ω

Qm
r

Wmr
−2µ dx+ 2ν

�

Ω

Hmr

r2 Wmr
−2µ dx.
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The third term on the l.h.s. of (7.42) takes the form

1
2

�

Ω

vm−1 · ∇W 2
mr
−2µ dx =

1
2

�

Ω

vm−1 · ∇(W 2
mr
−2µ) dx+ µ

�

Ω

vm−1 · ∇rr−2µ−1W 2
m dx

= µ
�

Ω

vm−1 rr
−2µ−1W 2

m dx ≡ I1.

By the Hölder and Young inequalities we have

|I1| ≤ ε|Wm|22,−(1+µ),Ω + c(ε)|vm−1|2∞,Ω |Wm|22,−µ,Ω .

The fifth term has the same bound. The sixth term on the l.h.s. of (7.42) equals

−ν
�

Ω

div(∇WmWmr
−2µ) dx+ ν

�

Ω

|∇Wm|2r−2µ dx− 2µν
�

Ω

∇WmWmr
−2µ−1∇r dx,

where the first term equals

−ν
�

S

n · ∇WmWmr
−2µ dS ≡ I1,

where

νn · ∇Wm + γWm = ν
a1

r
Wm on S.

Hence

I1 = γ
�

S

W 2
mr
−2µdS − ν

�

S

a1

r
W 2
mr
−2µ dS.

Assuming that |a1/r| ≤ c we estimate the second integral in I1 by

ε‖Wm‖22,1−µ,Ω + c(ε)|Wm|22,1−µ,Ω .

The second term on the l.h.s. of (7.42) is estimated by

ε|Wm|26,−µ,Ω + c(ε)|Vm|23,Ω |∇wm|22,−µ,Ω .

The fourth term on the l.h.s. of (7.42) is bounded by

ε|Wm|22,−(1+µ),Ω + c(ε)|Vm|22,Ω |wm|26,−µ,Ω .

In view of the above estimates equality (7.42) takes the form

(7.43)
1
2
d

dt
|Wm|22,−µ,Ω + ν|∇Wm|22,−µ,Ω + ν|Wm|22,−(1+µ),Ω + γ|Wm|22,−µ,S

≤ c|vm−1|2∞,Ω |Wm|22,−µ,Ω + ε‖Wm‖22,1−µ,Ω
+ c(1/ε)|Wm|22,1−µ,Ω + c|Vm|23,Ω |∇wm|22,−µ,Ω + c|Vm|2,Ω |wm|26,−µ,Ω
+ c|Qm|22,−µ,Ω + c|Hm|22,−(1+µ),Ω .

Using the estimate

|vm−1|∞,Ω ≤ c‖vm−1‖3,1−µ,Ω
we integrate (7.43) with respect to time to get
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(7.44)
1
2
|Wm|22,−µ,Ω + ν|∇Wm|22,−µ,Ωt + ν|Wm|22,−(1+µ),Ωt + γ|Wm|22,−µ,St

≤ ϕ(A)
[ t�

0

|Vm|23,Ω |∇wm|22,−µ,Ω dt′ +
t�

0

|Vm|23,Ω |wm|26,−µ,Ω dt′

+ ε

t�

0

‖Wm‖22,1−µ,Ω dt′ + c(1/ε)|Wm|22,1−µ,Ωt + c|Qm|22,−µ,Ωt

+ c|Hm|22,−(1+µ),Ωt

]
,

where we used the fact that
t�

0

‖vm−1‖23,1−µ,Ω dt′ ≤ ϕ(A).

In view of the estimates

sup
t
|Vm|23,Ω ≤ sup

t
‖Vm‖21,1−µ,Ω ≤ ct‖Vm,t‖21,1−µ,Ω ≤ ct‖Vm‖2A1−µ(Ωt),

|∇wm|2,−µ,Ω ≤ c‖wm‖2,1−µ,Ω , |wm|6,−µ,Ω ≤ c‖wm‖2,1−µ,Ω ,
the first two terms on the r.h.s. of (7.44) are estimated by

ct‖wm‖2,1−µ,Ωt‖Vm‖2A1−µ(Ωt) ≤ cϕ(A)tX2‖Vm‖2A1−µ(Ωt).

The fourth term on the r.h.s. of (7.44) is estimated by

c(ε)t|Wm,t|22,1−µ,Ωt
so the sum of the third and fourth terms is bounded by

cta‖Wm‖22,1−µ,Ωt ,
for some a > 0. In view of the above considerations inequality (7.44) implies

(7.45)
1
2
|Wm|22,−µ,Ω + ν|∇Wm|22,−µ,Ωt + ν|Wm|22,−(1+µ),Ωt + γ|Wm|22,−µ,St

≤ ϕ(A)[tX2‖Vm‖2A1−µ(Ωt)

+ ta‖Wm‖22,1−µ,Ωt + |Qm|22,−µ,Ωt + |Hm|22,−(1+µ),Ωt ].

Using (7.45) in (7.41) and assuming that t is sufficiently small we obtain (7.39). This
ends the proof.

Now we shall obtain estimates for Km+1.

Lemma 7.4. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then

|||Km+1|||2,2,1−µ,Ωt ≤ (ϕ(A)ta + cX + cδ0)‖Vm‖A1−µ(Ωt)(7.46)

+ (cX + ϕ(A)ta) sup
t
|Km+1/r|2,Ω + ϕ(B)‖Hm‖2,−µ,Ωt

+ ϕ(A) sup
t

(|Wm,x|2,Ω + |Wm|2,−µ,Ω)

for some a > 0, where δ0 = ‖k − γ/(2ν)‖3/2,S.
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Proof. For solutions of problem (7.5) we have

(7.47) |||Km+1|||2,2,1−µ,Ωt ≤ c[|vm · ∇Km+1|2,1−µ,Ωt + |vm · ∇χm|2,1−µ,Ωt

+
∣∣∣∣
hmϕ
r

Km+1

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
χm
r
Hmϕ

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
vmr
r

Km+1

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
χm
r
Vmr

∣∣∣∣
2,1−µ,Ωt

+ |Km+1|2,−(1+µ),Ωt

+
∣∣∣∣
1
r

(wm,zHmr − wm,rHmz)
∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
1
r

(Wm,zhm−1 r −Wm,rhm−1 z)
∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣

1
r2 wmHmz

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣

1
r2 Wmhm−1 z

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
wm
r
Vmϕ,z

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣
1
r
vm−1ϕ,zWm

∣∣∣∣
2,1−µ,Ωt

+
∣∣∣∣

1
r2

(
1
r
Hmz,ϕ −Hmϕ,z

)∣∣∣∣
2,1−µ,Ωt

+ |||(k − γ/(2ν))Vm · τ2|||3/2,2,1−µ,St ].

Now we shall estimate the particular terms on the r.h.s. of (7.47). The first term is
estimated by

( t�

0

|vm · ∇Km+1|22,1−µ,Ω dt′
)1/2

≤ sup
t≤T
|vm|4,Ω

( t�

0

|∇Km+1|24,1−µ,Ω dt′
)1/2

≤ sup
t≤T
‖vm‖1,r,1−µ,Ω

( t�

0

(ε|Km+1,xx|22,1−µ,Ω + c(1/ε)|Km+1|22,1−µ,Ω) dt′
)1/2

≡ I1,

whenever r ≥ 12/5, so

I1 ≤ c‖vm‖A1−µ(ΩT )

( t�

0

(ε|Km+1,xx|22,1−µ,Ω + c(1/ε)t|Km+1,t|2,1−µ,Ωt) dt
)1/2

≡ I2,

where we needed that r < 6. Hence,

I2 ≤ c‖vm‖A1−µ(ΩT )t
a|||Km+1|||2,2,1−µ,Ωt ≤ ϕ(A)ta|||Km+1|||2,2,1−µ,Ωt

for some a > 0, where to estimate the first factor we used estimates from Lemmas 6.1
and 6.2 on the interval [0, T ] but we examine convergence on interval [0, t], where t is in
general very small. This interpretation implies that c and ϕ do not depend on t.

We treat the second integral on the r.h.s. of (7.47) as follows:

( t�

0

|Vm · ∇χm|22,1−µ,Ω dt′
)1/2

≤
( t�

0

|Vm|26′,1−µ,Ω |∇χm|23′,Ω dt′
)1/2
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where 6′ < 6 but is very close to 6, 6′ = 2λ1, 3′ = 2λ2, 1/λ1 + 1/λ2 = 1,

≤ sup
t
|Vm|6′,1−µ,Ω

( t�

0

|∇χm(t′)|23′,Ω dt′
)1/2

≤ c sup
t
‖Vm‖1,1−µ,Ω‖χm‖2,1−µ,Ωt ≤ ϕ(A)t1/2

( t�

0

‖Vm,t′(t′)‖21,1−µ,Ω dt′
)1/2

≤ ϕ(A)t1/2‖Vm‖A1−µ(Ωt).

We estimate the third term on the r.h.s. of (7.47) by
( t�

0

∣∣∣∣hmϕ
Km+1

r

∣∣∣∣
2

2,1−µ,Ω
dt′
)1/2

≤ sup
t

∣∣∣∣
Km+1

r

∣∣∣∣
2

2,Ω

( t�

0

|hm(t′)|2∞,1−µ,Ω dt′
)1/2

≤ c‖hm‖2,1−µ,Ωt sup
t

∣∣∣∣
Km+1

r

∣∣∣∣
2,Ω
≤ cX sup

t

∣∣∣∣
Km+1

r

∣∣∣∣
2,Ω

,

the fourth term by
( t�

0

∣∣∣∣
χm
r
Hmϕ

∣∣∣∣
2

2,1−µ,Ω
dt′
)1/2

≤ sup
t

∣∣∣∣
χm
r

∣∣∣∣
2,Ω

( t�

0

|Hm(t′)|2∞,1−µ,Ω dt′
)1/2

≤ ϕ(B)‖Hm‖2,1−µ,Ωt ,
the fifth term by
( t�

0

∣∣∣∣vmr
Km+1

r

∣∣∣∣
2

2,1−µ,Ω
dt′
)1/2

≤ sup
t

∣∣∣∣
Km+1

r

∣∣∣∣
2,Ω

( t�

0

|vm(t′)|2∞,1−µ,Ω dt′
)1/2

≤ sup
t

∣∣∣∣
Km+1

r

∣∣∣∣
2,Ω

( t�

0

|||vm(t′)|||2θ2,2,1−µ,Ω |vm(t′)|2(1−θ)
2,1−µ,Ω dt

′
)1/2

(
θ =

3
4

)

≤ c sup
t

∣∣∣∣
Km+1

r

∣∣∣∣
2,Ω

sup
t
|vm|1−θ2,1−µ,Ω

( t�

0

|||vm(t′)|||2θ2,2,1−µ,Ω dt′
)1/2

≤ ct1−θ sup
t

∣∣∣∣
Km+1

r

∣∣∣∣
2,Ω

sup
t
|vm|1−θ2,1−µ,Ω |||vm|||θ2,2,1−µ,Ωt

≤ ϕ(A)t1−θ sup
t

∣∣∣∣
Km+1

r

∣∣∣∣
2,Ω

,

the sixth term by
( t�

0

∣∣∣∣
χm
r
Vmr

∣∣∣∣
2

2,1−µ,Ω
dt′
)1/2

≤ sup
t

∣∣∣∣
χm
r

∣∣∣∣
2,Ω

( t�

0

|Vm(t′)|2∞,1−µ,Ω dt′
)1/2

≤ sup
t

∣∣∣∣
χm
r

∣∣∣∣
2,Ω

[ t�

0

(ε|||Vm(t′)|||22,2,1−µ,Ω + c(1/ε)t′|Vm,t′(t′)|22,1−µ,Ωt) dt′
]1/2

≤ ϕ(A)ta|||Vm|||2,2,1−µ,Ωt



7.2. Estimates of differences 97

for some a > 0, and the eighth term by

( t�

0

|wm,xHm|22,−µ,Ω dt′
)1/2

≤ sup
t
|wm,x|2,Ω

( t�

0

|Hm(t′)|2∞,−µ,Ω dt′
)1/2

≤ cX
( t�

0

‖Hm(t′)‖22,−µ,Ω dt′
)1/2

≤ cX‖Hm‖2,−µ,Ωt .

Similarly we estimate the ninth term by

c sup
t
|Wm,x|2,Ω‖hm−1‖2,−µ,Ωt ≤ cX sup

t
|Wm,x|2,Ω ,

and the tenth term by

( t�

0

|wmHmz|22,−(1+µ),Ω dt
′
)1/2

≤ sup
t
|wm|2,−1,Ω

( t�

0

|Hm(t′)|2∞,−µ,Ω dt′
)1/2

≤ c sup
t
|wm|2,−1,Ω‖Hm‖2,−µ,Ωt ≤ cX‖Hm‖2,−µ,Ωt .

We majorize the eleventh term on the r.h.s. of (7.47) by

|Wmhm−1 z|2,−(1+µ),Ωt =
( t�

0

|Wmhm−1 z |22,−(1+µ),Ω dt
′
)1/2

≤ sup
t
|Wm|2,−µ,Ω

( t�

0

|hm−1(t′)|2∞,−1,Ω dt
′
)1/2

≤ c‖hm−1‖2,−1,Ωt sup
t
|Wm|2,−µ,Ω ≤ cX sup

t
|Wm|2,−µ,Ω .

The twelfth term is estimated by
( t�

0

∣∣∣∣
wm
r
Vmϕ,z

∣∣∣∣
2

2,1−µ,Ω
dt′
)1/2

≤ sup
t
|wm|2,−1,Ω

( t�

0

|Vmϕ,z(t′)|2∞,1−µ,Ω dt′
)1/2

≤ c sup
t
‖wm‖1,0,Ω

( t�

0

|||Vm,z(t′)|||22,2,1−µ,Ω dt′
)1/2

≤ cX‖Vm‖A1−µ(Ωt).

The thirteenth term is bounded by
( t�

0

∣∣∣∣
Wm

r
vm−1ϕ,z

∣∣∣∣
2

2,1−µ,Ω
dt′
)1/2

≤ sup
t
|Wm|2,−µ,Ω

( t�

0

|vm−1ϕ,z(t′)|2∞,Ω dt′
)1/2

≤ c sup
t
|Wm|2,−µ,Ω

( t�

0

|||vm−1,z(t′)|||22,2,1−µ,Ω dt′
)1/2

≤ ϕ(A) sup
t
|Wm|2,−µ,Ω ,

where we employed µ > 1/2.
The last but one term is estimated by

|Hm,x|2,−(1+µ),Ωt ≤ ‖Hm‖2,−µ,Ωt .
Finally, the last term is bounded by

c‖k − γ/(2ν)‖3/2,S |||Vm|||2,2,1−µ,Ωt .
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Employing the above estimates in (7.47) yields

(7.48) |||Km+1|||2,2,1−µ,Ωt ≤ ϕ(A)ta|||Km+1|||2,2,1−µ,Ωt
+ (ϕ(A)ta + cX + cδ0)‖Vm‖A1−µ(Ωt)

+ (cX + ϕ(A)ta) sup
t

∣∣∣∣
Km+1

r

∣∣∣∣
2,Ω

+ (ϕ(B) + cX)‖Hm‖2,−µ,Ωt

+ (cX + ϕ(A))(sup
t
|Wm,x|2,Ω + sup

t
|Wm|2,−µ,Ω).

Assuming that t is sufficiently small we obtain (7.46). This ends the proof.

Next we introduce functions βm+1 by

(7.49)

βm+1,t − ν∆βm+1 = 0,

βm+1|S = 2(k − γ/(2ν))vm · τ2,

βm+1|t=0 = 0.
Taking the differences

Bm+1 = βm+1 − βm
we see that they satisfy

(7.50)

Bm+1,t − ν∆Bm+1 = 0,

Bm+1|S = 2(k − γ/(2ν))Vm · τ2,

Bm+1|t=0 = 0.

Finally, we introduce

(7.51) K ′m+1 = Km+1 −Bm+1.

We see that K ′m+1 is a solution to the problem

(7.52)

K ′m+1,t + vm · ∇K ′m+1 + (vmr,r + vmz,z)K ′m+1 − ν∆K ′m+1 + ν
K ′m+1

r2

+ Vm · ∇χm + (Vmr,r + Vmz,z)χm

=
2ν
r2

(
−Hmϕ,z +

1
r
Hmz,ϕ

)
− 1
r

(
Wm,zhmr + wm−1,zHmr

−Wm,rhmz − wm−1,rHmz +
Wm

r
hmz +

wm−1

r
Hmz

)

+
2
r
Wmvmϕ,z +

2
r
wm−1Vmϕ,z − vm · ∇Bm+1

− (vmr,r + vmz,z)Bm+1 − ν
Bm+1

r2 ,

K ′m+1|S = 0,

K ′m+1|t=0 = 0.

Lemma 7.5. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then

(7.53) |Km+1|2,−1,Ω +
( t�

0

∣∣∣∣∇
Km+1

r

∣∣∣∣
2

2,Ω
dt′
)1/2

≤ ϕ(A)(ta +X)‖Vm‖A1−µ(Ωt)
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+ c|Hm|2,−3,Ωt + cX‖Hm‖2,−1,Ωt

+ cX‖Wm‖2,1−µ,Ωt + ϕ(A)ta sup
t
‖Wm‖1,−1/4−µ′,Ω

+ ϕ(A)
( t�

0

‖Bm+1‖21,−ε1,Ω dt′
)1/2

+ c

t�

0

‖Bm+1(t′)‖22,−ε1,Ω dt′

for any small positive number ε1 and any µ′ < 1/4.

Proof. To obtain the estimate we multiply (7.52)1 by K ′m+1/r
2 and integrate the result

over Ωt. Then we get

(7.54) |K ′m+1|22,−1,Ω +
t�

0

∣∣∣∣∇
K ′m+1

r

∣∣∣∣
2

2,Ω
dt′

≤
�

Ωt

|Vm| |∇χm|
∣∣∣∣
K ′m+1

r2

∣∣∣∣ dx dt′ +
�

Ωt

|Vm,x| |χm|
∣∣∣∣
K ′m+1

r2

∣∣∣∣ dx dt′

+
∣∣∣2ν

�

Ωt

1
r2

(
−Hmϕ,z +

1
r
Hmz,ϕ

)
K ′m+1

r2 dx dt′
∣∣∣+

�

Ωt

1
r3 |Wm,x| |hm| |K ′m+1| dx dt′

+
�

Ωt

1
r3 |wm−1,x| |Hm| |K ′m+1| dx dt′ +

�

Ωt

1
r4 |Wm| |hm| |K ′m+1| dx dt′

+
�

Ωt

1
r4 |wm−1| |Hm| |K ′m+1| dx dt′ +

�

Ωt

1
r3 |Wm| |vmϕ,z | |K ′m+1| dx dt′

+
�

Ωt

1
r3 |wm−1| |Vmϕ,z | |K ′m+1| dx dt′ +

�

Ωt

|vm · ∇Bm+1|
∣∣∣∣
K ′m+1

r2

∣∣∣∣ dx dt′

+
�

Ωt

|vm,x| |Bm+1|
∣∣∣∣
K ′m+1

r2

∣∣∣∣ dx dt′ +
�

Ωt

1
r4 |Bm+1| |K ′m+1| dx dt′.

We estimate the first term on the r.h.s. by

ε

t�

0

∣∣∣∣
K ′m+1

r

∣∣∣∣
2

6,Ω
dt′ + c(1/ε)

t�

0

|Vm∇χm|26/5,−1,Ω dt
′,

where the second expression is bounded by

c

t�

0

|Vm|23,−ε,Ω |∇χm|22,−1+ε,Ω dt
′ ≤ c sup

t
‖Vm‖21,1−µ,Ω

t�

0

(∣∣∣∣∇
χm
r1−ε

∣∣∣∣
2

+
∣∣∣∣
χm
r2−ε

∣∣∣∣
2)
dt′

≤ ct
t�

0

‖Vm,t′‖21,1−µ,Ω dt′
t�

0

(∣∣∣∣∇
χm
r

∣∣∣∣
2

+
∣∣∣∣
χm
r2−ε

∣∣∣∣
2)
dt′

≤ cϕ(A)t‖Vm‖2A1−µ(Ωt).

We bound the second term on the r.h.s. of (7.54) by
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ε

t�

0

∣∣∣∣
K ′m+1

r

∣∣∣∣
2

6,Ω
dt′ + c(1/ε)

t�

0

|Vm,xχm|26/5,−1,Ω dt
′,

where the second expression is bounded by

c sup
t
|χm|22,−1,Ω

t�

0

|∇Vm|23,Ω dt′,

and
t�

0

|∇Vm|23,Ω dt′ ≤
t�

0

|Vm,xxx|2θ12,1−µ,Ω |Vm,x|
2(1−θ1)
2,1−µ,Ω dt

′ ≡ I1

for any θ1 ∈ (0, 1). Continuing,

I1 ≤ ct2(1−θ1)
( t�

0

|Vm,xt|22,1−µ,Ω dt′
)2(1−θ1)

t1−θ1
( t�

0

|Vm,xxx|22,1−µ,Ω dt′
)θ1

≤ cta‖Vm‖2A1−µ(Ωt) for some a > 0.

The third term on the r.h.s. of (7.54) equals

2ν
∣∣∣∣

�

Ωt

(
1
r3Hmϕ

(
K ′m+1

r

)

,z

− 1
r3 Hmz

1
r
∂ϕ

(
K ′m+1

r

))
dx dt′

∣∣∣∣

≤ ε
�

Ωt

∣∣∣∣∇
K ′m+1

r

∣∣∣∣
2

dx dt′ + c(1/ε)|Hm|22,−3,Ωt .

The fourth term is estimated by

ε

t�

0

∣∣∣∣
K ′m+1

r

∣∣∣∣
2

6,Ω
dt′ + c(1/ε)

t�

0

|Wm,x|22,1−µ,Ω |hm|23,−3+µ,Ω dt
′,

where the second expression is bounded by

c sup
t
|Wm,x|22,1−µ,Ω

t�

0

‖hm‖22,−1,Ω dt
′ ≤ c‖Wm‖22,1−µ,Ωt‖hm‖22,−1,Ωt

≤ cX‖Wm‖22,1−µ,Ωt ,
where we used (2.8) in the form

|hm|3,−3+µ,Ω ≤ c‖hm‖2,−1,Ω .

We estimate the fifth term exactly in the same way as the fourth. Therefore it is bounded
by

ε

t�

0

∣∣∣∣
K ′m+1

r

∣∣∣∣
2

6,Ω
+ c(1/ε)‖wm‖22,1−µ,Ωt‖Hm‖22,−1,Ωt ,

where the second expression is not greater than

cX2‖Hm‖22,−1,Ωt .
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The sixth term is estimated by

ε

t�

0

∣∣∣∣
K ′m+1

r

∣∣∣∣
2

6,Ω
dt′ + c(1/ε)

t�

0

|Wm|22,−µ,Ω |hm|23,−3+µ,Ω dt
′

≤ ε
t�

0

∣∣∣∣∇
K ′m+1

r

∣∣∣∣
2

2,Ω
dt′ + c(1/ε) sup

t
|Wm,x|22,1−µ,Ω

t�

0

‖hm‖22,−1,Ω dt
′

≤ ε
t�

0

∣∣∣∣∇
K ′m+1

r

∣∣∣∣
2

2,Ω
dt′ + c(1/ε)X2‖Wm‖22,1−µ,Ωt ,

the seventh term by

ε

t�

0

∣∣∣∣∇
K ′m+1

r

∣∣∣∣
2

2,Ω
dt′ + c(1/ε)‖wm‖22,1−µ,Ωt‖Hm‖22,−1,Ωt

≤ ε
t�

0

∣∣∣∣∇
K ′m+1

r

∣∣∣∣
2

2,Ω
dt′ + c(1/ε)X2‖Hm‖22,−1,Ωt ,

and the eighth term by

ε

t�

0

∣∣∣∣
K ′m+1

r2−ε′

∣∣∣∣
2

2,Ω
+ c(1/ε)

t�

0

|Wm|24,−µ1,Ω |vmϕ,z |24,−µ2−ε′,Ω dt
′ ≡ I2

whenever µ1 + µ2 = 1, µ1 < 1/4, µ2 > 3/4, ε′ > 0, and by the Hardy inequality the first
term in I2 is estimated by

t�

0

∣∣∣∣∇
K ′m+1

r

∣∣∣∣
2

2,Ω
dt′.

Using (2.8) we estimate the second term in I2 by

c sup
t
‖Wm‖21,1/4−µ1,Ω

t�

0

|vmϕ,z |24,−µ2−ε′,Ω dt
′ ≡ I3.

To get a bound for the second factor in I3 we use problem (6.6) for step m. Hence in
cylindrical coordinates we have

(7.55) vmϕ,z = −αm1 +
1
r
hmz.

Next
t�

0

|vmϕ,z(t′)|24,−µ2−ε′,Ω dt
′ ≤

t�

0

|αm1(t′)|24,−µ2−ε′,Ω dt
′ +

t�

0

∣∣∣∣
1
r
hm(t′)

∣∣∣∣
2

4,−µ2−ε′,Ω
dt′ ≡ I4.

Using (2.8) we have

I4 ≤ c
t�

0

‖αm1(t′)‖21,1/4−µ2−ε′,Ω dt
′ + c

t�

0

‖hm(t′)‖22,1/4−µ2−ε′,Ω dt
′ ≡ I5

whenever µ2 ∈ (3/4, 1).
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In view of (4.53), (4.32), (4.35), (6.49) and (6.74) we have

I5 ≤ ϕ(A)X2.

Summarizing

I3 ≤ ϕ(A)X2 sup
t
‖Wm‖21,1/4−µ1,Ω

.

Finally, we estimate the ninth term by

ε

t�

0

∣∣∣∣
K ′m+1

r2−ε′

∣∣∣∣
2

2,Ω
dt′ + c(1/ε)

t�

0

|wm−1|24,−µ1,Ω |Vmϕ,z |24,−µ2−ε′,Ω dt
′ ≡ I ′2,

whenever µ1 + µ2 = 1, µ1 < 1/4, µ2 > 3/4, ε > 0.
The first term in I ′2 is estimated by the same bound as in I2. By (2.8) the second

term in I ′2 is bounded by

c sup
t
‖wm‖21,1/4−µ1,Ω

t�

0

|Vmϕ,z(t′)|24,−µ2−ε′,Ω dt
′ ≡ I ′3.

By (6.67) the first factor in I ′3 is bounded by ϕ(A)X2. To estimate the second factor in
I ′3 we use (7.7) for step m. Hence in cylindrical coordinates we have the relation

(7.56) Vmϕ,z = −Am1 +
1
r
Hmz .

In view of (7.56) and repeating the considerations for I4 we obtain
t�

0

|Vmϕ,z(t′)|24,−µ2−ε′,Ω dt
′ ≤ c

t�

0

‖Am1(t′)‖21,1/4−µ2−ε′,Ω dt
′ + c

t�

0

‖Hm(t′)‖22,1/4−µ2−ε′,Ω dt
′

≤ c‖Am1‖21,−δ,Ωt + c‖Hm‖22,−δ,Ωt
whenever δ ∈ (1/2, 1).

The terms with Bm+1 are estimated by

ε

t�

0

∣∣∣∣
K ′m+1

r2−ε1

∣∣∣∣
2

2,Ω
+
t�

0

�

Ω

[r−2ε1(|vm|2|∇Bm+1|2 + |vm,x|2|Bm+1|2) + r−2(2+ε1)|Bm+1|2] dx dt′

for any ε1 > 0 close to 0 and we bound the second integral by

c sup
t
|vm|2∞,Ω

t�

0

|∇Bm+1|22,−ε1,Ω dt′ + c sup
t
|vm,x|23,Ω

t�

0

|Bm+1|26,−ε1,Ω dt′

+ c

t�

0

|Bm+1|22,−(2+ε1),Ω dt
′

≤ c(‖vm‖A1−µ(ΩT ) + ‖v(0)‖2,Ω)2
t�

0

‖Bm+1‖21,−ε1,Ω dt′ + c

t�

0

|Bm+1|22,−(2+ε1),Ω dt
′

≤ ϕ(A)
t�

0

‖Bm+1‖21,−ε1,Ω dt′ + c

t�

0

‖Bm+1‖22,−ε1,Ω dt′.
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Employing the above estimates in (7.54) we obtain

(7.57) |K ′m+1|22,−1,Ω +
t�

0

∣∣∣∣∇
K ′m+1

r

∣∣∣∣
2

2,Ω
dt′ ≤ ϕ(A)(ta +X2)‖Vm‖2A1−µ(Ωt)

+ c|Hm|22,−3,Ωt + cX2‖Wm‖22,1−µ,Ωt + ϕ(A)ta sup
t
|Wm|22,−1,Ω

+ cX2‖Hm‖22,−1,Ωt + ϕ(A)
t�

0

‖Bm+1‖21,−ε1,Ω dt′ + c

t�

0

‖Bm+1‖22,−ε1,Ω dt′

for any small ε1 > 0.
Using (7.51) we obtain from (7.57) inequality (7.53). This concludes the proof.

Finally, we have

Theorem 7.6. Let the assumption of Lemmas 6.1 and 6.2 hold. Then

(7.58) ‖Vm+1‖A1−µ(Ωt) ≤ ϕ(A,B)(ta +X + δ0)‖Vm‖A1−µ(Ωt),

for any δ ≥ 1, where δ0 = ‖k − γ/(2ν)‖
V

3/2
4,−δ/2(S).

Proof. From (7.8) we have

(7.59) |||A′m+1|||2,2,1−µ,Ωt + |A′m+1|2,Ω + |A1m+1|2,−(1+µ),Ωt

≤ ϕ(A)[X(sup
t
|Km+1|2,−1,Ω + ‖Vm‖A1−µ(Ωt))

+ ‖Wm‖2,1−µ,Ωt + ‖Hm‖2,−1,Ωt ].

From (7.37) we get

(7.60) ‖Hm‖2,−µ′,Ωt + |∇Qm|2,−µ′,Ωt ≤ ct1/2X‖Vm‖A1−µ(Ωt)

for any µ′ ∈ (0, 1].
Next (7.39) implies

(7.61) sup
t
|Wm|2,−µ,Ω +

( t�

0

‖Wm(t′)‖21,−µ,Ω dt′
)1/2

+ ‖Wm‖2,1−µ,Ωt

≤ ϕ(A)[ta‖Vm‖A1−µ(Ωt) + |Qm|2,−µ,Ωt + |Hm|2,−(1+µ),Ωt ]

≤ ϕ(A)ta‖Vm‖A1−µ(Ωt),

where (7.60) was used to get the second inequality. From (7.46) we obtain

|||Km+1|||2,2,1−µ,Ωt ≤ (ϕ(A)ta + cX + cδ′0)‖Vm‖A1−µ(Ωt)(7.62)

+ (cX + ϕ(A)ta) sup
t
|Km+1/r|2,Ω + ϕ(B)‖Hm‖2,−µ,Ωt

+ ϕ(A) sup
t

(|Wm,x|2,Ω + |Wm|2,−µ,Ω)

≤ ϕ(A,B)(ta +X + δ′0)‖Vm‖A1−µ(Ωt)

+ c(X + ϕ(A)ta) sup
t
|Km+1/r|2,Ω ,

where δ′0 = ‖k − γ/(2ν)‖3/2,S and the second inequality follows from (7.60) and (7.61).
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From (7.53) we get

(7.63) |Km+1|2,−1,Ω +
( t�

0

∣∣∣∣∇
Km+1

r

∣∣∣∣
2

2,Ω
dt′
)1/2

≤ c‖Hm‖2,−µ,Ωt

+ cX(‖Wm‖2,1−µ,Ωt + ‖Am1‖1,−δ,Ωt + ‖Hm‖2,−δ,Ωt)

+ ϕ(A)ta sup
t
‖Wm‖1,1/4−µ′,Ω + ϕ(A)

( t�

0

‖Bm+1‖21,−ε1,Ω dt′
)1/2

+ c
( t�

0

‖Bm+1(t′)‖22,−ε1,Ω dt′
)1/2

for any δ ∈ (1/2, 1), ε1 > 0, µ′ < 1/4.
For solutions of problem (7.50) we have

(7.64)
( t�

0

‖Bm+1‖21,−ε1,Ω dt′
)1/2

+
( t�

0

‖Bm+1(t′)‖22,−ε1,Ω dt′
)1/2

≤ cδ0‖Vm‖A1−µ(Ωt)

for any δ ≥ 1, where δ0 = ‖k − γ/(2ν)‖
V

3/2
4,−δ/2(S) and ε1 = δ/2. For more details see the

proof of Lemma 4.1.
Employing (7.64), (7.60) and (7.61) in (7.63) yields

(7.65) |Km+1|2,−1,Ω +
( t�

0

∣∣∣∣∇
Km+1

r

∣∣∣∣
2

2,Ω
dt′
)1/2

≤ ϕ(A,B)(X + ta + δ0)‖Vm‖A1−µ(Ωt),

where to estimate the norm with Am1 we use problem (7.7) for step m.
Using (7.65) in (7.62) and (7.59) we obtain

(7.66) |||Am+1|||2,2,1−µ,Ωt ≤ ϕ(A,B)(X + ta + δ0)‖Vm‖A1−µ(Ωt).

For solutions of problem (7.7) we have

(7.67) ‖Vm+1‖A1−µ(Ωt) ≤ c|||Am+1|||2,2,1−µ,Ωt .
From (7.67) and (7.66) we obtain (7.58). This ends the proof.

From (7.58) we have convergence of the sequence constructed in Section 6 in a small
interval [0, t].

Theorem 7.7. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then the sequence con-
structed in Section 6 converges.

Proof. By Lemmas 7.1–7.6 the sequence converges in a small interval [0, t]. Applying
Lemmas 6.1 and 6.2 we can extend the considerations in this section step by step up
to T . This ends the proof.

7.3. Local existence

Proof of Theorem 1.1. Lemmas 6.1, 6.2 and Theorem 7.7 imply Theorem 1.1.



8. Global existence

8.1. Idea of the proof. To prove global existence we have to prolong the local solution
from Sections 6 and 7 step by step up to infinity. To make this possible we have to prove
local existence for sufficiently large time T . Moreover, we have to show that all quantities
collected in X,Y1, Y2, Y3 (see Lemma 6.2) do not increase if we pass from the interval
[kT, (k + 1)T ] to [(k + 1)T, (k + 2)T ], k ∈ N.

For this purpose we distribute all the quantities into the following four new quantities:

(8.1)

Q1(t) = ‖h(t)‖1,−1,Ω + ‖w(t)‖1,0,Ω + |||α′(t)|||1,2,1−µ,Ω ,
Q2(t) = ‖χ(t)‖1,1−µ,Ω + |χ(t)|2,−1,Ω + |||v(t)|||2,2,1−µ,Ω ,

P1(0, t) = g 2,1,Ωt + |g|2,−1,Ωt + |fϕ|2,−µ,Ωt + |F ′|2,Ωt + |F1|2,−µ,Ωt ,
P2(0, t) = |F2|2,−1,Ωt ,

where Q1, P1 are sufficiently small and the magnitudes of P2, Q2 are not restricted.
To prove global existence we have to show that Q1(t), Q2(t), P1(0, t), P2(0, t) can be

estimated by some quantities Q∗1, Q∗2, P ∗1 , P ∗2 for any t ∈ R+. For this purpose we have
to show that

(8.2) ‖v‖A1−µ(Ω×(kT,(k+1)T )) ≤ A, ∀k ∈ N.
To simplify notation we introduce

(8.3) A(t1, t2) = ‖v‖A1−µ(Ω×(t1,t2)).

To show

(8.4) Qi(t) ≤ Q∗i , Pi(0, t) ≤ P ∗i , i = 1, 2, t ∈ R+,

we have to obtain some decay estimates.

8.2. Decay estimates. First we assume

(8.5) γ(t) ≡ |g(t)|2,−1,Ω + |gt(t)|2,Ω ≤ γ(0)e−ν0t, ν0 > 0.

Repeating the proof of Lemma 7.4.1 from [zaj 5] we have

Lemma 8.1. Assume that v ∈ A1−µ(Ωt) and h is a solution of (1.4). Assume that 0 <
t1 < t < T . Assume (8.5). Then

(8.6) ‖h(t)‖1,−1,Ω ≤ ϕ(A(0, t))e−ν0t1(‖h(0)‖1,−1,Ω + γ(0)),

where ϕ is an increasing positive function and t1 which is close to t can be chosen large.

Let us introduce the quantity

(8.7) Z1(t) ≡ ‖w(t)‖1,0,Ω .
[105]
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Now we prove a result similar to Lemma 7.4.2 from [zaj 5].

Lemma 8.2. Assume that v ∈ A1−µ(Ωt) and (8.5) holds. Assume the growth condition
(8.16). Assume the geometry of the boundary such that (8.19) holds. Assume h,t(0) ∈
L2(Ω), h(0) ∈ H1

−1(Ω), w(0) ∈ H1
0 (Ω). Then

Z1(t) ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + |h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω(8.8)

+ γ(0) + γ1(0) + e−tZ1(0) + e−νt|w(0)|2,Ω ].

Proof. From (6.3.41) in [zaj 5] we have

(8.9) |h,t(t)|22,Ω + ‖h(t)‖21,Ω ≤ e
−ν0t+c‖v‖A1−µ(Ωt)

[
|h,t(0)|22,Ω

+ ‖h(0)‖21,Ω + c

t�

0

(|g(t′)|22,Ω + |g,t(t′)|22,Ω)e
ν0t
′−c‖v‖

A1−µ(Ωt′ ) dt′
]

≤ ϕ(A(0, t))e−ν0t[|h,t(0)|22,Ω + ‖h(0)‖21,Ω + γ2(0)],

where (8.5) was used in the second inequality and the constants c do not depend on t.
From (7.4.24) in [zaj 5] we obtain

(8.10) |q(t)|22,Ω ≤ ϕ(A(0, t))e−ν0t[|h,t(0)|22,Ω + ‖h(0)‖21,Ω + γ2(0)].

Moreover (7.4.25) in [zaj 5] gives

(8.11) ‖h‖2,−1,Ωt +
( t�

0

‖q(t′)‖21,−1,Ω dt
′
)1/2

≤ ϕ(A(0, t))(γ(0) + ‖h(0)‖1,−1,Ω).

From (5.13),

Z1(t) ≤ ϕ(A(0, t))
[

sup
t′≤t
|w(t′)|2,1,Ω +

(
e−t

t�

0

|w(t′)|22,Ωet
′
dt′
)1/2

(8.12)

+
( t�

0

(|q(t′)|22,−1,Ω + |h(t′)|22,−2,Ω + |fϕ(t′)|22,Ω) dt′
)1/2

+ e−tZ1(0)
]
.

In view of (8.11) we simplify (8.12) to

Z1(t) ≤ ϕ(A(0, t))
[

sup
t′≤t
|w(t′)|2,1,Ω +

(
e−t

t�

0

|w(t′)|22,Ωet
′
dt′
)1/2

(8.13)

+ γ(0) + ‖h(0)‖1,−1,Ω + |fϕ|2,Ωt + e−tZ1(0)
]
.

To examine the first term on the r.h.s. we use Lemma 5.6. Hence we have

(8.14) |w(t)|2,1,Ω ≤ |w(0)|2,1,Ω +
t�

0

(|q(t′)|2,Ω + |h(t′)|2,−1,Ω + |fϕ(t′)|2,Ω) dt′.

In view of (8.6) and (8.10) we obtain

|w(t)|2,1,Ω ≤ |w(0)|2,1,Ω + ϕ(A(0, t))[|h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω + γ(0)](8.15)

+
t�

0

|fϕ(t′)|2,Ω dt′.
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Assuming the growth condition

(8.16) γ1(t) ≡ |fϕ(t)|2,Ω ≤ γ1(0)e−ν1t, ν1 > 0,

and inserting it in (8.15) implies

|w(t)|2,1,Ω ≤ |w(0)|2,1,Ω + ϕ(A(0, t))[|h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω + γ(0)](8.17)

+ cγ1(0).

In view of (8.17) estimate (8.13) takes the form

Z1(t) ≤ ϕ(A(0, t))
[
|w(0)|2,1,Ω + |h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω(8.18)

+ γ(0) + γ1(0) +
(
e−t

t�

0

|w(t′)|22,Ωet
′
dt′
)1/2

+ e−tZ1(0)
]
.

Finally, we have to estimate the integral on the r.h.s. of (8.18). For this purpose we use
the proof of Lemma 5.3. We exploit formula (5.8). Assuming that

(8.19) |a1| ≤ cr3 in a neighbourhood of r = 0,

we can write (5.8) in the form

(8.20)
d

dt
|w|22,Ω +ν|w|22,Ω ≤ c|w|22,1,Ω +c|vr|2∞,Ω |w|22,Ω +c(|q|22,Ω + |h|22,−1,Ω + |fϕ|22,Ω).

Since
� t
0
|vr|2∞,Ω dt′ ≤ c‖v‖2A1−µ(Ωt) for µ ∈ (1/2, 1) we have

(8.21)
d

dt
(|w|22,Ωe

νt−c‖v‖2
A1−µ(Ωt))

≤ c[|w|22,1,Ω + |q|22,Ω + |h|22,−1,Ω + |fϕ|22,Ω ]e
νt−c‖v‖2

A1−µ(Ωt) .

Integrating (8.21) with respect to time yields

|w(t)|22,Ω ≤ ϕ(A(0, t))
[

sup
t′≤t
|w(t′)|22,1,Ω(8.22)

+
t�

0

(|q(t′)|22,Ω + |h(t′)|22,−1,Ω + |fϕ(t′)|22,Ω) dt′ + e−νt|w(0)|22,Ω
]
.

Using (8.11), (8.16) and (8.17) in (8.22) implies

|w(t)|2,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + |h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω + γ(0)(8.23)

+ γ1(0) + e−νt|w(0)|2,Ω ].

Employing (8.23) in (8.18) we have

Z1(t) + |w(t)|2,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + |h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω(8.24)

+ γ(0) + γ1(0) + e−tZ1(0) + e−νt|w(0)|2,Ω ].

This estimate implies (8.8). This concludes the proof.

Now we obtain a decay estimate for χ.

Lemma 8.3. Assume that v ∈ A1−µ(Ωt), Fϕ ∈ L2,−1(Ωt), k − γ/(2ν) ∈ H3/2(S) and
k − γ/(2ν) ∈ V

3/2
4,−δ/2(S), δ ≥ 1, w(0) ∈ L2,1(Ω), h(0) ∈ H1

−1(Ω), h,t(0) ∈ L2(Ω),
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χ(0) ∈ L2,−1(Ω) and the decay estimates (8.5) and (8.16) hold. Then

|χ(t)|2,−1,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + |h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω(8.25)

+ γ(0) + γ1(0) + e−tZ1(0) + e−νt|w(0)|2,Ω ] + c|Fϕ|2,−1,Ωt

+ c‖k − γ/(2ν)‖3/2,4,−δ/2,S‖v‖A1−µ(Ωt) + e−νt|χ(0)|2,−1,Ω .

Proof. By the local existence result supt |hϕ|2,−1,Ω is sufficiently small. Then (4.4) implies

(8.26)
d

dt
|χ′|22,−1,Ω + ν|χ′|22,−1,Ω ≤ c(1 + ‖w‖21,0,Ω)‖h‖22,−1,Ω

+ ‖w‖21,0,Ω‖vϕ‖23,2,1−µ,Ω + c|w|22,−1,Ω |vϕ,z |24,−3/4−ε,Ω + c|Fϕ|22,−1,Ω

+ c(|hϕ|24,Ω |β|24,−(1+δ/2),Ω + |v′|210/3,Ω |β|25,−1,Ω + |β|22,−(2+δ/2),Ω),

where ε > 0, δ > 0. Integrating (8.26) with respect to time yields

|χ′(t)|22,−1,Ω≤ c(1 + sup
t
‖w‖21,0,Ω)

t�

0

‖h(t′)‖22,−1,Ω dt
′(8.27)

+ c sup
t
‖w‖21,0,Ω‖vϕ‖2A1−µ(Ωt) + c|Fϕ|22,−1,Ωt

+ c(|hϕ|24,Ωt |β|24,−(1+δ/2),Ωt+|v|210/3,Ωt |β|25,−1,Ωt+|β|22,−(2+δ/2),Ωt)

+ e−νt|χ′(0)|22,−1,Ω .

Using (8.8) and (8.11) we have

(8.28) |χ′(t)|2,−1,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + |h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω + γ(0)

+ γ1(0) + e−tZ1(0) + e−νt|w(0)|2,Ω ] + c|Fϕ|2,−1,Ωt

+ c(|β|4,−(1+δ/2),Ωt + |β|5,−1,Ωt + |β|2,−(2+δ/2),Ωt) + e−νt|χ′(0)|2,−1,Ω ,

where we have used the fact that |v|10/3,Ωt ≤ c in view of the energy estimate.
Finally, the terms involving β are estimated by

c‖k − γ/(2ν)‖3/2,4,−δ/2,S‖v‖A1−µ(Ωt),

where we have applied estimate (4.7).
Hence (8.28) implies

|χ′(t)|2,−1,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + |h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω(8.29)

+ γ(0) + γ1(0) + e−tZ1(0) + e−νt|w(0)|2,Ω ] + c|Fϕ|2,−1,Ωt

+ c‖k − γ/(2ν)‖3/2,4,−δ/2,S‖v‖A1−µ(Ωt) + e−νt|χ′(0)|2,−1,Ω .

Using again problem (3.33) for β we obtain from (8.29) the inequality (8.25). This con-
cludes the proof.

Lemma 8.4. Assume that A(kT, (k + 1)T ) ≤ A for all k ∈ N,
(8.30) Z2(t) = |h,t(t)|2,Ω + ‖h(t)‖1,Ω + γ(t),

ϕ(A)e−ν0T < 1,
� ∞
0
|fϕ(t′)|2,1,Ω dt′ ≤ ε1 and ε1 is sufficiently small. Then

(8.31) |w(kT )|2,1,Ω ≤ |w(0)|2,1,Ω +
ϕ(A)

1− ϕ(A)e−ν0T
Z2(0) + c

∞�

0

|fϕ(t′)|2,1,Ω dt′

for any k ∈ N.
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Proof. From (8.9) and (8.17) we have

(8.32) |w(kT )|2,1,Ω ≤ |w(0)|2,1,Ω +
k−1∑

i=0

(ϕ(A)e−ν0T )iϕ(A)Z2(0) + c

kT�

0

|fϕ(t′)|2,1,Ω dt′.

Passing with k to ∞ and using the assumptions of the lemma we obtain (8.30). This
concludes the proof.

To obtain the time behaviour of Q1(t) we need an estimate for ‖α′(t)‖1,1−µ,Ω .

Lemma 8.5. Assume that v ∈ A1−µ(ΩT ), h,t(0) ∈ L2(Ω), h(0) ∈ H1
−1(Ω), w(0) ∈

H1
0 (Ω), g(0) ∈ L2,−1(Ω), g,t(0) ∈ L2(Ω), fϕ(0) ∈ L2(Ω), v(0) ∈ L2(Ω). Assume the

decay estimates (8.5), (8.16). Assume that there exists a local solution determined by
Theorem 1.1. Then

(8.33) ‖α′(t)‖1,1−µ,Ω ≤ ϕ(A(0, t))[d1(t0) + ‖w(t0)‖1,0,Ω + |w(t0)|2,1,Ω ] + cγ2e
−ν2(t−t0),

0 < t0 < t ≤ T,
where α′ = (α1, α3) and d1(t) is defined by (8.40).

Proof. Let us introduce a smooth function ζ = ζ(t) such that ζ(t) = 0 for t < t1 and
ζ(t) = 1 for t > t2. Multiplying (1.7) by ζ and introducing the notation α̃′ = α′ζ we
obtain

(8.34)

α̃1,t + v · ∇α̃1 − α̃1vr,r −
α̃2

r
hr − α̃3vr,z +

2ν
r2 (hr,z − hz,r)ζ

+
να̃1

r2 − ν∆α̃1 = F̃1 + ζ̇α1 in ΩT ,

α̃3,t + v · ∇α̃3 − (α̃1vz,r + α̃3vz,z)−
α̃2

r
hz − ν∆α̃3 = F̃3 + ζ̇α3 in ΩT ,

a2α̃1 − a1α̃3 = −2a1

r
w̃ on ST ,

(a1α̃1 + a2α̃3),n = β1h̃r + β2h̃z + β3w̃,r + β4w̃,z + β5w̃ on ST ,

α̃1|t=0 = 0, α̃3|t=0 = 0 in Ω,

where ζ̇ = ∂tζ. Applying Lemma 4.3 (see (4.12)) to problem (8.34) yields

‖α′(t)‖1,1−µ,Ω ≤ c sup
t1≤t′≤t

|α̃′(t′)|2,1−µ,Ωϕ(A(0, t))(8.35)

+ c|α̃2/r|10/3,Ω×(t1,t)‖h‖2,−µ,Ω×(t1,t)

+ c(‖h‖2,−µ,Ω×(t1,t) + ‖w‖2,1−µ,Ω×(t1,t))

+ c|α̃1|2,−(1+µ),Ω×(t1,t) + c|F ′|2,1−µ,Ω×(t1,t)

+
c

t2 − t1
|α′|2,1−µ,Ω×(t1,t)

for all µ ∈ (1/2, 1), where α′ = (α1, α3), α̃′ = (α̃1, α̃3). From (4.14) we have

sup
t1≤t′≤t

|α̃′(t′)|2,Ω ≤ ϕ(A(0, t))[|α̃2/r|10/3,Ω×(t1,t)‖h‖2,−1,Ω×(t1,t)(8.36)

+ ‖w‖2,1−µ,Ω×(t1,t) + ‖h‖2,−1,Ω×(t1,t) + |F ′|2,Ω×(t1,t)]

+
c

t2 − t1
|α′|2,Ω×(t1,t).
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From (4.1) we get

(8.37) |α̃2/r|10/3,Ωt ≤ c
(

sup
t
|α̃2|2,−1,Ω +

( t�

0

|∇(α̃2/r)|22,Ω dt′
)1/2)

≤ ϕ(A(0, t))(‖h‖2,−1,Ω×(t1,t) + |vr|10/3,Ω×(t1,t) + 1)δ0

+ c
[
(1 + sup

t1≤t′≤t
‖w(t′)‖1,0,Ω)‖h‖2,−1,Ω×(t1,t) + sup

t1≤t′≤t
‖w(t′)‖1,0,Ω

·
( t�

0

|α̃1(t′)|4,−3/4−ε,Ω dt
′
)1/2

+ |Fϕ|2,−1,Ω×(t1,t)

]
+

c

t2 − t1
|α2|2,−1,Ω×(t1,t).

To estimate the second factor in the third term on the r.h.s. of (8.37) we use inequality
(4.37) for solutions of problem (8.34). Hence we have

(8.38)
( t�

0

|α̃1(t′)|24,−3/4−ε,Ω dt
′
)1/2

≤ c
( t�

0

‖α̃1(t′)‖21,−µ,Ω dt′
)1/2

≤ ϕ(A(0, t))
[
|α̃2/r|10/3,Ωt‖h‖2,−1,Ω×(t1,t) + ‖h‖2,−1,Ω×(t1,t)

+ ‖w‖2,1−µ,Ω×(t1,t) + |F ′|2,Ω×(t1,t) + |F1|2,−µ,Ω×(t1,t)

+
1

t2 − t1
|α′|2,−µ,Ω×(t1,t2)

]

for any µ ∈ (1/2, 1). Inserting (8.38) in (8.37) and assuming that X is sufficiently small
we obtain

(8.39) |α̃2/r|10/3,Ωt ≤ c
(

sup
t
|α̃2|2,−1,Ω +

( t�

0

|∇(α̃2/r)|22,Ω dt′
)1/2)

≤ ϕ(A(0, t))(‖h‖2,−1,Ω×(t1,t) + |vr|10/3,Ω×(t1,t) + 1)δ0

+ c(1 + sup
t1≤t′≤t

‖w(t′)‖1,0,Ω)‖h‖2,−1,Ω×(t1,t)

+ ϕ(A(0, t)) sup
t1≤t′≤t

‖w(t′)‖1,0,Ω
[
‖h‖2,−1,Ω×(t1,t) + ‖w‖2,1−µ,Ω×(t1,t)

+ |F ′|2,Ω×(t1,t) + |F1|2,−µ,Ω×(t1,t) +
1

t2 − t1
|α′|2,−µ,Ω×(t1,t2)

]

+ c|Fϕ|2,−1,Ω×(t1,t) +
c

t2 − t1
|α2|2,−1,Ω×(t1,t).

Let us introduce

(8.40) d1(t) = |h,t(t)|2,Ω + ‖h(t)‖1,−1,Ω + γ(t) + γ1(t).

Assume the decay estimate

(8.41) γ2(t) ≡ |F ′(t)|2,1−µ,Ω + |F ′(t)|2,Ω + |F1(t)|2,−µ,Ω ≤ γ2(0)e−ν2t.

From (6.49) we have

(8.42) ‖h‖2,−1,Ωt ≤ ϕ(A(0, t))X so ‖h‖2,−1,Ωt ≤ ϕ(A(0, t))d1(0)
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and (6.62) implies

(8.43) ‖w‖2,1−µ,Ωt ≤ ϕ(A(0, t))X.

In view of (8.40) inequality (8.8) takes the form

(8.44) ‖w(t)‖1,0,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + d1(t) + e−t‖w(0)‖1,0,Ω + e−νt|w(0)|2,Ω ].

Applying the above estimates in (8.39) and using the fact that X is sufficiently small we
obtain

(8.45) |α̃2/r|10/3,Ωt ≤ c
[

sup
t
|α̃2|2,−1,Ω +

( t�

0

|∇(α̃2/r)|2 dt′
)1/2]

≤ ϕ(A(0, t))(|vr|10/3,Ω×(t1,t) + 1)δ0

+ ϕ(A(0, t))[|w(t0)|2,1,Ω + d1(t0) + γ2(t0) + e−(t−t0)‖w(t0)‖1,0,Ω

+ e−ν(t−t0)|w(t0)|2,Ω ] + c|Fϕ|2,−1,Ω×(t0,t) +
c

t2 − t1
|α2|2,−1,Ω×(t1,t2)

for some t0 < t1. From Lemma 3.4 we have

(8.46) |v(t)|2,Ω ≤ f 2,1,Ωt + |v(0)|2,Ω ,
and

(8.47) |v′|10/3,Ωt ≤ c(sup
t
|v′(t)|22,Ω + |∇v′|22,Ωt)1/2 ≤ c( f 2,1,Ωt + |v(0)|2,Ω),

where v′ is defined in the proof of Lemma 3.4.
Inserting (8.11) and (8.47) in (8.36) (where (8.45) is employed) yields

(8.48) sup
t1≤t′≤t

|α′(t′)|2,Ω ≤ ϕ(A(0, t))δ0( f 2,1,Ωt + |v(0)|2,Ω + 1)d1(t0)

+ ϕ(A(0, t))[|w(t0)|2,1,Ω + d1(t0) + e−(t−t0)‖w(t0)‖1,0,Ω ]

+ ϕ(A(0, t))
[
|Fϕ|2,−1,Ω×(t0,t) +

1
t2 − t1

|α2|2,−1,Ω×(t0,t)

]
d1(t0)

+ ϕ(A(0, t))
[
‖w‖2,1−µ,Ω×(t0,t) + |F ′|2,Ω×(t0,t) +

c

t2 − t1
|α′|2,Ω×(t1,t)

]
.

From (6.62) we have

‖w‖2,1−µ,Ωt ≤ ϕ(A(0, t))[‖h(0)‖1,−1,Ω + ‖w(0)‖1,0,Ω(8.49)

+ γ(0)e−νt + γ1(0)e−ν1t].

Employing (8.49) and (6.81) in the form

(8.50) |||α′|||2,1−µ,Ωt ≤ ϕ(A(0, t), B(0, t))X

we obtain from (8.48) the inequality

sup
t1≤t′≤t

|α̃′(t′)|2,Ω ≤ ϕ(A(0, t), B(0, t))[d1(t0) + ‖w(t0)‖1,0,Ω(8.51)

+ |w(t0)|2,1,Ω + γ2(t0)] +
c

t2 − t1
|α′|2,Ω×(t1,t).
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From (3.5) we have

(8.52) |α′|2,Ω×(t0,t) + |α1|2,−(1+µ),Ω×(t0,t) ≤ ϕ(A(0, t))|t− t0|1/2

· [d1(t0) + |w(t0)|2,1,Ω + e−ν(t−t0)‖w(t0)‖1,0,Ω ].

Making use of the above estimates in (8.35) yields

(8.53) ‖α′(t)‖1,1−µ,Ω ≤ ϕ(A(0, t))[d1(t0) + ‖w(t0)‖1,0,Ω + |w(t0)|2,1,Ω ] + cγ2e
−ν2(t−t0).

This ends the proof.

8.3. Proof of global existence

Proof of Theorem 1.2. To show (8.4)1 for i = 1 we collect the necessary estimates. Since

(8.54) |h,t(t)|2,Ω + ‖h(t)‖1,−1,Ω ≤ ϕ(A(0, t))e−νt0(|h,t(0)|2,Ω + ‖h(0)‖1,−1,Ω + γ(0))

for some t0 < t, we have

(8.55) d1(t) ≤ d1(0)e−ν∗t0 , ν∗ = min{ν0, ν1}.
From (8.8) we get

(8.56) ‖w(t)‖1,0,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + d1(0) + e−νt‖w(0)‖1,0,Ω ].

Next (8.17) implies

(8.57) |w(t)|2,1,Ω ≤ |w(0)|2,1,Ω + ϕ(A(0, t))d1(0) ≡ d∗,
which holds for all t ≤ ∞ if A(0, t) does not increase with time. In view of (8.54)–(8.57)
the inequality (8.53) takes the form

‖α′(t)‖1,1−µ,Ω ≤ ϕ(A(0, t))[e−ν∗t0d1(0) + d1(0)(8.58)

+ e−νt‖w(0)‖1,0,Ω ] + cγ2(0)e−ν2t, t ≤ T,
where T is the time of local existence.

Assume that

(8.59) ‖w(0)‖1,0,Ω ≤ A1,

where A1 is a constant so large that

(8.60) ϕ(A(0, T ))[d∗ + d1(0) + e−νTA1] ≤ A1.

Then

(8.61) ‖w(T )‖1,0,Ω ≤ A1.

Moreover,

(8.62) d1(T ) ≤ d1(0).

Inserting (8.59) in (8.58) yields

‖α′(T )‖1,1−µ,Ω ≤ ϕ(A(0, T ))[e−ν∗t0d1(0) + d1(0) + e−νTA1](8.62′)

+ cγ2(0)e−νT ≡ A2.

Hence we have
‖α′(2T )‖1,1−µ,Ω ≤ ϕ(A(t, 2T ))[e−ν∗t0d1(T ) + d1(T ) + e−νTA1] + cγ2(T )e−νT

≤ ϕ(A(0, T ))[e−ν∗t0d1(0) + d1(0) + e−νTA1] + cγ2(0)e−νT = A2.
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In this way we have shown that there exists Q∗1 <∞ such that

(8.63) Q1(t) ≤ Q∗1 ∀t ∈ R+.

From (8.25) we have the estimate

|χ(t)|2,−1,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + d1(0) + e−t‖w(0)‖1,0,Ω ](8.64)

+ c|Fϕ|2,−1,Ωt + cδ0A(0, t) + e−νt|χ(0)|2,−1,Ω .

Using the growth condition

(8.65) γ3(t) ≡ |Fϕ(t)|2,−1,Ω ≤ γ3(0)e−ν3t

we obtain from (8.64) the inequality

|χ(t)|2,−1,Ω ≤ ϕ(A(0, t))[|w(0)|2,1,Ω + d1(0) + e−t‖w(0)‖1,0,Ω ](8.66)

+ cγ3(0) + cδ0A(0, t) + e−νt|χ(0)|2,−1,Ω .

From (8.45) we have

(8.67) |χ̃/r|10/3,Ωt ≤ c
(
|χ̃|2,−1,Ω +

( t�

0

|∇(χ̃/r)|22,Ω dt′
)1/2)

≤ ϕ(A(0, t))[(|vr|10/3,Ωt + 1)δ0 + |w(t0)|2,1,Ω + d1(t0) + γ2(t0)

+ e−(t−t0)‖w(t0)‖1,0,Ω + γ3(t0)]

+
c

(t2 − t1)1/2
{ϕ(A(0, t))[|w(t0)|2,1,Ω + d1(t0) + e−(t−t0)‖w(t0)‖1,0,Ω ]

+ γ2(t0) + γ3(t0) + δ0A(0, t) + e−ν(t−t0)|χ(t0)|2,−1,Ω}.
Finally, (8.67) implies

|χ̃/r|10/3,Ωt ≤ c
[

sup
t0<t
|χ̃|2,−1,Ω +

( t�

0

|∇(χ̃/r)|2,Ω dt′
)1/2]

(8.68)

≤ ϕ(A(0, t))[δ0 + |w(t0)|2,1,Ω + d2(t0) + γ3(t0)

+ e−(t−t0)‖w(t0)‖1,0,Ω + e−ν(t−t0)|χ(t0)|2,−1,Ω ],

where

d2(t) = d1(t) + γ2(t).

From (4.49) we have

(8.69) ‖χ(t)‖1,1−µ,Ω ≤ ‖χ̃‖2,1−µ,Ωt
≤ [ε1‖v‖A1−µ(Ωt) + c(1/ε1)(γ4(t0) + |v(0)|2,Ω) + c|||v(0)|||2,2,1−µ,Ω + 1]

·
[

sup
t
|χ̃/r|2,Ω +

( t�

0

|∇(χ̃/r)|22,Ω dt′
)1/2]

+ ϕ(A(0, t)) sup
t0≤t
‖w‖1,0,Ω + γ3(t0)

+ [ε(A(0, t)) + c(1/ε)(γ4(t0) + |v(0)|2,Ω)]δ0 +
c

t2 − t1
|χ|2,1−µ,Ω×(t1,t2),
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where

γ4(t) ≡ |f(t)|2,Ω ≤ γ4(0)e−ν4t.

In view of (8.8) and (8.68) we obtain from (8.69) the inequality

|||χ(t)|||1,2,1−µ,Ω ≤ ϕ(A(0, t))[d3(t0) + |v(0)|2,Ω + |w(t0)|2,1,Ω(8.70)

+ δ0 + e−(t−t0)‖w(t0)‖1,0,Ω + e−ν(t−t0)|χ(t0)|2,−1,Ω ],

where

d3(t) = d2(t) + γ3(t) + γ4(t).

Next we examine |χ(t)|2,−1,Ω from (8.66). Assume that |χ(0)|2,−1,Ω ≤ A3. Then (8.66)
implies

|χ(T )|2,−1,Ω ≤ ϕ(A(0, T ))[d∗ + d3(T ) + e−TA1] + cγ3(T )(8.71)

+ cδ0A(0, T ) + e−νTA3 ≤ A3,

where the second inequality follows for A3 sufficiently large. Inequality (8.71) can be
repeated step by step because d∗ is fixed for all t, d3(t) is a decreasing function and
e−TA1 ≤ A1, e−νTA2 ≤ A2.

Since |χ(t)|2,−1,Ω does not increase with time we have the same for ‖χ(t)‖1,1−µ,Ω .
These considerations imply global existence for problem (1.1). Hence Theorem 1.2 is

proved.
Theorem 1.3 follows directly from Theorems 1.1 and 1.2.
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In this section we recall results concerning the existence and regularity of solutions to
the Navier–Stokes equations.

9.1. Problems with slip boundary conditions. In this subsection we concentrate
on problem (1.1) under different geometrical and analytical restrictions, where the slip
boundary conditions are employed. The boundary conditions imply the boundary condi-
tions for vorticity, so a problem for vorticity can be considered. Then applying the ideas
of [lad 1] and [uky] the global estimate for vorticity modulo norms of small quantities
follows. This is the main step for proofs of global existence of solutions to problems (1.1).

In this paper we proved existence of global regular solutions to problem (1.1) assuming
that w(0), h(0), fϕ, Fr, Fz are small and imposing decay of the external force (see (1.21)).
The results are formulated in Theorems 1.1–1.3. In this paper Ω is an axially symmetric
domain. Hence to show global existence a lot of strong geometrical restrictions on the
boundary must be imposed (see assumptions A.1, A.2, A.3). Most of them follow from
the fact that χ|S 6= 0, which is implied by the fact that Ω is axially symmetric but
noncylindrical and the slip coefficient γ is nonvanishing.

In [zaj 5] problem (1.1) in a cylinder and with vanishing slip coefficient γ is considered.
In this case χ|S = 0, so the proofs of the results similar to Theorems 1.1–1.3 are much
simpler. The ideas of the proofs are the same as in this paper.

Since in this paper and in [zaj 5] we proved existence of solutions to (1.1) with small
azimuthal component of velocity vϕ we are interested to have the existence of solutions
with large vϕ. In [zaj 7] existence of global axially symmetric solutions with large swirl is
proved in a cylinder with the axis of symmetry removed. We do not know how to obtain
any estimate for vϕ near the axis of symmetry without assuming that vϕ is sufficiently
small. This is connected with the property that any axially symmetric solution near the
axis of symmetry behaves as a three-dimensional one (see [zaj 11]).

Existence of global solutions with large swirl which are close to the axially symmetric
solutions from [zaj 7] is also proved in [zaj 8] for cylinders with the axis of symmetry
removed.

In [zaj 11] we showed existence of global axially symmetric solutions in a full cylinder
which are such that near the axis of symmetry vϕ is sufficiently small but at a sufficiently
large distance from it vϕ is large. The existence follows from the Leray–Schauder fixed
point theorem by making use of an appropriate partition of unity.

In this paper and in [zaj 5, 7, 8, 11, 12] the existence of solutions which are either axi-
ally symmetric or close to axially symmetric and in axially symmetric domains is proved.

[115]
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In [zaj 9–10] we showed the existence of solutions in non-axially symmetric cylinders.
The solutions are such that they do not change much with respect to the variable along
the cylinder. Hence they are close to two-dimensional solutions. The papers generalize
the results of Raugel–Sell (see [ras 1–3]). The existence is proved via the Leray–Schauder
fixed point theorem. In [zaj 10, 12] the case with inflow and outflow, while in [zaj 9] the
case without inflow and outflow are considered.

9.2. Local existence and uniqueness of strong solutions. We shall start with the
most fundamental problem: existence and uniqueness of local strong solutions for different
initial-boundary value problems. We indicate different approaches and relations between
them.

To present results concerning problems (1.1)–(1.3) we first introduce some function
spaces (the notation concerning the results of this paper is introduced in Chapter 2). By
C∞0,σ(Ω) we denote the set of all C∞ vector functions ϕ = (ϕ1, . . . , ϕn) with compact
support in Ω such that div ϕ = 0, where Ω ⊆ Rn. Lr,σ(Ω) is the closure of C∞0,σ(Ω) with
respect to the Lr-norm, (·, ·) denotes the duality pairing between Lr(Ω) and Lr′(Ω),
where 1/r + 1/r′ = 1, and

‖u‖Lr(Ω) =
( �

Ω

|u(x)|r dx
)1/r

,

where u is a scalar or vector-valued function. Hs
0,σ(Ω) denotes the closure of C∞0,σ(Ω)

with respect to the norm

‖u‖Hs0,σ(Ω) =
∑

|α|≤s
‖Dα

xu‖L2,σ(Ω).

For an interval I ⊂ R1 and a Banach space X, Lp(I;X) and Cm(I;X) denote the usual
Banach spaces of functions on I with values in X, respectively, where p ∈ [1,∞] and
m = 0, 1, . . . .

Now we define weak solutions to problems (1.1)1,2,5 and (1.1)1,2,5, (1.3).

Definition 9.2.1. Let v(0) ∈ L2,σ(Ω). Let Ω ⊆ Rn, n = 2, 3. A measurable function v

on ΩT = Ω × (0, T ) is called a weak solution to problems (1.1)1,2,5 and (1.1)1,2,5, (1.3) if

(1) v ∈ L∞(0, T ;L2,σ(Ω)) ∩ L2(0, T ;H1
0,σ(Ω));

(2) for every ϕ ∈ H1(0, T ;H1
0,σ(Ω) ∩ Ln(Ω)) with ϕ(T ) = 0,

(9.2.1)
T�

0

[−(v, ϕ,t) + ν(∇v,∇ϕ) + (v · ∇v, ϕ)]dt = (v(0), ϕ(0)).

Concerning existence of weak solutions, by Leray [ler] and Hopf [hop] we have

Theorem 9.2.2 (Leray–Hopf). For every v(0) ∈ L2,σ(Ω), there exists at least one weak
solution to the Cauchy problem (1.1)1,2,5 (see [ler]) and to the Dirichlet problem (1.1)1,2,5,
(1.3) (see [hop]) for t ∈ (0,∞) such that

(9.2.2) |v(t)|22,Ω + 2ν
t�

0

|∇v(t′)|22,Ω dt′ ≤ |v(0)|22,Ω
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and

(9.2.3) |v(t)− v(0)|2,Ω → 0 as t→ +0

(see notation in Section 2).

Let us now consider problem (1.1).

Definition 9.2.3. By a weak solution to problem (1.1) we mean a function v ∈ L∞(0, T ;
L2,σ(Ω)) ∩ L2(0, T ;H1

σ(Ω)) satisfying the integral identity

(9.2.4)
T�

0

[−(v, ϕ,t) + ν(D(v),D(ϕ)) + γ(v · τα, ϕ · τα)S + (v · ∇v, ϕ)] dt

= (v(0), ϕ(0)) +
T�

0

(f, v) dt,

which holds for any ϕ ∈ H1(0, T ;H1
σ(Ω)) with ϕ(T ) = 0, where (v · τα, ϕ · τα)S =�

S
v · ταϕ · τα dS and the summation convention over the repeated index α is assumed.

By Lemma 3.5 the following estimate for weak solutions satisfying (9.2.4) holds:

(9.2.5) |v(t)|22,Ω + ν

t�

0

|∇v(t′)|22,Ω dt′ ≤ c(1 + t)(|f |22,1,Ωt + |v(0)|22,Ω)·

Next we recall results on local existence. The first result on the solvability of the
Cauchy problem (1.1)1,2,5 with initial data v(0) ∈ Lq,σ(Rn) is due to Fabes–Jones–Rivière
[fjr]. For this purpose they introduced

Definition 9.2.4. By a very weak solution to problem (1.1)1,2,5 we mean a function
v ∈ Lr(0, T ;Ls,σ(Rn)) satisfying

(9.2.6)
T�

0

[((∂t + ν∆)ϕ, v) + (∇ϕ, v ⊗ v)] dt = −(ϕ(0), v(0))

for ϕ ∈ C∞0,σ(Rn).

Theorem 9.2.5 (Fabes–Jones–Rivière [fjr]). Let v(0) ∈ Lq,σ(Rn). Then the Cauchy prob-
lem (1.1)1,2,5 has a unique local solution v ∈ Lr(0, T ;Ls,σ(Rn)) with s > n, n/q <

2/r + n/s ≤ 1.

Provided v(0) is sufficiently small in Lq(Rn) ∩ Lq′(Rn), 1/q + 1/q′ = 1, the solution
exists globally, so T =∞.

The existence of local solutions for the Cauchy–Dirichlet problem (1.1)1,2,5 with non-
homogeneous boundary conditions (1.3) with data in Lp has been proved in Rn+ by Lewis
(see [lew]) and in a bounded domain by Fabes–Lewis–Rivière [flr].

By different techniques Beirão da Veiga proved (see [bdv 5]):

Theorem 9.2.6. If v(0) ∈ Lq,σ(Rn), q > n, then there exists a unique very weak solution
v to problem (1.1)1,2,5 which is a weakly continuous function from [0, T ] into Lq,σ(Rn).
Furthermore, if v(0) ∈ L2,σ(Rn) ∩ Lq,σ(Rn) then v ∈ C([0, T ];L2,σ(Rn) ∩ Lq,σ(Rn)) ∩
L2((0, T );H1(Rn) ∩ Lq,σ(Rn)).
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In addition, Beirão da Veiga gives an estimate for the maximal existence time (de-
pending on ‖v(0)‖Lq(Rn)) and proves that the solution exists globally, that is, for all time,
if the norm ‖v(0)‖L2(Rn)∩Lq(Rn) is sufficiently small.

More recently C. P. Calderón (see [cal 1–3]) proved also the existence of very weak
local solutions to (1.1)1,2,5 for q = n.

Let S be the Stokes operator −νP∆, where P is the projector onto the solenoidal
vector fields. Let b(v, v) = −P (v · ∇v). Then solutions of problem (1.1)1,2,5 satisfy the
following integral equation:

(9.2.7) v(t) = e−tSv(0) +
t�

0

e−(t−τ)S [b(v, v)(τ) + f(τ)] dτ.

Definition 9.2.7. Let E be a Banach space and I ⊂ R+ an interval. By a mild solution
(in E) of (1.1)1,2,5 on I we mean a function v ∈ C(I;E) satisfying (9.2.7) on I, where
E is a Banach space of distributions on which the Stokes semigroup {e−tS : t ≥ 0} is
strongly continuous and the integral in (9.2.7) is well defined.

Applying the semigroup approach Kato [kat 1] considered Theorem 9.2.6 in the critical
case q = n. He showed, by using some ideas developed earlier jointly with Fujita (see
[fuk 1–2]), the following result:

Theorem 9.2.8. Given v(0) ∈ Ln,σ(Rn) there exists T > 0 and a unique solution of
(1.1)1,2,5 with f = 0 in the class

(9.2.8) C([0, T ];Ln,σ(Rn)) ∩ C(1−n/q)/2((0, T ];Ln,σ(Rn))

for n < q <∞.

We underline that Theorem 9.2.8 is a simplified version of Kato’s result (see [can,
wie]) since in [kat 1] class (9.2.8) is more restricted.

In [kat 1] it is also shown that v is global if ‖v(0)‖Ln(Rn) is sufficiently small.
The case n = 3 has been extensively studied by Cannone and Meyer [cam] and

Cannone [can]. They introduced a concept of “well-suited” spaces for the Navier–Stokes
equations. They showed local existence and uniqueness of solutions in the class of well-
suited spaces. In [cam] (see also [can]) it is shown that Lq(Rn) is well-suited if q > n = 3.
In the same paper it is also shown that the Sobolev spaces Hs

2(Ω;Rn) are well-suited if
s > 1/2. Thus, if n = 3, s > 1/2 and v(0) ∈ H2

2,0,σ(Ω;Rn) then there exists a unique
mild solution to the Navier–Stokes equations such that

v ∈ C([0, T ];Hs
2,0,σ(Ω;R3)),

where

(9.2.9) Hs
q,0,σ(Ω;Rn) =

{ {u ∈ Hs
q (Ω;Rn) : div u = 0, u|∂Ω = 0}, 1/q < s < 2,

{u ∈ Hs
q (Ω;Rn) : div u = 0, u · n|∂Ω = 0}, 0 ≤ s < 1/q.

Moreover, the existence time T depends on ‖v(0)‖Hs2 only. This extends an earlier result
of Kato [kat 2] who had to suppose that s > 5/2.

The more general case where v(0) belongs to a Bessel potential space Hs
q (Ω;Rn)

has been investigated by Kato–Ponce [kap] for q ∈ (1,∞), s > 1 + n/q if n = 3, and
by Ribaud [rib] for q ∈ (1,∞), −1 + n/q < s < (m/q) ∧ (1 + n/q)/2. Assuming that
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v(0) ∈ Hs
q,0,σ(Ω;Rn) they proved that problem (1.1)1,2,5, (1.3) has a local mild solution

v ∈ C([0, T );Hs
q,0,σ(Ω;Rn)). It is unique if s ≥ n(1/q − 1/2)+.

In the situation described above uniqueness is always, except in Ribaud’s result,
proven under additional restrictions. Moreover, there is no relation between different
uniqueness theorems.

Amann [ama] improved the situation. For this purpose he introduced a scale of Besov
and Nikol’skĭı spaces. We recall the simplest result. Let Bs

q,r := Bsq,r(Ω;Rn) be a Besov
space. A little Nikol’skĭı space nsq is defined by

nsq := closure of Hs
q in Bsq,∞, |s| ∈ (0, 2).

Let us also introduce the spaces nsq,0,σ := {u ∈ nsq : div u = 0}, q ∈ (1,∞), |s| ∈ (0, 2).

Theorem 9.2.9. Suppose that n < q ≤ r < ∞ and v(0) ∈ n−1+n/q
q,0,σ . Then there exists

a unique maximal solution v := v(·, v(0)) of the Navier–Stokes equations

(9.2.10)

v,t + P (v · ∇v)− νP∆v = Pf,

div v = 0,

v|S = 0,

v|t=0 = v(0),

such that

(9.2.11) v ∈ C((0, t+);H2
r,0,σ) ∩ C((0, t+);Lr,σ)

and

lim
t→0

v(t) = v(0) in n
−1+n/q
q,0,σ

as well as

lim
t→0

t(1−n/q)/2v(t) = 0 in Lq.

Theorem 9.2.9 guarantees for each r ≥ q a unique maximal solution vr on the maximal
interval of existence [0, t+r ). Since the spaces (9.2.11) are not comparable for different
values of r it is conceivable that vr 6= vs if r 6= s.

It has been shown in [ama] that vs ⊃ vr if s > r. This means in particular that
t+r ≤ t+s for r < s. Thus, although the solution vr ceases to exist in class (9.2.11) at t+r ,
if t+r <∞, it can be continued to the possibly larger interval [0, t+s ) in the class which is
obtained by replacing H2

r,σ and Lr,σ in (9.2.11) by H2
s,σ and Ls,σ, respectively. Thus we

should obtain a unique maximal solution v, independently of r > q, by letting r →∞.
In Theorems 9.2.6–9.2.9 local existence of strong solutions is proved. In these theorems

under sufficiently small initial data (in corresponding norms) there is always a possibility
of prolongation of the local solution with t→∞.

Finally, we formulate a local existence result which will be useful to describe the
problem of prolongation of local strong solutions.

Theorem 9.2.10 (Kato [kat 1], Giga–Miyakawa [gim], Brezis [bre]). For n < r < ∞,
there is a constant γ = γ(n, r) > 0 such that if the initial data v(0) ∈ Ln,σ(Rn) and
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T∗ > 0 satisfy

(9.2.12) sup
0<t≤T∗

t(n/2)(1/n−1/r)‖e−tSv(0)‖Lr(Rn) < γ,

then there exists a unique strong solution v(t) of problem (1.1)1,2,5. Moreover , the solution
v is such that t(n/2)(1/n−1/r)v(t) ∈ C([0, T∗), Lr(Rn)) and

(9.2.13) lim
t→+0

t(n/2)(1/n−1/r)‖v(t)‖Lr,σ(Rn) = 0.

If , in addition, v(0) ∈ Ln,σ(Rn) ∩ L2,σ(Rn) satisfies (9.2.12), then v is also a weak
solution of the Navier–Stokes equations on (0, T∗).

Under condition (9.2.12) we can construct a strong solution v on the interval (0, T∗)
by the method of successive approximations. To verify (9.2.12) we use the following Lp-Lr
estimates for the Stokes semigroup {e−tS}t≥0:

(9.2.14)
‖e−tSa‖Lr(Rn) ≤ Ct−(n/2)(1/p−1/r)‖a‖Lp(Rn), 1 ≤ p ≤ r ≤ ∞,
‖∇e−tSa‖Lr(Rn) ≤ Ct−(n/2)(1/p−1/r)‖a‖Lp(Rn), 1 ≤ p ≤ r <∞,

which hold for all a ∈ Lp,σ(Rn) and all t > 0, where C = C(n, p, r). Hence, if v(0) ∈
Ln,σ(Rn) ∩ Lr,σ(Rn) for some n < r < ∞, then (9.2.12) can be achieved in such a way
that

(9.2.15) T∗ =
(

γ

C‖v(0)‖Lr,σ(Rn)

)2r/(r−n)

with the same constant C as in (9.2.14).
Abandoning the smallness assumption we have the open problem of regularity and

uniqueness of weak solutions (see Definitions 9.2.1 and 9.2.3). To solve it we can distin-
guish the following directions:

(9.2.16)

1. conditional regularity

2. singular and regular points

3. blow-up problems

4. continuation of local strong solutions

5. existence of global regular special solutions

6. decay of solutions.

9.3. Conditional regularity. The classical result on uniqueness and regularity of weak
solutions in the class Ls(0, T ;Lr(Rn)) was given by Foiaş [foi], Serrin [ser 1–2], Masuda
[mas 1]:

Theorem 9.3.1 (Foiaş–Serrin–Masuda). Let v(0) ∈ L2,σ(Rn).

(i) Let u and v be two weak solutions of the Navier–Stokes equations on (0, T ). Sup-
pose that u satisfies

(9.3.1) u ∈ Ls(0, T ;Lr(Rn)) for 2/s+ n/r = 1 with n < r ≤ ∞.
Assume that v fulfills the energy inequality (9.2.2) for t ∈ [0, T ). Then u ≡ v on
[0, T ).
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(ii) Every weak solution of the Navier–Stokes equations in the class (9.3.1) satisfies

(9.3.2) u ∈ C2,1(Rn × (0, T )).

The class (9.3.1) is important from the viewpoint of scaling invariance. It is known
that if (v, p) is a solution to the Navier–Stokes equations on Rn × (0,∞), then so is
vλ(x, t) = λv(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t), λ > 0 (see [ckn]). Scaling invariance
means that

‖vλ‖Ls(0,T ;Lr(Rn)) = λ1−(2/s+n/r)‖v‖Ls(0,T ;Lr(Rn)) = ‖v‖Ls(0,T ;Lr(Rn))

if and only if 2/s+ n/r = 1.
We shall next deal with the critical case s =∞ and r = n in (9.3.1).

Theorem 9.3.2 (Masuda [mas 1], Kozono–Sohr [kos 1–2]).
(i) (uniqueness) Let u and v be weak solutions to the Navier–Stokes equations. Sup-

pose that u ∈ L∞(0, T ;Ln(Rn)) and v satisfies the energy inequality (9.2.2) for
0 ≤ t < T . Then u ≡ v on [0, T ).

(ii) (regularity) There exists a positive constant ε0 such that if u is a weak solution
of the Navier–Stokes equations in L∞(0, T ;Ln(Rn)) with the property

(9.3.3) lim
t→t∗−0

sup ‖u(t)‖nLn(Rn) ≤ ‖u(t∗)‖nLn(Rn) + ε0 for some t∗ ∈ (0, T ),

then

(9.3.4) u ∈ C2,1(Rn × (t∗ − %, t∗ + %)) for some % > 0.

In particular , if u has the property (9.3.3) for every t∗ ∈ (0, T ), then u is regular
on Rn × (0, T ) as in (9.3.2).

Remark 9.3.3.
(1) Masuda [mas 1] proved that if u ∈ L∞(0, T ;Ln(Rn)) is continuous from the right

on [0, T ) in the norm Ln(Rn), then u ≡ v on [0, T ). Later on Kozono–Sohr [kos 1]
showed that every weak solution u in L∞(0, T ;Ln(Rn)) of the Navier–Stokes
equations on (0, T ) becomes necessarily continuous from the right in the norm
of Ln(Rn).

(2) By the above theorem, every weak solution in C([0, T );Ln(Rn)) is unique and
regular. This has been proved by Giga [gig] and von Wahl [wah].

(3) Recently, Hishida–Izumida [hii] have improved the condition (9.3.3). They have
proved regularity of u under the weaker assumption

(9.3.5) lim
t→t∗−0

‖u(t)‖nLn(Rn) ≤ ‖u(t∗)‖nLn(Rn) + ε0.

Theorems 9.3.1, 9.3.2 and Remark 9.3.3 can be found in [koz 1].
Now we recall further results concerning conditional regularity and uniqueness of weak

solutions to the Navier–Stokes equations. The first result in this direction was shown by
Serrin [ser 1]:
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Theorem 9.3.4 (Serrin). Let v be a weak solution of the Navier–Stokes equations in some
open region R ⊂ Rn × (0, T ). Suppose that v ∈ Ls,r(R) with

(9.3.6)
2
s

+
n

r
< 1.

Then v is of class C∞ in the space variables , and each derivative is bounded in compact
subregions of R. Assume that v,t ∈ L2,p(R) with p ≥ 1. Then the space derivatives of v
are absolutely continuous functions of time and p is a strongly differentiable function.

Definition 9.3.5 (Caffarelli–Kohn–Nirenberg [ckn]). A pair (v, p) of measurable func-
tions on ΩT is called a suitable weak solution of problem (1.1)1,2,5, (1.3) with f = 0 if

1. v ∈ L∞(0, T ;L2,σ(Ω)) ∩ L2(0, T ; W̊ 1
2,σ(Ω)), p ∈ L5/4(ΩT ),

2. v is a weak solution of problem (1.1)1,2,5, (1.3) and p is an associated pressure,
3. (v, p) satisfies the so called generalized energy inequality

(9.3.7)
T�

0

�

Ω

|∇v|2ϕdx dt ≤
T�

0

�

Ω

[|v|2(ϕ,t +∆ϕ) + (|v|2 + 2p)v · ∇ϕ] dx dt

for every infinitely differentiable positive function ϕ on ΩT with compact support.

Caffarelli–Kohn–Nirenberg [ckn] proved the existence of a suitable weak solution of
problem (1.1)1,2,5, (1.3) under the assumption that v(0) ∈ L2,σ(Ω) ∩W 2/5

5/4 (Ω).

Definition 9.3.6. A point (x, t) ∈ ΩT is called a regular point of the weak solution v if
there exists a neighbourhood U of (x, t) ∈ ΩT such that v ∈ L∞(U). Points of ΩT which
are not regular are called singular. Let us denote by S(v) the set of all singular points
of v. Then S(v) is closed in ΩT .

A further important result of [ckn] states that if (v, p) is a suitable weak solution of
problem (1.1)1,2,5, (1.3) then the one-dimensional Hausdorff measure of S(v) equals zero.

Next we recall anisotropic conditional regularity results.

Theorem 9.3.7 (Neustupa–Penel [nep 1]). Let (v, p) be a suitable weak solution to prob-
lem (1.1)1,2,5, (1.3) with f = 0. Suppose that there exists a subdomain D of ΩT such that
v3 ∈ L∞(D) (v3 is the third cartesian component of v). Then v has no singular points in
D (i.e. S(v) ∩D = ∅).

Theorem 9.3.8 (Neustupa–Novotny–Penel [nnp]). Let (v, p) (where v = (v1, v2, v3)) be
a suitable weak solution to problem (1.1)1,2,5, (1.3) with f = 0. Suppose that there exists
a subdomain D ⊂ ΩT such that v3 ∈ Lr,s(D) (where Lr,s(ΩT ) = Lr(0, T ;Ls(Ω))) with
r ∈ [4,∞], s ∈ (6,∞], 2/r + 3/s ≤ 1/2. Then v has no singular points in D.

Theorem 9.3.9 (Neustupa–Penel [nep 2]). Suppose that (v, p) is a suitable weak solution
of problem (1.1)1,2,5, (1.3), D is an open subdomain in ΩT and v = (v1, v2, v3) in Carte-
sian coordinates. Suppose further that v1, v2 ∈ Lp,q,loc(D) and v3 ∈ Lr,s,loc(D), where
Lr,s(ΩT ) = Lr(0, T ;Ls(Ω)) and

1. p, q ∈ [2,∞], r ∈ [2,∞), s ∈ [3,∞],
2. 2/r + 3/s ≤ 1, (2/p+ 3/q) + (2/r + 3/s) ≤ 2, 2/p+ 2/r ≤ 1, 2/q + 2/s < 1.

Then (v, p) has no singular points in D.
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Theorem 9.3.10 (Neustupa–Penel [nep 2]). Suppose that D is an open subdomain of
ΩT , (v, p) is a suitable weak solution of problem (1.1)1,2,5, (1.3), ζ1 ≤ ζ2 ≤ ζ3 are the
eigenvalues of the tensor ( 1

2 (vi,xj + vj,xi)) and ζ2 = ζ1
2 + ζ2

2 , where

1. ζ1
2 ∈ L∞,a,loc(D) for a > 3/2,

2. (ζ2
2 )+ ∈ L1,∞,loc(D), where (ζ2

2 )+ denotes the positive part of ζ2
2 .

Then (v, p) is regular in D.

In [bdv 6] Beirão da Veiga proved regularity of weak solutions to problem (1.1)1,2,5

by imposing some conditions on the vorticity w = rot v.

Theorem 9.3.11. Let v(0) ∈ L2(Rn), div v(0) = 0, Dv(0) ∈ Lα′(Ω). Let v be a Leray–
Hopf solution of problem (1.1)1,2,5. If Dv ∈ Lα(0, T ;Lβ(Rn) with 2/α + n/β = 2, 1 <

α ≤ min{2, n/(n− 2)}, then

Dv ∈ C(0, T ;Lα′(Rn)) ∩ Lα′(0, T ;Lnα′/(n−2)(Rn)), Dv = {vi,xj + vj,xi}i,j=1,2,3.

In the above assumption Dv can be replaced by rot v.

Further, we have

Theorem 9.3.12 (Chae–Choe [chc]). Let Ω = R3, v(0) ∈ H0
0,σ(R3), w(0) = rot v(0) ∈

H0
0,σ(R3), w = (w1, w2, w3), w1, w2 ∈ Lp,q(ΩT ), p ∈ (1,∞), q ∈ (3/2,∞), 2/p+ 3/q ≤ 2

or if the norms of w1 and w2 in L∞,3/2(ΩT ) = L∞(0, T ;L3/2(Ω)) are sufficiently small.
Then v is a classical solution on (0, T ) of problem (1.1)1,2,5.

Moreover, Chae–Cho [chc] have proved

Theorem 9.3.13. Let Ω = R3, v(0) ∈ H1
0,σ(R3), ∇v1,∇v2 ∈ Lp,q(ΩT ) = Lp(0, T ;Lq(Ω))

with p ∈ [2,∞], q ∈ [3,∞], 2/p + 3/q ≤ 1. Then v is a classical solution on (0, T ) of
problem (1.1)1,2,5.

Finally, Constantin–Fefferman [cof] have proved regularity of a weak solution v under
certain assumptions about the behaviour of the quantity rot v/rot |v|.

Now we formulate conditional results where pressure is involved. Put ε(t) =
√
t0 − t

for t ≤ t0. Assume that % > 0 and r > 0. Set

U%r = {(x, t) ∈ R3 × (0, T ) : t0 − r2/%2 < t < t0, ε(t)% < |x− x0| < r},
V %r = {(x, t) ∈ R3 × (0, T ) : t0 − r2/%2 < t < t0, |x− x0| < ε(t)%}.

Let us introduce the conditions

(A1)%r : v ∈ La,b(U%r ) for a ≥ 3, b > 3 such that 2/a+ 3/b = 1,

(A2)%r : ‖v‖L∞,3(U%r ) ≤ ε1,

(B1)%r : p− ∈ Lα,β(V %r ) for α ≥ 3/2, β > 3/2 such that 2/α+ 3/β = 2,

(B2)%r : ‖p−‖L∞,3/2(V %r ) < ε2,

where p− denotes the negative part of the pressure p: p− = 0 if p ≥ 0, p− = −p if p < 0.

Theorem 9.3.14 (Nečas–Neustupa [nen]). Suppose that there exist % > 0 and r > 0 such
that
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(a) condition (A1)%r or condition (A2)%r with sufficiently small ε1 is satisfied , and
(b) condition (B1)%r or condition (B2)%r with sufficiently small ε2 is satisfied.

Then (x0, t0) is a regular point of a suitable weak solution (v, p) of the Cauchy problem
(1.1)1,2,5.

Let us introduce

Definition 9.3.15. We say that a function g : R3 × (0,∞) → [0,∞) satisfies condition
(c) if, for any t0 > 0, there exists a positive number R0 = R0(t0) such that

A(t0) ≡ sup
x0∈R3

sup
−R2

0≤t≤t0

�

B(x0,R0)

g(x, t)
|x− x0|

dx <∞

and, for each fixed x0 ∈ R3 and each R ∈ (0, R0], the function

t 7→
�

B(x0,R)

g(x, t)
|x− x0|

dx

is continuous at t0 from the left.

Seregin–Šverák [ses 1] have proved

Theorem 9.3.16. Let v be a Leray–Hopf solution of the Cauchy problem (1.1)1,2,5 and
let p be the normalized pressure associated with v. Assume that there exists a function g

satisfying condition (c) such that

(9.3.8) |v(x, t)|2 + 2p(x, t) ≤ g(x, t), x ∈ R3, t ∈ (0,∞),

or

(9.3.9) p(x, t) ≥ −g(x, t), x ∈ R3, t ∈ (0,∞).

Then v is Hölder continuous on R3 × (0,∞) and therefore smooth and unique.

Remark 9.3.17. Conditions (9.3.8) and (9.3.9) are satisfied if g = const > 0 in R3 ×
(0,∞).

Finally, we describe conditional regularity results obtained by Beirão da Veiga by
methods connected with the regularity techniques used for parabolic equations by De
Giorgi–Moser–Ladyzhenskaya and truncation methods (see [lsu]).

Theorem 9.3.18 (Beirão da Veiga [bdv 7]). Let (v, p) be a solution to problem (1.1)1,2,5,
(1.3). Let v(0) ∈ Hα

0,σ(Ω), α > n, and f be regular. Let

(9.3.10)
p

1 + |v| ∈ Lr(0, T ;Lq(Ω)) with
2
r

+
n

q
= 1, q ∈ (n,∞].

Then v ∈ C(0, T );Hα
0,σ(Ω)), |v|α/2 ∈ L2(0, T ;H1

0 (Ω)).

Theorem 9.3.19 (Beirão da Veiga [bdv 1]). Let (v, p) be a solution to problem (1.1)1,2,5,
(1.3). Let ‖v(0)‖L∞(Ω) ≤ k0 for some positive constant k0. Let

ϕk(x, t) =





|p(x, t)|
1 + |v(x, t)| if v(x, t) > k,

0 otherwise,
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and let ϕk ∈ Lr(0, T ;Lq(Ω)) with 2/r + n/q < 1, r ∈ (2,∞], q ∈ (n,∞]. Then v ∈
L∞(ΩT ). If p/(1 + |v|) ∈ Lr(0, T ;Lq(Ω)) with the same restrictions on r and q as above
then v ∈ L∞(ΩT ).

To formulate results from [bdv 2] we need some notation. Let E be a measurable subset
of Rn and let |E| be its Lebesgue measure. Let us define the classical Marcinkiewicz space
Lq,∗(E). A measurable function f(y) belongs to Lq,∗(E) if there exists a constant [f ]q
such that

(9.3.11) |{x ∈ E : |f(x)| > σ}| ≤ ([f ]q/σ)q, ∀σ > 0.

The smallest constant [f ]q for which (9.3.11) holds is called the “norm” of f in Lq,∗(E).
The following algebraic and topological imbeddings hold:

(9.3.12) Lq(E) ⊂ Lq,∗(E) ⊂ Lq−ε(E), ∀ε > 0.

Theorem 9.3.20 (Beirão da Veiga [bdv 2]). Let (v, p) be a weak solution of problem
(1.1)1,2,5, (1.3). Assume that for some θ ∈ [0, 1) and some γ such that

(9.3.13)
2(n+ 2)

2θ + (1− θ)(n+ 2)
< γ < n+ 2

one has

(9.3.14)
p

(1 + |v|)θ ∈ Lγ,∗(Ω
T ).

Then

(9.3.15) v ∈ Lµ,∗(ΩT ) with µ = (1− θ) (n+ 2)γ
n+ 2− γ .

Moreover , if

(9.3.16)
p

1 + |v| ∈ Lγ,∗(Ω
T ), γ > n+ 2,

then v ∈ L∞(ΩT ).

To recall results from [bdv 4] we have to introduce some notation. Let us consider
problem (1.1)1,2,5, (1.3). By a weak solution to problem (1.1)1,2,5, (1.3) we mean v ∈
Cw(0, T ;L2,σ(Ω)) ∩ L2(0, T ;H1

0,σ(Ω)) (Cw(0, T ;X) stands for the continuous functions
with respect to the weak topology in X) satisfying the identity

(9.3.17)
T�

0

[(v(t), ϕ(t)) + ν(∇v(t),∇ϕ(t)) + (v(t) · ∇v(t), ϕ(t))

+ (f(t), ϕ(t))]dt = (v(T ), ϕ(T ))− (v(0), ϕ(0)),

for all ϕ ∈ C1([0, T ];H1
0,σ(Ω)).

We say that v is a strong solution of the Navier–Stokes equations if

(9.3.18) v ∈ L2(0, T ;D(S)) ∩ C([0, T ];H1
0,σ(Ω)), v,t ∈ L2(0, T ;L2,σ(Ω))

and

(9.3.19)
v,t + νSv + P (v · ∇v) = Pf in L2(0, T ;L2,σ(Ω)),

v|t=0 = v(0),

where S = −P∆ and D(S) = H1
0,σ(Ω) ∩H2(Ω).
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Let us consider the condition

(9.3.20) v ∈ Ls(0, T ;Lr(Ω)),
2
s

+
n

r
= 1 and r > n.

If n = 3, any weak solution satisfying (9.3.20) is necessarily strong.
Let us introduce the set

A(t, k) = {x ∈ Ω : |v(t, x)| > k}, k ≥ 0, t ∈ [0, T ].

Hypothesis A. We say that v satisfies hypothesis A at t (with constant C) if v ∈
L∞(0, T ;Ln(Ω)) and if there are δ > 0 and a real nonnegative function k(t) defined and
square integrable on (t− δ, t) such that

(9.3.21)
�

A(t,k(t))

|v(t, x)|ndx ≤ Cn a.e. in (t− δ, t).

We say that v satisfies hypothesis A in [0, T ] if it satisfies hypothesis A at each t ∈ (0, T ];
here δ and k(t) may depend on the particular point t.

Theorem 9.3.21 (Beirão da Veiga [bdv 4]). Let v be a weak solution of problem (1.1)1,2,5,
(1.3). Assume that for some t ∈ (0, T ], v is a strong solution in [0, τ ] for each τ < t and
moreover v satisfies hypothesis A at t with constant C0. Then v ∈ C(0, t;H1

0,σ(Ω)).

Finally, we have

Theorem 9.3.22 (Beirão da Veiga [bdv 3]). Suppose v(0) ∈ L2,σ(Ω) and Dv(0) ∈ Lp(Ω)
for some p ≥ max{2, n/2}. Suppose v is a Leray–Hopf solution of problem (1.1)1,2,5. If

Dv ∈ Lp′(0, T ;Lpn/2(Rn)),
1
p

+
1
p′

= 1,

then

Dv ∈ C(0, T ;Lp(Rn)) ∩ Lp(0, T ;Lpn/(n−2)(Rn)).

Moreover ,

sup
0≤t≤T

‖D(v(t))‖pLp(Rn) +
T�

0

‖Dv(t)‖pLpn/(n−2)(Rn) dt

≤ c‖Dv(0)‖pLp(Rn)

[
1 + exp

(
c

T�

0

‖Dv(t)‖p
′

Lnp/2(Rn) dt
)]
.

Finally, we recall results concerning axially symmetric solutions and their proper-
ties. Global existence of axially symmetric solutions was considered by Leonardi–Málek–
Nečas–Pokorný [lmnp 1–2] and by Gallagher–Ibrahim–Majdoub [gima]. Properties of ax-
ially symmetric solutions were examined by Neustupa–Pokorny [npo 1–2, pok]. Recently
Seregin–Šverák [ses 2] have proved that v ∈ L∞(0, T ;L3(Ω)) implies regularity of a weak
solution.

9.4. Singular and regular points. Caffarelli–Kohn–Nirenberg [ckn] have shown that
H1(S) = 0, where H1(S) is the one-dimensional Hausdorff measure and S is the set of
singular points introduced in Definition 9.3.6. Recently Choe–Lewis [chs] have obtained
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a better estimate of the Hausdorff dimension of S. Neustupa [neu] has described the set
of singular points.

Theorem 9.4.1 (Neustupa [neu]). Let n = 3. Then there is an absolute constant ε0 > 0
such that every weak solution v in L∞(0, T ;L3(Ω)) fulfills

#S(v) ≤
(

1
ε0

sup
0<t<T

‖v(t)‖L3(Ω)

)3

,

where #S denotes the number of elements of the set S.

Recently Kozono [koz 2] has found deeper characteristics of the singular set.

Theorem 9.4.2 (Kozono [koz 2], see also [koz 1]). Let n = 3. There is an absolute con-
stant ε0 > 0 with the following property. If v is a weak solution of the Navier–Stokes
equations on (0, T ) and if v satisfies

(9.4.1) sup
t0−%<t<t0+%

‖v(t)‖L3,W (B(x0,δ)) ≤ ε0

at (x0, t0) ∈ R3 × (0, T ) for some δ > 0, % > 0, then (x0, t0) is a regular point.

Here ‖ · ‖L3,W (B(x0,δ)) = supR>0Rµ{x ∈ B(x0, δ) : |v(x)| > R}1/2, where µ is the
Lebesgue measure.

Corollary 9.4.3 (removable singularities, Kozono [koz 1]). Let n = 3. There is an
absolute constant ε0 such that if v is a weak solution to the Navier–Stokes equations on
(0, T ) and (x0, t0) is an isolated singular point of v satisfying

(9.4.2) lim
x→x0

sup
t→t0
|x− x0|v(x, t)| < ε0,

then (x0, t0) is a regular point.

In particular, if v behaves at (x0, t0) like

(9.4.3) v(x, t) = o(|x− x0|−1) as x→ x0

uniformly with respect to t in some neighbourhood of t0, then (x0, t0) is a regular point.

Remark 9.4.4. Kozono [koz 1], Serrin [ser 1] and Takahashi [tak] have shown that every
weak solution v of the Navier–Stokes equations satisfying

‖v‖Ls(a,b;Lr(D)) <∞ for D × (a, b) ⊂ Ω × (0, T ),
2
s

+
3
r
≤ 1, r > 3,

is of class C∞ in the space variables. Theorem 9.4.2 deals with the marginal case s =
∞, r = 3 and L3(D) ⊂ L3,w(D). Moreover, Theorem 9.4.2 implies interior regular-
ity in the space-time variables but Serrin [ser 1] had to impose additionally that v,t ∈
Ls(a, b;L2(D)) with s ≥ 1.

Caffarelli–Kohn–Nirenberg [ckn] have found an absolute constant ε1 such that if the
suitable weak solution satisfies

(9.4.4) R−2
�

QR(x0,t0)

(|v|3 + |v| |p|) dx dt+R−13/4
t0�

t0−R2

( �

|x−x0|<R
|p| dx

)5/4
dt ≤ ε1,
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where QR(x0, t0) = {(x, t): |x − x0| < R, t0 − R2 < t < t0}, then v is regular in
QR/2(x0, t0).

Theorem 9.4.2 generalizes this result because Corollary 9.4.3 implies that
�

QR(x0,t0)

|v(x, t)|3 dx dt =∞,

which is excluded by (9.4.4).

9.5. Blow-up problems. Leray [ler] has proposed a construction of singular solutions
to the Cauchy problem (1.1)1,2,5 by looking for v and p in the form

(9.5.1) v(x, t) =
1√

2a(t0 − t)
V

(
x− x0√
2a(t0 − t)

)
, p(x, t) =

1
2a(t0 − t)

P

(
x− x0√
2a(t0 − t)

)

where a > 0 and V, P are solutions of the problem

(9.5.2)
V · ∇V = −∇P + ν∆V − aV − ax · ∇V in R3,

div V = 0 in R3.

The existence of nontrivial solutions of problem (9.5.2) would easily lead to the singularity
of v, p at the point (x0, t0). However, the following result holds:

Theorem 9.5.1 (Nečas–Růžička–Šverák [nrs]). If V, P is a solution of (9.5.2), then
V ≡ 0.

9.6. Continuation of the local strong solution. Let v(0) ∈ Hs
σ(Rn) with s > n/2−1.

Then Fujita–Kato [fuk 1] have shown that there exists T = T (‖v(0)‖Hsσ(Rn)) > 0 and
a unique solution v(t) to the Cauchy problem (1.1)1,2,5 such that

(9.6.1) v ∈ C([0, T );Hs
σ(Rn)) ∩ C1((0, T );Hs(Rn)) ∩ C((0, T ];Hs+2(Rn)).

Since s > n/2 − 1, we have the imbedding Hs(Rn) ⊂ Lr(Rn), r > n. Hence the time
T (‖v(0)‖Hsσ(Rn)) is characterized by (9.2.15).

The following problem appears: either the solution v(t) loses its regularity at t = T

or there exists T ′ > T such that (9.6.1) holds with T ′ in place of T .
Giga [gig] and Beale–Kato–Majda [bkm] have given a criterion for extension of strong

solutions.

Theorem 9.6.1. Let v(0) ∈ Hs
σ(Rn), s > n/2 − 1. Suppose that v is a solution of the

Navier–Stokes equations on [0, T ) in the class (9.6.1). If either

(9.6.2)
T�

0

‖v(t)‖kLr(Rn) dt <∞ for 2/k + n/r = 1, n < r <∞,

or

(9.6.3)
T�

0

‖rot v(t)‖L∞(Rn) dt <∞,

then there exists T ′ > T such that v(t) can be continued to a solution on [0, T ′) in the
class (9.6.1).



9.7. Global special regular solutions 129

Using [zaj 6] Theorem 9.6.1 can be extended to solutions for the Cauchy–Dirichlet
problem (1.1)1,2,5, (1.3).

Let us define the BMO space by the norm

‖f‖BMO = sup
B

1
|B|

�

B

|f(x)− fB | dx <∞,

where B denotes a ball in Rn and fB = |B|−1
�
B
f(x) dx. In the above definition, the

supremum is taken with respect to all balls B in Rn.

Theorem 9.6.2 (Kozono–Taniuchi [kta], Kozono [koz 1]). Let s > n/2−1 and let v(0) ∈
Hs
σ(Rn). Suppose that v is a strong solution of the Navier–Stokes equations in the class

(9.6.1). Assume that v satisfies either
T�

ε0

‖v(t)‖2BMO dt <∞ or
T�

ε0

‖rot v(t)‖BMO dt <∞

for some ε0 ∈ (0, T ). Then v can be continued to a solution on [0, T ′) in the class (9.6.1)
for some T ′ > T .

Theorem 9.6.3 (Kozono [koz 1]). Let v be a solution of the Navier–Stokes equations in
the class (9.6.1) for s > n/2− 1. Suppose that T is maximal , i.e. v cannot be continued
in the class (9.6.1) for any T ′ > T . Then

T�

ε

‖v(t)‖2BMO dt =
T�

ε

‖rot v(t)‖BMO dt =∞

for all ε ∈ (0, T ). In particular ,

lim sup
t↗T

‖v(t)‖BMO = lim sup
t↗T

‖rot v(t)‖BMO =∞.

In the above theorem ‖ ‖BMO can be replaced by ‖ ‖Ḃ0
∞,∞

, where Ḃsp,q is the homo-
geneous Besov space (see Kozono–Ogawa–Taniuchi [kot]).

9.7. Global special regular solutions. The aim of this section is to present results
on global regular solutions to the Navier–Stokes equations which are proved under some
geometrical and analytical restrictions. The results are proved under some symmetry
assumptions. Up to now three kinds of global regular solutions to the Navier–Stokes
equations are known:

1. two-dimensional solutions — Ladyzhenskaya [lad 2];
2. axially symmetric solutions, in all space — Yudovich–Ukhovskij [uky] and in a cyl-

inder with the axis of symmetry removed — Ladyzhenskaya [lad 1];
3. helically symmetric solutions — Mahalov–Leibovich–Titi [mlt].

The above solutions, in fact two-dimensional, have been generalized to three dimen-
sions by examining their stability by Ponce–Racke–Sideris–Titi [prst] and by Ströhmer–
Zajączkowski [stz].

A generalization of the two-dimensional solutions from [lad 2] was done by Sell,
Raugel, Iftimie and Avrin. In [ras] Raugel and Sell have proved existence of global regular
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solutions in a thin domain Ωε = Ω′×(0, ε), Ω′ ⊂ R2, ε small and with periodic boundary
conditions by using the semigroup technique.

Theorem 9.7.1 (Raugel–Sell [ras 1]). Consider problem (1.1)1,2,5 on Ωε with periodic
boundary conditions. There is an ε0 = ε0(ν, λ1) > 0, where λ1 = 4π2l−2

1 is the smallest
eigenvalue of −P∆ on Ωε = (0, l1) × (0, l2) × (0, ε), l1 ≥ l2 > ε, such that for every
ε ∈ (0, ε0] there are large sets R(ε) and S(ε),

R(ε) ⊂
{
u ∈ H1(Ωε) : div u = 0,

�

Ωε

u dx = 0
}
,

S(ε) ⊂
{
f ∈W 1

∞([0,∞);L2(Ωε)) :
�

Ωε

f dx = 0
}
,

such that if v(0) ∈ R(ε) and f ∈ S(ε), then (1.1)1,2,5 has a strong solution v(t) with
v|t=0 = v(0), defined for all t ≥ 0 and

‖v(t)‖H1(Ωε) ≤ k1 <∞,
where k1 depends on v(0) and f . Furthermore, there exist constants l1 and l2 which do
not depend on v(0) and which satisfy

lim sup
t→∞

‖v(t)‖H1(Ωε) ≤ l1, lim sup
t→∞

‖v(t)‖H2(Ωε) ≤ l2.

This result was generalized by Avrin [avr 1–2] who also proved existence of global
regular solutions in the thin domain Ωε = Ω′ × (0, ε), Ω′ ⊂ R2, ε small, with Dirichlet
boundary conditions on ∂Ω′ and periodic conditions in the third direction. In his con-
siderations the smallness of ε was replaced by large first eigenvalue of −P∆, where P is
the projection operator on the divergence free vector fields. To prove existence he used
a fixed point argument. A generalization of the above results was given by Iftimie–Raugel
[ifr] who relaxed the conditions on the magnitude and regularity of v(0) and f .

Constantin–Fefferman [cof] have proved that uniformly Lipschitz (for all times) es-
timate of variation of direction of the vorticity vector implies regularity of solutions to
the Navier–Stokes equations. A generalization of the result has been given by Babin–
Mahalov–Nicolaenko (see [bmn 1–2]). They have proved existence of global regular so-
lutions to the Navier–Stokes equations for initial data characterized by uniformly large
vorticity. They consider the following problem:

(9.7.1)

v,t + v · ∇v − ν∆v +∇p = 0,

div v = 0,

v|t=0 = v0 +
1
2
Ωe3 × x,

where e3 = (0, 0, 1), x = (x1, x2, x3), Ω is a constant.

Theorem 9.7.2 ([bmn 1]). Let positive numbers a1, a2, a3 be given. Let the initial con-
dition v0 be defined on the x-periodic lattice Ta1a2a3 = [0, 2πa1] × [0, 2πa2] × [0, 2πa3]
with zero mean. Let v0 ∈ L2(Ta1a2a3) and ‖v0‖L2(Ta1a2a3 ) ≤ M0. Then there exist T∗ =
T∗(M0, a1, a2, a3, ν) and Ω∗ = Ω∗(a1, a2, a3, ν) such that for every Ω ≥ Ω∗, v(x, t) can
be extended to t ∈ (0,∞) and it is regular for t ∈ (T∗,∞). Moreover v(x, t) ∈ H1

r (R3),
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r > 5/2, rot v ∈ L2,loc(R3) for t > T∗ and

‖v(t)‖H1
r (R3) ≤ C1(a1, a2, a3, ν).

In the above formulation Hs
r (R3) is the weighted space with the norm

‖u‖Hsr (R3) =
(∑

|α|≤s

�

R3

1
(1 + |x|2)r

|Dα
xu|2 dx

)1/2

.

In this paper we prove global existence of solutions to problem (1.1) which are close
to axially symmetric solutions.

Definition 9.7.3. By an axially symmetric solution to problem (1.1) we mean a solution
such that vϕ = 0, fϕ = 0, v(0)ϕ = 0, vr,ϕ = 0, vz,ϕ = 0, fr,ϕ = 0, fz,ϕ = 0,p,ϕ = 0.

The main result of this paper can be expected as a classical stability result for the
axially symmetric solution. Let v = va(r, z, t), p = pa(r, z, t) be the axially symmetric
solution to problem (1.1) with the r.h.s. f = fa(r, z, t). Then the disturbances v′ = v−va,
p′ = p− pa are solutions to the problem

(9.7.2)

v′,t + v′ · ∇v′ + va · ∇v′ + v′ · ∇va − ν∆v′ +∇p′ = f ′,

div v′ = 0,

v′ · n|S = 0,

(n · T(v′, p′) · τα + γv′ · τα)|S = 0, α = 1, 2,

v′|t=0 = v′(0).

Having a sufficiently regular axially symmetric solution we are able to prove the existence
of global regular solutions to (9.7.2) for small data.

However we do not know how to prove the existence of global axially symmetric
solutions in the rectangle 0 < r < R, −a < z < a in spaces with the weight equal to
a power function of r.

Appearance of this kind of weighted spaces is connected with the global energy type
estimate for the χ-component of vorticity (see Section 4). Therefore we consider problem
(1.1) directly in three dimensions because in this case we are able to treat elliptic and
parabolic problems in weighted spaces.

Moreover, we underline that the result of this paper is not a stability result in the above
sense. We shall show this by contradiction. Assume that we are looking for a stability
result. Then employing the quantities h and q we have

(9.7.3)

v′ = v − va =
ϕ�

ϕ0

hr dϕ er +
ϕ�

ϕ0

hϕ dϕ eϕ +
ϕ�

ϕ0

hz dϕ ez ≡ H,

p′ = p− pa =
ϕ�

ϕ0

q dϕ,

where ϕ0 is any number from [0, 2π]. Since va satisfies (9.7.2)2 we have to check that so
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does H modulo that h is a solution to (1.4). Since

Hr =
ϕ�

ϕ0

hr dϕ, Hϕ =
ϕ�

ϕ0

hϕ dϕ, Hz =
ϕ�

ϕ0

hz dϕ,

we calculate

divH = Hr,r +
1
r
Hϕ,ϕ +Hz,z +

Hr

r
=

ϕ�

ϕ0

hr,r dϕ+
1
r

( ϕ�

ϕ0

hϕ dϕ
)
,ϕ

+
ϕ�

ϕ0

hz,z dϕ+
1
r

ϕ�

ϕ0

h dϕ =
ϕ�

ϕ0

(
hr,r + hz,z +

hr
r

)
+

1
r
hϕ

= −
ϕ�

ϕ0

1
r
hϕ,ϕ dϕ+

1
r
hϕ =

1
r
hϕ(ϕ0) 6= 0.

Similarly, H does not satisfy (9.7.2)1.

9.8. Decay of solutions. Time asymptotics and stability of solutions to the Navier–
Stokes equations in Rn and in exterior domains were examined intensively by Schonbek
[sch 1–2], Schonbek–Wiegner [scw], Wiegner [wie 1–5], Kajikiya–Miyakawa [kam], and
Galdi–Maremonti [gam].
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