
1. IntrodutionPlan of the IntrodutionSetion 1.1The setion starts with a statement of two theorems whih exemplify the type of results provedin this work. The notions of a faithful lass and of a determining ategory are then introdued.A lass of topologial spaes is said to be faithful if its members are reonstrutible from theirhomeomorphism groups. Example 1.2 ontains a short survey of older reonstrutibily theorems,and Example 1.3 mentions several determining ategories. We then desribe the preise formsof the theorems whih will be proved in this work.Setion 1.2This setion summarizes Chapter 2. The theorems desribed in 1.2 have the form: If for i = 1, 2,
Gi ≤ H(Xi) and ϕ is an isomorphism between G1 and G2, then there is a homeomorphism τbetween X1 and X2 suh that τ indues ϕ.Setion 1.3This setion is a summary of Chapters 3 and 4. It starts with the de�nition of a modulus ofontinuity. A modulus of ontinuity Γ is a set of funtions from [0,∞) to [0,∞) whih servesas a measure for the ontinuity of a uniformly ontinuous funtion. With Γ one assoiates thegroup HLC

Γ (X) of loally Γ -biontinuous homeomorphisms of X. The reonstrution result forgroups of type HLC
Γ (X) says that any isomorphism between HLC

Γ (X) and HLC
Γ (Y ) is indued bya loally Γ -biontinuous homeomorphism between X and Y .Setion 1.4Setion 1.4 summarizes the reonstrution theorems for the group UC(X) of uniformly bion-tinuous homeomorphisms of X. These theorems appear in Chapter 5.Setion 1.5The previous setions dealt mainly with spaes whih are an open subset of a normed vetorspae. This setion desribes the reonstrution theorems for spaes whih are the losure of anopen subset of a normed vetor spae. These theorems appear in Chapter 6. Setion 1.5 alsoinludes a survey of the results of Chapter 7.Setion 1.6Let X be the losure of an open subset of a normed spae. Chapters 8�12 deal with the group

HLC
Γ (X) when X is suh a spae. Setion 1.6 desribes the results obtained in these hapters.Setion 1.7This setion ontains a disussion and open problems.Setion 1.8This setion ontains a short historial survey.1.1. General desription. This work onerns groups of auto-homeomorphisms ofopen subsets of normed vetor spaes and of manifolds over normed vetor spaes. Mainly,we onsider groups whose de�nition is based on the metri of the normed spae, forexample, the group of all bilipshitz auto-homeomorphisms of suh a spae.[6℄



Reonstrution of manifolds from subgroups of homeomorphism groups 7Two types of results are proved. The following statement is an example of the �rsttype.1. Suppose that X1, X2 are open subsets of the Banah spaes spaes E1 and E2respetively. For i = 1, 2 let Gi be a group of auto-homeomorphisms ofXi suh that everybilipshitz homeomorphism of Xi belongs to Gi. Suppose that ϕ is a group isomorphismbetween G1 and G2. Then there is a homeomorphism τ between X1 and X2 suh thatfor every g ∈ G1, ϕ(g) = τ ◦ g ◦ τ−1.An example of the seond type of results is as follows.2. BL(E) denotes the group of all auto-homeomorphisms f of a Banah spae E suhthat f and f−1 are Lipshitz on every bounded set, and BUC(E) denotes the group ofall auto-homeomorphisms f of E suh that f and f−1 are uniformly ontinuous on everybounded set. These groups determine the spaes they at upon in the following sense.(a) Suppose that E1 and E2 are Banah spaes, and ϕ is a group isomorphism between
BL(E1) and BL(E2). Then there is a unique homeomorphism τ between E1 and
E2 suh that for every f ∈ BL(E1), ϕ(f) = τ ◦ f ◦ τ−1. Also, τ and τ−1 areLipshitz on every bounded set (τ is BL).(b) The same holds for groups of the type BUC(E). That is, the statement obtainedfrom (a) by replaing BL by BUC is true.() For every E1 and E2, BL(E1) and BUC(E2) are not isomorphi.Terminology. The notation f : X ∼= Y means that f is a homeomorphism betweenthe topologial spaes X and Y . That is, f is bijetive, and f and f−1 are ontinuous.Let H(X) = {f | f : X ∼= X}. If G,H are groups, then ϕ : G ∼= H means that ϕ is anisomorphism between G and H. The ordered pair with elements a and b is denoted by

〈a, b 〉.Definition 1.1. (a) A pair 〈X,G 〉 onsisting of a topologial spae X and a group G ofauto-homeomorphisms of X is alled a spae-group pair. Let K be a lass of spae-grouppairs. K is faithful if for every 〈X1, G1 〉, 〈X2, G2 〉 ∈ K and ϕ : G1
∼= G2 there exists

τ : X1
∼= X2 whih indues ϕ. That is, for every f ∈ G1, ϕ(f) = τ ◦ f ◦ τ−1.A lass K of topologial spaes is faithful if {〈X,H(X) 〉 | X ∈ K} is faithful.(b) A restrited topologial ategory is a ategory K whose objets are topologialspaes, in whih every morphism between two objets X and Y of K is a homeomorphismfrom X onto Y , and in whih for every morphism g of K, g−1 also belongs to K. Forevery X,Y ∈ K let IsoK(X,Y ) denote the set of morphisms between X and Y and

AutK(X) = IsoK(X,X).We say that K is a determining ategory if for every X,Y ∈ K and a group isomor-phism ϕ : AutK(X) ∼= AutK(Y ) there is τ ∈ IsoK(X,Y ) suh that ϕ(g) = τ ◦ g ◦ τ−1 forevery g ∈ AutK(X).Let K,L be restrited topologial ategories. K,L are said to be distinguishable iffor every X ∈ K and Y ∈ L: if AutK(X) ∼= AutL(Y ), then
X ∈ L and AutK(X) = AutL(X) or Y ∈ K and AutL(Y ) = AutK(Y ). �



8 M. Rubin and Y. YomdinThe above notions provide a onvenient way for stating the seond type of resultsin this work. However, we shall not use other notions or any tehniques from ategorytheory.Some faithful lasses of topologial spaes and some determining ategories are listedin the next two examples. The lists are not exhaustive.Examples 1.2. The following lasses are faithful.(a) The lass of Eulidean manifolds. This was proved by J. Whittaker [W℄ (published1963).(b) The lass of manifolds over the Hilbert ube. This was proved by R. MCoy [MC℄(published 1972).() The lass Eulidean manifolds with boundary. This was proved by M. Rubin [Ru1℄(published 1989).(d) The lass of all spaes 〈X, τ 〉 suh that:(1) X is a polyhedron, and τ is either the metri or the oherent topology of X,(2) the simpliial omplex de�ning X does not have an in�nite inreasing (withrespet to inlusion) sequene of simplexes,(3) for every x ∈ X, {h(x) | h ∈ H(X)} has no isolated points.This was proved by M. Rubin [Ru1℄.(e) The lass of all manifolds over normed vetor spaes. This was proved by M.Rubin [Ru1℄.(f) The lass of manifolds over the lass of real topologial vetor spaes whih areloally onvex, normal and have a nonempty open set whih intersets every straightline in a bounded set. This was proved by A. Leiderman and M. Rubin [LR℄ (published1999). �Examples 1.3. The following are determining ategories.(a) For n ≤ ∞ let K
C
n be the ategory of Ck-smooth manifolds. The morphisms of KC

nare the homeomorphisms f suh that f and f−1 are k times ontinuously di�erentiable.This was proved in [Fi℄ (R. Filipkiewiz 1982), but was earlier proved by W. Ling in[Lg1℄ and [Lg2℄ (unpublished preprint, 1980). See the topi �Reonstrution questions forrelated groups� in Subsetion 1.7 of the Introdution.(b) The ategories arising from Ck-smooth Eulidean manifolds arrying various typesof additional struture, the morphisms being the Ck-di�eomorphisms whih preservethat struture. These are determining ategories. This inludes e.g. foliated manifolds(Ling [Lg1℄ and [Lg2℄) and sympleti manifolds (Banyaga [Ba1℄ 1997). See the topi�Reonstrution questions for related groups� in Subsetion 1.7 for more details.() The ategory of open subsets of Rn with quasi-onformal homeomorphisms asmorphisms. This was proved by V. Gol'dshtein and M. Rubin [GR℄ (1995). �Continuing the investigaton of faithful lasses and determining ategories, we onsidertopologial spaes with extra struture. The spaes onsidered in this work are opensubsets of a normed vetor spae, and more generally, manifolds over normed vetorspaes. We also onsider sets whih are the losures of open subsets of a normed spae.



Reonstrution of manifolds from subgroups of homeomorphism groups 9If X is an open subset of a normed spae E, the �extra struture� attahed to X isusually the objet 〈X, bdE(X), d〉, where bdE(X) is the boundary of X in E, and d isthe metri on clE(X) inherited from E (clE(X) denotes the losure of X in E). Themethods of this work an be applied to more general �extra strutures�. See Remarks6.25 and 6.28.This extra struture is used to de�ne various subgroups of H(X). The groups BL(X)and BUC(X) de�ned at the beginning of Subsetion 1.1 are examples of suh subgroups.Another typial example is as follows. Let X,Y be open subsets of the normed spaes
E and F respetively. A homeomorphism h : X ∼= Y is said to be extendible if there isa ontinuous funtion h̄ : cl(X) → cl(Y ) suh that h̄ extends h. We onsider the group
EXT(X) := {h ∈ H(X) | h and h−1 are extendible}.A homeomorphism h : X ∼= Y is said to be ompletely loally uniformly ontinu-ous (CMP.LUC ) if h is extendible, and for every x ∈ cl(X) there is a neighborhood
U of x in cl(X) suh that h↾(U ∩ X) is uniformly ontinuous. We also onsider thegroup

CMP.LUC(X) := {h ∈ H(X) | h and h−1 are CMP.LUC}.The setting is thus as follows. We shall have a lass M of topologial spaes. Usuallythis lass onsists of spaes X suh that either X is an open subset or the losure of anopen subset of a normed vetor spae, or even more generally, X an be the losure ofan open subset of a manifold over a normed vetor spae. P and Q are properties ofmaps between X and Y de�ned for objets of the form 〈X, bd(X), d〉. The set P(X) ofall homeomorphisms f ∈ H(X) suh that f and f−1 have property P is a subgroup of
H(X), and the same holds for Q(Y ). The �nal results have the following form.If X,Y ∈ M and ϕ : P(X) ∼= Q(Y ), then(1) ϕ is indued by a unique homeomorphism τ : X ∼= Y ,(2) P(X) = Q(X) and τ and τ−1 have property Q, or P(Y ) = Q(Y ) and τ and τ−1have property P.Let KM,P be the following ategory.(a) The lass of objets of KM,P is M.(b) The lass of morphisms of KM,P is {g : X ∼= Y | X,Y ∈ M and g and g−1 haveproperty P}.Conlusion (1)�(2) is the same as saying that KM,P and KM,Q are determining ate-gories and KM,P and KM,Q are distinguishable.This work uses only elementary fats. It is self-ontained exept for Theorem 2.3whih is taken from [Ru5℄; it is stated there as Corollary 1.4 on page 122, and it is provedthere in Corollary 2.10 on page 131.Theorem 2.3 says that given a pair (X,G), where G is a subgroup of H(X) satisfyingertain weak transitivity requirements, it is possible to reover fromG the Boolean algebra
Ro(X) of regular open subsets of X, together with the ation of G on Ro(X). (A set Uis regular open if U is equal to the interior of its losure.)Consider the strutures (G, Ro(X); λ

Ro(X)
G ) and (G, X; λXG ), where λRo(X)

G and λXGdenote the ation of G on Ro(X) and on X respetively. The essene of Chapter 2



10 M. Rubin and Y. Yomdinis showing that for appropriate lasses of (X, G)'s, (G, X; λXG ) an be reovered from
(G, X; λ

Ro(X)
G ). This kind of argument appears in Theorems 2.5, 2.8, 2.30 and 8.8.1.2. Faithfulness of lasses of spae-group pairs. Chapter 2 deals with the faith-fulness of lasses of spae-group pairs. We introdue some terminology.Definition 1.4. (a) A homeomorphism h between two metri spaes (X, dX) and (Y, dY )is Lipshitz if there is K > 0 suh that dY (h(u), h(v)) ≤ KdX(u, v) for every u, v ∈ X.We say that h is bilipshitz if both h and h−1 are Lipshitz homeomorphisms. De�ne

LIP(X) := {h ∈ H(X) | h is bilipshitz}.(b) Let X,Y be metri spaes. A homeomorphism h between X and Y is loallyLipshitz if for every u ∈ X there is a neighborhood U of u suh that h↾U is Lipshitz.
h is loally bilipshitz if both h and h−1 are loally Lipshitz. De�ne

LIPLC(X) := {h ∈ H(X) | h is loally bilipshitz}.() If S ⊆ X is open, then
LIP(X,S) := {h ∈ LIP(X) | h↾(X − S) = Id}.(d) Let E be a normed vetor spae, F be dense linear subspae of E, and X be anopen subset of E. Set

LIP(X;F ) := {h ∈ LIP(X) | h(X ∩ F ) = X ∩ F}.(e) For E, F , X, S as above we de�ne
LIP(X;S, F ) := LIP(X;F ) ∩ LIP(X,S).(f) LIPLC(X,S), LIPLC(X;F ) and LIPLC(X;S, F ) are de�ned analogously.(g) Let G ≤ H mean that G is a subgroup of H.(h) For a normed vetor spae E, x ∈ E and r > 0 let

BE(x, r) = {y ∈ E | ‖y − x‖ < r}.Note that LIP(X,S) and LIP(X;F ) are subgroups of H(X). �The main result of Chapter 2 is part () of the next theorem. It is restated asTheorem 2.8(b). Parts (a) and (b) of Theorem 1.5 are speial ases of (). They aremore frequently used, and are more readable.Theorem 1.5. (a) Let K be the lass of all pairs 〈X,G 〉 suh that X is an open subsetof some Banah spae and LIP(X) ≤ G ≤ H(X). Then K is faithful.(b) Let K be the lass of all pairs 〈X,G 〉 suh that X is an open subset of somenormed vetor spae and LIPLC(X) ≤ G ≤ H(X). Then K is faithful.() The lass K of all pairs 〈X,G 〉 whih satisfy (1) and (2), or (3) and (4) below isfaithful.(1) X is an open subset of some Banah spae E and G ≤ H(X).(2) For every x ∈ X there are an open set S ⊆ X ontaining x and a dense linearsubspae F ⊆ E suh that LIP(X;S, F ) ≤ G.(3) X is an open subset of some normed vetor spae E and G ≤ H(X).(4) For every x ∈ X there are an open set S ⊆ X ontaining x and a dense linearsubspae F ⊆ E suh that LIPLC(X;S, F ) ≤ G.



Reonstrution of manifolds from subgroups of homeomorphism groups 11Compare parts (a) and (b) of Theorem 1.5. Part (a) deals with Banah spaes,and assumes that LIP(X) ≤ G. Part (b) deals with normed spaes, but assumes that
LIPLC(X) ≤ G. It is unknown whether in (b), assuming only that LIP(X) ≤ G su�es.The following theorem ontains the strongest known fat regarding this question. It isrestated as Corollary 2.26.For a metri spae Z, x ∈ Z and r > 0 let BZ(x, r) denote the open ball in Zdetermined by x and r. Let X be an open subset of a normed spae E. Let E denotethe ompletion of E. De�ne int(X) =

⋃{BE(x, r) | BE(x, r) ⊆ X} and
IXT(X) = {h↾X | h ∈ H(int(X)) and h(X) = X}.Theorem 1.6. Let K be the lass of all spae-group pairs 〈X,G 〉 suh that(1) X is an open subset of a Banah spae, or X is an open subset of a normed vetorspae whih is a topologial spae of the �rst ategory ,(2) LIP(X) ≤ G ≤ IXT(X).Then K is faithful.Theorem 1.5 deals with open subsets of normed spaes. However, the method of prooftransfers without substantial hange to the more umbersome setting of manifolds overnormed vetor spaes (normed manifolds). This is dealt with in Theorem 2.30. In fat,Theorem 2.30 deals even with normed manifolds with boundary and with spaes whihare the losures of open subsets of normed spaes. For suh spaes Theorem 2.30 saysthat the �extended normed interior� of the spae an be reonstruted from the group.See De�nition 2.29. An additional step is needed in order to reover the entire spae.This step is arried out under various assumptions in Theorems 5.2, 6.22, 6.24, 6.27(a)and 6.30.For reasons of exposition and aessibility we inlude in Chapter 2 a theorem from[Ru1℄. It says that KLCM is faithful, where KLCM is the lass of all spae-group pairs

〈X,G 〉 whih satisfy:(i) X is a loally ompat Hausdor� spae without isolated points.(ii) G has the property that for every nonempty open subset U of X and x ∈ U thelosure of the set {g(x) | g ∈ G and g↾(X − U) = Id} has a nonempty interior.This result appears here as Theorem 2.5.1.3. Moduli of ontinuity and groups of loally uniformly ontinuous hom-eomorphisms. Chapters 3, 4 and 5 deal with groups onsisting of uniformly ontinuoushomeomorphisms. The uniform ontinuity of a funtion f an be measured by a realfuntion whih determines the bound of d(f(x), f(y)) as a funtion of d(x, y). Usingsemigroups of suh real funtions we obtain a hierarhy of subgroups of H(X).Definition 1.7. MC denotes the set of funtions α ∈ H([0,∞)) suh that for every
x, y ∈ [0,∞) and 0 ≤ λ ≤ 1,

α(λx+ (1 − λ)y) ≥ λα(x) + (1 − λ)α(y).That is, MC is the set of all onave homeomorphisms of [0,∞). �



12 M. Rubin and Y. YomdinIt is trivial that if α ∈ MC, then α(cx) ≥ cα(x) and α(dx) ≤ dα(x), for every
0 ≤ c ≤ 1 and d ≥ 1.Definition 1.8. Let f be a funtion from a metri spae (X, dX) to a metri spae
(Y, dY ). Let α ∈ MC. We say that f is α-ontinuous if dY (f(u), f(v)) ≤ α(dX(u, v)) forevery u, v ∈ X.If f, g : A→ R ∪ {∞}, then f ≤ g means that f(a) ≤ g(a) for every a ∈ A.Let α, β : [0,∞) → R ∪ {∞}. Then α � β means that there is a > 0 suh that
α↾[0, a] ≤ β↾[0, a].For Γ ⊆ MC we de�ne

cl�(Γ ) = {α ∈ MC | for some γ ∈ Γ , α � γ}. �Note that if K > 0, then the funtion y = Kx belongs to MC. Also, if α, β ∈ MC,then α+ β, α ◦β ∈ MC.Definition 1.9. Let Γ denote a subset of MC ontaining Id[0,∞). We de�ne the followingproperties of Γ .M1 For every α ∈ Γ and β ∈ MC: if β � α, then β ∈ Γ .M2 For every α ∈ Γ and K > 0: Kα,α(Kx) ∈ Γ .M3 For every α, β ∈ Γ : α+ β ∈ Γ .M4 For every α, β ∈ Γ : α ◦β ∈ Γ .M5 Γ is ountably generated. This means that there is a ountable set Γ0 ⊆ Γ suhthat Γ ⊆ cl�(Γ0).M6 Let α ◦n denote α ◦ · · · ◦α, n times. We say that Γ is prinipal if there is α ∈ Γsuh that Γ ⊆ cl�({α ◦n | n ∈ N}). �Example 1.10. (a) The set Γ
LIP := {α ∈ MC | α � Kx for some K > 0} satis�esM1�M6, and it is alled the Lipshitz modulus.(b) For 0 < r ≤ 1 the set Γ

HLD
r := {α ∈ MC | α � Kxr for some K > 0} is alled the

r-Hölder set , and it satis�es M1�M3 and M5.() The set Γ
HLD :=

⋃{ΓHLD
r | r ∈ (0, 1]} is alled the Hölder modulus , and itsatisi�es M1�M6. �Proposition 1.11. (a) If Γ ⊇ Γ

LIP and Γ satis�es M1 and M4 , then it satis�es M3.(b) If Γ satis�es M1 and M3 , then it satis�es M2.Proof. Left to the reader.Definition 1.12. (a) Let Γ ⊆ MC and f be a funtion from a metri spae X to a metrispae Y . Then f is loally Γ -ontinuous if for every x ∈ X there is a neighborhood Uof x and α ∈ Γ suh that f↾U is α-ontinuous. f is loally Γ -biontinuous if f is ahomeomorphism between X and Rng(f), and both f and f−1 are loally Γ -ontinuous.(b) Let Γ ⊆ MC. Then Γ is alled a modulus of ontinuity if Id[0,∞) ∈ Γ and Γsatis�es M1�M4. Hene Γ
LIP ⊆ Γ .() Let Γ be a modulus of ontinuity, and X be a metri spae. HLC

Γ
(X) denotes theset of loally Γ -biontinuous homeomorphisms from X onto X. �Obviously, 〈HLC

Γ
(X), ◦ 〉 is a group.



Reonstrution of manifolds from subgroups of homeomorphism groups 13Chapters 3 and 4 deal with groups of typeHLC
Γ

(X). The main result on suh groups isstated in Theorem 4.1(a), and is proved at the end of Chapter 4. The part of that theoremwhih deals with moduli of ontinuity di�erent from MC appears in Corollary 3.42(a).The following theorem aptures muh of the ontent of 4.1(a). The full statement of4.1(a) requires more terminology.Theorem 1.13. For ℓ = 1, 2 let Γℓ be a modulus of ontinuity suh that either Γℓ isountably generated or Γℓ = MC; let Eℓ be a normed spae and Xℓ be a nonempty opensubset of Eℓ. Let ϕ : HLC
Γ1

(X1) ∼= HLC
Γ2

(X2). Then Γ1 = Γ2, and there is a loally Γ1-biontinuous homeomorphism τ suh that τ indues ϕ. That is , ϕ(f) = τ ◦f ◦ τ−1 forevery f ∈ HLC
Γ1

(X).Let KΓ denote the restrited topologial ategory in whih the objets are opensubsets of normed vetor spaes, and the morphisms are loally Γ -biontinuous homeo-morphisms between suh sets. The above theorem says that for every Γ as above KΓis a determining ategory, that KΓ1
and KΓ2

are distinguishable, and that for everynonempty open subset of a normed vetor spae X and distint Γ1 and Γ2, HLC
Γ1

(X) 6=
HLC

Γ2
(X).The proof of 1.13 has two main steps. In the �rst step we apply Theorem 1.5 anddedue that there is τ : X ∼= Y suh that τ indues ϕ. This part of the argument is usedrepeatedly for the other groups whih are dealt with in this work.The following statement onstitutes the seond step in the proof of 1.13.Theorem 1.14. Let X and Y be open subsets of the normed spaes E and F respetivelyand τ : X ∼= Y . Let Γ be a ountably generated modulus of ontinuity. If LIP(X)τ ⊆

HLC
Γ

(Y ), then τ is loally Γ -biontinuous.The above theorem is restated as Theorem 3.27.Remark 1.15. (a) Theorem 1.13 is stated only for open subsets of normed spaes. Butit is also true for normed manifolds. See De�nitions 2.29 and 3.46 and Corollary 3.48(a).In fat, if 〈X,Φ 〉 is a normed manifold with an atlas Φ suh that for every ϕ1, ϕ2 ∈ Φ,
ϕ1 ◦ϕ−1

2 is loally Γ -ontinuous, then HLC
Γ

(X) an be de�ned, and Theorem 1.13 remainstrue. The proof remains essentially unhanged.(b) Theorem 1.13 has the obvious shortoming of assuming that Γ is ountably gen-erated. In fat, the assumption on Γ in Theorem 4.1(a) is weaker. For example, foropen subsets X,Y ⊆ ℓ∞ the onlusion of Theorem 1.13 is true for every modulus ofontinuity. Note though that the two natural moduli whih motivated 1.13, the Lipshitzand the Hölder moduli, are ountably generated, and hene are overed by 1.13. Butthe question of whether Theorem 1.13 is true for every modulus of ontinuity remainsopen. �1.4. Other groups of uniformly ontinuous homeomorphisms. A priori it seemsnatural to deal with the group UC(X) of all uniformly biontinuous homeomorphismsof X rather than with HLC
MC(X). (A homeomorphism h is uniformly biontinuous if forevery ε > 0 there is δ > 0 suh that if d(x, y) < δ, then d(h(x), h(y)) < ε, and if

d(h(x), h(y)) < δ, then d(x, y) < ε.)



14 M. Rubin and Y. YomdinSimilarly, the group HΓ (X) of all Γ -biontinuous homeomorphisms of X seems to bemore natural than HLC
Γ

(X). (A homeomorphism h is Γ -biontinuous if there is γ ∈ Γsuh that h and h−1 are γ-ontinuous.) It turns out that UC(X) and HΓ (X) pose moreproblems than their ounterparts. Chapter 5 addresses these groups and some relatedgroups.Let P be a property of maps andX,Y be topologial spaes. De�ne P(X,Y ) = {h | h :

X ∼= Y and h has property P}. IfH is a set of 1-1 funtions, thenH−1 := {h−1 | h ∈ H}.De�ne P±(X,Y ) = P(X,Y ) ∩ (P(Y,X))−1 and P(X) = P±(X,X). We onsider only
P's suh that P(X) is a group. The �nal results of Chapter 5 have the following form.
(∗) Suppose that ϕ : P(X) ∼= P(Y ). Then there is τ ∈ P±(X,Y ) suh that τ indues ϕ.A lass M of topologial spaes is alled P-determined if (∗) holds for every X,Y ∈ K,that is, if the ategory KM,P whose objets are the members ofM and whose morphismsare the members of P±(X,Y ) for X,Y ∈ M is a determining ategory.The �rst result in Chapter 5 is about groups of type UC(X). Denote the diameter ofa subset A of a metri spae by diam(A). A metri spae 〈X, d 〉 is uniformly-in-diameterarwise-onneted if for every ε > 0 there is δ > 0 suh that for every x, y ∈ X: if
d(x, y) < δ, then there is an ar L ⊆ X onneting x and y suh that diam(L) < ε.The following statement is the main result on groups of type UC(X). It is restated asCorollary 5.6.Theorem 1.16. Let X be an open subset of a Banah spae or of a normed vetor spaeof the �rst ategory. Suppose that the same holds for Y . Suppose further that X and Yare uniformly-in-diameter arwise-onneted. Let ϕ : UC(X) ∼= UC(Y ). Then there is
τ ∈ UC±(X,Y ) suh that τ indues ϕ.The following theorem restated later as 5.2 is a orollary of 1.16.Theorem 1.17. Let F and K be the losures of uniformly-in-diameter arwise-onnetedopen bounded subsets of Rm and Rn respetively. Let ϕ : H(F ) ∼= H(K). Then ϕ isindued by a homeomorphism between F and K.Theorem 1.17 is onsiderably stronger than the analogous statement for Eulideanmanifolds with boundary. This is so, sine uniformly-in-diameter arwise-onneted opensubsets of Rn may have a boundary whih is more ompliated than the boundary of amanifold with boundary.

UC(X) is a speial ase of the groups HΓ (X). But the analogue of Theorem 1.16 isnot true for HΓ (X). In Example 5.11 it is shown that for every normed spae E there is
τ ∈ H(E) suh that (LIP(E))τ = LIP(E) but τ 6∈ LIP(E).Chapter 5 proves P-determinedness for several other P's. De�nition 5.4 lists eighttypes of groups for whih P-determinedness an be proved. But we have hosen to dealonly with properties P whih our in other mathematial ontexts.Definition 1.18. (a) Let BUC(X,Y ) denote the set of homeomorphisms g : X ∼= Ysuh that g takes bounded sets to bounded sets and for every bounded B ⊆ X, g↾B isuniformly ontinuous.



Reonstrution of manifolds from subgroups of homeomorphism groups 15(b) Let X be a metri spae. X is boundedly uniformly-in-diameter arwise-onnetedif for every bounded set B ⊆ X and ε > 0 there is δ > 0 suh that for every x, y ∈ B: if
d(x, y) < δ, then there is an ar L ⊆ X onneting x and y suh that diam(L) < ε.() If h : [0, 1] × X → X and t0 ∈ [0, 1], then the funtion f from X to X de�nedby f(x) = h(t0, x) is denoted by ht0 . X has Property MV1 if for every bounded B ⊆ Xthere are r = rB > 0 and α = αB ∈ MC suh that for every x ∈ B and 0 < s ≤ r, there isan α-ontinuous funtion h : [0, 1]×X → X suh that: for every t ∈ [0, 1], ht(x) ∈ H(X)and h−1

t is α-ontinuous; h0 = Id and d(x, h1(x)) = s; and ht↾(X − B(x, 2s)) = Id forevery t ∈ [0, 1]. �The following P-determinedness theorem is restated as Theorem 5.20.Theorem 1.19. Let K be the lass of all X suh that X is an open subset of a Banahspae or X is an open subset of a normed spae of the �rst ategory , X is boundedlyuniformly-in-diameter arwise-onneted , and X has Property MV1. Then K is BUC-determined.There is of ourse the Γ variant of BUC(X). For a modulus of ontinuity Γ de�ne
HBD

Γ (X) = {h ∈ H(X) | for every bounded A ⊆ X there is γ ∈ Γ suh that
h↾A is γ-biontinuous}.When X is a subset of a �nite-dimensional normed spae and Γ is prinipal, then Theo-rem 8.4 provides a faithfulness result for this type of groups.We do not know a more general theorem in this diretion.The last type of groups onsidered in Chapter 5 are groups of homeomorphisms gsuh that g↾B is uniformly ontinuous for every B ⊆ X suh that B is bounded, and thedistane of B from the boundary of X is positive. The P-determinedness in this situationis proved in Theorems 5.32 and 5.36.These theorems are not quoted here beause their statement requires terminologythat has not yet been introdued.Throughout Chapter 5 one enounters two types of intermediate results.(1) Let τ : X ∼= Y be suh that (P(X))τ = P(Y ). Then τ ∈ P±(X,Y ).(2) Let τ : X ∼= Y be suh that (P(X))τ ⊆ P(Y ). Then τ ∈ P±(X,Y ).Results of type (2) are stronger, but they are not true for all P's whih we on-sider. Results of type (2) are needed in order to show that P(X) annot be isomorphito Q(Y ) when P is di�erent from Q.1.5. Groups of extendible homeomorphisms and the group of homeomor-phisms of the losure of an open set. Chapter 6 is onerned with the faithfulnessof groups of the form H(cl(X)) and with groups of the form EXT(X), where X is anopen subset of a normed vetor spae. The group EXT(X) is de�ned below.Let X,Y be open subsets of the normed spaes E and F . A ontinuous funtion

g : X → Y is alled extendible if there is a ontinuous funtion ĝ : cl(X) → cl(Y ) suhthat ĝ extends g. The set of extendible homeomorphisms between X and Y is denotedby EXT(X,Y ). Aordingly, EXT(X) = {g ∈ H(X) | g and g−1 are extendible}. Note



16 M. Rubin and Y. Yomdinthat if X is a regular open subset of Rn, then EXT(X) = H(cl(X)). Reall that a set isalled regular open if it is equal to the interior of its losure.The goal is to �nd large lasses K of open subsets of a normed spae ontaining theommonly enountered open sets and ontaining also exoti open sets for whih {cl(X) |
X ∈ K} is faithful. It is not true, though, that for any open subsets of X,Y ⊆ Rn, if
ϕ : H(cl(X)) ∼= H(cl(Y )), then there is τ : cl(X) ∼= cl(Y ) suh that τ indues ϕ. Example5.8 demonstrates this phenomenon in two di�erent ways.The following theorem gives the �avor of the type of results proved in Chapter 6.Theorem 1.20. Let X,Y be open bounded subsets of the Banah spaes E and F . As-sume that :(1) There is d suh that for every u, v ∈ X there is a reti�able ar L ⊆ X onneting

u and v suh that length(L) ≤ d.(2) For every point w in the boundary of X and for every ε > 0 there is δ > 0 suhthat for every u, v ∈ X: if ‖u − w‖, ‖v − w‖ < δ, then there is an ar L ⊆ Xonneting u and v suh that diam(L) < ε.(3) Conditions (1) and (2) hold for Y .Then(a) If ϕ : H(cl(X)) ∼= H(cl(Y )), then there is τ : cl(X) ∼= cl(Y ) suh that τ indues ϕ.(b) If ϕ : EXT(X) ∼= EXT(Y ), then there is τ ∈ EXT±(X,Y ) suh that τ indues ϕ.Part (a) of the above theorem is an exerpt from Theorem 6.22, and (b) is an exerptfrom Theorem 6.3(a).The lass of spaes de�ned in Theorem 1.20 ontains some spaes whose boundary isquite ompliated. Also, suh spaes may have boundary points whih are �xed under
H(cl(X)). Here is an example of a possibly not well-behaved set whih is overed byTheorem 6.22.Example 1.21. Let B and S be the open unit ball and the unit sphere in a Banah spae
E, and {Bi | i ∈ I} be a family of pairwise disjoint losed balls suh that Bi ⊆ B forevery i ∈ I. Suppose that for every x ∈ E: if every neighborhood of x intersets in�nitelymany Bi's, then x ∈ S. Then the set X := B − ⋃

i∈I Bi, satis�es lauses (1) and (2)of Theorem 1.20. Note that even in the ase of E = Rn, the boundary of X an beompliated. �Clause (2) in Theorem 1.20 implies that cl(X) is arwise onneted. Consider the openset X desribed in the following example. Its losure is not loally arwise onneted.Example 1.22. Let X =
{
(r, θ) | θ ∈ (π,∞) and 1 − 1

θ−π/2 < r < 1 − 1
θ+π/2

} (in polaroordinates). Note that X is an open spiral strip onverging to the irle S(0, 1). �Example 1.22 is not overed by Theorem 1.20 but it is inluded in the lass onsideredin the following theorem.Theorem 1.23. Let X,Y be open bounded subsets of the normed spaes E and F . As-sume that :



Reonstrution of manifolds from subgroups of homeomorphism groups 17(1) For every sequene ~x = {xn | n ∈ N} ⊆ X there are a subsequene ~y of ~x, a se-quene ~z suh that ~z is onvergent in E and a sequene of reti�able ars Ln ⊆ X,
n ∈ N, suh that supn∈N length(Ln) <∞ and Ln onnets yn and zn.(2) For every x ∈ bd(X) and r > 0 there is a ontinuous funtion ht(x) : [0, 1] ×
cl(X) → cl(X) suh that h0 = Id, h1(x) 6= x, and for every t ∈ [0, 1], ht↾X ∈
EXT(X) and ht↾(cl(X) −B(x, r)) = Id.(3) Conditions (1) and (2) hold for Y .Then(a) If ϕ : H(cl(X)) ∼= H(cl(Y )), then there is τ : cl(X) ∼= cl(Y ) suh that τ indues ϕ.(b) If ϕ : EXT(X) ∼= EXT(Y ), then there is τ ∈ EXT±(X,Y ) suh that τ indues ϕ.Theorem 1.23(a) is an exerpt from Theorem 6.24, and 1.23(b) is an exerpt from 6.18.Example 1.22 is restated as 6.15(a). Other examples whih are overed by Theorems 6.24and 6.18, but have a non-loally arwise onneted losure appear in 6.8 and 6.15(b).Another EXT-determined lass is desribed in Theorem 6.12.Chapter 6 also deals with groups of type CMP.LUC(X) de�ned in Subsetion 1.1.CMP.LUC-determinedness is proved in Theorem 6.20(a). It ompletes the piture givenin Chapters 8�12. The following is a speial ase of 6.20(a).Theorem 1.24. Let X,Y be open bounded subsets of the normed spaes E and F . As-sume that :(1) For every sequene ~x = {xn | n ∈ N} ⊆ X there are a subsequene ~yof ~x, a sequene ~z suh that ~z is onvergent in E and a sequene of reti�ablears Ln ⊆ X, n ∈ N, suh that supn∈N length(Ln) < ∞ and Ln onnets ynand zn.(2) For every x ∈ bd(X) there is r > 0 suh that for every ε > 0 there is δ > 0 suhthat for every u, v ∈ BE(x, r) ∩ X: if d(u, v) < δ, then there is an ar L ⊆ Xonneting u and v suh that diam(L) < ε.(3) Conditions (1) and (2) hold for Y .Then if ϕ : CMP.LUC(X) ∼= CMP.LUC(Y ), then there is τ ∈ CMP.LUC±(X,Y ) suhthat τ indues ϕ.Two extensions of the results of Chapter 6 are presented at the end of that hapter.These extensions over some natural spaes whih are not overed by the original lasses.Also, the faithful lass dealt with in Extension 2 ontains 22ℵ0 subsets of R3.(1) The original lasses onsidered in Chapter 6 onsist of open subsets of normedvetor spaes, and the losures of suh sets. However, all the results obtained for theselasses translate to the lass of open subsets of manifolds over normed vetor spaes andthe losures of suh sets. See Example 6.28 and Theorem 6.30.(2) The results obtained for the lass of losures of open subsets of a normed vetorspae extend to the lass of all subsets Z of a normed vetor spae whih satisfy Z ⊆

cl(int(Z)). See Example 6.26 and Theorem 6.27.Chapter 7 ontains theorems of the following type. Suppose that ϕ : P(X) ∼= Q(Y ).Then



18 M. Rubin and Y. Yomdin(i) There is τ : X ∼= Y suh that τ indues ϕ.(ii) P(X) = Q(X) and τ ∈ Q±(X,Y ), or P(Y ) = Q(Y ) and τ ∈ P±(X,Y ).These results appear in Corollary 7.11. As an example of suh results we quote 7.11(e).Theorem 1.25. If X and Y are nonempty open subsets of an in�nite-dimensional Ba-nah spae, then UC(X) 6∼= EXT(Y ).1.6. Loal uniform ontinuity at the boundary of an open set. Let X ⊆ Rn and
Y ⊆ Rm be open sets and suppose that ϕ : LIP(cl(X)) ∼= LIP(cl(Y )). Can we onludethat there is τ : cl(X) ∼= cl(Y ) suh that τ is bilipshitz and τ indues ϕ? This questionmotivates the work presented in Chapters 8�12. Indeed, if the boundaries of X and Yare well-behaved, then the answer to the above question is positive.Let X,Y be open subsets of the normed spaes E and F , and Γ be a modulus ofontinuity. For g ∈ EXT(X,Y ) let gcl denote the ontinuous extension of g to cl(X).De�ne

HCMP.LC
Γ (X,Y ) = {g ∈ EXT(X,Y ) | gcl is loally Γ -ontinuous}and HCMP.LC

Γ
(X) = (HCMP.LC

Γ
)±(X,X).Note that the group CMP.LUC(X) disussed in Subsetion 1.5 is a speial ase ofgroups of the form HCMP.LC

Γ
(X). Indeed, CMP.LUC(X) = HCMP.LC

MC (X). In the speialase that X ⊆ Rn is a regular open bounded set we have LIP(cl(X)) = HCMP.LC

Γ
LIP (X).More generally, HΓ (cl(X)) = HCMP.LC

Γ
(X). So a determiningness result for the property

P = CMP.LCΓLIP implies suh a result for the lass KM,P , where P = LIP and M isthe lass of bounded regular open subsets of �nite-dimensional spaes.Chapters 8�12 are devoted to the proof of the following statement aboutHCMP.LC
Γ

(X).
(∗) If ϕ : HCMP.LC

Γ
(X) ∼= HCMP.LC

∆
(Y ), then Γ = ∆, and there is τ ∈ (HCMP.LC

Γ
)±

(X,Y ) suh that τ indues ϕ.Statement (∗) is proved for X,Y , Γ and ∆ whih satisfy the following assumptions.(1) Γ is prinipal (see M6 in De�nition 1.9).(2) X is loally Γ -LIN-bordered, and Y is loally ∆-LIN-bordered (see De�nition8.1(b)).The exat de�nition of loal LIN-borderedness is a bit long, but a main speial ase isthe lass of open sets whose losure is a manifold with boundary with a Γ -biontinuousatlas.Statement (∗) is restated in Theorem 8.4(a). The proof of 8.4(a) has four steps.The two major steps are Steps 3 and 4, whih are stated as Theorems 8.8 and 12.19.The following theorem is the onlusion of the �rst three steps ombined together. Thepriniipality of Γ is not needed here. It is needed only at Step 4.Theorem 1.26. Let Γ ,∆ be ountably generated moduli of ontinuity , E and F benormed spaes and X ⊆ E, Y ⊆ F be open. Suppose that X is loally Γ -LIN-bordered ,and Y is loally ∆-LIN-bordered. Let ϕ : HCMP.LC
Γ

(X) ∼= HCMP.LC
∆

(Y ). Then there is
τ ∈ EXT±(X,Y ) suh that τ indues ϕ.



Reonstrution of manifolds from subgroups of homeomorphism groups 19The proof of Theorem 1.26 requires muh tehnial work. This work is arried out inChapters 9 and 10. The proof of 1.26 appears at the end of Chapter 11.Step 4 of the proof of Theorem 8.4(a) says that if in Theorem 1.26, Γ is prinipal,then the homeomorphism τ obtained in 1.26 belongs to (HCMP.LC
Γ

)±(X,Y ).It should be pointed out that the results mentioned above are true for open subsetsof normed manifolds. The �nal result for manifolds is stated in Theorem 8.4(b).As a byprodut of the proof of the main theorem of Chapters 8�12, we also obtain adeterminingness result for the group de�ned below. Let X be an open subset of a normedspae E. De�ne
HBDR.LC

Γ (X) = {g ∈ EXT(X) | every x ∈ cl(X) −X has a neighborhood U in cl(X)suh that gcl↾U is Γ -biontinuous}.Theorem 12.20(b) ontains a determiningness result for the property P = BDR.LCΓ .1.7. Further questions and disussion. This work leaves many unsolved questions,whih we mention at the point where they naturally arise. In what follows we highlightthe questions we regard to be more entral.The ountable generatedness of ΓQuestion 1.27. Can Theorem 1.13 be proved for every pair of moduli of ontinuity,regardless of whether they are ountably generated or not? That is, we ask if the followingstatement true:For ℓ = 1, 2 let Γℓ be a modulus of ontinuity. Let Eℓ be a normed spae and Xℓbe an open subset of Eℓ. Let ϕ : HLC
Γ1

(X1) ∼= HLC
Γ2

(X2). Then Γ1 = Γ2, and there is aloally Γ1-biontinuous homeomorphism τ suh that τ indues ϕ. �Note that the assumption in Theorem 4.1 is in fat somewhat weaker than ountablegeneratedness. We ask Question 1.27 also for the other theorems in whih Γ is requiredto be ountably generated. See e.g. parts (a) and (b) of Theorem 5.24.The prinipality of Γ in the theorem about HCMP.LC
Γ

(X)Question 1.28. Is Theorem 12.20(a) true without the assumption that Γ is prinipal?That is, we ask if the following statement is true:Let X,Y be open subsets of a normed spae, and Γ ,∆ be moduli of ontinuity.Assume that X is loally Γ -LIN-bordered, and Y is loally ∆-LIN-bordered. If ϕ :

HCMP.LC
Γ

(X) ∼= HCMP.LC
∆

(Y ), then Γ = ∆, and there is τ ∈ (HCMP.LC
Γ

)±(X,Y ) suhthat τ indues ϕ. �Obviously, the ase that Γ and ∆ are ountably generated is also unknown.A possible stronger way of distinguishing between the HLC
Γ

(X)'s. The fat that HLC
Γ

(X)

6∼= HLC
∆

(Y ) for Γ 6= ∆ may have a stronger reason. That is, maybe there is a loally
∆-biontinuous homeomorphism whih is not onjugate to any loally Γ -biontinuoushomeomorphism. So a positive answer to the following question together with the faith-fulness result of Theorem 1.5(a) will imply the distinguishability of the KΓ 's.



20 M. Rubin and Y. YomdinQuestion 1.29. Let Γ ,∆ be moduli of ontinuity suh that ∆ 6⊆ Γ and let X bea nonempty open subset of a normed spae of dimension > 1. Is there a loally ∆-biontinuous homeomorphism g of X suh that g is not onjugate to any Γ -biontinuoushomeomorphism? �In the spae R, every homeomorphism is onjugate to a Lipshitz homeomorphism.Relaxing the assumption on the boundary in the theorem about HCMP.LC
Γ

(X). Let X0 =

{(x, y) ∈ R2 | x > 0,−x2 < y < x2}. The set X0 is not Γ
LIP-LIN-bordered. Our generalquestion is whether Theorem 12.20(a) an be strengthened to lasses whih inlude setssimilar to X0. We may ask the following onrete question.Question 1.30. Let ϕ ∈ Aut(HCMP.LC

Γ
LIP (X0)). Is ϕ an inner automorphism? �Question 8.11 introdues the notion of a loally Γ -almost-linearly-bordered set (loally

Γ -ALIN-bordered set). It seems that Theorem 12.20(a) an be extended to the lass ofloally Γ -ALIN-bordered sets. This requires a more detailed tehnial analysis similar tothe work arried out in Chapters 9�11.However, we do not know how to handle the type of singularity at the boundary point
(0, 0) of X0 above.A variant of the group HCMP.LC

Γ
(X). Let X,Y be open subsets of the normed spaes

E and F , f : X → Y and Γ be a modulus of ontinuity. f is ompletely weakly Γ -ontinuous (CMP.WK Γ -ontinuous) if f is extendible, and there is γ ∈ Γ suh thatfor every x ∈ cl(X) there is a neighborhood U of x suh that f cl↾U is γ-ontinuous. Asusual,
HCMP.WK

Γ (X,Y ) := {f | f is a homeomorphism between X and Y and
f is CMP.WK Γ -ontinuous}.Question 1.31. Prove the analogue of Theorem 12.20(a) for the groupsHCMP.WK

Γ
(X). �Naturally, the de�nition of loal Γ -LIN-borderedness has to be replaed by the anal-ogous notion of weak Γ -LIN-borderedness.It seems that the main di�ulty in proving CMP.WKΓ -determinedness is the oun-terpart of Theorem 1.26.Groups whih �t into the framework but have not been investigatedDefinition 1.32. Let Γ be a modulus of ontinuity and f : X → Y .(a) f is regionally Γ -ontinuous if for every nonempty open U ⊆ X there is a nonempty

V ⊆ U and α ∈ Γ suh that f↾V is α-ontinuous.(b) f is pointwise Γ -ontinuous if for every x ∈ X there is a neighborhood V of xand α ∈ Γ suh that d(f(y), f(x)) ≤ α(d(y, x)) for every y ∈ V . Note that �pointwiseMC-ontinuous� is just �ontinuous�.() f is boundedly Γ -ontinuous if for every bounded set V ⊆ X there is α ∈ Γ suhthat f↾V is α-ontinuous.Let HRG
Γ

(X), HPW
Γ

(X) and HBD
Γ

(X) denote the groups of homeomorphisms orre-sponding to the notions introdued in (a)�(). �



Reonstrution of manifolds from subgroups of homeomorphism groups 21Proposition 1.33. (a) Let X be a metri spae and Γ be a modulus of ontinuity. Then(i) HBD
Γ

(X) ⊆ HLC
Γ

(X) ⊆ HPW
Γ

(X);(ii) HLC
Γ

(X) ⊆ HRG
Γ

(X).(b) Let X be an open subset of a Banah spae and Γ be a ountably generated modulusof ontinuity. Then HPW
Γ

(X) ⊆ HRG
Γ

(X).Proof. (a) Part (a) follows from the de�nitions.(b) Suppose that f : X → Y is not regionally Γ -ontinuous. Let {αi | i ∈ N} generate
Γ . Let U ⊆ X be an open ball whih shows that f is not regionally Γ -ontinuous. Wede�ne by indution xi, yi ∈ U . Let x0, y0 be suh that d(f(x0), f(y0)) > 2α0(d(x0, y0)).Suppose that xi, yi have been de�ned. Let xi+1, yi+1 ∈ B

(
(xi + yi)/2, d(xi, yi)/2

i
)be suh that d(f(xi+1), f(yi+1)) > 2αi+1(d(xi+1, yi+1)). Sine {xi | i ∈ N} is a Cauhysequene, it onverges, say to z. Hene limi yi = z. We may assume that d(f(z), f(xi)) ≥

d(f(xi), f(yi))/2 for every i ∈ N. So for i ∈ N,
d(f(z), f(xi)) ≥ 1

2d(f(xi), f(yi)) >
1
2 · 2αi(d(xi, yi)) > αi(d(z, xi)).Hene z shows that f is not pointwise Γ -ontinuous.Let

K = {X | X is an open subset of a separable normed spae of the seond ategory}.Using an argument similar to the one used in Theorem 3.41, one an prove the analoguesof 1.13 and 1.14 for the lass
{HRG

Γ (X) | X ∈ K and Γ is a ountably generated modulus of ontinuity}.It is not known whether other arguments used for HLC
Γ

(X) an be applied to HRG
Γ

(X).Question 1.34. Prove the analogues of 1.13 and 1.14 for the lass {HRG
Γ

(X) | X is anopen subset of a normed spae, and Γ is a ountably generated modulus of ontinuity}. �It is easy to see that a reonstrution theorem for the lass of HRG
Γ

(X)'s impliesreonstrution theorems for the lasses of HWK
Γ

(X)'s and HBD
Γ

(X)'s.1.8. Some more fats about reonstrution theoremsReonstrution questions for related groups. Muh work has been done on the analogousproblems for di�eomorphism groups. It seems that the �rst work in this diretion wasarried out by F. Takens [Ta℄.Soon afterwards there was an unpublished extensive work by W. Ling [Lg1℄ and[Lg2℄. Ling proved that many types of strutures on a Eulidean manifold give rise toa determining ategory (or to an appropriate variant of this notion). Some of theseategories are:(1) The ategory of k-smooth Eulidean manifolds with k-smooth di�eomorphisms.(2) The ategory of k-smooth Eulidean manifolds with a k-smooth volume form withdi�eomorphisms preserving the form.(3) The ategory of k-smooth foliated Eulidean manifolds with the foliation preserv-ing di�eomorphisms.



22 M. Rubin and Y. Yomdin(4) Di�erentiable manifolds with a ontat form.(5) Manifolds with a pieewise linear struture, and homeomorphisms preserving thisstruture.The authors in [RY℄ (unpublished) reproved result (1) from Ling's work, and provedsome additional fats. For example, they showed that the ategory of Eulidean di�er-entiable manifolds with di�eomorphisms that have a loally Γ -ontinuous kth derivativeis a determining ategory, for every ountably generated modulus of ontinuity Γ .The next work was by R. Filipkiewiz [Fi℄. He proved that the ategory of k-smoothmanifolds with k-smooth di�eomorphisms is a determining ategory.Further work on this subjet has been done more reently by a number of authors.A. Banyaga [Ba1℄, [Ba2℄ proved the determiningness for the ategories arising fromdi�erentiable strutures, unimodular strutures, sympleti strutures, and ontat stru-tures. Also, he established an analogous result for measure preserving homeomorphisms.T. Rybiki [Ryb℄ presented an axiomati approah to groups of C∞ di�eomorphismswhih determine a C∞ manifold.Reent progress on reonstrution problems was obtained by J. Borzellino and V. Bru-nsden [BB℄. They proved faithfulness for the lass of spaes whih are loally ompatorbifolds.Results on di�erentiabilty obtained by the authors of this work whih re�ne olderresults and whih also deal with Fréhet di�erentiabilty in in�nite-dimensional spaes,will appear in a subsequent work.V. Gol'dshtein and M. Rubin obtained analogous results for quasi-onformal homeo-morphism groups. Part of these results appeared in [GR℄. The results for quasi-onformalhomeomorphism groups apply to �nite- and in�nite-dimensional spaes. The full aountof this subjet will be presented in a separate artile.Another interesting theorem on a determining ategory appears in the works ofM. G. Brin and of Brin and F. Guzmán on the Thompson group. Let G ≤ H([0, 1])be the group of all homeomorphisms h suh that: (1) h is pieewise linear; (2) everyslope of h is an integral power of 2; (3) every breakpoint of h is a diadi number. It islear that G ∈ KLCM (see 2.4 and 2.5). Hene {〈[0, 1], G 〉} is faithful. Interestingly, G isa �nitely presented group.One of Brin's results from [Br1℄ is as follows.
• Every automorphism of G is indued by a homeomorphism f ∈ H([0, 1]) suh thatfor every a < b in [0, 1], f↾[a, b] satis�es (1)�(3) above.
• Every suh homeomorphism indues an automorphism of G.Denote by G+ the group of all f ∈ H([0, 1]) suh that onjugation by f is an auto-morphism of G. Brin also proves that {〈[0, 1], G+ 〉} is a determining ategory. See alsoBrin [Br2℄ and Brin and F. Guzmán [BG℄.Reonstrution theorems in other areas. The theme of reonstruting a struture fromits automorphism group was investigated in several other areas.The reovery of a vetor spae from its group of linear isomorphisms has a long history.Makey [Ma℄ proved in 1942 that a normed vetor spae X an be reonstruted from



Reonstrution of manifolds from subgroups of homeomorphism groups 23its group L(X) of isomorphisms (that is, bijetive bounded linear transformations fromthe spae to itself). More preisely, Makey showed that if X is �nite-dimensional and
L(X) ∼= L(Y ), then dim(X) = dim(Y ). In the ase that X is in�nite-dimensional anisomorphism between L(X) and L(Y ) is indued by an isomorphism between X and Y .In the ase that X is re�exive an isomorphism between L(X) and L(Y ) an also beindued by an isomorphism between X∗ and Y .Let F1, F2 be division rings and n1, n2 > 2 be integers. If the linear groups GL(n1, F1)and GL(n2, F2) are isomorphi, then n1 = n2 and either F1

∼= F2 or F1
∼= F op

2 , where F opis the division ring obtained from F by reversing the multipliation. That is, a ·F op

b =

b ·F a. This fat is due to J. Dieudonné [Di1℄ (1947) and [Di2℄ (1951).For in�nite-dimensional vetor spaes, V1 over F1 and V2 over F2, every isomorphismbetweenAut(V1) and Aut(V2) is indued by isomorphisms between F1 and F2 and between
V1 and V2. A strong theorem onerning this, but not exatly this fat, was proved by C.E. Rikart in [Ri1℄�[Ri3℄ (1950�1951). The theorem of Dieudonné for �nite dimensions isa speial ase of Rikart's Theorem. O. O'Meara [Om℄ (1977) proved the reonstrutiontheorem for in�nite dimensions. Another proof was found by V. Tolstykh [To1℄ (2000).Free groups are also reonstrutible from their automorphism groups. That Aut(Fn) 6∼=
Aut(Fm) for n 6= m an be dedued from the work of J. Dyer and G. P. Sott [DS℄ (1975).
Fn denotes the free group with n generators (in the variety of all groups). E. Formanek in[Fo℄ (1990) proved that Inn(Fn) is the only normal free subgroup of rank n of Aut(Fn).This implies immediately the reonstrution result for �nitely generated free groups.V. Tolstykh in [To2℄ (2000) proved that if λ is an in�nite ardinal then Inn(Fλ) is de-�nable in Aut(Fλ). This implies the reonstrution result for free groups with in�niterank.Another body of reonstrution results for groups of linear transformations is due toM. Droste and M. Göbel [DG1℄ (1995) and [DG2℄ (1996). Given a ring R with unity anda poset P one an de�ne the generalized MLain group G(R,P ) of R and P . Droste andGöbel reonstrut R and P from G(R,P ).The symmetri group is another important instane. It is the automorphism groupof a struture with no relations and no operations. Sym(6) is the only symmetri groupwhih has outer automorphisms. A proof that A is reoverable from Sym(A) appears inMKenzie [MK℄ (1971). This had been known before. See Sott [S, p. 311℄.Automorphism groups of various types of ordered strutures were also extensively in-vestigated. We mention some of the more reent referenes. Reonstrution theorems fortrees appear in Rubin [Ru3℄ (1993). Linear orders and related strutures are onsideredin Rubin [Ru5℄ (1996) and in [MR℄. And Boolean algebras are reonstruted in Rubin[Ru2℄ (1989).The reonstrution of measure algebras is dealt with in [Ru2℄. The group of measurepreserving transformations of [0, 1] is onsidered by S. Eigen in [Ei℄ (1982).Rubin [Ru4℄ (1994) deals with the reonstrution of ℵ0-ategorial strutures.Aknowledgements. We would like to thank Vladimir Fonf, Wiesªaw Kubis, ArkadyLeiderman and Mihael Levin for many very helpful disussions and for informing us



24 M. Rubin and Y. Yomdinabout various fats from topology and funtional analysis whih were relevant to thiswork. Their involvement and interest was very valuable.The fat that the prinipal modulus of ontinuity generated by α is α-star-losed wasproved by Kubis. See De�nition 12.11(d) and Proposition 12.12(a).We also thank Vladimir Tolstykh for his help in surveying reonstrution theoremsin algebra. His thorough survey was a great help. We also thank Yoav Benyamini andEdmund Ben Ami for helpful disussions.



2. Obtaining a homeomorphism from a group isomorphism2.1. Capturing the ation of the group on the regular open sets. Let G ≤ H(X).In order to prove that X is reonstrutible from G, we shall �rst show that the ation of
G on the set of regular open subsets of X is reonstrutible from G.We next introdue some notations, reall some basi de�nitions, and present somenotions spei� to this work.Definition 2.1. Let X be a topologial spae U ⊆ X and G ≤ H(X).(a) Let intX(U), clX(U), bdX(U) and accX(U) denote respetively the interior, lo-sure, boundary and the set of aumulation points of U in X. The boundary, bdX(U),is de�ned by bdX(U) := clX(U) ∩ clX(X −U). The supersript X is omitted when X isunderstood from the ontext.(b) U is regular open if U = int(cl(U)). Ro(X) denotes the set of regular open subsetsof X. We equip Ro(X) with the operations: U + V := int(cl(U ∪ V )), U · V := U ∩ Vand −U := int(X−U). Then 〈Ro(X),+, ·,−〉 is a omplete Boolean algebra. Obviously,
0Ro(X) = ∅, 1Ro(X) = X, and the indued partial ordering of Ro(X) is ≤Ro(X) = ⊆. Weregard Ro(X) both as a set and as a Boolean algebra.() If g : X ∼= Y then g indues an isomorphism gRo between Ro(X) and Ro(Y ):
gRo(U) = {g(x) | x ∈ U}. For G ≤ H(X) let GRo := {gRo | g ∈ G}. Then GRo ≤
Aut(Ro(X)) and if X is Hausdor�, then g 7→ gRo is an embedding of G into Aut(Ro(X)).We assume that X is Hausdor� and identify G with GRo. So H(X) is regarded as asubgroup of Aut(Ro(X)).(d) G is a loally moving subgroup of H(X) if for every nonempty open V ⊆ X thereis g ∈ G−{Id} suh that g↾(X−V ) = Id. In that ase 〈X,G 〉 is alled a topologial loalmovement system.(e) Let Ap : G×Ro(X) → X be the appliation funtion. That is, Ap(g, V ) = g(V ).The struture MR(X,G) is de�ned as follows:

MR(X,G) = 〈Ro(X), G,+, ·,−,Ap〉.(f) η : MR(X,G) ∼= MR(Y,H) means that η is an isomorphism between MR(X,G)and MR(Y,H). That is, η is a bijetion between Ro(X) ∪G and Ro(Y ) ∪H, η(G) = H,and η preserves +, ·,− and Ap.(g) If η : A → B is a bijetion and g : A → A, then the onjugation of g by η isde�ned as gη := η ◦ g ◦ η−1. � [25℄



26 M. Rubin and Y. YomdinProposition 2.2. Let X,Y be Hausdor� spaes , G ≤ H(X) and H ≤ H(Y ). Supposethat ϕ : G ∼= H and η : Ro(X) ∼= Ro(Y ). Then ϕ ∪ η : MR(X,G) ∼= MR(Y,H) i�
ϕ(g) = gη for every g ∈ G.The next theorem says that for topologial loal movement systems the ation of Gon Ro(X) an be reonstruted from G. This theorem is proved in [Ru5℄.Theorem 2.3 (The reonstrution theorem for topologial loal movement systems). Let
〈X,G 〉 and 〈Y,H 〉 be topologial loal movement systems and ϕ : G ∼= H. Then there isa unique η : Ro(X) ∼= Ro(Y ) suh that ϕ ∪ η : MR(X,G) ∼= MR(Y,H). That is , there isa unique η : Ro(X) ∼= Ro(Y ) suh that ϕ(g) = gη for every g ∈ G.Proof. See [Ru5, De�nition 1.2, Corollary 1.4 or Corollary 2.10 and Proposition 1.8℄.2.2. Faithfulness in loally ompat spaes. The �rst faithfulness theorem to bepresented is about loally ompat spaes. It is taken from [Ru1℄ and brought here forthe sake of ompleteness. It is the onjuntion of parts (a), (b) and () of Theorem 3.5there.Definition 2.4. (a) For G ≤ H(X), g ∈ H(X) and x ∈ X, let G(x) := {g(x) | g ∈ G}.A set A ⊆ X is somewhere dense if int(cl(A)) 6= ∅. X is a perfet spae if there is no
x ∈ X suh that {x} is open. Suppose that G is a set of permutations of a set A and
B ⊆ A. De�ne G B := {g ∈ G | g↾(A−B) = Id}.(b) Let

KLCM := {〈X,G 〉 | X is a perfet loally ompat Hausdor� spae, andfor every open V ⊆ X and x ∈ V, G V (x) is somewhere dense}. �Theorem 2.5 (Rubin [Ru1℄ 1989). KLCM is faithful.Proof. It follows easily from the de�nitions that for every 〈X,G 〉 ∈ KLCM, 〈X,G 〉 is atopologial loal movement system.A subset p of a Boolean algebra B is alled an ultra�lter if: (i) 0 6∈ p; (ii) if a1, . . . , an ∈
p, then ∏n

i=1 ai ∈ p; (iii) if a ∈ p and b ≥ a, then b ∈ p; (iv) for every a ∈ B either a ∈ por −a ∈ p.By Zorn's lemma, every subset of B satisfying (i)�(ii) is ontained in an ultra�lter.For an ultra�lter p in Ro(X), let Ap :=
⋂{cl(V ) | V ∈ p}. Let 〈X,G 〉 ∈ KLCM. We saythat an ultra�lter p in Ro(X) is good if Ap is a singleton. If p is good and Ap = {x},then we write x = xp. The following fats an be easily heked.(a) Ap = {x} i� p ontains all regular open neighborhoods of x.(b) p is good i� there is W ∈ Ro(X) − {∅} suh that for every V ∈ Ro(X) − {∅}: if

V ⊆W , then there is g ∈ G suh that g(V ) ∈ p.() Let p and q be good ultra�lters. Then xp 6= xq i�
(∃U ∈ p)(∃V ∈ q)((U ∩ V = ∅) ∧ (∀U1 ⊆ U)(U1 6= ∅ →

(∃f ∈ G)(V ∈ f(q) ∧ U1 ∈ f(p)))).(d) Let p be a good ultra�lter, and U ∈ Ro(X). Then xp ∈ U i� for every goodultra�lter q: if xq = xp, then U ∈ q.



Reonstrution of manifolds from subgroups of homeomorphism groups 27(e) Let p, q be good ultra�lters, and g ∈ G. Then g(xp) = xq i� xg(p) = xq.(f) If p is a good ultra�lter and g ∈ G, then g(p) is a good ultra�lter.(g) If x ∈ X, then there is a good ultra�lter p suh that xp = x.Clearly, the fat that p is an ultra�lter is expressible in terms of the operations of
〈Ro(X),+, ·,−〉.(1) By (b), the fat that p is a good ultra�lter is expressible in terms of the operationsof MR(X,G).(2) By (), for good ultra�lters p and q, the fat that xp = xq is expressible in termsof the operations of MR(X,G).(3) By (d), for a good ultra�lter p and U ∈ Ro(X), the fat that xp ∈ U is expressiblein terms of the operations of MR(X,G).(4) By (e), for good ultra�lters p and q and g ∈ G, the fat that g(xp) = xq isexpressible in terms of the operations of MR(X,G).Let 〈X,G 〉, 〈Y,H 〉 ∈ KLCM, and let ϕ : G ∼= H. By Theorem 2.3, there is η :

Ro(X) ∼= Ro(Y ) suh that (ϕ ∪ η) : MR(X,G) ∼= MR(Y,H). Let ψ = ϕ ∪ η. We de�ne
τ : X → Y . Let x ∈ X. By (g), there is an ultra�lter p suh that xp = x. By (1), ψ(p)is a good ultra�lter.We de�ne τ (x) = xψ(p). If q is a good ultra�lter suh that also xq = x, then by (2),
xψ(q) = xψ(p). So the de�nition of τ is valid.We hek that τ is a bijetion between X and Y . Suppose that xp 6= xq. By (2),
τ (xp) = xψ(p) 6= xψ(q) = τ (xq). So τ is injetive.Let y ∈ Y . By (g), there is an ultra�lter q suh that xq = y. By (1), p := ψ−1(q) is agood ultra�lter. So τ (xp) = xψ(p) = xq = y. So τ is surjetive.Let τ (A) denote {τ (a) | a ∈ A}. In order to show that τ is a homeomorphism, itsu�es to show that for some open base B of X, {τ (U) | U ∈ B} is an open base for Y .Sine X and Y are loally ompat, they are regular spaes. So Ro(X) and Ro(Y ) areopen bases of X and Y repetively. So it su�es to show that {τ (U) | U ∈ Ro(X)} =

Ro(Y ). Let x ∈ X and U ∈ Ro(X). Let p be an ultra�lter suh that xp = x. By (3),
xp ∈ U i� xψ(p) ∈ ψ(U). That is, x ∈ U i� τ (x) ∈ ψ(U). So τ (U) = ψ(U) for every
U ∈ Ro(X). Hene {τ (U) | U ∈ Ro(X)} = {ψ(U) | U ∈ Ro(X)} = Ro(Y ). So τ is ahomeomorphism.It remains to show that τ indues ϕ. Let g ∈ G and y ∈ Y . Let q be an ultra�lter in
Ro(Y ) suh that xq = y. Then gτ (y) = τ ◦ g ◦ τ−1(xq) = τ ◦ g(xψ−1(q)) = τ (xg(ψ−1(q))) =

xψ(g(ψ−1(q))) = xη(g(η−1(q))) = xgη(q). But by Proposition 2.2, gη = ϕ(g). So xgη(q) =

xϕ(g)(q). However, if xq = y, then trivially xh(q) = h(y) for every h ∈ H. In partiular,
xϕ(g)(q) = ϕ(g)(y).We have shown that gτ (y) = ϕ(g)(y) for every y ∈ Y . So gτ = ϕ(g).Remark. In the above proof the existene of the induing homeomorphism τ was de-dued from fats (b)�(e) whih showed that point representation, equality, belonging andappliation were expressible in MR(X,G). The toil of deduing the existene of τ from(b)�(e) ould have been spared by using a ertain general mahinery alled the method



28 M. Rubin and Y. Yomdinof interpretation. The notion of interpretation is not introdued here, sine it is usedonly twie. Interpretations are desribed e.g. in [Ru2, Setion 2℄ or in [MR, Setion 6℄.Theorem 2.5 has many appliations in the Eulidean ase. For example, it applies to
m times ontinuously di�erentiable Eulidean manifolds.Corollary 2.6 ([Ru1℄). Let KD = {〈X,G 〉| for some 0 ≤ m ≤ ∞, X is a Eulidean
Cm-manifold and G ontains all homeomorphisms f suh that both f and f−1 are Cmhomeomorphisms}. Then KD is faithful.Proof. KD ⊆ KLCM.Theorem 2.5 also applies to Hilbert ube manfolds, and in fat to manifolds over
[0, 1]λ for any ardinal λ.The lass of Menger manifolds is also a sublass of KLCM, and hene it is faithful.See Kawamura [K℄.The �nitely presented subgroups of H(R) de�ned by R. Thompson (see [Br1℄, [Br2℄and [BG℄) also belong to KLCM.2.3. Faithfulness in normed and Banah spaes. We now turn to the ontext ofnormed vetor spaes and Banah spaes.To avoid notational ompliations, we shall mainly deal with open subsets of normedand Banah spaes and not with manifolds over suh spaes. Nevertheless, all theoremsand proofs transfer (with a orret translation) to manifolds. In this setion, De�nition2.29 and Theorem 2.30 deal with the setting of manifolds (and indeed with a somewhatmore general setting).Manifolds are onsidered again at the end of Chapter 3 starting from De�nition 3.46.Reall that for a metri spae X, LIP(X) = {h ∈ H(X) | h is bilipshitz} and
LIPLC(X) = {h ∈ H(X) | h is loally bilipshitz}.For a normed spae E, an open set S ⊆ E and a dense linear subspae F ⊆ E, we shalluse the notations LIP(X;S, F ), LIPLC(X;S, F ), LIP(X;F ) and LIPLC(X,F ) introduedin De�nition 1.4.We shall prove the faithfulness of the lasses KB and KN de�ned below. However,these faithfulness results do not su�e for some of the ontinuations. To this end wede�ne the bigger lass KBNO and prove its faithfulness.Definition 2.7. Let E be a normed spae, X ⊆ E be open, S be a set of open subsetsof X and F = {FS | S ∈ S} be a family of dense linear subspaes of E indexed by S.Then F is alled a subspae hoie for S. If S is a over of X, then 〈E,X,S,F〉 is alleda subspae hoie system.(a) LIP(X;S,F) is the subgroup of H(X) generated by ⋃{LIP(X;S, FS) | S ∈ S}.
LIPLC(X;S,F) denotes the subgroup ofH(X) generated by ⋃{LIPLC(X;S, FS) | S∈S}.Also, LIP(X,S) denotes the subgroup of H(X) generated by ⋃{LIP(X,S) | S ∈ S}. Thegroup LIPLC(X,S) is de�ned analogously.(b) Let KB be the lass of all 〈X,G 〉's suh that X is an open subset of some Banahspae, and LIP(X) ≤ G ≤ H(X).



Reonstrution of manifolds from subgroups of homeomorphism groups 29Let KN be the lass of all 〈X,G 〉's suh that X is an open subset of some normedspae, and LIPLC(X) ≤ G ≤ H(X).Let KBO be the lass of all 〈X,G 〉's suh that:(1) X is an open subset of some Banah spae E,(2) there are an open over S of X and a subspae hoie F for S suh that we have
LIP(X;S,F) ≤ G ≤ H(X).Let KNO be the lass of all 〈X,G 〉's suh that:(1) X is an open subset of some normed spae E,(2) there are an open over S of X and a subspae hoie F for S suh that we have
LIPLC(X;S,F) ≤ G ≤ H(X).Let KBNO = KBO ∪ KNO. If 〈X,G 〉 ∈ KBNO and E,S,F are as above, then thesystem 〈E,X,S,F , G〉 is alled a BNO-system. �Theorem 2.8. (a) KB ∪KN is faithful.(b) KBNO is faithful.Note that KB ∪KN ⊆ KBNO. So only (b) has to be proved.Remark 2.9. (a) Dealing with the larger but less natural lasses of groups LIP(X;S,F)and LIPLC(X;S,F) needs justi�ation. Certainly the groups LIP(X) and LIPLC(X) arethose that ome to mind �rst. There are two lasses of groups whih merit attention forwhih Theorem 2.8(a) does not su�e, but Theorem 2.8(b) does.Let E be a normed vetor spae and X ⊆ E be open. The group of extendiblehomeomorphisms of X is de�ned as follows:

EXTE(X) = {h↾X | h ∈ H(clE(X)) and h↾X ∈ H(X)}.If E is a Banah spae, then LIP(X) ⊆ EXTE(X). However, if E is not omplete, then
LIP(X) 6⊆ EXTE(X).For h ∈ EXT(X) let hcl denote the extension of h to clE(X). Let Γ be a modulus ofontinuity. De�ne

HCMP.LC
Γ (X) = {h ∈ EXT(X) | for some α ∈ Γ , hcl is loally α-biontinuous}.Then Theorem 2.8(a) does not apply to HCMP.LC

Γ
(X), but Theorem 2.8(b) does.Another suh example is the following group. Let E be a �nite-dimensional normedspae, X ⊆ E be open and

H = {h ∈ H(X) | cl({x ∈ X | h(x) 6= x}) is ompat}.Then G 6⊇ LIP(X), but nevertheless X is reonstrutible from G.The reason for introduing the group LIP(X;F ) is as follows. For an inompletenormed spae X, we give a proof that X is reonstrutible from G's whih ontain
LIPLC(X). But we do not know whether X is reonstrutible from LIP(X). In fat,every member of LIP(X) an be uniquely extended to a homeomorphism of X, theompletion of X. So LIP(X) an be regarded as a subgroup of H(X). By onsidering
LIP(X;X) we prove that X is reonstrutible from LIP(X). It remains open (exept forspaes of the �rst ategory) whether X is reonstrutible from LIP(X).



30 M. Rubin and Y. Yomdin(b) The groups LIP(X;S,F) and LIP(X) in Theorem 2.8 an be replaed by thefollowing smaller groups. Suppose that a normed or a Banah spae E has an equivalentnorm whih is Cm, m ≤ ∞, that is, a norm whih is m times ontinuously Fréhetdi�erentiable at every x 6= 0. We de�ne Diffm(X) to be the group of all homeomorphisms
g of X suh that g, g−1 are Cm, and whose �rst derivative is bounded. The group
Diffm(X;F ,S) is de�ned in analogy to LIP(X;S,F), and the lasses KBDm , KNDm and
KBNODm are de�ned in analogy to KB, KN and KBNO. Then Theorem 2.8 remains true.The proof remains the same. The only di�erene is that the homeomorphisms whihare onstruted in the proof of Theorem 2.8 have to be in this ase Cm and not justbilipshitz.This variant of Theorem 2.8 will be needed in a subsequent work where groups ofFréhet di�erentiable homeomorphisms will be onsidered. �An explanation of the method of proof of Theorem 2.8. We show that there is a property
P (x, y) of pairs 〈x, y 〉 whih is expressible in terms of the operations of MR(X,G) suhthat for every 〈X,G 〉 ∈ KBNO and U, V ∈ Ro(X):

P (U, V ) holds in MR(X,G) i� cl(U) ∩ cl(V ) is a singleton.A pair 〈U, V 〉 satisfying P is alled a point representing pair.We shall then prove two similar fats.(1) There is a property Q(x1, y1, x2, y2) expressible in terms of the operations of
MR(X,G) suh that for every 〈X,G 〉 ∈ KBNO and point representing pairs
〈U1, V1 〉, 〈U2, V2 〉 ∈ (Ro(X))2:
Q(U1, V1, U2, V2) holds in MR(X,G) i� cl(U1) ∩ cl(V1) = cl(U2) ∩ cl(V2).(2) There is a property S(x, y, z) expressible in terms of the operations of MR(X,G)suh that for every 〈X,G 〉 ∈ KBNO, a point representing pair 〈U, V 〉 ∈ (Ro(X))2and W ∈ Ro(X):

S(U, V,W ) holds in MR(X,G) i� cl(U) ∩ cl(V ) ⊆W.As in the proof of 2.5, the existene of properties P , Q and S implies that every iso-morphism between MR(X,G) and MR(Y,H) is indued by a homeomorphism between
X and Y .The following onventions are kept through Lemma 2.23 and the proof of Theorem 2.8.(a) In what follows, 〈E,X,S,F , G〉 denotes a BNO-system. That is, E denotes anormed vetor spae, X is an open subset of E, S is a over of X, F is a subspae hoiefor S and G ≤ H(X). If E is a Banah spae, then LIP(X;S,F) ≤ G, and if E isinomplete, then LIPLC(X;S,F) ≤ G.If X is an open subset of E and 〈X,G 〉 ∈ KB ∪ KN, then 〈X,G 〉 is regarded as aBNO-system with S = {X} and FX = E.(b) Also, U, V,W denote members of Ro(X). If A ⊆ X, then clX(A) and intX(A) areabbreviated by cl(A) and int(A) respetively.



Reonstrution of manifolds from subgroups of homeomorphism groups 31Definition 2.10. (a) For U, V ∈ Ro(X) let U ∼= V denote that (∃g ∈ G)(g(U) = V ).(b) U is a small set if there is W 6= ∅ suh that for every ∅ 6= W ′ ⊆W there is U ′ ∼= Usuh that U ′ ⊆W ′.() U is strongly small in V (U ≺ V ) if there is ∅ 6= W ⊆ V suh that for every
∅ 6= W1 ⊆W there is g ∈ G V suh that g(U) ⊆W1.(d) U is strongly separated fromW (U ←‖→W ) if there is V ∈ Ro(X) suh that U ≺ Vand V ∩W = ∅. �Remark 2.11. The properties �U ∼= V �, �U is a small set�, �U ≺ V � and �U ←‖→W � areexpressible in terms of the operations of MR(X,G). Formally this means the followingstatements.(1) Let χ∼=(x, y) ≡ (∃z ∈ G)(Ap(z, x) = y). Then U, V satisfy χ∼= in MR(X,G) i�

U ∼= V .(2) Let χ⊆(x, y) ≡ x · y = x. Then U, V satisfy χ⊆ in MR(X,G) i� U ⊆ V .(3) Let χ∅(x) ≡ (∀y ∈ Ro(X))(x ·y = x). Then U satis�es χ∅ in MR(X,G) i� U = ∅.(4) Let
χSml(x) ≡ (∃y ∈ Ro(X))(¬χ∅(y) ∧ (∀y′ ∈ Ro(X))((χ⊆(y′, y) ∧ ¬χ∅(y

′)) →
(∃x′ ∈ Ro(X))(χ∼=(x′, x) ∧ χ⊆(x′, y′)))).Then U satis�es χSml in MR(X,G) i� U is small.(5) Let χSpprtd(x, y) ≡ (∀z ∈ Ro(X))(χ∅(z · y) → (Ap(x, z) = z)). Then g, V satisfy

χSpprtd in MR(X,G) i� g ∈ G V .Similar formulas χ≺ and χ←‖→ an be written for U ≺ V and for U ←‖→ V . Theabove formulas use only the operations +, ·, − and Ap. So if χ is any of the aboveformulas, ψ : MR(X,G) ∼= MR(Y,H) and U, V ∈ Ro(X), then U, V satisfy χ in MR(X,G)i� ψ(U), ψ(V ) satisfy χ in MR(Y,H). So smallness, ≺, ←‖→ et. are preserved underisomorphisms. �Definition 2.12. (a) For a metri spae (Z, d), x ∈ Z and r > 0 we de�ne BZ(x, r) :=

{y ∈ Z | d(x, y) < r}, SZ(x, r) := {y ∈ Z | d(x, y) = r} and BZ(x, r) := {y ∈ Z | d(x, y)
≤ r}. If A ⊆ Z, then BZ(A, r) :=

⋃
x∈AB

Z(x, r).In the ontext of this setion there are two metri spaes involved: a normed spae
E and an open subset X ⊆ E. We use B(x, r), S(x, r) and B(x, r) as abbreviations of
BX(x, r), SX(x, r) and BX(x, r).For x, y ∈ E, [x, y] denotes the line segment onneting x and y. For v ∈ E let
trEv : E → E be the translation by v, that is, trEv (x) = v + x. Whenever E an beunderstood from the ontext, trEv is abbreviated by trv.(b) Let N = 〈E,X,S,F , G〉 be a BNO-system and B = BE(x, r) be a ball of E. Then
B is a manageable ball of X (with respet to N ) if there are S ∈ S and ε > 0 suh that
x ∈ S ∩FS and BE(x, r+ ε) ⊆ S. In suh a ase we say that B is based on S. Note thatif B = BE(x, r) is a manageable ball, then BE(x, r) = BX(x, r) and clE(B) = clX(B).() For a topologial spae Y and h ∈ H(Y ), the support of h is de�ned as

supp(h) = {y ∈ Y | h(y) 6= y}. �



32 M. Rubin and Y. YomdinProposition 2.13. (a) Suppose that Y is any topologial spae, and let H ≤ H(Y ). For
k ∈ H let ψk : MR(Y,H) → MR(Y,H) be de�ned as follows. For every h ∈ H, ψk(h) =

hk, and for every U ∈ Ro(Y ), ψk(U) = {h(x) | x ∈ U}. Then ψk ∈ Aut(MR(Y,H)).(b) Let Y be any topologial spae.(i) If F ⊆ Y is losed , then int(F ) ∈ Ro(Y ).(ii) int(cl(A)) ∈ Ro(Y ) for every A ⊆ Y .(iii) int(cl(A)) is the minimal regular open set ontaining A.(iv) If T, S ⊆ Y are disjoint open sets , then int(cl(T )) ∩ S = ∅.Proof. Trivial.We shall next onstrut ertain homeomorphisms in LIP(X;S,F). Geometrially,their existene is quite obvious. However, the formal proof requires some omputation.All balls mentioned in the next lemma are manageable. For suh balls we write
BE(x, r) = B(x, r). Part (b)(ii) of the lemma will be used in Chapter 3. See Proposition3.4.Lemma 2.14. (a) Suppose that B = B(x0, r0) is a manageable ball based on S, x0 ∈ FSand 0 < s0 < s1 < r0. Then there is h ∈ LIP(X;S,F) B suh that h(B(x0, s1)) =

B(x0, s0).(b) Suppose that B = B(x0, r0) is a manageable ball based on S, x0, v ∈ B ∩ FS ,
0 < r < r0 and 0 < s < r0 − ‖v − x0‖. Then(i) There is h ∈ LIP(X;S,F) B suh that h(B(x0, r)) = B(v, s).(ii) If also r=s, then h is (1+ ‖v‖

r0−r−‖v‖ )-bilipshitz and h↾B(x0, r)=trv↾B(x0, r).() Let B be a manageable ball based on S, x, y ∈ B ∩ FS and r > 0. Assume that
B([x, y], r) ⊆ B. Then there is h ∈ LIP(X;S,F) B([x, y], r) suh that h↾B(x, 2r/3) =

try−x↾B(x, 2r/3). Moreover , there is a funtion Kseg(ℓ, t) inreasing in ℓ and dereasingin t suh that the above h is Kseg(‖x− y‖, r)-bilpshitz.(d) Let U ⊆ X be open, γ : [0, 1] → U be ontinuous and 1-1 and s ∈ (0, 1]. Thenthere is h ∈ LIP(X) suh that h(γ(0)) = γ(0), h(γ(s)) = γ(1) and supp(h) ⊆ U .Proof. (a) Assume for simpliity that x0 = 0. Let g ∈ H([0,∞)) be the pieewise linearfuntion with breakpoints at s0 and r0 suh that g(s0) = s1 and g(t) = t for every t ≥ r0.Then g is K-bilipshitz with K = max
(
s1
s0
, r0−s0r0−s1

).We de�ne h : E → E

h(x) = g(‖x‖) x

‖x‖ if x 6= 0 and h(0) = 0.Let x, y ∈ E. We may assume that 0 6= ‖y‖ ≤ ‖x‖. Let z = ‖y‖ x
‖x‖ . Then ‖x − z‖ =

‖x‖ − ‖y‖ ≤ ‖x− y‖ and ‖z − y‖ ≤ ‖z − x‖ + ‖x− y‖ ≤ 2‖x− y‖. So
‖h(x) − h(y)‖ ≤ ‖h(x) − h(z)‖ + ‖h(z) − h(y)‖ ≤ K‖x− z‖ +

g(‖y‖)
‖y‖ ‖z − y‖

≤ K‖x− y‖ +K · 2‖x− y‖ = 3K‖x− y‖.An idential argument shows that h−1 is 3K-Lipshitz.



Reonstrution of manifolds from subgroups of homeomorphism groups 33It is obvious that h(F ) = F and that h(B(0, s0)) = B(0, s1). So h−1↾X is as required.(b) Assume for simpliity that x0 = 0. By (a), we may assume that r = s. De�ne
g : [0,∞) → [0, 1] as follows:

g(t) =





1, 0 ≤ t ≤ r,
r0−t
r0−r , r ≤ t ≤ r0,

0, r0 ≤ t.Suppose that a > r0 and B(0, a) ⊆ X. We de�ne h : B(0, a) → E by h(x) = x+g(‖x‖)·v.Obviously, h(B(0, r)) = B(v, r).We show that h is Lipshitz. At �rst we see that h↾(B(0, r0) − B(0, r)) is Lipshitz.Let x, y ∈ B(0, r0) −B(0, r). Then h(x) − h(y) = x− y + ‖y‖−‖x‖
r0−r · v. It follows that

‖h(x)−h(y)‖ ≤ ‖x−y‖+ | ‖y‖ − ‖x‖ |
r0 − r

·‖v‖ ≤ ‖x−y‖+‖x− y‖
r0 − r

·‖v‖ =

(
1+

‖v‖
r0 − r

)
·‖x−y‖.Let x, y ∈ B(0, a). If x, y ∈ B(0, r) or x, y ∈ B(0, r0)−B(0, r) or x, y ∈ B(0, a)−B(0, r0),then ‖h(x) − h(y)‖ ≤ (1 + ‖v‖

r0−r ) · ‖x− y‖.If x ∈ B(0, r) and y ∈ B(0, r0) − B(0, r), let z ∈ [x, y] ∩ S(0, r). Then
‖h(x) − h(y)‖ ≤ ‖h(x) − h(z)‖ + ‖h(z) − h(y)‖ ≤ ‖x− z‖ +

(
1 +

‖v‖
r0 − r

)
· ‖z − y‖

≤
(

1 +
‖v‖
r0 − r

)
· (‖x− z‖ + ‖z − y‖) =

(
1 +

‖v‖
r0 − r

)
· ‖x− y‖.The other ases are dealt with similarly. So h is (1 + ‖v‖

r0−r )-Lipshitz.In order to show that h is 1-1 and that h−1 is Lipshitz, we �rst hek that there is
K suh that ‖x− y‖ ≤ K · ‖h(x) − h(y)‖ for every x, y ∈ B(0, r0) −B(0, r). Indeed,

‖h(x) − h(y)‖ ≥ ‖x− y‖ − | ‖y‖ − ‖x‖ |
r0 − r

· ‖v‖ ≥ ‖x− y‖ − ‖y − x‖
r0 − r

· ‖v‖

=

(
1 − ‖v‖

r0 − r

)
· ‖x− y‖ =

r0 − r − ‖v‖
r0 − r

· ‖x− y‖.Clearly, r0−r−‖v‖
r0−r > 0. Let K = r0−r

r0−r−‖v‖ . Then ‖x − y‖ ≤ K · ‖h(x) − h(y)‖. Thisimplies that h↾(B(0, r0) −B(0, r)) is 1-1.We next hek that h(B(0, r0) − B(0, r)) = B(0, r0) − B(v, r). Let x ∈ B(0, r0) −
B(0, r). There are x1, x2 ∈ bd(B(0, r0) − B(0, r)) suh that x ∈ [x1, x2] ⊆ B(0, r0) −
B(0, r), and x2 = x1 + λv for some λ ≥ 0. Suppose �rst that x1, x2 ∈ S(0, r0). Clearly,
h([x1, x2]) is a line segment. Sine h↾[x1, x2] is 1-1 and h(xi) = xi, i = 1, 2, we have
h([x1, x2]) = [x1, x2].A similar argument shows that if x1 ∈ S(0, r0) and x2 ∈ S(0, r), then h([x1, x2]) =

[x1, x2 + v] ⊆ B(0, r0)−B(0, r). Also if x1 ∈ S(0, r) and x2 ∈ S(0, r0), then h([x1, x2]) =

[x1 + v, x2] ⊆ B(0, r0) −B(0, r).It follows that h(B(0, r0)−B(0, r)) ⊆ B(0, r0)−B(v, r). A similar onsideration showsthat B(0, r0) − B(v, r) ⊆ h(B(0, r0) − B(0, r)). Also, h(B(0, r)) = B(0, v), h(B(0, a) −
B(0, r0)) = B(0, a) − B(0, r0) and h↾((B(0, a) − B(0, r0) ∪ B(0, r)) is 1-1. So h is a



34 M. Rubin and Y. Yomdinbijetion and Rng(h) = B(0, a). We have proved that h−1↾(B(0, r0)−B(0, r)) is r0−r
r0−r−‖v‖ -Lipshitz. The argument that h−1 is r0−r

r0−r−‖v‖ -Lipshitz is the same one used to showthat h is Lipshitz.Clearly, r0−r
r0−r−‖v‖ = 1 + ‖v‖

r0−r−‖v‖ and 1 + ‖v‖
r0−r ≤ 1 + ‖v‖

r0−r−‖v‖ . So h is 1 + ‖v‖
r0−r−‖v‖ -bilipshitz. As in the preeding arguments, this implies that h ∪ Id↾(X − B(0, a)) is

1 + ‖v‖
r0−r−‖v‖ -bilipshitz.For every x ∈ B(0, a), h(x) − x ∈ span({v}) ⊆ F . So x ∈ F i� h(x) ∈ F . Hene

h ∪ Id↾(X − B(0, a)) ∈ LIP(X;F ,S). Note also that h↾B(0, r) = trv↾B(0, r). So h ∪
Id↾(X − B(0, a)) ful�lls the requirements of (i) and (ii).() Let x0, . . . , xn ∈ [x, y] be suh that x0 = x, x1 = y and ‖xi − xi+1‖ < r/4 forevery i < n. By (b), for every i < n there is hi ∈ LIP(X;S,F) B(xi, r) suh that
hi↾B(xi, 2r/3)) = trxi+1−xi

↾B(xi, 2r/3). Let h = h0 ◦ · · · ◦hn−1. Then h is as required.Note that n an be hosen to be [4‖x − y‖/r] + 1. By (b) eah hi is (1 + r/4
r−2r/3−r/4)-bilipshitz. That is, hi is 4-bilipshitz. Hene Kseg(ℓ, t) = 4[4ℓ/t]+1.(d) Let x = γ(s), y = γ(1), L = γ([s, 1]) and r = d(L, (X − U) ∪ {s(0)}). There is asequene of balls B(x1, r), . . . , B(xn, r) suh that x1, . . . , xn ∈ L and ⋃n

i=1B(xi, r) ⊇ L.We may assume that x ∈ B(x1, r), y ∈ B(xn, r), and B(xi, r) ∩ B(xi+1, r) 6= ∅ for every
i < n. For every i < n let yi ∈ B(xi, r) ∩B(xi+1, r). Set y0 = x and yn = y. By (b), forevery i = 1, . . . , n there is hi ∈ LIP(X) suh that hi(yi−1) = yi and supp(hi) ⊆ B(xi, r).Clearly, hn ◦ · · · ◦h1 is as required.The following observation will be used in many arguments. Its proof is left to thereader.Proposition 2.15. (a) Let X be a metri spae, and ~x be a sequene in X. Then either
~x has a Cauhy subsequene, or there are r > 0 and a subsequene {yn | n ∈ N} of ~xsuh that for distint i, j ∈ N, d(yi, yj) ≥ r.(b) Let X be a metri spae and {xi | i ∈ N} ⊆ X be a bounded sequene. Theneither {xi | i ∈ N} has a Cauhy subsequene, or there is a subsequene {yi | i ∈ N} of
{xi | i ∈ N} and r > 0 suh that for every ε > 0 there is N ∈ N suh that |d(yi, yj)−r| < εfor distint n,m > N .Proposition 2.16. (a) If U1 ⊆ U ≺ V ⊆ V1, then U1 ≺ V1.(b) If U ≺ V for some V , then U is small.() Let B(x, r) and B(y, s) be manageable balls based on the same S. If cl(B(x, r)) ⊆
B(y, s), then B(x, r) ≺ B(y, s).(d) If U ∈ Ro(X) is a subset of a manageable ball , then U is small.(e) If U ≺ V , then cl(U) ⊆ V .(f) If B is a manageable ball of X, then B ∈ Ro(X) and B is small.Proof. Parts (a) and (b) follow trivially from the de�nitions.() Note that if cl(B(x, r)) ⊆ B(y, s), then ‖x−y‖+r < s. So () follows from Lemma2.14(b).



Reonstrution of manifolds from subgroups of homeomorphism groups 35(d) Suppose that U ⊆ B, and B is a manageable ball. There is a manageable ball B′with the same enter as B suh that cl(B) ⊆ B′. Obviously, B and B′ are based on thesame S. So by (), B ≺ B′. By (a), U ≺ B′. By (b), U is small.(e) Suppose that x ∈ cl(U) − V . Let ∅ 6= W ⊆ V . Then there is ∅ 6= W ′ ⊆ Wsuh that cl(W ′) ⊆ W . Let g ∈ G V . Then g(x) = x. Suppose by ontradition that
g(U) ⊆W ′. Then g(x) ∈ g(cl(U)) ⊆ cl(W ′) ⊆W 6∋ x. A ontradition.(f) B ∈ Ro(E) and int(cl(B)) = intE(clE(B)). So B ∈ Ro(X).Let U ⊆ Ro(X). We use ∑U to denote the supremum of U in the omplete Booleanalgebra Ro(X). It is easy to hek that ∑U = int(cl(

⋃U)).Definition 2.17. (a) Let U ⊆ V and U ⊆ Ro(X). U is alled a V -small semiover of Uif ∑U = U and U ′ ≺ V for every U ′ ∈ U .(b) Let U be a V -small semiover of U , and let {Ui | i ∈ I} be a 1-1 enumerationof U . We say that U is a V -good semiover of U if the following holds. For every J ⊆ Iand {Wj | j ∈ J} ⊆ Ro(X): if J is in�nite and ∅ 6= Wj ⊆ Uj for every j ∈ J , thenthere are pairwise disjoint in�nite J1, J2 ⊆ J and {W ′
j | j ∈ J1 ∪ J2} ⊆ Ro(X) suh that

∅ 6= W ′
j ⊆Wj for every j ∈ J1 ∪ J2 and ∑

j∈J1
W ′
j
←‖→

∑
j∈J2

W ′
j .() For a normed vetor spae E let E denote the ompletion of E. So E is a Banahspae.(d) Let Z be a topologial spae. Suppose that F ⊆ H(Z) and supp(f)∩ supp(g) = ∅for distint f, g ∈ F . We de�ne

◦F :=
⋃
{f↾supp(f) | f ∈ F} ∪ Id↾(Z −

⋃
{supp(f) | f ∈ F}).Let F = {fn | n ∈ N} ⊆ H(Z) be suh that for any distint m,n ∈ N, Then ◦n∈N fn

:= ◦F . �Lemma 2.18. Let V be a small set. Then for every U ∈ Ro(X): cl(U) ⊆ V i� U has a
V -good semiover.Proof. Suppose that cl(U) 6⊆ V . Let U be a V -small semiover of U ; we show that Uis not V -good. The fat that V is small is not used in the proof of this diretion. Let
x ∈ cl(U) − V . If U ′ ∈ U , then by 2.16(e), cl(U ′) ⊆ V . By indution on i ∈ N we de�ne
Ui ∈ U and Wi ⊆ Ui. Let U0 be any member of U and W0 = U0. Suppose U0, . . . , Ui−1and W0, . . . ,Wi−1 have been de�ned. Let Bi be a ball with enter at x and radius < 1/isuh that Bi ∩ ⋃

j<i Uj = ∅. Let Ui ∈ U be suh that Bi ∩ Ui 6= ∅, and let Wi =

Ui ∩ int(cl(Bi)). So Wi ∈ Ro(X). For every in�nite J ′ ⊆ N and {W ′
j | j ∈ J ′} ⊆ Ro(X):if ∅ 6= W ′

j ⊆ Wj for every j ∈ J ′, then x ∈ cl(
∑
j∈J′ W ′

j). Suppose by ontraditionthat U is V -good. The family {Ui | i ∈ N} is an in�nite subset of U , and Wi ⊆ Ui forevery i ∈ N. So let J1, J2 and {W ′
j | j ∈ J1 ∪ J2} be as required in the de�nition of

V -goodness for {Ui | i ∈ N} and {Wi | i ∈ N}, and let W strongly separate ∑
j∈J1

W ′
jfrom ∑

j∈J2
W ′
j . Sine x ∈ cl(

∑
j∈J2

W ′
j) and W ∩∑

j∈J2
W ′
j = ∅, it follows that x 6∈W .But x ∈ cl(

∑
j∈J1

W ′
j). So by 2.16(e), ∑

j∈J1
W ′
j 6≺W . A ontradition.Assume next that V is small and that cl(U) ⊆ V ; we will onstrut a V -good semiover

U of U . Sine V is small, there is g ∈ G suh that g(V ) is ontained in a manageableball. Obviously cl(g(U)) ⊆ g(V ). Clearly, g(U) has a g(V )-good semiover i� U has a
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V -good semiover. In fat, this follows from Proposition 2.13(a). We may thus assumethat V is ontained in a manageable ball. This means that cl(U) = clE(U).We may further assume that there is a manageable ball B∗ = BE(x∗, r∗) suh that
V ⊆ BE(x∗, r∗/16). Suppose that B∗ is based on S∗ , and denote FS∗ by F ∗ . We mayassume that x∗ ∈ F ∗ . For every x ∈ cl(U) let Wx ∈ Ro(X) be suh that x ∈Wx ≺ V .The existene of Wx follows from Proposition 2.16(), (a) and (f). Sine cl(U) is para-ompat, there is an open loally �nite re�nement T of {Wx | x ∈ cl(U)} suh that
cl(U) ⊆ ⋃ T . Let U = {int(cl(T ))∩U | T ∈ T }. By Proposition 2.13(b)(ii), U ⊆ Ro(X).Clearly, ⋃U = U . So ∑U = U .We show that for every x ∈ cl(U) there is a neighborhood Sx suh that {U ′ ∈ U |
U ′ ∩ Sx 6= ∅} is �nite. For x ∈ cl(U) let Sx be an open neighborhood of x suh that
{T ∈ T | T ∩ Sx 6= ∅} is �nite. By Proposition 2.13(b)(iv), {T ∈ T | int(cl(T ))∩ Sx 6= ∅}is �nite. So {T ∈ T | (int(cl(T ))∩U)∩Sx 6= ∅} is �nite. That is, {U ′ ∈ U | U ′ ∩Sx 6= ∅}is �nite.We show that U is V -good. Let {Ui | i ∈ N} ⊆ U be suh that Ui 6= Uj for every
i 6= j; and let ∅ 6= Wi ⊆ Ui. We shall �nd J1, J2 and {W ′

j | j ∈ J1 ∪ J2} as required inthe de�nition of V -goodness. For every i ∈ N let xi ∈Wi ∩ F ∗ .Claim 1. {xi | i ∈ N} does not ontain a onvergent subsequene.Proof. If x is a limit of suh a subsequene, then x ∈ cl(U), but then Sx intersets only�nitely many Ui's. So {i ∈ N | xi ∈ Sx} is �nite. A ontradition, so the laim is proved.By Claim 1 and Proposition 2.15(b), either (i) or (ii) below happen:(i) E is inomplete, there is an in�nite J ⊆ N suh that {xi | i ∈ J} is a Cauhysequene, and {xi | i ∈ J} is not onvergent in clE(X).(ii) There is in�nite J ⊆ N and an r > 0 suh that for any distint i, j ∈ J , r <
‖xi − xj‖ < 9r/8.Case (i). Let x̄ = limE

i∈J xi. Hene x̄ ∈ clE(V ) − X. Sine V ⊆ BE(x∗, r∗/16), thereis r > 0 suh that BE(x̄, r) ∩ E ⊆ BE(x∗, r∗/8). So x̄ 6∈ E. We may assume that
xi ∈ BE(x̄, r/8) for every i ∈ J . Let v ∈ F ∗ and ‖v‖ = r/2. Let Li = [xi, xi + v]and L = [x̄, x̄ + v]. So Li ⊆ BF

∗
(x∗, r∗/8) for every i ∈ J . Also, L ⊆ E − E. Onean hoose an in�nite subset J0 ⊆ J and a sequene {ri | i ∈ J0} ⊆ (0, r/8) suh that

BE(xi, ri) ⊆Wi for every i ∈ J0, and clE(B(Li, ri)) ∩ clE(B(Lj , rj)) = ∅ for distint
i, j ∈ J0.For every i ∈ J0 let W ′

i = B(xi, ri/3). Let J1 ⊆ J0 be suh that J1 and J0 − J1 arein�nite, and let J2 = J0 − J1. For ℓ = 1, 2 let W ℓ =
∑
i∈Jℓ

W ′
i . We shall show that

W 1 ←‖→W 2.For every i ∈ J1, ‖xi− x̄‖ < r/8 and ri < r/8, and for every u ∈ Li, we have ‖u−xi‖
≤ ‖(xi+v)−xi‖ = r/2. It follows that for every u ∈ B(Li, ri), ‖u− x̄‖ < r/8+r/2+r/8

= 3r/4. So B(Li, ri) ⊆ B(x̄, r) ⊆ B(x∗, r∗) ⊆ S∗ .By Lemma 2.14(), for every i ∈ J1 there is hi ∈ LIP(X;S,F) B(Li, ri) suh that
hi(B(xi, ri/3)) = B(xi + v, ri/3). Let h = ◦i∈J1

hi. We show that h ∈ LIPLC(X;S,F).Clearly, supp(h) =
⋃
i∈J1

supp(hi) ⊆ S∗ . We show that for every u ∈ E, there is a



Reonstrution of manifolds from subgroups of homeomorphism groups 37neighborhood Vu of u suh that |{i ∈ J1 | B(Li, ri) ∩ Vu 6= ∅}| ≤ 1. Suppose that u is aounter-example. Sine {xi | i ∈ N} is a Cauhy sequene and the B(xi, ri)'s are pairwisedisjoint, limi ri = 0. Sine for i 6= j, clE(B(Li, ri)) ∩ clE(B(Lj , rj)) = ∅, there is at mostone i suh that u ∈ clE(B(Li, ri)). Hene there is an in�nite set J3 ⊆ J1 and a sequene
{ui | i ∈ J3} suh that ui ∈ B(Li, ri) for every i ∈ J3, and limi∈J3

ui = u. There are
yi ∈ Li suh that ‖yi − ui‖ < ri. Hene limi∈J3

yi = u. Let yi = xi + tiv. Sine {xi} and
{yi} onverge in E, limi∈J3

ti exists. Also, limi∈J3
ti ∈ [0, 1]. So u ∈ [x̄, x̄ + v]. Hene

u 6∈ E, a ontradition.Let u ∈ X. Then there is i ∈ J1 suh that h↾Vu = hi↾Vu. So h↾Vu is bilipshitz.This means that h ∈ LIPLC(X;S,F). Sine E is inomplete, LIPLC(X;S,F) ⊆ G. So
h ∈ G.We shall prove that h(W 1) ←‖→ W 2. Let us �rst see that h(W 1) ⊆ BE(x̄ + v, r/6).We have h(W 1) =

⋃
i∈J1

hi(W
′
i ) =

⋃
i∈J1

hi(B(xi, ri/3)) =
⋃
i∈J1

B(xi + v, ri/3). Also,
‖(xi+ v)− (x̄+ v)‖ = ‖xi− x̄‖ < r/8. Sine ‖xi− x̄‖ < r/8 and x̄ 6∈ BE(xi, ri), it followsthat ri < r/8. So B(xi + v, ri/3) ⊆ BE(x̄ + v, r/6). That is, h(W ′

i ) ⊆ BE(x̄ + v, r/6).Hene h(W 1) ⊆ BE(x̄+ v, r/6).Similarly, W 2 ⊆ BE(x̄, r/6). Sine ‖(x̄ + v) − x̄‖ = r/2 > r/3, there are x̂ ∈ E and
0 < s0 < s1 suh that BE(x̄ + v, r/6) ⊆ BE(x̂, s0) and BE(x̂, s1) ∩ BE(x̄, r/6) = ∅. So
h(W 1) ⊆ BE(x̂, s0). By Propositions 2.16() and 2.16(a), h(W 1) ≺ BE(x̂, s1). Sine
BE(x̂, s1) ∩W 2 = ∅, it follows that h(W 1) ←‖→W 2.Note that h(W 2) = W 2. By Proposition 2.13(a), h−1(h(W 1)) ←‖→ h−1(W 2). But
h−1(h(W 1)) = W 1 and W 2 = h−1(h(W 2)). So W 1 ←‖→W 2.Case (ii). Sine the xi's belong to BE(x∗, r∗/16) and r < ‖xi − xj‖, it follows that
r < r∗/8. Let i0 ∈ J and J1 and J2 be disjoint in�nite subsets of J not ontaining i0. Forevery i ∈ J1 ∪ J2 let Bi = BE(xi, r/8) and W ′

i = Bi ∩Wi. Clearly, Bi ⊆ BE(x∗, 3r∗/16).So Bi ⊆ X, and hene W ′
i ∈ Ro(X). For ℓ = 1, 2 let W ℓ =

∑
i∈Jℓ

W ′
i , and let W =

B(xi0 , 2r).We shall show that:(∗) There is h ∈ LIP(E;BE(xi0 , 3r), F
∗) suh that h↾W 1 = Id and h(W 2) ∩W = ∅.But �rst we prove that (∗) implies that W 1 ←‖→ W 2. If x ∈ BE(xi0 , 3r), then

‖x − x∗‖ ≤ ‖x − x∗‖ + 3r < r∗/16 + 3r∗/8 = 7r∗/16. So BE(xi0 , 3r) ⊆ B∗ ⊆ S∗ .Hene h↾X ∈ LIP(X;S∗ , F ∗) ⊆ LIP(X;S,F). Now, W 1 ⊆ B(0, 5r/4), so by 2.16()and 2.16(a), W 1 ≺ W . Also h(W 2) ∩W = ∅. Hene W strongly separates W 1 from
h(W 2). That is, W 1 ←‖→ h(W 2). By Proposition 2.13(a), h−1(W 1) ←‖→ h−1(h(W 2)).But h−1(W 1) = W 1 and W 2 = h−1(h(W 2)). So W 1 ←‖→W 2.To omplete the proof, it remains to show that (∗) holds. For simpliity let us assumethat xi0 = 0 and that r = 1. We de�ne a funtion g : [0, 3] × [0,∞) → R as follows. Forevery s0 ∈ [0, 3], g(s0, t) will be a pieewise linear homeomorphism of [0,∞]. Let a(s) bethe linear funtion suh that a(3/8) = 3/4 and a(5/8) = 2.If s0 ≤ 3/8, then g(s0, t) = t. If 3/8 ≤ s0 ≤ 5/8, then

g(s0, t) =

{
t, t ≤ 1

2 ,
a(s0)− 1

2
3
4
− 1

2

(t− 1
2 ) + 1

2 ,
1
2 ≤ t ≤ 3

4 ,
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g(s0, t) =

{
3−a(s0)

3− 3
4

(t− 3) + 3, 3
4 ≤ t ≤ 3,

t, 3 ≤ t.If 5/8 ≤ s0 ≤ 3, then g(s0, t) = g(5/8, t).Let F = {xi | i ∈ J1} and
h(x) =

{
g(d( x

‖x‖ , F ), ‖x‖) · x
‖x‖ , x 6= 0,

0, x = 0.We leave it to the reader to hek that h ∈ LIP(E;BE(0, 3), FS∗).If i ∈ J1 ∪ J2 and x ∈ Bi, then ‖ x
‖x‖ − xi‖ ≤ ‖ x

‖x‖ − x‖+ ‖x− xi‖ < 1/4 + 1/8 = 3/8.Let x ∈ W 1. There is i ∈ J1 suh that x ∈ Bi. Hene d( x
‖x‖ , F ) ≤ ‖ x

‖x‖ − xi‖ < 3/8.So g(d( x
‖x‖ , F ), ‖x‖) = ‖x‖, and hene h(x) = x. Let x ∈ W 2. There is i ∈ J2 suh that

x ∈ Bi. So d( x
‖x‖ , F ) ≥ d(xi, F ) − ‖ x

‖x‖ − xi‖ > 1 − 3/8 = 5/8. Also, ‖x‖ > 7/8. Hene
‖h(x)‖ =

∥∥∥∥g
(
d

(
x

‖x‖ , F
)
, ‖x‖

)
· x

‖x‖

∥∥∥∥

= g

(
d

(
x

‖x‖ , F
)
, ‖x‖

)
= g(5/8, ‖x‖) > g(5/8, 3/4) = 2.We have proved (∗), so the proof of the lemma is omplete.Lemma 2.19. Let V be a small set. Then for every U : cl(U) ∩ cl(V ) 6= ∅ i� for everysmall V1: if cl(V ) ⊆ V1, then V1 ∩ U 6= ∅.Proof. If cl(U) ∩ cl(V ) 6= ∅, then learly V1 ∩ U 6= ∅ for every V1 ⊇ cl(V ). Conversely,suppose that V is small and cl(V )∩cl(U) = ∅. Let V ′ be a small set suh that cl(V ) ⊆ V ′,and let V1 = V ′ ∩ int(X − U). Sine int(X − U) ⊇ cl(V ), V1 ⊇ cl(V ), hene V1 is asrequired.Lemma 2.20. Let U and V be small sets. Then |cl(U)∩cl(V )| = 1 i� the following holds.(i) cl(U) ∩ cl(V ) 6= ∅,(ii) for every small W1 and W2: if cl(U ∩W1) ∩ cl(V ∩W1) 6= ∅ and cl(U ∩W2) ∩

cl(V ∩W2) 6= ∅, then cl(W1) ∩ cl(W2) 6= ∅.Proof. Suppose that x1, x2 ∈ cl(U) ∩ cl(V ) and x1 6= x2. For i = 1, 2 let Wi ∈ Ro(X)be a neighborhood of xi suh that Wi is small and Wi ⊆ BX(xi,
1
3‖x2 − x1‖). Then

cl(U ∩Wi) ∩ cl(V ∩Wi) 6= ∅ for i = 1, 2, but cl(W1) ∩ cl(W2) = ∅.Suppose that cl(U) ∩ cl(V ) = {x} and let Wi, i = 1, 2, be suh that cl(U ∩Wi) ∩
cl(V ∩Wi) 6= ∅. Hene x ∈ cl(W1) ∩ cl(W2).Lemma 2.21. For i = 1, 2 let Ui, Vi be small sets suh that |cl(Ui) ∩ cl(Vi)| = 1. Then
cl(U1)∩cl(V1) = cl(U2)∩cl(V2) i� (∗) for any smallW1,W2: if cl(Ui∩Wi)∩cl(Vi∩Wi) 6= ∅,
i = 1, 2, then cl(W1) ∩ cl(W2) 6= ∅.Proof. Similar to 2.20.Lemma 2.22. Let U, V be small sets suh that cl(U)∩cl(V ) = {x} andW ∈ Ro(X). Then
x ∈W i� (∗) for any small U ′, V ′: if cl(U ′) ∩ cl(V ′) = cl(U) ∩ cl(V ), then U ′ ∩W 6= ∅.Proof. It is trivial that if x ∈W , then (∗) holds.



Reonstrution of manifolds from subgroups of homeomorphism groups 39Suppose that x 6∈ W . Sine W is regular open, x ∈ cl(X − cl(W )). Let B be amanageable ball ontaining x. So let {xi | i ∈ N} ⊆ B be a 1-1 sequene onvergingto x and disjoint from cl(W ). Let ri = 1
3 min(1/i, d(xi, {xj | j 6= i} ∪W ∪ (X − B))).Let U ′ =

⋃{BE(xi, ri) | i is odd} and V ′ =
⋃{BE(xi, ri) | i is even}. Then U ′, V ′ ⊆

B ⊆ X. It is easy to see that U ′, V ′ ∈ Ro(X). Also, sine U ′, V ′ ⊆ B, they are small.We have cl(U ′) ∩ cl(V ′) = {x} = cl(U) ∩ cl(V ), and U ′ ∩ W = ∅. So (∗) does nothold.Lemma 2.23. For every x ∈ X there are small U, V suh that cl(U) ∩ cl(V ) = {x}.Proof. Use the onstrution of 2.22.Proof of Theorem 2.8. Reall that 2.8(a) is a speial ase of 2.8(b). We prove (b).Let 〈X1, G1 〉, 〈X2, G2 〉 ∈ KBNO and ϕ : G1
∼= G2. It is trivial that 〈Ro(Xi), Gi 〉 aretopologial loal movement systems. Indeed, this follows from Lemma 2.14(a). Hene byTheorem 2.3, there is η : Ro(X1) ∼= Ro(X2) suh that ϕ∪η : MR(X1, G1) ∼= MR(X2, G2).Let ψ = ϕ ∪ η.As in Remark 2.11 the property of U being a V -small semiover of U is expressedin terms of the operations of MR(X,G). That is, there is a formula ϕsm-sc(X , x, y)expressed in terms of the operations of MR(X,G) suh that for every 〈X,G 〉 ∈ KBNO,

U ⊆ Ro(X) and U, V ∈ Ro(X), 〈 U , U, V 〉 satis�es ϕsm-sc(X , x, y) in MR(X,G) i� U is a
V -small semiover of U . Hene, if U is a V -small semiover of U in MR(X1, G1), then
ψ(U) := {ψ(U ′) | U ′ ∈ U} is a ψ(V )-small semiover of ψ(U) in MR(X2, G2).The same fat is true for the property of being a V -good semiover.Lemmas 2.18�2.22, and the existene of the formulas χSml et. of Remark 2.11 implythat the following properties are expressible in terms of the operations of MR(X,G).(1) U and V are small, and cl(U) ∩ cl(V ) is a singleton.(2) U1, V1, U2, V2 are small, cl(U1) ∩ cl(V1) is a singleton, and cl(U1) ∩ cl(V1) =

cl(U2) ∩ cl(V2).(3) U and V are small, cl(U) ∩ cl(V ) is a singleton, and cl(U) ∩ cl(V ) ⊆W .A word of aution. In (1)�(3) smallness annot be omitted. This is so, sine in Lemmas2.18�2.22 the equivalene of (1)�(3) to the expressible properties mentioned there wasproved only under the assumption that the sets in question are small.We are ready to de�ne τ : X1 → X2. Let x ∈ X1. By Lemma 2.23, there are small Uand V suh that {x} = cl(U) ∩ cl(V ). Sine ψ is an isomorphism between MR(X1, G1)and MR(X2, G2), and by the expressibility of (1) above, cl(ψ(U))∩cl(ψ(V )) is a singleton.Denote it by {y} and de�ne τ (x) = y.By the expressibility of (2) above: if U ′, V ′ are small and {x} = cl(U ′)∩ cl(V ′), then
cl(ψ(U ′)∩cl(ψ(V ′)) = {y}. So the de�nition of τ is valid. As in the proof of Theorem 2.5,Lemma 2.23 and the expressibility of (1) and (2) imply that τ is 1-1 and onto. As in theproof of Theorem 2.5, the expressibility of (3) implies that τ is a homeomorphism andthat τ indues ϕ. This ompletes the proof of Theorem 2.8.Consider the lass
KNL = {〈X,G 〉 | X is an open subset of a normed spae and LIP(X) ≤ G ≤ H(X)}.



40 M. Rubin and Y. YomdinIt is not known whether KNL is faithful. But we an show the faithfulness of the sublassof KNL onsisting of those 〈X,G 〉's in whih X is a �rst ategory topologial spae and
G is internally extendible. (See below.) To this end we have strengthened the originalstatement of Theorem 2.8, and inluded G's whih are required to ontain LIP(X;F )rather than LIP(X). Sine LIP(X;F ) ⊆ LIP(X), this is a stronger result.Definition 2.24. Suppose that E is a normed vetor spae, and that X ⊆ E is open.(a) The omplete interior of X in E is de�ned by

int
E

(X) =
⋃{BE(x, r) | x ∈ E and BE(x, r) ⊆ X}.Note that int

E
(X) is open in E.(b) Let h ∈ H(X). We say that h is internally extendible in E if there is h̄ ∈

H(int
E

(X)) suh that h̄ extends h. Let IXTE(X) denote the group of internally ex-tendible homeomorphisms of X.() Let X be an open subset of a normed spae E, and U be a set of open subsets of
X. Then U is a omplete over of X if ⋃{int(U) | U ∈ U} = int(X).(d) For a subset A of a metri spae denote the diameter of A by diam(A). That is,
diam(A) = supx,y∈A d(x, y). So diam(A) ∈ R ∪ {∞}. �The following proposition is known. See [BP℄, the hapter on inomplete norms. Wepresent a proof here.Proposition 2.25. (a) Let E be a normed spae and x, y ∈ BE(0, a)−E. Then there is
h ∈ LIP(E;E) BE(0, a) suh that h(x) = y.(b) Let E be a normed spae, x ∈ BE(0, a) and y ∈ BE(0, a) − E. Then there is
h ∈ LIP(E) BE(0, a) suh that h(E − {x}) = E and h(x) = y.Proof. (a) We leave the straightforward proof of the following laim to the reader.Claim 1. Let E be a normed spae. Let {Kn | n ∈ N} ⊆ (1,∞) be suh that ∏

n∈N
Kn

<∞ and {gn | n ∈ N} ⊆ LIP(E;E) be suh that :(1) gn is Kn-bilipshitz ;(2) ∑
n∈N

diam(supp(gn)) <∞;(3) there is x0 ∈ E − E and a sequene {rn | n ∈ N} ⊆ (0,∞) onverging to 0 suhthat for every n ∈ N, supp(gn) ⊆ gn−1 ◦ · · · ◦ g0(BE(x0, rn)).Let hn = gn−1 ◦ · · · ◦ g0. Then for every x ∈ E, limn→∞ hn(x) exists. De�ne h(x) =

limn→∞ hn(x). Then h ∈ LIP(E;E).We onstrut gn's whih satisfy the assumptions of Claim 1. Let {Mn | n ∈ N}
⊆ (3,∞) be suh that ∏

n∈N
(1 + 1/(Mn − 3)) < ∞. We may assume that ‖x − y‖

·M0 < a. Set x = x0 and ‖x − y‖ = d0. De�ne dn by indution as follows: dn+1 =

dn/Mn+1.We shall apply Proposition 2.14(b)(ii). The normed spae E of 2.14 is taken to be
E, S = {E}, FE = E and a of 2.14(b) is a here. The homeomorphism h onstruted inProposition 2.14(b) depended on the vetors x0 and v and on the radii r0 and r. Denotethat h by hx0,v,r0,r.



Reonstrution of manifolds from subgroups of homeomorphism groups 41We de�ne gn and xn+1 by indution. Suppose that xn has been de�ned. Let
un = dn+1 ·

y − xn
‖y − xn‖

and fn = hxn,un,Mndn,2dn
.So supp(fn) ⊆ B(xn,Mndn). Note that fn is (1 + dn

Mndn−2dn−dn+1
)-bilipshitz. Sine

dn+1 < dn, we have dn

Mndn−2dn−dn+1
> 1

Mn−3 . So(1.1) ‖y − fn(xn)‖ = dn+1 < 2dn+1,(1.2) fn↾B(xn, 2dn) = trun
↾B(xn, 2dn),(1.3) for some ε > 0, fn is (1 + 1

Mn−3 + ε)-bilipshitz,(1.4) if n > 0, then for some ε > 0, supp(fn) ⊆ B(xn, dn−1 − ε).Choose yn, vn ∈ E lose enough to xn and un respetively so that for gn de�ned by
gn = hyn,vn,Mndn,2dn

the following holds:(2.1) ‖y − gn(xn)‖ < 2dn+1,(2.2) gn↾B(xn, dn) = trvn
↾B(xn, dn),(2.3) gn is (1 + 1

Mn−3 )-bilipshitz,(2.4) if n > 0, then supp(gn) ⊆ B(xn, dn−1).Let xn+1 = gn(xn). So xn+1 = xn + vn. Also, gn ∈ LIP(E;E)We hek that (1)�(3) of Claim 1 are ful�lled. Clearly, Kn = 1 + 1
Mn−3 , n ∈ N ful�lllause (1). Sine dn+1 < dn/3, we have ∑

n∈N
dn < ∞. So ∑

n∈N
diam(supp(gn)) <∑

n∈N
2dn <∞, proving (2).Let hn = gn ◦ · · · ◦ g0 and wn =

∑
i≤n vi. We show by indution that(2.5) hn↾B(x0, dn) = trwn

↾B(x0, dn) for every n ∈ N.By (2.2), this is true for n = 0. Assume it is true for n. Hene xn+1 = hn(x0) = x0 +wn.For n+ 1 we have
hn+1↾B(x0, dn+1) = (gn+1 ◦hn)↾B(x0, dn+1) = gn+1↾hn(B(x0, dn+1)) ◦ trwn

↾B(x0, dn+1)

= gn+1↾B(x0 + wn, dn+1) ◦ trwn
↾B(x0, dn+1) = gn+1↾B(xn+1, dn+1) ◦ trwn

↾B(x0, dn+1)

= trvn+1
↾B(xn+1, dn+1) ◦ trwn

↾B(x0, dn+1) = trwn+1
↾B(x0, dn+1).It follows from (2.4) and (2.5) that supp(gn+1) ⊆ B(xn+1, dn) = hn(B(x0, dn)). Sine

limn→∞ dn = 0, lause (3) of Claim 1 holds. Let h be as onstruted in Claim 1. So
h ∈ LIP(E;E).Sine ‖y−xn‖ = dn and limn→∞ dn = 0, we have h(x) = y. We show that supp(gn) ⊆
B(x, a) for every n ∈ N. For n = 0, supp(g0) ⊆ B(x,M0d0) ⊆ B(x, a). Suppose that
n > 0. Then supp(gn) ⊆ B(xn,Mndn) ⊆ B(x,Mndn + ‖xn − x‖). Sine
Mndn + ‖xn − x‖ ≤Mndn + ‖xn − y‖ + ‖y − x‖ < dn−1 + 2dn + d0 < 3d0 < M0d0 < a,we have supp(gn) ⊆ B(x, a). It follows that supp(h) ⊆ B(x, a). So h is as required.(b) The proof is very similar to the proof of (a).Corollary 2.26. Let KNFCB be the lass of all spae-group pairs 〈X,G 〉 for whih thereis a normed spae E suh that X is an open subset of E and(1) E is of the �rst ategory , or E is a Banah spae;



42 M. Rubin and Y. Yomdin(2) There is a omplete over U of X suh that LIP(X,U) ≤ G ≤ IXT(X).Then KNFCB is faithful.Proof. Let 〈X,G 〉 ∈ KNFCB. For g ∈ G let ḡ be the extension of g to int(X) and
G = {ḡ | g ∈ G}. Then 〈int

E
(X), G 〉 ∈ KBO.Let O(X,G) be the set of orbits of G. That is, O(X,G) = {G(x) | x ∈ int(X)}. Itfollows from Proposition 2.25(a) that if X is an open subset of an inomplete normedspae, then for every O ∈ O(X,G) there is a set C of onneted omponents of int(X)suh that O = E∩⋃ C or O = (E−E)∩⋃ C. Clearly, if X is an open subset of a Banahspae, then for every O ∈ O(X,G) there is a set of onneted omponents of X suh that

O =
⋃ C. Let FC(X,G) =

⋃{O ∈ O(X,G) | O is a �rst ategory set}. If X is of the�rst ategory, then X = FC(X,G).For i = 1, 2 let 〈Ei, Gi 〉 ∈ KNFCB, and let ϕ : G1
∼= G2. Let ϕ̄ : G1 → G2 bede�ned by ϕ̄(ḡ) = ϕ(g). Then ϕ̄ : G1

∼= G2. By Theorem 2.8(b), there is τ̄ : E1
∼= E2whih indues ϕ̄. Obviously, τ̄ takes orbits of G1 to orbits of G2. So O(X,G1) ontainsmembers of the �rst ategory i� O(X,G2) ontains members of the �rst ategory.It is obvious that τ̄ takes every �rst ategory orbit of G1 to a �rst ategory orbit of

G2. So if X1 is of the �rst ategory, then τ̄(X1) = τ̄(FC(X1, G1)) = FC(X2, G2) = X2,and hene τ : X1
∼= X2. If X1 is an open subset of a Banah spae, then τ̄ = τ and hene

τ : X1
∼= X2.Remark 2.27. If E has a ountable Hamel basis, then it is of the �rst ategory. Thespae ℓ1 is a linear subspae of ℓ2, and it is of the �rst ategory in ℓ2.This is a speial ase of the following fat. If T : F → E is a bounded linear operatorfrom a Banah spae F to a Banah spae E, and Rng(T ) is a proper dense subset of

E, then Rng(T ) is of the �rst ategory in E. This follows from the proof of the OpenMapping Theorem. If Rng(T ) is of the seond ategory, then for some ball B = BF (0, n),
T (B) is somewhere dense. Hene T (B) is dense in some ball of the form BE(0, r). It anthen be proved that T (B) ⊇ BE(0, r). This implies that Rng(T ) = E. �In Corollary 2.26 the assumptions that E is of the �rst ategory, and that G isompletely extendible are undesirable. We do not know whether they an be dispensedwith.The �nal reonstrution results of Chapter 5 are proved for open subsets of �rstategory normed vetor spaes and for open subsets of Banah spaes. The proofs of allintermediate theorems are valid for open subsets of any normed spae. If Parts () or (d)of the following question have a negative answer, then the �nal results of Chapter 5 willbe true for open subsets of any normed vetor spae.On the other hand, examples answering () or (d) below in the a�rmative imply thatertain results in Chapter 5 are not true for arbitrary normed spaes.Question 2.28. (a) Is KNL faithful?(b) LetKNLIX be the sublass ofKNL onsisting of all 〈E,G 〉's in whih G is internallyextendible. Is KNLIX faithful?() Are there normed spaes E and F and a homeomorphism τ : E ∼= F suh that
τ (E) = F − F?



Reonstrution of manifolds from subgroups of homeomorphism groups 43Note that the answer to (b) is positive i� the answer to () is negative.(d) Are there normed spaes E and F and a uniformly biontinuous homeomorphism
τ : E ∼= F suh that τ (E) = F − F? �2.4. Faithfulness of normed manifolds. As has been mentioned, the proof of The-orem 2.8 extends without hange to manifolds over normed vetor spaes. This lassontains some new instanes. The unit sphere of a normed spae is one, and spaeswhih are a �nite produt of manifolds are another.We extend the results a bit further, in order to allow the inlusion of manifoldswith boundary over a normed vetor spae. To this end we introdue the notion of a�regionally normed manifold�. By ombining Remark 2.31 with the various results onextendible homeomorphism groups appearing in Chapter 5, one obtains reonstrutiontheorems for manifolds with boundary.It should be pointed out that no new arguments are needed for this new framework,Definition 2.29. (a) Let X be a topologial spae. A family of mappings Φ is alled aregional normed atlas for X if the following holds.(1) ⋃{Rng(ϕ) | ϕ ∈ Φ} is a dense subset of X.(2) For every ϕ ∈ Φ there is a normed spae E = Eϕ, x = xϕ ∈ E and r = rϕ > 0suh that:(i) ϕ : BE(x, r) → X,(ii) ϕ is a homeomorphism between Dom(ϕ) and Rng(ϕ),(iii) Rng(ϕ) is losed in X, and ϕ(BE(x, r)) is open in X.If Φ is a regional normed atlas for X, then 〈X,Φ 〉 is alled a regionally normed manifold(RNM ). If X =

⋃{ϕ(BEϕ(xϕ, rϕ)) | ϕ ∈ Φ}, then 〈X,Φ 〉 is alled a normed manifold.Let 〈X,Φ 〉 be an RNM. If for every ϕ ∈ Φ, Eϕ is a Banah spae, then 〈X,Φ 〉 is said tobe a regional Banah manifold (RBM ). A normed manifold whih is an RBM is alled aBanah manifold.(b) Reall that for a metri spae (Y, d), x ∈ Y and r > 0, SY (x, r) denotes {y ∈ Y |
d(x, y) = r}. For a normed spae E, x ∈ E and r > 0 let

L1(E, x, r) := {h ∈ H(BE(x, r)) | h is bilipshitz, and h↾S(x, r) = Id},
LLC

1 (E, x, r) := {h ∈ H(BE(x, r)) | h is loally bilipshitz, and h↾S(x, r) = Id}.Let F be a dense linear subspae of E. De�ne
L1(E, x, r;F ) := {h ∈ L1(E, x, r) | h(BE(x, r) ∩ F ) = BE(x, r) ∩ F},

LLC
1 (E, x, r;F ) := {h ∈ LLC

1 (E, x, r) | h(BE(x, r) ∩ F ) = BE(x, r) ∩ F}.If 〈X,Φ 〉 is an RNM, ϕ ∈ Φ and h ∈ LLC
1 (Eϕ, xϕ, rϕ), then h[ϕ] := hϕ∪Id↾(X−Rng(ϕ)) ∈

H(X). Suppose that F := {Fϕ | ϕ ∈ Φ} is a family of linear spaes suh that for every
ϕ ∈ Φ, Fϕ is a dense subspae of Eϕ. Then F is alled a subspae hoie for 〈X,Φ 〉.Let LIP(X;Φ,F) denote the subgroup of H(X) generated by {h[ϕ] | ϕ ∈ Φ, h ∈
L1(Eϕ, xϕ, rϕ;Fϕ)}. Let LIPLC(X;Φ,F) denote the subgroup of H(X) generated by
{h[ϕ] | ϕ ∈ Φ, h ∈ LLC

1 (Eϕ, xϕ, rϕ;Fϕ)}. If Fϕ = Eϕ for every ϕ ∈ Φ, then LIP(X;Φ,F)and LIPLC(X;Φ,F) are denoted by LIP(X;Φ) and LIPLC(X;Φ) respetively.



44 M. Rubin and Y. YomdinRemark: Even though the groups onsidered below ontain LIP(X;Φ,F), we do nothave to require at this point that the transition maps in the atlas be Lipshitz. That is,we do not require that ϕ−1 ◦ψ is bilipshitz for every ϕ, ψ ∈ Φ.() Let KBM be the lass of all 〈X,G 〉's whih satisfy the following: There are Φ and
F suh that(1) 〈X,Φ 〉 is a Banah manifold and F is a subspae hoie for Φ,(2) LIP(X;Φ,F) ≤ G ≤ H(X).Let KNM be the lass of all 〈X,G 〉's whih satisfy the following: There are Φ and F suhthat(1) 〈X,Φ 〉 is a normed manifold and F is a subspae hoie for Φ,(2) LIPLC(X;Φ,F) ≤ G ≤ H(X).Let KBNM = KBM ∪KNM.(d) Let 〈X,Φ 〉 be an RNM. The set NI(X,Φ) :=

⋃{ϕ(BEϕ(xϕ, rϕ)) | ϕ ∈ Φ} is alledthe normed interior of 〈X,Φ 〉.Let G ≤ H(X). The extended normed interior of 〈X,Φ, G〉 is de�ned as
ENI(X,Φ, G) := {g(x) | x ∈ NI(X,Φ) and g ∈ G}.Also, ENI(X,Φ, H(X)) is denoted by ENI(X,Φ).If X is a subset of a normed spae E and intE(X) is dense in X, then X is a regionalnormed manifold. As a regional normed atlas for X we take the set Φ = {Id↾BE(x, r) |

BE(x, r) ⊆ X}. We denote ENI(X,Φ) by ENI(X). Hene we have ENI(X) = {h(x) | x ∈
intE(X), h ∈ H(X)}. �Theorem 2.30. (a) KBNM is faithful.(b) For i = 0, 1 let 〈Xi,Φi 〉 be an RNM and Fi be a subspae hoie for 〈Xi,Φi 〉. Let
Gi ≤ H(Xi). Suppose that for i = 0, 1:(1) if 〈Xi,Φi 〉 is an RBM , then LIP(Xi,Φi;Fi) ≤ Gi,(2) if 〈Xi,Φi 〉 is not an RBM , then LIPLC(Xi,Φi;Fi) ≤ Gi.Let ϕ : G1

∼= G2. Then there is τ : ENI(X1,Φ1, G1) ∼= ENI(X2,Φ2, G2) suh that τindues ϕ. That is , ϕ(g)↾ENI(X2,Φ2, G2) = (g↾ENI(X1,Φ1, G1))
τ for every g ∈ G1.() Let X be a subset of a normed spae E and Y be a subset of a normed spae F suhthat intE(X) is dense in X and intF (Y ) is dense in Y . Suppose that ϕ : H(X) ∼= H(Y ).Then there is τ : ENI(X) ∼= ENI(Y ) suh that τ indues ϕ. That is , for every g ∈ H(X),

ϕ(g)↾ENI(Y ) = (g↾ENI(X))τ .Proof. (a) If 〈X,G 〉 ∈ KBNM and Φ is a normed regional atlas for X whih demonstratesthat X is a normed manifold, then NI(X,Φ) = X. So ENI(X,Φ, G) = X. Hene (b)implies (a).(b) The proof of Theorem 2.8 applies without hange.() This is a speial ase of (b).Remark 2.31. The proof of the above theorem applies to RNM's too. The state-ment that is proved for RNM's is as follows. If ϕ : G1
∼= G2, then there is τ :
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ENI(X1,Φ1, G1) ∼= ENI(X2,Φ2, G2) suh that τ indues ϕ. That is, for every g ∈ G1,
ϕ(g)↾ENI(X2,Φ2, G2) = (g↾ENI(X1,Φ1, G1))

τ . �Manifolds with boundary, losures of open subsets of a normed spae and losures ofopen subsets of a normed manifold are obviously RNM's. Note that in the above theorem,the groups Gi are not assumed to preserve the boundary of Xi. Indeed, when the Xi'sare in�nite-dimensional, it may happen that their boundary is not preserved.2.5. The faithfulness of some smaller subgroups. The homeomorphisms on-struted in Lemma 2.14(b) suggest some new types of subgroups of H(X) whih may beinteresting in the ontext of reonstrution and in other ontexts involving homeomor-phisms of in�nite-dimensional spaes.Definition 2.32. Let X be an open subset of a normed vetor spae E and g ∈ H(X).(a) We all g a ��nite-dimensional di�erene� homeomorphism if there is a �nite-dimensional subspae F of E suh that g(x) − x ∈ F for every x ∈ X.Let FD(X) denote the set of ��nite-dimensional di�erene� homeomorphisms of Xand FD.LIP(X) := FD(X) ∩ LIP(X).(b) We all g a weakly ��nite-dimensional di�erene� homeomorphism, if there is a�nite-dimensional subspae F of E suh that for every x ∈ X there is a ∈ R− {0} suhthat g(x) − ax ∈ F .Let WFD(X) denote the set of weakly ��nite-dimensional di�erene� homeomor-phisms of X and WFD.LIP(X) := WFD(X) ∩ LIP(X). For a subspae hoie system
〈E,X,S,F〉 de�ne WFD.LIP(X;S,F) and WFD.LIPLC(X;S,F) in analogy to the def-inition of LIP(X;S,F). See De�nition 2.7(a). Also, de�ne KWFD.BNO in analogy to thede�nition of KBNO. � �It is easy to hek that FD(X) and WFD(X) are groups. The following is a orollaryof the proof of Theorem 2.8.Corollary 2.33. KWFD.BNO is faithful.Proof. The proof of Theorem 2.8 applies, sine it uses only homeomorphisms belongingto WFD(X).By Lemma 2.14(b), FD.LIP(X) is loally moving. In fat, the onstrution of 2.14(b)an be used to show that FD.LIP(X) is transitive in the following sense. There is anopen base B of X suh that for every B ∈ B and for every �nite injetive funtion ̺whose domain and range are subsets of B there is g ∈ G B suh that g extends ρ. Infat, B an be taken to be {BE(x, r) | BE(x, r) ⊆ X}.Question 2.34. Are any of the lasses related to FD(X) faithful? For example, is thelass KBFD := {〈E,G 〉 | E is a Banah spae, and FD(E) ≤ G ≤ H(E)} faithful? �



3. The loal Γ -ontinuity of a onjugating homeomorphism3.1. General desription. The Main Result of this setion is the statement that if
X1, X2 are open subsets of normed spaes E1 and E2 respetively, Γ1 and Γ2 are ountablygenerated moduli of ontinuity, and τ : X1

∼= X2 is suh that (HLC
Γ1

(X1))
τ = HLC

Γ2
(X2),then Γ1 = Γ2 and τ is loally Γ1-biontinuous. This is proved in Theorem 3.19(a).Equally entral are the four results stated in Corollary 3.43.The onjuntion of the �nal results of Chapters 2 and 3 is stated in Theorem 3.42. Itsays that the existene of an isomorphism ϕ between the groups HLC

Γ1
(X1) and HLC

Γ2
(X2)implies that Γ1 = Γ2, and that ϕ is indued by a loally Γ1-biontinuous homeomorphism

τ between X1 and X2.As in Chapter 2, the results quoted above are in fat speial ases of a more generalsetting. The groups whih are atually being onsidered are of the type HLC
Γ

(X;S,F).See De�nition 3.17.There are two methods of proving the Main Result. The entral intermediate lemmain Method I roughly says that if X1, X2 are normed vetor spaes, τ : X1
∼= X2, and forevery translation trv of X1, (trv)

τ ∈ HLC
Γ2

(X2), then τ−1 is loally Γ2-ontinuous. Thisis in fat the hidden ontent of Theorem 3.15. A variant of this statement whih worksonly for seond ategory spaes, but yields a slightly stronger result is proved in Theorem3.26.The main lemma in Method II says roughly that if X1, X2 are normed vetor spaes,
τ : X1

∼= X2, and for every bounded a�ne isomorphism T of X1, T τ ∈ HLC
Γ2

(X2), then τis loally Γ2-biontinuous.Going bak to the Main Result, we in fat prove a stronger statement. Suppose that
〈E,X,S, E〉 and 〈F, Y, T ,F〉 are subspae hoie systems, Γ ,∆ are ountably generatedmoduli of ontinuity, τ : X ∼= Y , and the following holds:

(HΓ (X;S,F))τ ⊆ HLC
∆ (Y ) and (H∆(Y ; T ,F))τ

−1 ⊆ HLC
Γ (X).Then Γ = ∆ and τ is loally Γ -biontinuous. This is proved in Theorem 3.19(b). SeeDe�nitions 2.7 and 3.17(a).Part of this strengthening is needed in the proof that if τ : cl(X) ∼= cl(Y ) and

(HLC
Γ

(cl(X)))τ = HLC
∆

(Y ), then Γ = ∆ and τ is loally Γ -biontinuous.There are two situations in whih we use Method I and we annot use Method II. The�rst one appears in Chapter 11, where the reonstrution of the losure of an open setis onsidered. Method I is used again in the proof that the derivative of a onjugatinghomeomorphism is Γ -ontinuous. Suh results will appear in a subsequent work.[46℄



Reonstrution of manifolds from subgroups of homeomorphism groups 473.2. Partial ations and deayability. If X is a proper open subset of a normed spae
E, then X is not losed under the group of translations T(E) of E. So there is no naturalation of T(E) on X. But for every x ∈ X there are neighborhoods Bx and Vx of x in
X and IdE in T(E) respetively suh that the ation of every trv ∈ Vx on Bx is de�ned.Moreover, H(X) ontains a homeomorphism whih oinides with trv on Bx and whih isthe identity outside some bigger neighborhood of x. Indeed, even LIP(X) ontains suha homeomorphism. We shall use suh homeomorphisms. To this end we introdue twonotions: the notion of a partial ation of a topologial group on a topologial spae, andthe notion of deayability of partial ations.Definition 3.1. (a) Let X be a topologial spae and x ∈ X. Set NbrX(x) := {U |
x ∈ U ⊆ X and U is open} and MBC = {α ∈ MC | Id[0,∞) ≤ α}. Let α ∈ MBC,
X,Y be metri spaes and τ : X ∼= Y . We say that τ is α-biontinuous if τ and
τ−1 are α-ontinuous. Let x ∈ X. We say that τ is α-ontinuous at x if for some
U ∈ Nbr(x), τ↾U is α-ontinuous. Also, τ is said to be α-biontinuous at x if for some
U ∈ Nbr(x), τ↾U is α-biontinuous. Let Γ ⊆ MC. We say that τ is Γ -ontinuous(resp. Γ -biontinuous) at x if for some α ∈ Γ , τ is α-ontinuous (resp. α-biontinuous)at x.If H is a group, then eH denotes the unit of H.(b) Let H be a topologial group, X be a topologial spae and λ be a funtion suhthat Dom(λ) ⊆ H ×X and Rng(λ) ⊆ X. We say that λ is a partial ation of H on X ifthe following onditions hold.(1) λ is ontinuous.(2) Dom(λ) is open in H ×X.(3) For g ∈ H let gλ be the funtion de�ned by gλ(x) = λ(g, x). Then gλ is ahomeomorphism between Dom(gλ) and Rng(gλ).(4) (eH)λ = IdDom((eH)λ).(5) For every g ∈ H, (g−1)λ = (gλ)

−1.(6) For every g, h ∈ H and x ∈ X: if gλ(x) and hλ(gλ(x)) are de�ned, then
(hg)λ(x) is de�ned and (hg)λ(x) = hλ(gλ(x)).De�ne Fld(λ) := Dom((eH)λ). Note that by (5) and (6), Dom(gλ) ⊆ Fld(λ) for every

g ∈ H.() Let α ∈ MBC, a ∈ (0, 1), H be a topologial group, λ be a partial ation of Hon a metri spae X, G ≤ H(X) and x ∈ Fld(λ). Then λ is alled an (a, α,G)-deayableation at x if there is rx > 0 suh that for every r ∈ (0, rx) there is V = Vx,r ∈ Nbr(eH)suh that:(i) V ×B(x, ar) ⊆ Dom(λ);(ii) for every h ∈ V there is g ∈ G suh that: g is α-biontinuous, g↾B(x, ar) =

hλ↾B(x, ar) and supp(g) ⊆ B(x, r).Let A ⊆ Fld(λ). We say that λ is an (a, α,G)-deayable ation in A if it is (a, α,G)-deayable at every x ∈ A; λ is (a, α,G)-deayable if it is (a, α,G)-deayable in Fld(λ).Suppose that Γ is a modulus of ontinuity. Then λ is alled (a,Γ , G)-deayable if λ is
(a, α,G)-deayable for some α ∈ Γ .



48 M. Rubin and Y. YomdinIf in the above a = 1/2, then we omit its mention. So �λ is (α,G)-deayable at
x� means �λ is (1/2, α,G)-deayable at x� et. If a = 1/2 and G = H(X), then weomit the mention of a and G. So �λ is α-deayable at x� means �λ is (1/2, α,H(X))-deayable at x�, �λ is α-deayable in A� means �λ is (1/2, α,H(X))-deayable in A�et.(d) Let λ be a partial ation of a topologial group H on a topologial spae X,
A ⊆ H and x ∈ X. We write Aλ(x) = {hλ(x) | h ∈ A}. We say that x is a λ-limit-pointif x ∈ acc(Vλ(x)) for every V ∈ Nbr(eH). �Note that if λ is (a, α,G) deayable partial ation of H at x, then there are V ∈
Nbr(eH) and U ∈ Nbr(x) suh that hλ↾U is α-biontinuous for every h ∈ V .The partial ations appearing in this setion are obtained by restriting a full groupation on a spae E to an open subset of E. This is desribed in (a) below.Proposition 3.2. (a) Suppose that λ is a partial ation of a topologial group H on atopologial spae E. Let X ⊆ Fld(λ) be open, and de�ne λ |̀̀X by setting Dom(λ |̀̀X) =

{〈h, x 〉 | h ∈ H and x, hλ(x) ∈ X} and (λ |̀̀X)(h, x) = λ(h, x). Then λ |̀̀X is a partialation of H on X.(b) Let λ be a partial ation of H on X, G ≤ H(X), D ⊆ C ⊆ Fld(λ), a ∈ (0, 1),
α ∈ MBC, r0 > 0 and let Vr ∈ Nbr(eH) for every r ∈ (0, r0). Assume that : (i) D is adense subset of C, (ii) λ is (a, α,G)-deayable in D, (iii) rx ≥ r0 for every x ∈ D, (iv)
Vx,r ⊇ Vr for every x ∈ D and r ∈ (0, r0). Then λ is (a, α,G)-deayable in C, rx ≥ r0for every x ∈ C, and Vx,r ⊇ Vr for every x ∈ C and r ∈ (0, r0).Proof. The proof of both parts is trivial.Suppose that X is an open subset of a normed spae E. We shall be interested in twopartial ations on X: the partial ation of the group T(E) of translations of E, and thepartial ation of the group A(E) of a�ne transformations of E. We need to know thatthese partial ations are deayable. In fat, we shall show that A(E) is (α,G)-deayable,where α(t) = 15t, and G is any group ontaining LIP(X).Obviously, the deayability of A(E) implies the deayability of both T(E) and thegroup of bounded linear automorphisms of E. Beause we deal with groups ontaining
LIP(X;F ), we shall really need to show that {T ∈ A(E) | T (F ) = F} is deayable withrespet to any group G ontaining LIP(X;F ).Definition 3.3. (a) Let E be a normed spae and v ∈ E. De�ne trEv (x) := v + x and
T(E) = {trEv | v ∈ E}. Whenever E an be understood from the ontext, we abbreviate
trEv by trv. We de�ne d(tru, trv) = ‖u− v‖.(b) Let E be a normed spae and x ∈ X. Denote the group of bounded linearautomorphisms of E by L(E) and set L(E, x) = (L(E))tr

E
x . For S, T ∈ L(E) de�ne

d(S, T ) = ‖S−T‖+‖S−1−T−1‖. Let A(E) := {trEv ◦T | v ∈ E, T ∈ L(E)}.That is, A(E)is the group of bounded a�ne transformations of E. Suppose that A = trEv ◦T ∈ A(E).Then v and T are uniquely determined by A. We set v = vA and T = TA. We may thusde�ne
d(A1, A2) = ‖vA1

− vA2
‖ + ‖TA1

− TA2
‖ + ‖T−1

A1
− T−1

A2
‖.



Reonstrution of manifolds from subgroups of homeomorphism groups 49Then d is a metri on A(E), 〈A(E), d 〉 is a topologial group, and the ation of A(E) on
E is ontinuous. Note that L(E, x) ≤ A(E) and the funtion T 7→ T trx , T ∈ L(E), is atopologial isomorphism between L(E) and L(E, x).Let λE

T
, λE

L
, λE,x

L
, λE,x

A
denote respetively the natural ations of T(E), L(E), L(E, x)and A(E) on E.() Suppose that E is a normed spae, F is a linear subspae of E and x ∈ F . De�ne

T(E;F ) = {trEv | v ∈ F}, L(E;F ) = {T ∈ L(E) | T (F ) = F},
A(E;F ) = {A ∈ A(E) | A(F ) = F}, L(E, x;F ) = (L(E;F ))tr

E
x .The groups T(E;F ), L(E;F ), L(E, x;F ) and A(E;F ) equipped with the metri theyinherit from T(E), L(E), L(E, x) and A(E) respetively are metri topologial groups.If λ is a partial ation of H on X and H1 ≤ H, let λ |̀̀H1 denote the restrition of λto H1. Let λE;F

T
= λE

T
|̀̀ T (E;F ); λE;F

L
, λE,x;F

L
and λE;F

A
are de�ned in a similar way.(d) Suppose that X is a topologial spae and F is a set. De�ne

H(X;F ) := {h ∈ H(X) | h(X ∩ F ) = X ∩ F}. �Proposition 3.4. Let E be a normed spae, X ⊆ E be open, S be an open over of X,
F be a subspae hoie for S, S ∈ S, G = LIP(X;S, FS) and α(t) = 3t. Then λE;FS

T
|̀̀Sis (5/8, α,G)-deayable. In partiular , λE;FS

T
|̀̀S is (α,G)-deayable.Proof. We show that if x ∈ S ∩ FS , then λE;FS

T
|̀̀S is (5/8, α,G)-deayable at x, rx =

d(x,E − S), and for every r ∈ (0, rx), Vx,r = BT(E;FS)(IdE , r/4).Let r < rx. Let trEv ∈ Vx,r. So v ∈ FS and ‖v‖ < r/4. We apply Lemma 2.14(b).Choose r0 of 2.14(b) to be r, hoose r and s of 2.14(b) to be 5r/8 and v of 2.14(b) tobe v. Let h be as ensured by 2.14(b). By 2.14(b)(ii), h is (1 + ‖v‖
r−5r/8−‖v‖)-bilipshitz.

(1 + ‖v‖
r−5r/8−‖v‖) < 3. Hene h is 3-bilipshitz. It follows from 2.14(b)(ii) that h is asrequired. By Proposition 3.2(b), λE;FS

T
|̀̀S is (α,G)-deayable.Proposition 3.5. Let η : [0,∞) → [0, 1]. Suppose that η is K-Lipshitz and that η(t) = afor every t ≥ a. Let E be a normed spae. De�ne g : E → E by g(x) = η(‖x‖) · x. Then

g is (1 +Ka)-Lipshitz.Proof. Let x, y ∈ E. If ‖x‖, ‖y‖ ≥ a, then g(x) = x and g(y) = y, and hene ‖g(x) −
g(y)‖ = ‖x − y‖. Assume that ‖x‖ ≤ a or ‖y‖ ≤ a. Without loss of generality ‖y‖ ≤ a.Hene

‖g(x) − g(y)‖ = ‖η(‖x‖) · x− η(‖y‖) · y‖
≤ ‖η(‖x‖) · x− η(‖x‖) · y‖ + ‖η(‖x‖) · y − η(‖y‖) · y‖
= η(‖x‖) · ‖x− y‖ + |η(‖x‖) − η(‖y‖)| · ‖y‖
≤ ‖x− y‖ +K · ‖x− y‖ · ‖y‖ ≤ (1 +Ka) · ‖x− y‖.Proposition 3.6. Let E be a normed spae, T ∈ L(E), η : [0,∞) → [0, 1] and a > 0. Set

IdE = I. Suppose that η is K-Lipshitz , η(t) = t for every t ≥ a and ‖I−T‖(1+Ka) < 1.De�ne h : E → E by



50 M. Rubin and Y. Yomdin
h(x) = (1 − η(‖x‖)) · T (x) + η(‖x‖) · x.Then(i) h ∈ H(E), h is (‖T‖ + ‖I − T‖ · (1 +Ka))-Lipshitz , and h−1 is

max( ‖T−1‖
1−‖I−T‖·(1+Ka) , 1)-Lipshitz.(ii) If F is a linear subspae of E, and T ∈ L(E;F ), then h ∈ H(E;F ).Proof. (i) We prove that h is Lipshitz. Let x, y ∈ E. Then

h(x) − h(y) = (1 − η(‖x‖)) · T (x) + η(‖x‖) · x− ((1 − η(‖y‖)) · T (y) + η(‖y‖) · y)
= T (x− y) + (I − T )(η(‖x‖) · x− η(‖y‖) · y).By Proposition 3.5,

‖h(x)−h(y)‖ ≤ ‖T‖·‖x−y‖+‖I−T‖·(1+Ka)·‖x−y‖ ≤ (‖T‖+‖I−T‖·(1+Ka))·‖x−y‖.Hene h is (‖T‖ + ‖I − T‖ · (1 +Ka))-Lipshitz.We prove that h−1 is Lipshitz. Let x, y ∈ E. By the above,
T−1(h(x) − h(y)) = (x− y) + T−1(I − T )(η(‖x‖) · x− η(‖y‖) · y)

= (x− y) + (T − I)(η(‖x‖) · x− η(‖y‖) · y).So
‖T−1‖·‖h(x)−h(y)‖ ≥ ‖T−1(h(x)−h(y))‖ ≥ ‖x−y‖−‖(T−I)(η(‖x‖)·x−η(‖y‖)·y)‖
≥ ‖x− y‖ − ‖(T − I)‖ · (1 +Ka) · ‖x− y‖ = (1 − ‖T − I‖ · (1 +Ka)) · ‖x− y‖.That is, ‖x− y‖ ≤ ‖T−1‖

1−‖T−I‖·(1+Ka) · ‖h(x) − h(y)‖.(ii) Let x ∈ F . Set Tx = (1−η(‖x‖)T+η(‖x‖)I. Then h(x) = Tx(x) and Tx(F ) = F .Lemma 3.7. Let E be a normed spae, X ⊆ E be open, S be an open over of X, F bea subspae hoie for S, S ∈ S, x ∈ S ∩ FS , G = LIP(X;S, FS) and α(t) = 5t. Then
λE,x;FS

L
|̀̀S is (α,G)-deayable at x, rx = d(x,E − S), and Vx,r = (BL(E;F )(IdE , 1/4)tr

E
xfor every r ∈ (0, rx).Proof. We may assume that 0E ∈ S and x = 0E . Set I = IdE . Let r0 = d(0E , E − S)and V = BL(E;FS)(I, 1/4). Let r < r0 and T ∈ V . We show that T is �deayable�. De�ne

η(t) : [0,∞) → [0, 1] to be the following pieewise linear funtion. The breakpoints of ηare r/2 and r; η(t) = 0 for every t ∈ [0, r/2] and η(t) = 1 for every t ≥ r. Clearly, η is
2/r-Lipshitz.De�ne h : E → E by h(y) = (1 − η(‖y‖)) · T (y) + η(‖y‖) · y. We hek that Propo-sition 3.6 applies to h. Set K = 2/r. So η is K-Lipshitz. Sine ‖I − T‖ < 1/4 and
Ka = 2

r · r = 2, it follows that ‖I − T‖ · (1 +Ka) < 1
4 · (1 + 2) = 3/4 < 1. It thus followsfrom 3.6(i) that h ∈ H(E) and h is ‖T‖ + ‖I − T‖ · (1 +Ka)-Lipshitz. By the above,

‖T‖+‖I−T‖·(1+Ka) < 5/4+3/4 = 2. So h is 2-Lipshitz. Sine ‖T−1‖ < 5/4, it followsthat ‖T−1‖
1−‖I−T‖·(1+Ka) <

5/4
1−3/4 = 5. By 3.6(i), h−1 is 5-Lipshitz. So h is 5-bilipshitz.Clearly, supp(h) ⊆ B(0E , r) ⊆ X. So h↾X ∈ H(X). Also, h↾B(0E , r/2) = T ↾B(0E ,

r/2). By 3.6(ii), h(E ∩ FS) = FS . Hene h↾X is as required.



Reonstrution of manifolds from subgroups of homeomorphism groups 51Lemma 3.8. Let E be a normed spae, X ⊆ E be open, S be an open over of X, F bea subspae hoie for S, LIP(X;S,F) ≤ G ≤ H(X) and α(t) = 15t. Let S ∈ S. Then
λE;FS

A
|̀̀S is (α,G)-deayable.Proof. Set I = IdE . Let x ∈ S ∩ FS , rx = d(x,E − S) and r ∈ (0, rx). If x 6= 0E let

ar = min(1/4, r/8, r
8‖x‖ ) and if x = 0E let ar = min(1/4, r/8). Let Vx,r = BA(E;F )(I, ar).We show that(∗) Vx,r ⊆ BT(E;FS)(I, r/4) ◦ (BL(E;FS)(I, 1/4))tr

E
x .If A ∈ A(E;F ), then A an be uniquely represented in the form A = truA,x

◦ (TA,x)
trx ,where TA,x ∈ L(E;F ). Let A = trvA

◦TA, where TA ∈ L(E;F ). Then TA,x = TA and
uA,x = vA + (TA − I)(x). Set T = TA, v = vA and u = uA,x. Suppose that A ∈ Vx,r.Then d(T, I) < ar < 1/4. So T ∈ BL(E;FS)(I, 1/4). Hene T trx ∈ (BL(E;FS)(I, 1/4))trx .Suppose that x 6= 0. Then ‖u‖ ≤ ‖v‖ + ‖T − I‖ · ‖x‖ ≤ r/8 + r

8‖x‖ · ‖x‖ = r/4. If x = 0,then u = v. So ‖u‖ < r/4. In both ases u ∈ BT(E;FS)(I, r/4). This proves (∗).LetA ∈ Vx,r. Let T and u be as above. By Lemma 3.7, there is h1 ∈ H(X;FS) B(x, r)suh that h1↾B(x, r/2) = T trx↾B(x, r/2) and h2 is 5-bilipshitz. By Proposition 3.4,there is h2 ∈ H(X;FS) B(x, r) suh that h2↾B(x, 5r/8) = tru↾B(x, 5r/8) and h1 is 3-bilipshitz. Let h = h2 ◦h1. So h ∈ H(X;FS), supp(h) ⊆ B(x, r) and h is 15-bilipshitz.It remains to show that h↾B(x, r/2) = A↾B(x, r/2). Let y ∈ B(x, r/2). Then h1(y) =

T trx(y). Sine T ∈ BL(E;FS)(I, 1/4), ‖T‖ ≤ 5/4. So ‖T (y − x)‖ ≤ 5
4‖y − x‖. That is,

d(T (y−x), 0) ≤ 5
4‖y−x‖. Sine trx is an isometry, d(T trx(trx(y−x)), trx(0)) ≤ 5

4‖y−x‖.That is, ‖T trx(y) − x‖ ≤ 5
4‖y − x‖. Sine y ∈ B(x, r/2), ‖T trx(y) − x‖ ≤ 5r/8. Hene

h2(T
trx(y)) = tru(T

trx(y)). So h(y) = h2(h1(y)) = A(y). We have shown that if x ∈
S ∩ FS , then λE;FS

A
|̀̀S is (α,G)-deayable at x.Let x ∈ S − FS . Then x ∈ acc(S ∩ FS). De�ne rx = 1

2d(x,E − S). For r ∈ (0, rx)let ar = 1
2 min(1/4, r/8, r

8‖x‖ ) and Vx,r = BA(E;F )(x, ar). Let D = B(x, r/3) ∩ FS . Bythe above argument, for every y ∈ D: λE;FS

A
|̀̀S is (α,G)-deayable at y, ry ≥ rx, and

Vy,r ⊇ Vx,r for every r ∈ (0, rx). By Proposition 3.2(b), λE;FS

A
|̀̀S is (α,G)-deayableat x.Reall that in this setion we prove that if (HLC

Γ
(E))τ = HLC

Γ
(F ), then τ is loally

Γ -biontinuous. If Γ is ountably generated or if Γ = MC, then the above is true for any
E and F . For Γ 's whih are not ountably generated, we have only a partial answer. Weknow how to prove that τ is loally Γ -biontinuous only for Γ 's whih are κ(E)-generated.See the de�nition below.Definition 3.9. (a) Let X be a metri spae and r > 0. A family A of subsets of Xis r-spaed if d(A,B) ≥ r for any distint A,B ∈ A. A subset C ⊆ X is r-spaed if
{{x} | x ∈ C} is r-spaed. A set C is spaed if C is r-spaed for some r > 0.(b) Let X be a metri spae x ∈ X and A ⊆ X. We de�ne the set of ardinals
κX(x,A) as follows: κ ∈ κX(x,A) i� for every U ∈ Nbr(x) there is B ⊆ A∩U suh that
|B| = κ and B is spaed. Let

κX(x,A) = sup(κX(x,A)), κ(X) = min
x∈X

κX(x,X).



52 M. Rubin and Y. Yomdin() Let Γ be a modulus of ontinuity. We say that Γ0 generates Γ if Γ = cl�(Γ0).We say that Γ is (≤κ)-generated if there is Γ0 suh that |Γ0| ≤ κ and Γ = cl�(Γ0).(d) Let γ ∈ MC and a, b ∈ [0,∞). Then a ≈γ b means that a ≤ γ(b) and b ≤ γ(a).(e) Let X be a metri spae, x ∈ X, G ≤ H(X) and α ∈ MBC. We say that G is
α-in�nitely-losed at x if there is U ∈ Nbr(x) suh that if F ⊆ G and F satis�es:(1) for every f ∈ F , f is α-biontinuous,(2) for every f ∈ F , supp(f) ⊆ U and x 6∈ cl(supp(f)),(3) for any distint f, g ∈ G, cl(supp(f)) ∩ cl(supp(g)) = ∅,(4) cl(

⋃
f∈F supp(f)) = {x} ∪ ⋃

f∈F cl(supp(f)),then ◦F ∈ G.Note that if F is as above, then ◦F ∈ H(X). So H(X) is α-in�nitely-losed at x forevery α ∈ MBC.(f) When dealing with partial ations, we often wish to perform a omposition g ◦ f ,where Rng(f) 6⊆ Dom(g). Suh a omposition is onsidered to be legal. The domain ofthe resulting funtion is f−1(Rng(f) ∩ Dom(g)).If f, g are funtions and ̺ is a 1-1 funtion, then f ∼̺ g means that
Dom(f) ∪ Rng(f) ⊆ Dom(̺), g = ̺ ◦ f ◦̺−1. �Proposition 3.10. (a) If X is a metri spae, A ⊆ X and x ∈ acc(A), then κ(x,A) ≥ ℵ0.(b) If E is a normed spae, then κ(x,E) = min({|D| | D is a dense subset of E}) forevery x ∈ E.() If E = ℓ∞, then κ(E) = 2ℵ0 .(d) If E is a Hilbert spae with an orthonormal base of ardinality ν, then κ(E) = ν.Proof. The proof is trivial.The next lemma says roughly that if for every h ∈ H, (hλ)

τ is Γ -biontinuous at x,then there are γ ∈ Γ and neighborhoods T, V of x and eH respetively suh that (hλ)
τ ↾Tis γ-biontinuous for every h ∈ V . This is proved under the assumption that H is

G-deayable, where G is an in�nitely-losed subgroup of H(X).For ountably generated Γ 's the onlusion of the lemma is true for every metrispae X. If however, Γ is not ountably generated, then we need to assume that Γ hasa generating set of size ≤ κ(X). The lemma will be applied to T(E;F ) and A(E;F ).Lemma 3.11. Suppose that :(i) X is a metri spae, G ≤ H(X), H is a topologial group, λ is a partial ation of
H on X, x ∈ Fld(λ), x is a λ-limit-point , α ∈ MBC, G is α-in�nitely-losed at
x, and for some N ∈ Nbr(x), λ is (α,G)-deayable at every point y ∈ Hλ(x)∩N .Set

κ = min({κ(x, Vλ(x)) | V ∈ Nbr(eH)}).(ii) Y is a metri spae and τ : X ∼= Y .(iii) Γ is a modulus of ontinuity , and Γ is (≤κ)-generated.(iv) There is U ∈ Nbr(x) suh that for every g ∈ G U : if g is α ◦α-biontinuous ,then gτ is Γ -biontinuous at τ (x).



Reonstrution of manifolds from subgroups of homeomorphism groups 53Then P (x) holds , where
P (x): There are T ∈ Nbr(x), V ∈ Nbr(eH) and γ ∈ Γ suh that for every h ∈ V ,

T ⊆ Dom(hλ) and (hλ)
τ ↾τ (T ) is γ-biontinuous.Proof. Let U1 ∈ Nbr(x) be as ensured by the α-in�nite-losedness of G at x. Let rxbe as ensured by the deayability of H at x. Let r ∈ (0, rx) be suh that B(x, r) ⊆

U1∩U ∩N , and W = Vx,r be as ensured by the deayability of H at x. So W ∈ Nbr(eH),
W ×B(x, r) ⊆ Dom(λ) and Wλ(x) ⊆ B(x, r). First we prove the following laim.Claim 1. There is y ∈ B(x, r/2) ∩Wλ(x) suh that P (y) holds.Proof. Suppose by ontradition that there is no suh y. Let Γ0 be as ensured bylause (iii). We distinguish two ases.Case 1: |Γ0| = ℵ0. Let ~x = {xi | i ∈ N} be a 1-1 sequene tending to x and ontained in
B(x, r/2)∩Wλ(x)−{x}. Let {γi | i ∈ N} be an enumeration of Γ0 suh that {j | γj = γi}is in�nite for every i. Let rxi

> 0 be as ensured by the deayability of λ at xi. Let
{ri | i ∈ N} be a sequene suh that for any distint i, j ∈ N we have 0 < ri < rxi

,
B(xi, ri) ⊆ B(x, r), d(xi, x) > ri and cl(B(xi, ri)) ∩ cl(B(xj , rj)) = ∅.Let Wi = Vxi,ri

be as ensured by the deayability of λ at xi. That is, Wi ∈ Nbr(eH)and Dom(hλ) ⊇ B(xi, ri/2) for every h ∈ Wi, and there is g ∈ G suh that g is α-biontinuous, g↾B(xi, ri/2) = hλ↾B(xi, ri/2) and supp(g) ⊆ B(xi, ri).Let Vi = B(xi, ri/2). Then Dom(hλ) ⊇ Vi for every h ∈Wi. Sine ¬P (xi) holds, thereis hi ∈ Wi suh that ((hi)λ)
τ ↾τ (Vi) is not γi-biontinuous. Let gi ∈ G be suh that giis α-biontinuous, gi↾B(xi, ri/2) = (hi)λ↾B(xi, ri/2) and supp(gi) ⊆ B(xi, ri). Clearly,

F := {gi | i ∈ N} satis�es lauses (1)�(4) in the de�nition of α-in�nite-losedness, so
g := ◦i∈N gi ∈ G. For every u, v ∈ X there are i, j ∈ N suh that g(u) = gi ◦ gj(u)and g(v) = gi ◦ gj(v). So g is α ◦α-ontinuous. Similarly, g−1 is α ◦α-ontinuous. Sine
supp(g) ⊆ U , by lause (iv), gτ is Γ -biontinuous at τ (x). That is, there are γ ∈ Γ and
T ∈ Nbr(τ (x)) suh that(1.1) gτ ↾T is γ-biontinuous.Let i be suh that γ � γi, and let t > 0 be suh that γ↾[0, t] ≤ γi↾[0, t]. There is j suhthat γj = γi, τ (B(xj, rj)) ⊆ T and(†) diam(τ (B(xj, rj))) < t.Set k = (hj)λ. Now, g↾Vj = gj↾Vj = k↾Vj . So(1.2) gτ ↾τ (Vj) = (gj)

τ ↾τ (Vj) = kτ ↾τ (Vj).Reall that kτ ↾τ (Vj) is not γj-biontinuous. So there are u, v ∈ τ (Vj) suh that
dY (kτ (u), kτ (v)) 6≈γj dY (u, v). By (1.2),(1.3) dY (gτ (u), gτ (v)) 6≈γj dY (u, v).Let u1 = τ−1(u) and v1 = τ−1(v). So u1, v1 ∈ B(xj , rj/2). Sine k↾B(xj , rj/2) =

gj↾B(xj , rj/2) and supp(gj) ⊆ B(xj , rj), we have k(u1), k(v1) ∈ B(xj , rj). By (†),
dY (τ (k(u1)), τ (k(v1))) < t. Also, τ (k(u1)) = kτ (u), and the same holds for v and v1. So
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dY (u, v) < t and dY (kτ (u), kτ (v)) < t. By (1.2),(1.4) dY (u, v) < t, dY (gτ (u), gτ (v)) < t.Reall that γ↾[0, t] ≤ γj↾[0, t]. Hene by (1.3) and (1.4),(1.5) dY (gτ (u), gτ (v)) 6≈γ dY (u, v).Reall that u, v ∈ τ (Vj) ⊆ T . Hene (1.1) and (1.5) are ontraditory. So there is
y ∈ B(x, r/2) ∩Wλ(x) suh that P (y) holds.Case 2: |Γ0| > ℵ0. Let L = Wλ(x) and κ = κX(x, L). We prove that there are sequenes
{ri | i ∈ N} ⊆ (0,∞) and {Li | i ∈ N} suh that:(i) r0 = r/2 and {ri | i ∈ N} is a stritly dereasing sequene onverging to 0;(ii) for every i ∈ N, Li ⊆ L ∩ (B(x, ri) −B(x, ri+1)) and Li is spaed;(iii) |⋃{Li | i ∈ N}| = κ.Suppose �rst that cf(κ) = ℵ0. (That is, there is a ountable set of ardinals κ suhthat for every κ′ ∈ κ, κ′ < κ and ∑

κ = κ.) Let κ = {κi | i ∈ N} and r0 = r/2. We mayassume that eah κi is in�nite. We de�ne Li and ri+1 by indution on i. Suppose that rihas been de�ned. Sine κi < κX(x, L) there is Li ⊆ L ∩ B(x, ri) suh that Li is spaedand |Li| = κi. Suppose that Li is si-spaed. There is at most one member y ∈ Li suhthat d(x, y) < si/2. So by removing this member we may assume that d(Li, x) ≥ si/2.Let ri+1 = min( si

2 ,
1
i+1 ). Evidently, {ri | i ∈ N}, {Li | i ∈ N} ful�ll (i)�(iii).Suppose that cf(κ) > ℵ0. First we show that

(∗) For every s > 0 there is M ⊆ L ∩B(x, s) suh that |M | = κ and M is spaed.Suppose not, and let s be a ounter-example. For every n > 0 let κn be the set of all
κ′ suh that there is M ⊆ L ∩ B(x, s) suh that |M | = κ′ and M is 1/n-spaed. Thenthere is n suh that κn is unbounded in κ. Let N be a maximal 1

2n -spaed subset of
L ∩ B(x, s). Then |N | < κ. So there is κ′ ∈ κn suh that |N | < κ′. Let M be a
1/n-spaed subset of L ∩B(x, s) of ardinality κ′. Then there are y ∈ N and z1, z2 ∈Msuh that z1, z2 ∈ B(y, 1

2n ). A ontradition, so (∗) holds.As in the ase that cf(κ) = ℵ0 we de�ne a sequene {κi | i ∈ N}. Indeed, we set
κi = κ for every i ∈ N. The Li's and ri's are now onstruted as in the ase cf(κ) = ℵ0,and they obviously ful�ll lauses (i)�(iii).We really need sequenes {ri | i ∈ N} ⊆ (0,∞) and {Li | i ∈ N} whih ful�ll thefollowing onditions:(i) r0 = r/2 and {ri | i ∈ N} is a stritly dereasing sequene onverging to 0;(ii) for every i ∈ N, Li ⊆ L ∩ (B(x, ri/2) − B(x, 2ri+1)) and Li is spaed, and

|Li| ≤ |Lj | for every i < j;(iii) |⋃{Li | i ∈ N}| = |Γ0|.Suh sequenes an be obtained from the original {ri | i ∈ N} and {Li | i ∈ N} by takingan appropriate subsequene of {ri | i ∈ N} and by replaing Li by a subset of Li ifneessary.Let si > 0 be suh that Li is si-spaed. Set M =
⋃{Li | i ∈ N}, and let ι : M → Γ0be a funtion suh that for every γ ∈ Γ0 there is n ∈ N suh that γ ∈ ι(Lm) for every
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m ≥ n. De�ne γy = ι(y). Let ry be as ensured by the deayability of H at y. For every
y ∈M we de�ne sy > 0. If y ∈ Li, hoose sy < min(ry, ri+1, si/3). Note that for distint
y, z ∈ Li, B(y, sy) ⊆ B(x, ri) − B(x, ri+1) and cl(B(y, sy)) ∩ cl(B(z, sz)) = ∅. So fordistint y, z ∈M , cl(B(y, sy)) ∩ cl(B(z, sz)) = ∅.For every y ∈M let Wy = Vy,sy

be as ensured by the deayability of λ at y. That is,
Wy ∈ Nbr(eH), Dom(hλ) ⊇ B(y, sy/2) for every h ∈ Wy, and there is g ∈ G suh that gis α-biontinuous, g↾B(y, sy/2) = hλ↾B(y, sy/2) and supp(g) ⊆ B(y, sy).Let Vy = B(y, sy/2). So Dom(hλ) ⊇ Vy for every h ∈ Wy. Sine ¬P (y) holds, thereis hy ∈ Wy suh that ((hy)λ)

τ↾τ (Vy) is not γy-biontinuous. Let gy ∈ G be suh that
gy is α-biontinuous, gy↾B(y, sy/2) = (hy)λ↾B(y, sy/2) and supp(gy) ⊆ B(y, sy). Forany distint y, z ∈ M , supp(gy) ∩ supp(gz) = ∅. Clearly, F := {gy | y ∈ M} satis�eslauses (1)�(4) in the de�nition of α-in�nite-losedness, so g = ◦y∈M gy ∈ G. The restof the argument is idential to the one given in Case 1. We have proved Claim 1.Let y be as ensured by Claim 1. Sine y ∈Wλ(x), there is ĥ ∈W suh that y = ĥλ(x).SineW = Vx,r, there is g ∈ G suh that g is α-biontinuous, g↾B(x, r/2) = ĥλ↾B(x, r/2)and supp(g) ⊆ B(x, r). So g(x) = y. Sine α ∈ MBC, we have α ≤ α ◦α, and hene gis α ◦α-biontinuous. The biontinuity of g and the fat supp(g) ⊆ B(x, r) ⊆ U implythat gτ is Γ -biontinuous at τ (x). Let R ∈ Nbr(τ (x)) and β ∈ Γ be suh that gτ ↾R is
β-biontinuous. We may assume that(2.1) τ−1(R) ⊆ B(x, r/2).Hene gτ ↾R = (ĥλ)

τ↾R. So(2.2) (ĥλ)
τ ↾R is β-biontinuous.Note that if T ′, V ′, γ′ ful�ll the requirements of P (y) and T ′ ⊇ T ′′ ∈ Nbr(y), then

T ′′, V ′, γ′ ful�ll the requirements of P (y). Sine P (y) holds, there are S1 ∈ Nbr(y),
V1 ∈ Nbr(eH) and γ1 ∈ Γ suh that for every h ∈ V1,(2.3) S1 ⊆ Dom(hλ), (hλ)

τ ↾τ (S1) is γ1-biontinuous.Sine ĥλ(x) = y and τ−1(R) ∈ Nbr(x), we may assume that(2.4) S1 ⊆ ĥλ(τ
−1(R)).So S1 ⊆ ĥλ(B(x, r/2)). Let S2 ∈ Nbr(y) and V2 ∈ Nbr(eH) be suh that(2.5) S2 ⊆ S1, V2 ⊆ V1, λ(V2 × S2) ⊆ S1.Note that S2 ⊆ Rng(ĥλ). We de�ne T = (ĥλ)
−1(S2), V = ĥ−1 · V2 · ĥ and γ = β ◦γ1 ◦βand show that T, V, γ satisfy the requirements of P (x). Sine β, γ1 ∈ Γ , we have(2.6) γ ∈ Γ .We verify that if h ∈ V , then(2.7) T ⊆ Dom(hλ) and (hĥ)λ↾S2 ∼̺−1

hλ↾T, where ̺ = ĥλ↾τ
−1(R).Let h̄ = hĥ. Then h̄ ∈ V2 and h = ĥ−1 · h̄ · ĥ. We show that ĥλ(z), h̄λ(ĥλ(z)) and

(ĥ−1)λ(h̄λ(ĥλ(z))) are de�ned for every z ∈ T . Clearly, T ⊆ Dom(ĥλ) and ĥλ(T ) = S2.So by (2.5),



56 M. Rubin and Y. Yomdin(i) for every z ∈ T , h̄λ(ĥλ(z)) is de�ned and h̄λ(ĥλ(z)) ∈ S1.By (2.4), S1 ⊆ Rng(ĥλ). So (ĥλ)
−1(h̄λ(ĥλ(z))) is de�ned. Sine h = h̄ĥ and by thede�nition of a partial ation, it follows that(ii) for every z ∈ T , hλ(z) is de�ned and hλ(z) = (ĥλ)

−1 ◦ h̄λ ◦ ĥλ(z).By (ii), T ⊆ Dom(hλ), and by (2.1), τ−1(R) ⊆ Dom(ĥλ). So Dom(̺−1) = Rng(̺) =

ĥλ(τ
−1(R)). Sine h̄ ∈ V2, we have S2 ⊆ Dom(h̄λ), hene Dom(h̄λ↾S2) = S2. By (2.4)and (2.5), S2 ⊆ ĥλ(τ

−1(R)). So Dom(h̄λ↾S2) ⊆ Dom(̺−1). We have Rng(h̄λ↾S2) =

h̄λ(S2), and from (2.5) and the fat that h̄ ∈ V2, it follows that h̄λ(S2) ⊆ S1. By (2.4),
S1 ⊆ ĥλ(τ

−1(R)), so Rng(h̄λ↾S2) ⊆ Dom(̺−1). Note that T ⊆ τ−1(R); indeed, thisfollows from the de�nition of T , (2.4) and (2.5). So(iii) for every z ∈ T , ĥλ(z) = (ĥλ↾τ
−1(R))(z) = ̺(z).Also,(iv) for every z ∈ T , h̄λ(ĥλ(z)) = (h̄λ↾S2)(ĥλ(z)).Let z ∈ T and denote u = h̄λ(ĥλ(z)). By (i) and (2.4), u ∈ S1 ⊆ ĥλ(τ

−1(R)) =

Dom(̺−1). Hene (ĥλ)
−1(u) = ̺−1(u). We onlude that(v) for every z ∈ T , (ĥλ)

−1(h̄λ(ĥλ(z))) = ̺−1(h̄λ(ĥλ(z))).It follows from (ii)�(v) that hλ↾T = ̺−1 ◦ (h̄λ↾S2) ◦̺. We have veri�ed (2.7). Nextonjugate (2.7) by τ . We obtain(2.8) ((hĥ)λ↾S2)
τ ∼(̺−1)τ

(hλ↾T )τ .Clearly, ((hĥ)λ↾S2)
τ = ((hĥ)λ)

τ ↾τ (S2). Sine h ∈ V , we have hĥ ∈ V ĥ = V2. So by (2.3),(2.9) ((hĥ)λ↾S2)
τ is γ1-biontinuous.Fat (2.8) has the form f ∼σ−1

k, where f = ((hĥ)λ↾S2)
τ , k = (hλ↾T )τ and σ =

̺τ = (ĥλ)
τ ↾R. By (2.9), f is γ1-biontinuous, and by (2.2) σ is β-biontinuous. Sine

k = σ−1 ◦ f ◦σ, it follows that k is β ◦γ1 ◦β-biontinuous. Reall that γ = β ◦γ1 ◦β and
k = (hλ↾T )τ = (hλ)

τ↾τ (T ). Hene (hλ)
τ↾τ (T ) is γ-biontinuous.We have shown that for every h ∈ V , Dom(hλ) ⊇ T and (hλ)

τ ↾τ (T ) is γ-biontinuous.So T, V, γ satisfy the requirements of the lemma.
3.3. Translation-like partial ations. We have isolated the properties of T(E) and
A(E) whih are used in the proof that τ is Γ -ontinuous. The following de�nition dealswith the properties of T(E). Partial ations having these properties are alled translation-like partial ations. In fat, the de�nition aptures the properties of T(E;F ), where F isany dense linear subspae of E. The properties of A(E) to be used appear in De�nition3.28(b).



Reonstrution of manifolds from subgroups of homeomorphism groups 57Definition 3.12. Suppose that X is a metri spae, H is a topologial group, and λ isa partial ation of H on X. Let x ∈ Fld(λ). We say that λ is a translation-like partialation at x if for every V ∈ Nbr(eH) there are:(i) U = Ux,V ∈ Nbr(x), and a dense subset of U , D = Dx,V ,(ii) a radius r = rx,V > 0 and a onstant K = Kx,V > 0,suh that the following holds. For any distint x̄0, x̄1 ∈ D there are n ≤ K · r
d(x̄0,x̄1) , asequene x̄0 = x0, x1, . . . , xn ∈ X and h1, . . . , hn ∈ V suh that xn 6∈ B(x, r), and forevery i = 1, . . . , n, x̄0, x̄1 ∈ Dom((hi)λ), (hi)λ(x̄0) = xi−1 and (hi)λ(x̄1) = xi.A partial ation λ is translation-like if λ is translation-like at x for all x ∈ Fld(λ). �Proposition 3.13. Let E be a normed spae, F be a dense linear subspae of E and

X ⊆ E be open. Then λE;F
T

|̀̀X is a translation-like partial ation.Proof. For x ∈ X and V ∈ NbrT(E;F )(Id) we de�ne U = Ux,V , D = Dx,V et. as follows.Let r0 > 0 be suh that BE(x, r0) ⊆ X and {trv | v ∈ BF (0, r0)} ⊆ V . Now de�ne
U = B(x, r0/4), D = F ∩ U , r = r0/2 and K = 2.For distint x̄0, x̄1 ∈ D we de�ne n, x0, . . . , xn and h1, . . . , hn as required in De�ni-tion 3.12. Let n be the least integer suh that n · ‖x̄1 − x̄0‖ ≥ r. For i = 0, . . . , n let
xi = x̄0 + i(x̄1 − x̄0) and for i = 1, . . . , n let hi = tr(i−1)(x̄1−x̄0). It is easily heked that
n, the xi's and the hi's are as required.We let X and Y denote metri spaes. Their metris are denoted by dX and dY .However, in most ases we write d(x, y) as an abbreviation of both dX(x, y) and dY (x, y).Lemma 3.14. Let X be a metri spae and λ be a partial ation of H on X. Supposethat x ∈ Fld(λ) and λ is translation-like at x. Let Y be a metri spae and τ : X ∼= Y .Let Γ ⊆ MC, and suppose that for every γ ∈ Γ and K > 0, K · γ ∈ Γ . Suppose that
P (x) of Lemma 3.11 holds. That is , there are T ∈ Nbr(x), V ∈ Nbr(eH) and γ ∈ Γsuh that for every h ∈ V , T ⊆ Dom(hλ) and (hλ)

τ ↾τ (T ) is γ-biontinuous. Then τ−1is Γ -ontinuous at τ (x).Proof. Let U = Ux,V , D = Dx,V , r = rx,V and K = Kx,V be as ensured by thetranslation-likeness of H at x. Set y = τ (x), B = B(x, r) and C = τ (B). Sine C ∈
Nbr(y), we have e := d(y, Y − C) > 0. Let R = τ (T ∩ U) ∩ B(y, e/2) and M = 2Kr/e.Sine γ ∈ Γ , we have M · γ ∈ Γ .We show that τ−1↾R is M · γ-ontinuous. Suppose by way of ontradition that thisis not true. Hene there are ȳ0, ȳ1 ∈ R suh that d(τ−1(ȳ0), τ

−1(ȳ1)) > M · γ(d(ȳ0, ȳ1)).Sine D is dense in U and ȳ0, ȳ1 ∈ τ (U), we may assume that ȳ0, ȳ1 ∈ τ (D). For every
h ∈ H let ĥ denote hλ, and for ℓ = 0, 1 let x̄ℓ = τ−1(ȳℓ). Hene x̄0, x̄1 ∈ D. So thereare n ≤ Kr/d(x̄0, x̄1), x̄0 = x0, x1, . . . , xn and h1, . . . , hn ∈ V suh that xn 6∈ B, and forevery i = 1, . . . , n, x̄0, x̄1 ∈ Dom(hi), ĥi(x̄0) = xi−1 and ĥi(x̄1) = xi. For i = 1, . . . , n let
yi = τ (xi).In the spae Y we thus have the following situation:(i) d(y, y0) < e/2;(ii) for every i = 1, . . . , n, ĥτi (ȳ0) = yi−1 and ĥτi (ȳ1) = yi;(iii) yn 6∈ C.



58 M. Rubin and Y. YomdinEvery hi belongs to V , hene ĥτi ↾ τ (T ) is γ-biontinuous. Also, ȳ0, ȳ1 ∈ τ (T ), so(iv) d(yi−1, yi) ≤ γ(d(ȳ0, ȳ1)).Hene
e = d(y, Y − C) ≤ d(y, yn) ≤ d(y, y0) +

n∑

i=1

d(yi−1, yi) < e/2 + n · γ(d(ȳ0, ȳ1))

≤ e/2 +
Kr

d(x̄0, x̄1)
· γ(d(ȳ0, ȳ1)) < e/2 +

Kr

M · γ(d(ȳ0, ȳ1))
· γ(d(ȳ0, ȳ1))

= e/2 +
Kr

2Kr/e
= e.A ontradition, so the lemma is proved.The following theorem is the onjuntion of Lemmas 3.11 and 3.14. It will be used inTheorem 3.16. The statement of Theorem 3.15 is rather tehnial. So it seems worthwhileto explain its main appliation. Let X be an open subset of a normed spae E and

G ≤ H(X). Suppose that for every x ∈ X and r > 0 there are s ∈ (0, r) and K > 0suh that for every v ∈ BE(0, s) there is g ∈ G suh that g↾B(x, s) = trv↾B(x, s), g is
K-bilipshitz and supp(g) ⊆ B(x, r). Assume further that G is α-in�nitely-losed forevery α of the form y = Mt. Then if τ is a homeomorphism between X and a metrispae Y , Γ is a ountably generated modulus of ontinuity and Gτ ⊆ LIPLC

Γ (Y ), then
τ−1 is loally Γ -ontinuous.Theorem 3.15. Suppose that :(i) X is a metri spae, G ≤ H(X), H is a topologial group, λ is a partial ationof H on X, x ∈ Fld(λ) and α ∈ MBC;(ii) G is α-in�nitely-losed at x;(iii) x is a λ-limit-point ;(iv) for some N ∈ Nbr(x), λ is (α,G)-deayable in Hλ(x) ∩N ;(v) λ is translation-like at x;(vi) Γ is a modulus of ontinuity and Γ is (≤κ)-generated , where κ = min({κ(x,

Vλ(x)) |V ∈ Nbr(eH))});(vii) Y is a metri spae and τ : X ∼= Y ;(viii) there is U ∈ Nbr(x) suh that for every g ∈ G U : if g is α ◦α-biontinuous ,then gτ is Γ -biontinuous at τ (x).Then τ−1 is Γ -ontinuous at τ (x).Proof. Combine Lemmas 3.11 and 3.14.The above lemma will be used in the proof that the derivative of a di�eomorphism τis loally Γ -ontinuous. For groups of type HLC
Γ

(X), Theorem 3.15 yields a result whihis slightly weaker than the result obtained in Theorem 3.27, where the ation is assumedto be �a�ne-like� rather than just �translation-like�.Theorem 3.16. Let 〈E,X,S,F〉 be a subspae hoie system, Γ be a (≤κ(E))-generatedmodulus of ontinuity , Y be a metri spae and τ : X ∼= Y . Suppose that (LIP(X;S,F))τ

⊆ HLC
Γ

(Y ). Then τ−1 is loally Γ -ontinuous.



Reonstrution of manifolds from subgroups of homeomorphism groups 59Proof. Let x ∈ X and S ∈ S be suh that x ∈ S. Write H = T(E;FS), λ = λE;FS

T
|̀̀S,

G = LIP(X;S, FS) and α(t) = 3t. We shall apply Theorem 3.15.By Lemma 3.4, λ is (α,G)-deayable. So 3.15(iv) holds. Let V ∈ Nbr(eH). Thenthere is r > 0 suh that Vλ(x) ⊇ BFS (x, r). Sine FS is dense in E, κ(FS) = κ(E). So
κ(x, Vλ(x)) = κ(FS) = κ(E). It follows that min({κ(x, Vλ(x)) | V ∈ Nbr(eH)}) = κ(E).Sine Γ is (≤κ(E))-generated, 3.15(vi) holds.Take U in the de�nition of α-in�nite-losedness to be S. Let L be a subset of G whihsatis�es lauses (1)�(4) in the de�nition of α-in�nite-losedness (see De�nition 3.9(e)).Then ◦L is α ◦α-biontinuous, whih implies that ◦L ∈ G. So G is α-in�nitely-losedat x. That is, 3.15(ii) holds.Sine for every V ∈ Nbr(eH) there is r > 0 suh that Vλ(x) ⊇ BFS (x, r), x is a
λ-limit-point. That is, 3.15(iii) holds. By Proposition 3.13, λ is translation-like at x.That is, 3.15(v) holds. By the assumptions of this theorem, 3.15(vii) and (viii) hold.We have seen that all the assumptions of Theorem 3.15 are ful�lled, so τ−1 is Γ -ontinuous at τ (x).Definition 3.17. (a) Let E be a normed spae, S ⊆ X ⊆ E be open subsets and F bea dense linear subspae of E. Let Γ be a modulus of ontinuity. We de�ne

HΓ (X) = {h ∈ H(X) | there is γ ∈ Γ suh that h is γ-biontinuous},
HΓ (X,S) = HΓ (X) S ,

HΓ (X;F ) = {h ∈ HΓ (X) | h(X ∩ F ) = X ∩ F}and
HΓ (X;S, F ) = HΓ (X,S) ∩HΓ (X;F ).Similarly, letHLC

Γ
(X,S) = HLC

Γ
(X) S , HLC

Γ
(X;F ) = {h ∈ HLC

Γ
(X) | h(X∩F ) = X∩F}and HLC

Γ
(X;S, F ) = HLC

Γ
(X,S) ∩HLC

Γ
(X;F ).Let 〈E,X,S,F〉 be a subspae hoie system. We de�ne HΓ (X;S,F) to be thesubgroup of H(X) generated by ⋃{HΓ (X;S, FS) | S ∈ S}. Analogously, the group

HLC
Γ

(X;S,F) is de�ned to be the subgroup of H(X) generated by ⋃{HLC
Γ

(X;S, FS) |
S ∈ S}.(b) Let E be a normed spae, z ∈ E and η ∈ H([0,∞)). De�ne h = RadEη,z as follows:

h(x) = z + η(‖x− z‖) x− z

‖x− z‖ , x 6= z,and h(z) = z. Clearly, h ∈ H(E). We all h the radial homeomorphism based on η, z.Also, denote RadEη,0E by RadEη , and all it the radial homeomorphism based on η. �Remark. Note the following fats.(1) HΓ (X) is a speial ase of HΓ (X;S,F), where S = {X} and FX = E. The sameholds for HLC
Γ

(X).(2) HΓ (X,S), HΓ (X;F ), HΓ (X;S, F ), HΓ (X;S,F) ⊆ HΓ (X).(3) HLC
Γ

(X,S), HLC
Γ

(X;F ), HLC
Γ

(X;S, F ), HLC
Γ

(X;S,F) ⊆ HLC
Γ

(X). �Proposition 3.18. Let E be a normed spae, z ∈ E and η ∈ H([0,∞)). Suppose that ηis α-biontinuous. Then hη,z is 3 · α-biontinuous.



60 M. Rubin and Y. YomdinProof. Set h = Radη,z. We may assume that z = 0. Note that η(t) ≤ α(t) for every
t ≥ 0. Sine α is onave, it follows that α(t)

t · s ≤ α(s) for every 0 < s ≤ t.Let u, v ∈ E − {0}. Assume that ‖u‖ ≤ ‖v‖ and set w = ‖u‖
‖v‖ v. Then ‖w − u‖ ≤

‖u‖ + ‖w‖ = 2‖u‖. So ‖w−u
2 ‖ ≤ ‖u‖. Also, ‖v − w‖ = ‖v‖ − ‖u‖ ≤ ‖v − u‖. So

‖w − u‖ ≤ ‖v − u‖ + ‖v − w‖ ≤ 2‖v − u‖. Hene
‖h(v) − h(u)‖ ≤ ‖h(v) − h(w)‖ + ‖h(w) − h(u)‖

= (η(‖v‖) − η(‖w‖)) +
η(‖u‖)
‖u‖ ‖w − u‖ = (η(‖v‖) − η(‖u‖)) + 2 · η(‖u‖)‖u‖

∥∥∥∥
w − u

2

∥∥∥∥

≤ α(‖v‖ − ‖u‖) + 2α

(‖w − u‖
2

)
≤ α(‖v − u‖) + 2α(‖v − u‖) = 3α(‖v − u‖).So h is 3α-ontinuous. Sine h−1 = Radη−1,z, it follows that h−1 is 3α-ontinuous.The main result of the next theorem is part (a). It is a more readable speial aseof (b). Part (b) is a trivial orollary of (). The proof of () is more than just olletingsome of the previous lemmas together. It requires an additional argument.Theorem 3.19. (a) Let X,Y be open subsets of the normed spaes E and F respetively.Write κ = κ(E) and let Γ ,∆ be (≤κ)-generated moduli of ontinuity. Let τ : X ∼= Y ,and suppose that (HLC

Γ
(X))τ = HLC

∆
(Y ). Then Γ = ∆ and τ is loally Γ -biontinuous.(b) Let 〈E,X,S, E〉 and 〈F, Y, T ,F〉 be subspae hoie systems. Write κ = κ(E) andlet Γ ,∆ be (≤ κ)-generated moduli of ontinuity. Let τ : X ∼= Y , and suppose that :

(i) (HΓ (X;S,F))τ ⊆ HLC
∆ (Y ), (ii) (H∆(Y ; T ,F))τ

−1 ⊆ HLC
Γ (X).Then Γ = ∆ and τ is loally Γ -biontinuous.() Let 〈E,X,S, E〉 and 〈F, Y, T ,F〉 be subspae hoie systems. Write κ = κ(E) andlet Γ ,∆ be (≤κ)-generated moduli of ontinuity. Let τ : X ∼= Y , and suppose that :(i) (LIP(X;S,F))τ ⊆ HLC

∆
(Y ),(ii) (H∆(Y ; T ,F))τ

−1 ⊆ HLC
Γ

(X).Then ∆ ⊆ Γ and τ is loally Γ -biontinuous.Proof. Part (a) is a speial ase of (b), and (b) is onluded by applying () twie: oneto X,Y and one to Y,X. So it su�es prove ().() Sine X and Y are homeomorphi, κ(F ) = κ(E) = κ. Suppose by way of ontra-dition that ∆ 6⊆ Γ . Pik any T ∈ T and y ∈ T ∩ FT , and set x = τ−1(y). (Reall that
FT denotes the dense subspae of F assigned to T by the subspae hoie system). Let
x ∈ S ∈ S. By Theorem 3.16 and lause ()(i), for some δ ∈ ∆, τ−1 is δ-ontinuous at
τ (x). There is α ∈ (∆ − Γ ) ∩ MBC suh that δ � α. So τ−1 is α-ontinuous at τ (x).Choose r > 0 be suh that τ−1↾BF (y, r) is α-ontinuous and BF (y, r) ⊆ τ (S) ∩ T , andlet e be suh that α ◦α(e) = r/2. We de�ne η : [0,∞) → [0,∞) as follows. For t ∈ [0, e],
η(t) = α ◦α(t), for t ∈ [r,∞), η(t) = t, η↾[e, r] is a linear funtion, and η is ontinuous.Clearly, η ∈ H([0,∞)), and it is easily seen that η is 4 · α ◦α-ontinuous and that η−1 is
2-Lipshitz. So η is 4 · α ◦α-biontinuous. Let h = Radη,y↾Y . By Proposition 3.18, h is
12 · α ◦α-biontinuous, hene h ∈ H∆(Y ). Sine y ∈ FT , we have h(Y ∩ FT ) = Y ∩ FT ,and so h ∈ H∆(Y ; T ,F). By lause ()(ii), g := hτ

−1 is loally Γ -biontinuous, and



Reonstrution of manifolds from subgroups of homeomorphism groups 61by Theorem 3.16 and lause ()(ii), τ is loally Γ -ontinuous. This implies that τ ◦ g isloally Γ -ontinuous. Sine h ◦ τ = τ ◦ g, we onlude that h ◦ τ is loally Γ -ontinuous.Let γ ∈ Γ be suh that h ◦ τ is γ-ontinuous at x, and hoose s suh that h ◦ τ↾BE(x, s)is γ-ontinuous. We may assume that τ (BE(x, s)) ⊆ BF (y, r/2).Sine α 6∈ Γ , there is t < s suh that α(t) > γ(t). Choose w suh that ‖w − x‖ = tand set z = τ (w). Then z ∈ BF (y, r/2) and hene ‖h(z) − h(y)‖ = α ◦α(‖z − y‖). Now,
‖w − x‖ = ‖τ−1(z) − τ−1(y)‖ ≤ α(‖z − y‖). So α−1(‖w − x‖) ≤ ‖z − y‖ and hene

‖h(z) − h(y)‖ = α ◦α(‖z − y‖) ≥ α ◦α(α−1(‖w − x‖)) = α(‖w − x‖).That is, ‖h ◦ τ (w)− h ◦ τ (x)‖ ≥ α(‖w− x‖) > γ(‖w− x‖). This ontradits the fat that
h ◦ τ↾BE(x, s) is γ-ontinuous. So ∆ ⊆ Γ .Sine τ−1 is loally ∆-ontinuous, τ−1 is loally Γ -ontinuous. Reall also that τ isloally Γ -ontinuous. So τ is loally Γ -biontinuous.Remark 3.20. The assumptions of Theorem 3.19() probably imply that τ is loally
∆-biontinuous. We do not know how to prove this fat. However, the �nal result is nota�eted. We also do not know how to prove Theorem 3.19(a) without the assumptionthat Γ ,∆ are (≤κ(E))-generated. �There is a variant of translation-likeness whih we shall use in the ontext of di�eo-morphisms. Suppose that f, g ∈ Diff([0, 1]). If the derivative f ′ of f is α-ontinuous and
g′ is β-ontinuous, then (i) for some K,L > 0, (f ◦ g)′ is (K ·α+L · β)-ontinuous. Also,(ii) for some M > 0, (f−1)′ is M · α-ontinuous. (iii) A similar fat holds for higherderivatives.Let Γ ⊆ MC, and assume that K · α + L · β ∈ Γ for every α, β ∈ Γ and K,L > 0.Consider GΓ = {f ∈ Diff([0, 1]) | for some α ∈ Γ , f ′ is α-ontinuous}. By (i)�(ii), GΓ isa group, and by (iii), the analogous fat for Diffn([0, 1]) is also true. So Γ need not be amodulus of ontinuity in order for GΓ to be a group. Let us all suh a Γ a modulus ofdi�erentiability.We do not deal with di�erentiability in this work, but we shall show here that if Γ is amodulus of di�erentiability and (LIP(X))τ ⊆ HLC

Γ
(Y ), then τ−1 is loally Γ -ontinuous.This is the analogue of Theorem 3.16, and Theorem 3.15 has an analogue too. Theproofs use the additional assumptions that X is of the seond ategory, and that Γ isountably generated. On the other hand, the in�nite-losedness of G is not needed, andthe assumption of deayability is replaed by a muh weaker property.Definition 3.21. Let X be a topologial spae, λ be a partial ation of a topologialgroup H on X and G ≤ H(X). Let x ∈ X. We say that λ is ompatible with G at x ifthere is W ∈ Nbr(eH) suh that for every h ∈ W there are U ∈ Nbr(x) and g ∈ G suhthat U ⊆ Dom(hλ) and hλ↾U = g↾U .We say that λ is ompatible with G if λ is ompatible with G at every x ∈ Fld(λ). �The following lemma replaes Lemma 3.11.Lemma 3.22. Suppose that :



62 M. Rubin and Y. Yomdin(i) X is a metri spae, G ≤ H(X), H is a topologial group and H is of the seondategory , λ is a partial ation of H on X, x ∈ Fld(λ), and λ is ompatible with
G at x.(ii) Y is a metri spae and τ : X ∼= Y .(iii) Γ is a ountably generated subset of MC, cl�({γ}) ⊆ Γ and K · γ ∈ Γ for every
γ ∈ Γ and K > 0.(iv) For every g ∈ G, gτ is Γ -biontinuous at τ (x).Then Q(x) holds , where

Q(x): For every W ∈ Nbr(eH) there are T ∈ Nbr(x), a nonempty open subset V ⊆ Wand γ ∈ Γ suh that for every h ∈ V : T ⊆ Dom(hλ) and (hλ)
τ↾τ (T ) is γ-biontinuous.Proof. For every h ∈ H denote hλ by ĥ. Let W ∈ Nbr(eH). We may assume thatfor every h ∈ W there are Uh ∈ Nbr(x) and gh ∈ G suh that Uh ⊆ Dom(ĥ) and

hλ↾U = gh↾U .We verify that (∗) for every h ∈W there are rh > 0 and γh ∈ Γ suh that B(x, rh) ⊆
Dom(ĥ) and ĥτ ↾τ (B(x, rh)) is γh-biontinuous. Let Uh, gh be as above. Then (gh)

τis Γ -biontinuous at τ (x). Let γh ∈ Γ and T ∈ Nbr(τ (x)) be suh that (gh)
τ↾T is γh-biontinuous, and let rh > 0 be suh that B(x, rh) ⊆ Uh and τ (B(x, rh)) ⊆ T . Obviously,

ĥτ ↾τ (B(x, rh)) = (ĥ↾B(x, rh))
τ = (gh↾B(x, rh))

τ = (gh)
τ ↾τ (B(x, rh)).So ĥτ ↾τ (B(x, rh) is γ-biontinuous. That is, (∗) holds.Let Γ0 = {γi | i ∈ N} be suh that Γ = cl�(Γ0), and assume that {j | γj = γi} isin�nite for every i ∈ N. Set

Ki =

{
h ∈W

∣∣∣∣B
(
x,

1

i+ 1

)
⊆ Dom(ĥ) and ĥτ ↾τ(B(

x,
1

i+ 1

)) is γi-biontinuous}.By (∗), ⋃
i∈N

Ki = W . We show that for every i, Ki is losed in W . Set Bi = B(x, 1
i+1 )).Let h ∈W−Ki. So there are y1, y2 ∈ τ (Bi) suh that (i) d(ĥτ (y1), ĥτ (y2)) > γi(d(y1, y2))or (ii) d(ĥτ (y1), ĥτ (y2)) < γ−1

i (d(y1, y2)). We may assume that (i) happens. For ℓ = 1, 2let Tℓ be an open neighborhood of ĥτ (yℓ) suh that d(T1, T2) > γi(d(y1, y2)). Set Sℓ =

τ−1(Tℓ) and xℓ = τ−1(yℓ). Let V0 = {k ∈ W | x1, x2 ∈ Dom(k̂), k̂(x1) ∈ S1 and k̂(x2) ∈
S2}. So V0 is open. We show that V0 ontains h and is disjoint from Ki. Clearly,
ĥ(xℓ) = τ−1(ĥτ (yℓ)) ∈ τ−1(Tℓ) = Sℓ, hene h ∈ V0. If k ∈ V0, then k̂(xℓ) ∈ Sℓ andso k̂τ (yl) ∈ τ (Sℓ) = Tℓ. Hene k̂τ ↾τ (Bi) is not γi-ontinuous, namely, k 6∈ Ki. Sine
W is of the seond ategory and every Kn is losed, there is n suh that int(Kn) 6= ∅.De�ne V = int(Kn), T = B(x, 1

n+1 ) and γ = γn. Then V , T and γ are as required in thelemma.Definition 3.23. Let X be a metri spae, H be a topologial group λ be a partialation of H on X and x ∈ Fld(λ). The ation λ is said to be regionally translation-likeat x if there is Wx ∈ Nbr(eH) suh that for every nonempty open V ⊆ Wx suh that
V × {x} ⊆ Dom(λ) there are:(i) U = Ux,V ∈ Nbr(x) and a dense subset of U , D = Dx,V ;(ii) a point z = zx,V , a radius r = rx,V > 0, and a onstant K = Kx,V > 0;



Reonstrution of manifolds from subgroups of homeomorphism groups 63suh that for any distint x̄0, x̄1 ∈ U ∩ D there are n ≤ K · r
d(x̄0,x̄1)

, a sequene z =

z0, z1, . . . , zn ∈ X and h1, . . . , hn ∈ V suh that zn 6∈ B(z, r), and for every i = 1, . . . , n,
x̄0, x̄1 ∈ Dom((hi)λ), (hi)λ(x̄0) = zi−1 and (hi)λ(x̄1) = zi.If λ is regionally translation-like at every x ∈ Fld(λ), then λ is said to be a regionallytranslation-like ation. �The next proposition is a ounterpart of Proposition 3.13.Proposition 3.24. Let E be a normed vetor spae, F be a dense linear subspae of Eand X be an open subset of E. Then λE;F

T
|̀̀X is regionally translation-like.Proof. Write λ = λE;F

T
|̀̀X and de�neWx = T(E;F ). Let V ⊆Wx be open and nonempty,and suppose that V × {x} ⊆ Dom(λ). Choose v ∈ F and s > 0 suh that V1 := {trEu |

u ∈ BF (v, s)} ⊆ V and V1 × BE(x, s) ⊆ Dom(λ). De�ne zx,V = v + x, r = rx,V = s/2,
Ux,V = B(x, s/4), Dx,V = Ux,V ∩ (x+ F ) and Kx,V = 2. It is left to the reader to verifythat the above satisfy the requirements of regional translation-likeness of λ at x.The following lemma is a ounterpart of Lemma 3.14.Lemma 3.25. Let X be a metri spae, and λ be a partial ation of H on X. Supposethat x ∈ Fld(λ), and λ is regionally translation-like at x. Let Y be a metri spae and
τ : X ∼= Y . Let Γ ⊆ MC, and suppose that for every γ ∈ Γ and K > 0, K · γ ∈ Γ .Also assume that Q(x) of Lemma 3.22 holds. That is , for every W ∈ Nbr(eH) there are
U ∈ Nbr(x), a nonempty open subset V ⊆ W and γ ∈ Γ suh that U ⊆ Dom(hλ) and
(hλ)

τ ↾τ (U) is γ-biontinuous for every h ∈ V . Then τ−1 is Γ -ontinuous at τ (x).Proof. Let Wx be as ensured by the regional translation-likeness of λ at x. By Q(x),there are U ∈ Nbr(x), a nonempty open V ⊆ Wx and γ ∈ Γ suh that for every h ∈ V :
U ⊆ Dom(hλ) and (hλ)

τ↾τ (U) is γ-biontinuous. So V ⊆ Wx and V × {x} ⊆ Dom(λ).We apply the de�nition of regional translation-likeness to V . Write S = Ux,V , D = Dx,V ,
z = zx,V , r = rx,V and K = Kx,V .Let w = τ (z), B = B(z, r) and C = τ (B). Sine C ∈ Nbr(w), we onlude that
e := d(w, Y − C) > 0. Let R = τ (U ∩ S) and M = Kr/e. Sine γ ∈ Γ , we have
M · γ ∈ Γ .We show that τ−1↾R is M · γ-ontinuous. Suppose by ontradition that this is nottrue. For h ∈ H denote hλ by ĥ. Hene there are ȳ0, ȳ1 ∈ R suh that d(τ−1(ȳ0), τ

−1(ȳ1))

> M · γ(d(ȳ0, ȳ1)). Sine D is dense in S and ȳ0, ȳ1 ∈ τ (S), we may assume that
ȳ0, ȳ1 ∈ τ (D). For ℓ = 0, 1 let x̄ℓ = τ−1(ȳℓ). Hene x̄0, x̄1 ∈ D. So there are n ≤ Kr

d(x̄0,x̄1) ,
z = z0, z1, . . . , zn and h1, . . . , hn ∈ V suh that zn 6∈ B, and for every i = 1, . . . , n,
x̄0, x̄1 ∈ Dom(ĥi), ĥi(x̄0) = zi−1 and ĥi(x̄1) = zi. For i = 1, . . . , n let wi = τ (zi).In the spae Y we have: w0 = w; for every i = 1, . . . , n, ĥτi (ȳ0) = wi−1 and ĥτi (ȳ1) =

wi; and wn 6∈ C. Every hi belongs to V , hene ĥτi |̀ τ (U) is γ-biontinuous. Also,
ȳ0, ȳ1 ∈ τ (U), so d(wi−1, wi) ≤ γ(d(ȳ0, ȳ1)). Hene

e = d(w, Y − C) ≤ d(w,wn) = d(w0, wn) ≤
n∑

i=1

d(wi−1, wi) ≤ n · γ(d(ȳ0, ȳ1))

≤ Kr

d(x̄0, x̄1)
· γ(d(ȳ0, ȳ1)) <

Kr

M · γ(d(ȳ0, ȳ1))
· γ(d(ȳ0, ȳ1)) =

Kr

Kr/e
= e.A ontradition, so the lemma is proved.



64 M. Rubin and Y. YomdinTheorem 3.26. Assume the following fats.(i) X is a metri spae, G ≤ H(X), H is a topologial group and H is of the seondategory , λ is a partial ation of H on X and x ∈ Fld(λ).(ii) λ is ompatible with G at x.(iii) λ is regionally translation-like at x.(iv) Γ is a ountably generated subset of MC, cl�({γ}) ⊆ Γ , and K · γ ∈ Γ for every
γ ∈ Γ and K > 0.(v) Y is a metri spae and τ : X ∼= Y .(vi) For every g ∈ G, gτ is Γ -biontinuous at τ (x).Then τ−1 is Γ -ontinuous at τ (x).Proof. Combine Lemmas 3.22 and 3.25.3.4. A�ne-like partial ations. The goal of this part of the hapter is the following�nal theorem.Theorem 3.27. Let 〈E,X,S, E〉 be a subspae hoie system with dim(E) > 1, Y be anopen subset of a normed spae F , Γ be a (≤κ(E))-generated modulus of ontinuity and

τ : X ∼= Y . Suppose that (LIP(X,S, E))τ ⊆ HLC
Γ

(Y ). Then τ is loally Γ -biontinuous.This parallels Theorem 3.16, but has a stronger onlusion. Whereas in 3.16 theonlusion is that τ−1 is loally Γ -ontinuous, 3.27 says that τ is loally Γ -biontinuous.Definition 3.28. (a) A subset D of a metri spae X is alled a metrially dense subsetof X if for any x, y ∈ X and ε > 0 there are x1 ∈ B(x, ε) ∩D and y1 ∈ B(y, ε) ∩D suhthat d(x1, y1) = d(x, y). Note that metri density implies density.(b) Let X be a metri spae, H be a topologial group and λ be a partial ationof H on X. For h ∈ H denote hλ by ĥ. Let x ∈ X. We say that λ is an a�ne-likepartial ation at x if the following holds. For every V ∈ Nbr(eH) and U ∈ Nbr(x)there are n = n(x, V, U) ∈ N, U0 = U0(x, V, U) ∈ Nbr(x) and D = D(x, V, U) ⊆ U0suh that U0 ⊆ U , D is metrially dense in U0, and for every x1, y1, x2, y2 ∈ D: if
d(x1, y1) = d(x2, y2), then there are h1, . . . , hn ∈ V suh that ĥ1 ◦ · · · ◦ ĥn(x1) = x2,
ĥ1 ◦ · · · ◦ ĥn(y1) = y2 and ĥi ◦ ĥi+1 ◦ · · · ◦ ĥn({x1, y1}) ⊆ U for every 1 ≤ i ≤ n.If λ is a�ne-like at every x ∈ Fld(λ), then λ is said to be an a�ne-like partial ation.() If H is a group, A ⊆ H and n ∈ N, then An = {a1 · · · an | a1, . . . , an ∈ A}. Let λbe a partial ation of a topologial group H on a topologial spae X. If h ∈ H then hλis denoted by ĥ. For U ⊆ H and W1,W2 ⊆ X de�ne

U [n;W1,W2] = {h1 · · ·hn | h1, . . . , hn ∈ U, W1 ⊆ Dom(ĥi ◦ · · · ◦ ĥn) and
ĥi ◦ · · · ◦ ĥn(W1) ⊆W2 for every i = 1, . . . , n}. �We shall prove two intermediate main fats. They roughly say the following.(a) If X is an open subset of a normed spae E, and F is a dense linear subspae of

E, then λE;F
A

|̀̀X is a�ne-like.(b) Suppose that λ is a deayable a�ne-like partial ation of H on X, τ : X ∼= Y , Γ isa ountably generated modulus of ontinuity, and (hλ)
τ is loally Γ -biontinuousfor every h ∈ H. Then τ is loally Γ -biontinuous.



Reonstrution of manifolds from subgroups of homeomorphism groups 65We start with the proof of (a). When proving the a�ne-likeness of λE;F
A

|̀̀X at x,it is easier to deal �rst with x's whih belong to F ∩ X. To onlude that λE;F
A

|̀̀X isa�ne-like at every x ∈ X, we use the observation that if λ is a�ne-like at every x ∈ C,and U0(x, V, U) and n(x, V, U) depend on x ∈ C and V in some uniform way, then λ isa�ne-like at every x ∈ cl(C).Proposition 3.29. Assume the following fats.(i) X is a metri spae, λ is a partial ation of H on X, C ⊆ Fld(λ), r0 > 0,
ι : Nbr(eH)×C → Nbr(eH), n̄ : Nbr(eH)×(0, r0) → N and s̄ : Nbr(eH)×(0, r0) →
(0,∞). Denote ι(V, y) by Vy.(ii) For every y ∈ C, λ is a�ne-like at y, and for every V ∈ Nbr(eH) and r ∈ (0, r0),
n(y, Vy, B(y, r)) ≤ n̄(V, r) and U0(y, Vy, B(y, r)) ⊇ B(y, s̄(V, r)).(iii) For every x ∈ cl(C) and W ∈ Nbr(eH) there are U1 ∈ Nbr(x) and V ∈ Nbr(eH)suh that for every y ∈ C ∩ U1, Vy ⊆W .Then for every x ∈ cl(C), λ is a�ne-like at x. Also, if r < r0, then n(x, V,B(x, r)) and

U0(x, V,B(x, r)) an be taken to be n̄(V, r/2) and B(x, 1
2 s̄(V, r/2)) respetively.Proof. Let x ∈ cl(C), W ∈ Nbr(eH), r ∈ (0, r0) and U = B(x, r). There is V ∈

Nbr(eH) and U1 ∈ Nbr(x) suh that for every y ∈ U1 ∩ C, Vy ⊆ W . De�ne U0 =

U0(x,W,U) to be B(x, 1
2 s̄(V, r/2)). Let y ∈ C ∩ U0 ∩ U1. Then U0 ⊆ B(y, s̄(V, r/2)) ⊆

U0(y, Vy, B(y, r/2)). Hene D(y, Vy, B(y, r/2)) ∩ U0 is metrially dense in U0. Let D =

D(x,W, V ) = D(y, Vy, B(y, r/2)) ∩ U0 and n = n(x,W,U) = n̄(V, r/2). We show that
U0, D and n full�ll the requirements of a�ne-likeness.Let x1, x2, y1, y2 ∈ D be suh that d(x1, y1) = d(x2, y2). Let h1, . . . , hn ∈ Vy be asensured by the a�ne-likeness of λ at y. So for every i = 1, . . . , n, ĥi ◦ · · · ◦ ĥn({x1, y1}) ⊆
B(y, r/2). Clearly, s̄(V, r/2) ≤ r/2 and d(x, y) < s̄(V, r/2). So B(y, r/2) ⊆ B(x, r) = U .Sine y ∈ U1, Vy ⊆W . So h1, . . . , hn ful�ll the requirements needed to demonstrate that
λ is a�ne-like at x.If X is an open subset of R, then A(R) |̀̀X is not a�ne-like. So in what follows weassume that dim(E) > 1.The group L(E) has a property similar to a�ne-likeness. But the �a�ne-likeness� of
L(E) applies only to pairs of pairs x1, y1, x2, y2 in whih x1 = x2 = 0E .Lemma 3.30. Let E be a normed spae with dimension > 1, E1 be a dense linear subspaeof E and V ∈ NbrL(E;E1)(Id). Then there is n = n(V ) ∈ N with the following property :
(∗) For every W1 ∈ NbrE(0) there is W2 ∈ NbrE(0) suh that W2 ⊆ W1 and for every
x1, x2 ∈W2 ∩E1: if ‖x1‖ = ‖x2‖, then there is S ∈ V [n;W2,W1] suh that S(x1) = x2.Moreover , if in the above V = BL(E;E1)(Id, r) and W1 = BE(0, s), then W2 an betaken to be BE(0, s/(1 + r)n(V )).Proof. The proof of the lemma relies on three easy laims.Claim 1. Let H

2 be the 2-dimensional Hilbert spae. For every K ≥ 1 and V ∈
NbrL(H2)(Id) there is n = n(V,K) ∈ N suh that for every x1, x2 ∈ H

2: if 1/K ≤
‖x1‖/‖x2‖ ≤ K, then there is T ∈ V n suh that T (x1) = x2.



66 M. Rubin and Y. YomdinProof. We may assume that V = V −1. For some angle γ0 > 0, U ontains all rotations
Rotγ , γ ∈ [0, γ0]. For some ε0 > 0, U ontains all isomorphisms Tε(x) = (1 + ε)x where
ε ∈ [0, ε0]. It is left to the reader to verify that n(U,K) = [π/γ0] + logK/log(ε0 + 1) + 2is as required.We do not prove Claim 2 whih is well-known and easy. In fat, the best possibleonstant in Claim 2 is √2.Claim 2. For every 2-dimensional normed spae E there is an isomorphism T between
E and the 2-dimensional Hilbert spae H

2 suh that ‖T‖ ≤ 1 and ‖T−1‖ ≤ 3
√

2.Claim 3. Let E be a normed spae, E1 be a dense linear subspae of E, F be a 2-dimensional linear subspae of E1 and T ∈ L(F ), then there is T1 ∈ L(E;E1) extending
T suh that d(T1, IdE) ≤ 3d(T, IdF ).Proof. Let x1, x2 be a basis for F suh that ‖x1‖ = d(x1, span({x2})). For i = 1, 2 let
ϕ1, ϕ2 ∈ F ∗ be suh that ϕi(xj) = δi,j · ‖xj‖, and let ψi ∈ E∗ be suh that ψi extends
ϕi and ‖ψi‖ = ‖ϕi‖. Set F1 =

⋂2
i=1 ker(ϕi), hene F ⊕F1 = E. For x ∈ E let x̂ ∈ F and

x̄ ∈ F1 denote the omponents of x in F and F1 respetively. If x̂ = ax1+bx2, denote ax1and bx2 by x̂1 and x̂2 respetively. Let x ∈ F . Then |ϕ1(x̂)| = ‖x̂1‖ = d(x̂, span({x2})) ≤
‖x̂‖. So ‖ϕ1‖ ≤ 1. Hene ‖ψ1‖ ≤ 1. It follows that ‖x̂1‖ = |ψ1(x)| ≤ ‖x‖. Also,
‖x̂2‖ ≤ ‖x̂‖ + ‖x̂1‖ ≤ 2‖x̂‖. Hene |ϕ2(x̂)| = ‖x̂2‖ ≤ 2‖x̂‖. So ‖ψ2‖ = ‖ϕ2‖ ≤ 2. Hene
‖x̂2‖ = |ψ2(x)| ≤ 2‖x‖. So ‖x̂‖ ≤ ‖x̂1‖ + ‖x̂2‖ ≤ 3‖x‖.Let T1 be de�ned by T1(x) = T (x̂) + x̄. Hene T−1

1 (x) = T−1(x̂) + x̄. Then for every
x ∈ E, ‖(T1 − IdE)(x)‖ = ‖(T − IdF )(x̂)‖ ≤ ‖T − IdF ‖ · ‖x̂‖ ≤ 3‖T − IdF ‖ · ‖x‖. That is,
‖T1−IdE‖ ≤ 3‖T−IdF ‖. A similar omputation shows that ‖T−1

1 −IdE‖ ≤ 3‖T−1−IdF ‖.So d(T1, IdE) ≤ 3d(T, IdF ).Also for every x ∈ E, T1(x) − x ∈ F ⊆ E1. So T1(E1) = E1, that is, T1 ∈ L(E;E1).This proves Claim 3.We return to the proof of the lemma. Let V ∈ NbrL(E;E1)(Id). We may assume that
V = BL(E;E1)(IdE , r). Let n = n(BL(H2)(IdH2 , r/9

√
2), 3

√
2) be as ensured by Claim 1.Let x1, x2 ∈ E1 be suh that ‖x1‖ = ‖x2‖ 6= 0. We show that there is S ∈ V n suhthat S(x1) = x2. Let F be a 2-dimensional subspae of E1 ontaining x1 and x2, and

T : F → H
2 be as ensured by Claim 2. Sine ‖T‖ ≤ 1 and ‖T−1‖ ≤ 3

√
2, it follows that

1/3
√

2 ≤ ‖T (x1)‖/‖T (x2)‖ ≤ 3
√

2. Hene there is S0 ∈ (BL(H2)(IdH2 , r/9
√

2))n suhthat S0(T (x1)) = T (x2). Let S0 = S0,1 ◦ · · · ◦S0,n, where S0,i ∈ BL(H2)(IdH2 , r/9
√

2),and de�ne S1 = T−1S0T and S1,i = T−1S0,iT . Then S1(x1) = x2 and S1 = S1,1 ◦ · · ·
◦S1,n. Clearly, S1,i − IdF = T−1(S0,i − IdH2)T , and hene

‖S1,i − IdF ‖ ≤ ‖T−1‖ · ‖(S0,i − IdH2)‖ · ‖T‖ ≤ 3
√

2 · ‖(S0,i − IdH2)‖.The same inequality holds for (S1,i)
−1. So

d(IdF , S1,i) = ‖S1,i − IdF ‖ + ‖(S1,i)
−1 − IdF ‖

≤ 3
√

2 · ‖(S0,i − IdH2)‖ + 3
√

2 · ‖((S0,i)
−1 − IdH2)‖

= 3
√

2 · d(S0,i, IdH2) < r/3.



Reonstrution of manifolds from subgroups of homeomorphism groups 67By Claim 3, there are S2,i∈L(E;E1) extending S1,i suh that d(IdE , S2,i)≤3·d(IdF , S1,i).Hene S2,i ∈ BL(E;E1)(IdE , r), and so S := S2,1 ◦ · · · ◦S2,n ∈ (BL(E;E1)(IdE , r))
n = V n.Let W1 ∈ NbrE(0), and suppose that W1 ⊇ BE(0, s). Set W2 = BE(0, s/(1 + r)n).For any L ∈ V , ‖L‖ < 1 + r, hene for every i ≤ n and L′ ∈ V i, ‖L′‖ < (1 + r)i. So

L′(W2) ⊆ W1 for every i ≤ n and L′ ∈ V i. This proves that n ful�lls the requirementsof the lemma.The following lemma is analogous to Proposition 3.13.Lemma 3.31. Let E be a normed spae with dimension > 1, F be a dense linear subspaeof E and X ⊆ E be open. Then λE;F
A

|̀̀X is an a�ne-like partial ation.Proof. First we show that for every x ∈ X∩F , λE;F
A

|̀̀X is a�ne-like at x. Let Y = X−x.The funtion χ from A(E;F ) ∪X to A(E;F ) ∪ Y de�ned by: χ(u) = u− x, x ∈ X; and
χ(h) = htr−x , h ∈ A(E;F ), is an isomorphism between the partial ations λE;F

A
|̀̀X and

λE;F
A

|̀̀Y . Also, χ↾X is an isometry. So it su�es to prove that λE;F
A

|̀̀Y is a�ne-like at 0E .We rename Y and all it X.Denote A(E;F ) by A, T(E;F ) by T and L(E;F ) by L. Let r, s > 0, V = BA(Id, r),
U = BE(0, s), and assume that U ⊆ X. We shall �nd n = n(0E, V, U), U0 = U0(0

E , V, U)and D = D(0E , V, U) whih demonstrate that A is a�ne-like at 0E . Letm = n(BL(Id, r))be as ensured by Lemma 3.30. De�ne t = min(r, s)/2, W1 = BE(0, t) and W2 =

BE(0, t/(1 + r)m), and set n = m+ 2, U0 = 1
2W2 and D = U0 ∩ F .It is obvious that D is metrially dense in U0. Let x1, y1, x2, y2 ∈ D be suh that

‖x1 − y1‖ = ‖x2 − y2‖. For ℓ = 1, 2 let gℓ = trE−xℓ
. Sine ‖x1‖, ‖x2‖ < r

2 , it fol-lows that g1, g2 ∈ BT(Id, r). Clearly, gℓ(xℓ) = 0, and sine xℓ, yℓ ∈ U0 = 1
2W2, itfollows that gℓ(yℓ) ∈ W2. By Lemma 3.30, there are h1, . . . , hm ∈ BL(Id, r) suh that

h1 ◦ · · · ◦hm(g1(y1)) = g2(y2) and for every i = 1, . . . ,m, hi ◦ · · · ◦hm(g1(y1)) ∈ W1. Itfollows that g−1
2 , h1, . . . , hm, g1 are as required in the de�nition of a�ne-likeness.To show that A is a�ne-like at points that do not belong to F we shall apply Propo-sition 3.29. Let x ∈ X. Choose r0 > 0 suh that B(x, 2r0) ⊆ X and set C = B(x, r0)∩F .By the preeding argument, A is a�ne-like at every y ∈ C. For y ∈ C and V ∈ NbrA(Id)we de�ne Vy = V try .We next de�ne funtions n̄ : NbrA(Id)×(0, r0) → N and s̄ : NbrA(Id)×(0, r0) → (0,∞)as needed in 3.29. Let V = BA(Id, r) and s ∈ (0, r0). Set m = n(BL(Id, r)), where

n(BL(Id, r)) is as ensured by Lemma 3.30. De�ne n̄(V, s) = m + 2, set t = min(r, s)/2and de�ne s̄(V, s) = t/2(1 + r)m. It was proved in the preeding argument that
n(0E, V, B(0E , s)) = n̄(V, s) and U0(0

E , V, B(0E, s)) = B(0E , s̄(V, s)).Sine try de�nes an isomorphism of partial ations, whih is an isometry on X, and sine
try takes 0E to y, it an be onluded that

n(y, V try , BE(y, s)) = n̄(V, s) and U0(y, V
try , BE(y, s)) = B(y, s̄(V, s)).We have shown that lauses (i) and (ii) of Proposition 3.29 hold.Reall that x ∈ X, B(x, 2r0) ⊆ X and C = B(x, r0)∩F . Let r > 0 andW = BA(Id, r).We shall �nd U1 and V as required in lause (iii) of 3.29. Let A = T(E)·L(E;F ). Clearly,

A ≤ A(E). Also, A is dense in A. LetW = BA(Id, r), g = trx and V 1 = W g−1 . Note that
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W = W ∩ A. Let t > 0 be suh that (BA(Id, t))3 ⊆ V 1 and set V = BA(Id, t). De�ne

V = BA(Id, t) and U1 = x+BE(0, t).Let y ∈ U1. Then try ∈ g · V and so
(V )try ⊆ g · V · V · (V )−1 · g−1 = g · (V )3 · g−1 ⊆ (V 1)

g = W.That is, (V )try ⊆ W . If y ∈ F , then V try ⊆ A. In partiular, if y ∈ U1 ∩ F , then
V try ⊆ W ∩ A = W . This implies that lause (iii) of Proposition 3.29 holds. ByProposition 3.29, A is a�ne-like at x.Definition 3.32. (a) Let X be a metri spae and x ∈ X. We say that X has thedisrete path property at x (X is DPT at x) if the following holds. There is U ∈ Nbr(x)and K ≥ 1 suh that (∗) for every y, z ∈ U and d ∈ (0, d(y, z)) there are n ∈ N and
u0, . . . , un ∈ X suh that n ≤ K · d(y, z)/d, d(y, u0), d(un, z) < d and d(ui−1, ui) = d forevery i = 1, . . . , n.If X is DPT at every x ∈ X, then X is alled a DPT spae.(b) Let X be a metri spae and x ∈ X. X has onnetivity property 1 at x (Xis CP1 at x) if for every r > 0 there is r∗ ∈ (0, r) suh that for every x′ ∈ X and
r′ > 0: if B(x′, r′) ⊆ B(x, r∗) and C is a onneted omponent of B(x, r) − B(x′, r′),then C ∩ (B(x, r) −B(x, r∗)) 6= ∅.If X is CP1 at every x ∈ X, then X is alled a CP1 spae. �Proposition 3.33. Let X be an open subset of a normed spae E. Then X is DPT andCP1.Proof. Let x ∈ X and s > 0 be suh that BE(x, s) ⊆ X. First we show that X is DPTat x. Let y, z ∈ BE(x, s) and d ∈ (0, ‖z − y‖). The points ui = y + i · d(z − y)/‖z − y‖,
i = 0, . . . , [‖z − y‖/d] demonstrate the DPT-ness at x. So K = 1.Let r > 0. Take r∗ to be any member of (0,min(r, s)). Let x′ and r′ < r∗ be suhthat BE(x′, r′) ⊆ BE(x, r∗). It is trivial that BE(x, s) − BE(x′, r′) is onneted. Sothere is only one omponent C of B(x, r) − BE(x′, r′) whih intersets BE(x, s), and
C ontains BE(x, s) − BE(x′, r′). So C intersets B(x, r) − BE(x∗, r). Trivially, anyonneted omponent of B(x, r) − BE(x′, r′) whih is disjoint from BE(x, s) intersets
B(x, r) −BE(x∗, r).Suppose that X is an open subset of a normed spae E, G ≤ H(X), τ : X ∼= Yand Gτ ⊆ HLC

Γ
(Y ). Loosely speaking we shall prove that if (†) A(E)↾X ⊆ G, then

τ is loally Γ -biontinuous. Obviously, (†) is �awed beause A(E)↾X is not a set ofhomeomorphisms of X, and hene not a subset of G. The orret statement whihreplaes (†) has the assumption that λE
A
is ompatible with G. We do not know if thisassumption su�es unless E is a normed spae of the seond ategory, or in partiular, aBanah spae. Instead we assume that λE

A
is G-deayable, and that G is in�nitely losed.These assumptions work for every normed spae E.The following remains open.



Reonstrution of manifolds from subgroups of homeomorphism groups 69Question 3.34. Let E,F be normed spaes of the �rst ategory, τ : E ∼= F and Γ bea ountably generated modulus of ontinuity. Suppose that A(E)τ ⊆ HLC
Γ

(F ). Are τ or
τ−1 or both loally Γ -ontinuous? �The ore fat that leads to the �nal result of 3.27 is stated in the following theorem.Theorem 3.35. Assume the following fats.(i) X and Y are metri spaes , x ∈ X and τ : X ∼= Y . Also, X is DPT at x, and

Y is DPT and CP1 at τ (x).(ii) G ≤ H(X), λ is a partial ation of a topologial group H on X, α ∈ MBC,
x ∈ Fld(λ), x is a λ-limit-point , G is α-in�nitely-losed at x and for some
N ∈ Nbr(x), λ is (α,G)-deayable in Hλ(x) ∩N .(iii) Γ is a modulus of ontinuity , and Γ is (≤κ)-generated , where κ = min({κ(x,
Vλ(x)) | V ∈ Nbr(eH)}).(iv) There is U ∈ Nbr(x) suh that for every g ∈ G U : if g is α ◦α-biontinuous ,then gτ is Γ -biontinuous at τ (x).Then τ is Γ -biontinuous at x.We next introdue the notion of almost Γ -ontinuity. The proof of Theorem 3.35 isbroken into two laims. The �rst one, Lemma 3.37(b), says that if G ful�lls assumptions(i)�(iv) of 3.35 and Gτ ⊆ HLC

Γ
(Y ), then τ is loally almost Γ -ontinuous. This part ofthe proof does not use the DPT-ness or the CP1-ness of X or Y . The seond laim isstated in Theorem 3.40. It says that if X and Y are DPT and PC1 metri spaes, and

τ : X ∼= Y is loally almost Γ -ontinuous, then τ is loally Γ -biontinuous.Definition 3.36. (a) Let X, Y be metri spaes, α ∈ MC, Γ be a modulus of ontinuityand f : X → Y . We say that f is almost α-ontinuous if f is ontinuous, and for every
x1, y1, x2, y2 ∈ X: if d(x1, y1) = d(x2, y2), then d(f(x2), f(y2)) ≤ α(d(f(x1), f(y1))). Thenotion f is almost α-ontinuous at x means that there is U ∈ Nbr(x) suh that f↾U isalmost α-ontinuous. We say that f is almost Γ -ontinuous at x if for some γ ∈ Γ , fis almost γ-ontinuous at x, and f is said to be loally almost Γ -ontinuous if for every
x ∈ X, f is almost Γ -ontinuous at x.(b) If g : A→ A, then g ◦n denotes n︷ ︸︸ ︷

g ◦ · · · ◦ g. �The following lemma has also a variant in whih H is assumed to be of the seondategory, but deayability is replaed by ompatibility, and in�nite-losedness is dropped.Lemma 3.37.(a) Suppose that the following fats hold.(i) X and Y are metri spaes , x ∈ X and τ : X ∼= Y .(ii) λ is a partial ation of a topologial group H on X, x ∈ Fld(λ) and λ isa�ne-like at x.(iii) Γ is a modulus of ontinuity and γ ∈ Γ .(iv) T ∈ Nbr(x), V ∈ Nbr(eH), V ×T ⊆ Dom(λ) and for every h ∈ V , (hλ)
τ↾τ (T )is γ-biontinuous.Then τ is almost Γ -ontinuous at x.



70 M. Rubin and Y. Yomdin(b) Suppose that the following fats hold.(i) X and Y are metri spaes , x ∈ X and τ : X ∼= Y .(ii) G ≤ H(X), λ is a partial ation of a topologial group H on X and α ∈ MBC.Also, x ∈ Fld(λ), x is a λ-limit-point , G is α-in�nitely-losed at x, for some
N ∈ Nbr(x), λ is (α,G)-deayable in Hλ(x) ∩N , and λ is a�ne-like at x.(iii) Γ is a (≤κ)-generated modulus of ontinuity , where κ = min({κ(x, Vλ(x)) |
V ∈ Nbr(eH)}).(iv) There is U ∈ Nbr(x) suh that for every g ∈ G U : if g is α ◦α-biontinuous ,then gτ is Γ -biontinuous at τ (x).Then τ is almost Γ -ontinuous at x.Proof. (a) Let n = n(x, V, T ), U0 = U0(x, V, T ) and D = D(x, V, T ) be as ensured bythe de�nition of a�ne-likeness (De�nition 3.28(a)). For h ∈ H denote hλ by ĥ. Set

β = γ ◦n, so β ∈ Γ . Suppose that x1, y1, x2, y2 ∈ D and d(x1, y1) = d(x2, y2). Choose
h1, . . . , hn ∈ V as ensured by the de�nition a�ne-likeness, and de�ne h = ◦ni=1 hi. So
ĥ(x1) = x2, ĥ(y1) = y2 and ĥi ◦ · · · ◦ ĥn({x1, x2}) ⊆ T for every i = 1, . . . , n. Also, for ev-ery i = 1, . . . , n, (ĥi)τ↾τ (T ) is γ-ontinuous. Hene d(τ (x2), τ (y2))=d((τ (x1))

ĥ, (τ (y2))
ĥ)

≤ β(d(τ (x2), τ (y2))). We have shown that τ↾D is almost β-ontinuous. Relying on thefat that D is metrially dense in U0 we onlude that τ↾U0 is almost β-ontinuous. So
τ is almost Γ -ontinuous at x.(b) By Lemma 3.11, there are T ∈ Nbr(x), V ∈ Nbr(eH) and γ ∈ Γ suh that forevery h ∈ V : T ⊆ Dom(hλ) and (hλ)

τ ↾τ (T ) is γ-biontinuous. By part (a), τ is almost
Γ -ontinuous at x.The next two propositions are ingredients in the proof of Theorem 3.40.Proposition 3.38. Let x belong to a metri spae X, and suppose that X is DPT at x,that K and U satisfy ondition (∗) of De�nition 3.32(a) and that W ∈ Nbr(x). Thenthere is T ∈ Nbr(x) suh that : (∗∗) T ⊆ W , and for every y, z ∈ T and d ∈ (0, d(y, z))there are n ∈ N and u0, . . . , un ∈ W suh that n ≤ K · d(x, y)/d, d(x, u0), d(un, y) < d,and d(ui, ui+1) = d for every i = 0, . . . , n− 1.Proof. Let s > 0 be suh that B(x, (2K + 3)s) ⊆ U ∩W . We show that T := B(x, s) isas required. Let y, z ∈ T and d ∈ (0, d(y, z)). Let n ∈ N and u0, . . . , un be as ensured in
(∗) of 3.32(a). Then for every i = 1, . . . , n,

d(ui, x) ≤ d(ui, u0) + d(u0, y) + d(y, x) < id+ d+ s ≤ nd+ d+ s

≤ Kd(x, y) + 2s+ s < K · 2s+ 2s+ s < (2K + 3)s.So ui ∈W .Proposition 3.39. Let X,Y be metri spaes and τ : X ∼= Y . Suppose that x ∈ X, τ isalmost α-ontinuous at x, and Y is CP1 at τ (x). Then there is U ∈ Nbr(x) suh that forall x1, y1, x2, y2 ∈ U : if d(x2, y2) ≤ d(x1, y1), then d(τ (x2), τ (y2)) ≤ α(d(τ (x1), τ (y1))).Proof. Let T ∈ Nbr(x) be suh that τ↾T is almost α-ontinuous, and s > 0 be suhthat B(τ (x), s) ⊆ τ (T ). Choose s∗ ∈ (0, s) suh that for every y ∈ Y and t > 0: if
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B(y, t) ⊆ B(τ (x), s∗), then every onneted omponent of B(τ (x), s)−B(y, t) intersets
B(τ (x), s)−B(τ (x), s∗). Let r∗ > 0 be suh that(i) τ (B(x, r∗)) ⊆ B(τ (x), s∗),and let r ∈ (0, r∗/3) be suh that U := B(x, r) satis�es the following ondition:(ii) diam(τ (U)) + α(diam(τ (U))) < s∗.We show that U is as required. Let x1, y1, x2, y2 ∈ U and d(x2, y2) ≤ d(x1, y1). If
d(x2, y2) = d(x1, y1), then by the hoie of T , and sine U ⊆ T , d(τ (x2), τ (y2)) ≤
α(d(τ (x1), τ (y1))). Suppose next that d(x2, y2) < d(x1, y1). Let r1 = d(x1, y1), and set
s1 = α(d(τ (x1), τ (y1))). By the almost α-ontinuity of τ↾T ,(iii) τ (S(x2, r1)) ⊆ B(τ (x2), s1 + ε) for every ε > 0.Sine r < r∗/3, d(x2, x) < r and r1 = d(x1, y1) < 2r, we have(iv) B(x2, r1) ⊆ B(x, r∗).The following three fats: d(τ (x), τ (x2)) ≤ diam(τ (U)), s1 ≤ α(diam(τ (U))) and
diam(τ (U)) + α(diam(τ (U))) < s∗, imply that(v) for all su�iently small ε, B(τ (x2), s1 + ε) ⊆ B(τ (x), s∗).Let z ∈ Y − B(τ (x2), s1 + ε). We show that τ−1(z) 6∈ B(x2, r1). If z 6∈ B(τ (x), s), then
τ−1(z) 6∈ B(x, r∗) ⊇ B(x2, r1). Suppose that z ∈ B(τ (x), s), and let C be the onnetedomponent of z in B(τ (x), s)−B(τ (x2), s1 + ε). Hene(vi) C ∩ (B(τ (x), s)−B(τ (x), s∗)) 6= ∅.Sine τ (B(x2, r1)) ⊆ τ (B(x, r∗)) ⊆ B(τ (x), s∗), it follows that(vii) τ−1(C) ∩ (X −B(x2, r1)) 6= ∅.From the fats: τ (S(x2, r1)) ⊆ B(τ (x2), s1 +ε) and C∩B(τ (x2), s1 +ε) = ∅, we onludethat(viii) τ−1(C) ∩ S(x2, r1) = ∅.The onnetedness of C and hene of τ−1(C) and fats (vii) and (viii) imply that(ix) τ−1(C) ∩B(x2, r) = ∅.This implies that τ−1(z) 6∈ B(x2, r1). Sine the above argument holds for all su�ientlysmall ε, it follows that for every z ∈ Y : if z 6∈ B(τ (x2), s1), then τ−1(z) 6∈ B(x2, r1). But
y2 ∈ B(x2, r1), so τ (y2) ∈ B(τ (x2), s1). That is, d(τ (x2), τ (y2)) ≤ s1 = α(d(x1, y1)).Theorem 3.40. Let X and Y be metri spaes , x0 ∈ X, τ : X ∼= Y and α ∈ MBC.Suppose that X is DPT at x0, Y is DPT and CP1 at τ (x0), and τ is almost α-ontinuousat x0. Then there is M > 0 suh that τ is M · α-biontinuous at x0.Proof. We �rst show that there is someM > 0 suh that τ−1 isM ·α-ontinuous at τ (x0).By Proposition 3.39, by the fat that Y is CP1, and sine τ is almost α-ontinuous at
x0, there is U ∈ Nbr(x0) suh that for every x1, y1, x2, y2 ∈ U : if d(x2, y2) ≤ d(x1, y1),then d(τ (x2), τ (y2)) ≤ α(d(τ (x1), τ (y1))). It is assumed that X is DPT at x0, so thereare W ∈ Nbr(x0) and K ≥ 1 suh that W ⊆ U , and W, K satisfy ondition (∗) of



72 M. Rubin and Y. YomdinDe�nition 3.32(a). Let V ⊆W be an open neighborhood of x0 satisfying ondition (∗∗) ofProposition 3.38. Fix any distint x1, y1 ∈ V and set d1 = d(x1, y1), e1 = d(τ (x1), τ (y1)),
V1 = B(x0, d1/2) ∩ V and V2 = τ (V1).We show that τ−1

↾V2 is d1/e1 · (K + 2) · α-ontinuous. Let u, v ∈ V2 be distint andset d = d(τ−1(u), τ−1(v)). Sine τ−1(u), τ−1(v) ∈ V1, d < d1 = d(x1, y1). So there are
n ≤ K · d(x1,y1)

d and z0, . . . , zn ∈ U suh that d(x1, z0), d(zn, y1) < d and d(zi, zi+1) = dfor all i = 0, . . . , n− 1. By the hoie of U ,
d(τ (x1), τ (z0)), d(τ (zn), τ (y1)), d(τ (zi), τ (zi+1)) ≤ α(d(ττ−1(u), ττ−1(v))) = α(d(u, v)).Hene

d(τ (x1), τ (y1)) ≤ d(τ (x1), τ (z0)) +

n−1∑

i=0

d(τ (zi), τ (zi+1)) + d(τ (zn), τ (y1))

≤ (n+ 2)α(d(u, v)) ≤
(
K

d(x1, y1)

d(τ−1(u), τ−1(v))
+ 2

)
α(d(u, v)).It follows from the above inequality that

d(τ−1(u), τ−1(v)) ≤ Kd(x1, y1) + 2d(τ−1(u), τ−1(v))

d(τ (x1), τ (y1))
α(d(u, v))

≤ Kd1 + 2d1

e1
· α(d(u, v)) =

d1

e1
· (K + 2)α(d(u, v)).So τ−1↾V2 is d1

e1
· (K + 2) · α-ontinuous, and hene τ−1 is loally Γ -ontinuous.Note that in the above proof we only used the fats that X is DPT at x0, and that

Y is CP1 at τ (x0).We now turn to the proof that there is M > 0 suh that τ is M · α-ontinuous at x0.In this part we use the fats that Y is DPT and CP1 at τ (x0). Let U1 ∈ Nbr(x0) and
K ≥ 1 be suh that τ (U1) and K satisfy ondition (∗) of 3.32(a) applied to τ (x0). ByProposition 3.39, there is U0 ∈ Nbr(x0) suh that U0 ⊆ U1, and(1) for every x1, y1, x2, y2 ∈ U0: if d(x2, y2) ≤ d(x1, y1), then d(τ (x2), τ (y2)) ≤

α(d(τ (x1), τ (y1))).We apply Proposition 3.38 to τ (x0) and τ (U0), and obtain T ⊆ Y satisfying ondition(∗∗) of Proposition 3.38. Let U = τ−1(T ). We may assume that(2) K ≥ 2.Let x, y ∈ U be distint. Set N = 4Kd(τ (x), τ (y))/d(x, y) and M = max(1, N). Weshow that if x′, y′ ∈ U and d(x′, y′) < d(x, y)/4K, then d(τ (x′), τ (y′)) ≤M · α(d(x′, y′)).Obviously, this implies that τ↾(B(x0, d(x, y)/8K) ∩ U) is M · α-ontinuous.Let x′, y′ ∈ U be suh that d(x′, y′) < d(x, y)/4K and n = [d(x, y)/Kd(x′, y′)] − 2.Hene n ≥ 2. Let d = d(τ (x), τ (y))/n. So there are m ≤ Kn and z0, . . . , zm ∈ τ (U0) suhthat d(τ (x), z0), d(zm, τ (y)) < d and d(zi−1, zi) = d, i = 1, . . . ,m. Let xi = τ−1(zi).Denote x by x−1 and y by xm+1. For ℓ ∈ {−1,m + 1} let zℓ = τ (xℓ). The number of
xj 's is m+ 3. So the number of distanes between onseutive xj 's is m + 2. Hene forsome i ∈ {0, . . . ,m+ 1},
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d(x, y)

m+ 2
.It follows from (3) and (2) that

d(xi−1, xi) ≥
d(x, y)

m+ 2
≥ d(x, y)

K([ d(x,y)
Kd(x′,y′) ] − 2) + 2

≥ d(x, y)

K( d(x,y)
Kd(x′,y′) + 1 − 2) +K

≥ d(x, y)

K · d(x,y)
Kd(x′,y′)

= d(x′, y′).That is,(4) d(x′, y′) ≤ d(xi−1, xi).Sine the zi's belong to τ (U0), the xi's belong to U0. This is also true for x−1 = xand xm+1 = y beause they belong to U ⊆ U0. By (1) and (4),(5) d(τ (x′), τ (y′)) ≤ α(d(zi−1, zi)) = α(d).Also,
d =

1

n
d(τ (x), τ (y)) =

1

[ d(x,y)
Kd(x′,y′) ] − 2

d(τ (x), τ (y)) ≤ 1
d(x,y)

Kd(x′,y′) − 1 − 2
d(τ (x), τ (y))

=
Kd(x′, y′)

d(x, y) − 3Kd(x′, y′)
d(τ (x), τ (y)) ≤ Kd(x′, y′)

d(x, y) − 3K d(x,y)
4K

d(τ (x), τ (y))

=
4Kd(τ (x), τ (y))

d(x, y)
d(x′, y′) = Nd(x′, y′).By (5), by the fat M ≥ 1, N and by the onavity of α,

d(τ (x′), τ (y′)) ≤ α(d) ≤ α(Nd(x′, y′)) ≤ α(M · d(x′, y′)) ≤M · α(d(x′, y′)).We have thus shown that τ↾(B(x0,
d(x,y)
8K ) ∩ U) is M · α-ontinuous.Proof of Theorem 3.35. Let X, x, Y , τ , Γ et. ful�ll the premises of 3.35. Then theassumptions of Lemma 3.37(b) are satis�ed. So τ is almost Γ -ontinuous at x. ByTheorem 3.40, τ is Γ -biontinuous at x.Proof of Theorem 3.27. Let 〈E,X,S, E〉 be a subspae hoie system, Y be an open subsetof a normed spae F , Γ be a (≤κ(E))-generated modulus of ontinuity and τ : X ∼= Y .Suppose that (LIP(X,S, E))τ ⊆ HLC

Γ
(Y ), and we prove that τ is loally Γ -biontinuous.For x ∈ X hoose S ∈ S suh that x ∈ S and denote ES by D. We wish to applyTheorem 3.35 to G = LIP(X,S, E), H = A(E;D), α(t) = 15t and λ = λE;D

A
|̀̀S, so wehek that lauses (i)�(iv) of Theorem 3.35 hold.In lause (i) we have to hek that X is DPT at x and that Y is DPT and CP1 at τ (x),and this was proved in Proposition 3.33. In lause (ii) we have to hek: (1) x is a λ-limit-point; (2) G is α-in�nitely-losed at x; (3) for some N ∈ Nbr(x), λ is (α,G)-deayable in

N ∩Hλ(x).(1) Obviously, for every V ∈ NbrH(Id), Vλ(x) ontains a ball with enter at x. So xis a λ-limit-point.(2) Suppose that β ∈ MC, K ⊆ H{β}(Z) and for any distint k1, k2 ∈ K, supp(k1) ∩
supp(k2) = ∅. Then k := ◦K ∈ H(Z), and k is β ◦β-biontinuous. Also, if M ⊆ Z,



74 M. Rubin and Y. Yomdinand k′(M) = M for every k′ ∈ K, then k(M) = M . These observations imply that G is
α-in�nitely-losed.(3) The (α,G)-deayability of λ at every point of S was proved in Lemma 3.8.Clause (iii) is given, and lause (iv) holds, sine it is assumed that Gτ ⊆ HLC

Γ
(Y ).By Theorem 3.35, τ is Γ -biontinuous at x. We have shown that τ is loally Γ -bion-tinuous.In Theorem 3.26 we have presented an alternative argument for showing the loal Γ -ontinuity of τ−1. This method used the Baire Category Theorem, but did not require theassumptions of deayability of λ and the in�nite-losedness of G. The same alternativeargument an be employed in the ontext of a�ne-like partial ations. It is presented inthe following theorem.Theorem 3.41. Assume that the following fats hold.(i) X is a metri spae, G ≤ H(X), H is a topologial group and H is of the seondategory , λ is a partial ation of H on X and x ∈ Fld(λ).(ii) λ is ompatible with G at x.(iii) λ is a�ne-like at x.(iv) Γ is a ountably generated modulus of ontinuity.(v) Y is a metri spae and τ : X ∼= Y .(vi) For every g ∈ G, gτ is Γ -biontinuous at τ (x).(vii) X is DPT at x and Y is DPT and CP1 at τ (x).Then τ is Γ -biontinuous at x.Proof. For h ∈ H write hλ = ĥ. The assumptions of Lemma 3.22 hold, so there are

T ∈ Nbr(x), a nonempty open subset V ⊆ H and γ ∈ Γ suh that V × T ⊆ Dom(λ) and
ĥτ↾τ (T ) is γ-biontinuous for every h ∈ V . Note that (ĥ−1)τ↾τ (ĥ(T )) is γ-biontinuousfor every h ∈ V .Let h0 ∈ V . There are S ∈ Nbr(x) and V1 ∈ Nbr(h0) suh that V1 ⊆ V , S ⊆ T and
λ(V1 × S) ⊆ ĥ0(T ). Set W = h−1

0 · V1. Clearly, W ∈ Nbr(eH) and W × S ⊆ Dom(λ).Let h ∈ W . So for some h1 ∈ V1 we have h = h−1
0 · h1. From the fats h1 ∈ V1 ⊆ V and

S ⊆ T , it follows that (1) (ĥ1)
τ↾τ (S) is γ-biontinuous, and sine ĥ1(S) ⊆ ĥ0(T ) and

h−1
1 ∈ V −1, we onlude that (2) (ĥ−1

0 )τ↾τ (ĥ1(S)) is γ-biontinuous. (1) and (2) implythat ĥτ↾τ (S) is γ ◦γ-biontinuous.We have shown that there are W ∈ Nbr(eH) and S ∈ Nbr(x) suh that W × S ⊆
Dom(λ), and for every h ∈ W , ĥτ↾τ (W ) is γ ◦γ-biontinuous. By Lemma 3.37(a), τ isalmost Γ -ontinuous at x, and by Theorem 3.40, τ is Γ -biontinuous at x.3.5. Summary and questions. The following �nal theorem ombines the results ofChapters 2 and 3. Note that part (a) of 3.42 is not a speial ase of (b).Theorem 3.42. (a) Let X,Y be open subsets of the normed spaes E and F respetively ,
Γ ,∆ be moduli of ontinuity and ϕ : HLC

Γ
(X) ∼= HLC

∆
(Y ). Suppose that Γ is (≤κ(E))-generated. Then Γ = ∆, there is τ : X ∼= Y suh that ϕ(h) = hτ for every h ∈ HLC

Γ
(X),and τ is loally Γ -biontinuous.



Reonstrution of manifolds from subgroups of homeomorphism groups 75(b) Let 〈E,X,S, E〉 and 〈F, Y, T ,F〉 be subspae hoie systems , Γ ,∆ be moduli ofontinuity and ϕ : HLC
Γ

(X;S, E) ∼= HLC
∆

(Y ; T ,F). Suppose that Γ and ∆ are (≤κ(E))-generated. Then Γ = ∆, there is τ : X ∼= Y suh that ϕ(h) = hτ for every h ∈
HLC

Γ
(X;S, E), and τ is loally Γ -biontinuous.Proof. (a) LIPLC(X) ⊆ HLC

Γ
(X) ⊆ H(X) and the same holds for Y . So by Theorem2.8(a) there is τ : X ∼= Y suh that τ indues ϕ. Hene (HLC

∆
(Y ))τ

−1

= HLC
Γ

(X). Inpartiular, (LIP(Y ))τ
−1 ⊆ HLC

Γ
(X). Sine X ∼= Y , κ(F ) = κ(E). So Γ is (≤κ(F ))-generated. By Theorem 3.27, τ−1 is loally Γ -biontinuous. That is, τ is loally Γ -biontinuous. Hene HLC

∆
(Y ) = (HLC

Γ
(X))τ ⊆ HLC

Γ
(Y ). It is easy to see that if α ∈

∆ − Γ , then there is h ∈ H(Y ) suh that h is α-biontinuous and h is not loally Γ -ontinuous. This implies that ∆ ⊆ Γ .Suppose by ontradition that Γ−∆ 6=∅. It is easy to see that there is h∈HLC
Γ

(Y )−
HLC

∆
(Y ). So g :=hτ

−1∈HLC
Γ

(X). However, gτ=h 6∈HLC
∆

(Y ). A ontradition. So Γ =∆.(b) LIPLC(X;S, E) ⊆ HLC
Γ

(X;S, E) ⊆ H(X) and the same holds for Y . So by The-orem 2.8(b) there is τ : X ∼= Y suh that τ indues ϕ. Hene (HLC
Γ

(X;S, E))τ =

HLC
Γ

(Y ; T ,F). In partiular, (LIP(X;S, E))τ ⊆ HLC
∆

(Y ) and (LIP(Y ; T ,F))τ
−1 ⊆

HLC
Γ

(X). By Theorem 3.19(b), Γ = ∆ and τ is loally Γ -biontinuous.The tehnial and abstrat formulation of Theorems 3.15, 3.26, 3.35 and 3.41 hindersthe understanding of their essene. The above theorems are better understood throughtheir appliation to normed spaes, as stated in the following orollary.Corollary 3.43. Suppose that(1) 〈E,X,S, E〉 is a subspae hoie system and G ≤ H(X),(2) α ∈ MBC and Γ ⊆ MC,(3) F is a normed spae, Y ⊆ F is open and τ : X ∼= Y ,(4) for every g ∈ G, gτ is loally Γ -biontinuous.(a) Assume that in addition to (1)�(4) the following onditions are ful�lled.(a1) For every x ∈ X, if x ∈ S ∈ S, then λE;ES

T
|̀̀S is (α,G)-deayable at x.(a2) For every x ∈ X, G is α-in�nitely-losed at x.(a3) Γ is a modulus of ontinuity.(a4) Γ is (≤κ(E))-generated.Then τ−1 is loally Γ -ontinuous.(b) Assume that in addition to (1)�(4) the following onditions are ful�lled.(b1) For every x ∈ X, if x ∈ S ∈ S, then λE;ES

T
|̀̀S is ompatible with G at x.(b2) For every S ∈ S, ES is of the seond ategory.(b3) For every γ ∈ Γ and K > 0, K · γ ∈ Γ .(b4) Γ is ountably generated.Then τ−1 is loally Γ -ontinuous.() Assume that in addition to (1)�(4) the following onditions are ful�lled.(1) For every x ∈ X, if x ∈ S ∈ S, then λE;ES

A
|̀̀S is (α,G)-deayable at x.(2) For every x ∈ X, G is α-in�nitely losed at x.



76 M. Rubin and Y. Yomdin(3) Γ is a modulus of ontinuity.(4) Γ is (≤κ(E))-generated.Then τ is loally Γ -biontinuous.(d) Assume that in addition to (1)�(4) the following onditions are ful�lled.(d1) For every x ∈ X, if x ∈ S ∈ S, then λE;ES

A
|̀̀S is ompatible with G at x.(d2) For every S ∈ S, ES is of the seond ategory.(d3) Γ is a modulus of ontinuity.(d4) Γ is ountably generated.Then τ is loally Γ -biontinuous.Proof. Parts (a), (b), () and (d) follow respetively from Theorems 3.15, 3.26, 3.35 and3.41.There are ases in whih the ation is translation-like but not a�ne-like. In suhsituations parts (a) or (b) are appliable but () and (d) are not, and hene we an onlyprove the Γ -ontinuity of τ−1.For spaes of the �rst ategory only (a) and () are appliable. Part () has a on-lusion stronger than that of (a). However, the �nal theorem about groups of the form

HLC
Γ

(X) (Theorem 3.19) an be inferred from either (a) or ().The onlusion of () is stronger than that of (d). But the assumptions of () arestronger in some respets than those of (d). Nevertheless, we do not know how to on-strut a group G to whih the reonstrution methods of Chapter 2 apply, and for whih(d) an be applied but () annot.There are two outstanding open questions. The �rst is whether the assumption that Γis (≤κ(E))-generated is needed. The seond is whether translation-likeness of the ationimplies the Γ -ontinuity of τ .Question 3.44. Let X,Y be open subsets of the normed spaes E,F , and Γ be amodulus of ontinuity. Suppose that τ : X ∼= Y and that (HLC
Γ

(X))τ = HLC
Γ

(Y ). Is τloally Γ -biontinuous? �Question 3.45. Let E and F be normed spae, τ : X ∼= Y and Γ be a ountablygenerated modulus of ontinuity. Suppose that (T(E))τ ⊆ HLC
Γ

(Y ). Is τ loally Γ -ontinuous? Is the above true when E,F are Banah spaes? �3.6. Normed manifolds. As in Chapter 2, the results of this setion extend to normedmanifolds. Also, the proofs presented to this point transfer without hange to this newontext. We now state some of these results expliitly.Definition 3.46. (a) Let 〈X,Φ 〉 be a normed manifold. We say that 〈X,Φ 〉 is a loallyLipshitz normed manifold if for every ϕ, ψ ∈ Φ, ϕ−1 ◦ψ is a bilipshitz funtion.(b) Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be loally Lipshitz normed manifolds and τ : X ∼= Y .We say that τ is Lipshitz with respet to Φ and Ψ if there is K suh that for every
x ∈ X there are ϕ ∈ Φ and ψ ∈ Ψ suh that x ∈ int(Rng(ϕ)), τ (x) ∈ int(Rng(ψ)) and
ψ−1 ◦ τ ◦ϕ is K-Lipshitz. We say that τ is bilipshitz with respet to Φ and Ψ if both τand τ−1 are Lipshitz. De�ne
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LIP(X,Φ) = {h ∈ H(X) | h is bilipshitz with respet to Φ}.() Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be loally Lipshitz normed manifolds and Γ be a modulusof ontinuity. A homeomorphism τ : X ∼= Y is loally Γ -ontinuous with respet to Φand Ψ if for every x ∈ X there are ϕ ∈ Φ, ψ ∈ Ψ , U ∈ Nbr(ϕ−1(x)) and γ ∈ Γ suh that

x ∈ int(Rng(ϕ)), τ (x) ∈ int(Rng(ψ)), U ⊆ Dom(ϕ) and (ψ−1 ◦ τ ◦ϕ)↾U is γ-ontinuous.We say that τ is loally Γ -biontinuous if τ and τ−1 are loally Γ -ontinuous. De�ne
HLC

Γ (X,Φ) = {h ∈ H(X) | h is loally Γ -biontinuous with respet to Φ}.(d) Let 〈X,Φ 〉 be a loally Lipshitz normed manifold, S be an open over of Xand Γ be a modulus of ontinuity. De�ne LIP(X,Φ,S) to be the group generated by⋃{LIP(X,Φ) S | S ∈ S} and HLC
Γ

(X,Φ,S) to be the group generated by ⋃{HLC
Γ

(X,Φ)

S | S ∈ S}. �Theorem 3.47. Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be normed manifolds with loally Lipshitz atlasesand τ : X ∼= Y . Let Γ be a ountably generated modulus of ontinuity.(a) Suppose that (LIP(X,Φ))τ ⊆ HLC
Γ

(Y,Ψ). Then τ is loally Γ -biontinuous withrespet to Φ and Ψ .(b) Let S be an open over of X, and suppose that (LIP(X,Φ,S))τ ⊆ HLC
Γ

(Y,Ψ).Then τ is loally Γ -biontinuous with respet to Φ and Ψ .Note that (a) is a speial ase of (b).We simplify the notation below by omitting the mention of Φ and Ψ .Corollary 3.48. Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be normed manifolds with loally Lipshitzatlases.(a) Let Γ and ∆ be ountably generated moduli of ontinuity , and ϕ : HLC
Γ

(X) ∼=
HLC

∆
(Y ). Then Γ = ∆ and there is τ : X ∼= Y suh that τ indues ϕ, and τ is loally

Γ -biontinuous.(b) Let Γ be a ountably generated modulus of ontinuity , S an open over of X, and
G ≤ H(X). Assume that if 〈X,Φ 〉 is a Banah manifold , then LIP(X,S) ≤ G, and if
〈X,Φ 〉 is not a Banah manifold , then LIPLC(X,S) ≤ G. Suppose that ϕ : G ∼= HLC

Γ
(Y ).Then G = HLC

Γ
(X) and there is τ : X ∼= Y suh that τ indues ϕ, and τ is loally

Γ -biontinuous.Proof. (a) Note that if HLC
Γ

(X) = HLC
∆

(X), then Γ = ∆. Hene (a) an be onludedfrom (b).(b) We shall apply Theorem 2.30(a). Clearly, LIPLC(Y ;Ψ) ≤ HLC
Γ

(Y ) (see De�ni-tion 2.29(b)). There is an atlas Φ
′ for X suh that if 〈X,Φ 〉 is a Banah manifold, then

LIP(X,Φ′) ≤ G, and if 〈X,Φ 〉 is not a Banah manifold, then LIPLC(X,Φ′) ≤ G. Indeed,
Φ

′ = {ψ↾B(x, r) | ψ ∈ Φ, B(x, r) ⊆ Dom(ψ) and there is U ∈ S with ψ(B(x, r)) ⊆ U}.By Theorem 2.30(a), there is τ : X ∼= Y suh that τ indues ϕ. So Gτ = HLC
Γ

(Y ). Inpartiular, (LIP(X,S))τ ⊆ HLC
Γ

(Y ). By Theorem 3.47(b), τ is loally Γ -biontinuous.So G = HLC
Γ

(X).Question. In the above theorem does it su�e to assume that LIP(X,S) ≤ G, regard-less of whether 〈X,Φ 〉 is a Banah manifold? �



4. The loal uniform ontinuity of onjugating homeomorphismsTo omplete the piture of the loal Γ -biontinuity of onjugating homeomorphisms, wenow deal with the group HLC
MC(X) of loally bi-uniformly-ontinuous homeomorphisms.(Note that MC is a modulus of ontinuity, so the notation HLC

MC(X) is a speial ase ofDe�nition 1.12().) The methods employed in dealing with HLC
MC(X) are quite di�erentfrom those used in the previous setion.We shall prove the following extension of Theorem 3.42:Theorem 4.1. (a) Let X,Y be open subsets of the normed spaes E and F respetively ,

Γ ,∆ be moduli of ontinuity and ϕ : HLC
Γ

(X) ∼= HLC
∆

(Y ). Suppose that Γ is (κ(E))-generated or Γ = MC. Then Γ = ∆, there is τ : X ∼= Y suh that ϕ(h) = hτ for every
h ∈ HLC

Γ
(X), and τ is loally Γ -biontinuous.(b) Let 〈E,X,S, E〉 and 〈F, Y, T ,F〉 be subspae hoie systems , Γ ,∆ be moduli ofontinuity and ϕ : HLC

Γ
(X;S, E) ∼= HLC

∆
(Y ; T ,F). Suppose that Γ is (≤κ(E))-generatedor Γ = MC, and the same holds for ∆. Then Γ = ∆, there is τ : X ∼= Y suh that

ϕ(h) = hτ for every h ∈ HLC
Γ

(X;S, E), and τ is loally Γ -biontinuous.Note that (a) is not a speial ase of (b), sine in (b) ∆ is assumed to be (≤κ(E))-generated or equal to MC, and this is not assumed in (a). The key intermediate step inthe proof of Theorem 4.1 is Theorem 4.8.There are several ways of de�ning uniform ontinuity. We sort this matter out in thenext de�nition and proposition.Definition 4.2. (a) Let 〈X, dX 〉 and 〈Y, dY 〉 be metri spaes, and f : X → Y .We say that f is uniformly ontinuous (f is UC) if for every ε > 0 there is δ > 0 suhthat for every x, y ∈ X: if dX(x, y) < δ, then dY (f(x), f(y)) < ε. If f : X ∼= f(X) andboth f and f−1 are uniformly ontinuous, then f is said to be bi-uniformly-ontinuous(bi-UC ).(b) Let α ∈ MC and r > 0. We say that f : X → Y is (r, α)-ontinuous if for every
x, y ∈ X: if dX(x, y) < r, then dY (f(x), f(y)) ≤ α(dX(x, y)).() We say that f : X → Y is uniformly ontinuous for all distanes if there is α ∈ MCsuh that f is α-ontinuous.(d) Let f : X → Y and x ∈ X. Say that f is uniformly ontinuous at x (f is UCat x) if there is U ∈ Nbr(x) suh that f↾U is UC, and f is bi-uniformly-ontinuous at x(bi-UC at x) if there is U ∈ Nbr(x) suh that f↾U is bi-UC.(e) Let f : X → Y . Say that f is loally uniformly ontinuous (loally UC ) if f is UCat every x ∈ X, and f is loally bi-uniformly-ontinuous (loally bi-UC ) if f is bi-UC atevery x ∈ X. [78℄



Reonstrution of manifolds from subgroups of homeomorphism groups 79(f) Let 〈X, d 〉 be a metri spae. The disrete path property for large distanes is thefollowing property of X. There are a, b > 0 suh that for every x, y ∈ X and r > 0 thereare n ∈ N and x = x0, x1, . . . , xn = y in X suh that for every i < n, d(xi, xi+1) < r and∑
i<n d(xi, xi+1) ≤ ad(x, y) + b. �Proposition 4.3. (a) Let f : X → Y . Then f is UC i� for some α ∈ MC and r > 0,

f is (r, α)-ontinuous.(b) Suppose that X has the disrete path property for large distanes. Let f : X → Y .Then f is UC i� f is uniformly ontinuous for all distanes.() Suppose that f : X → Y , f is UC and Rng(f) is bounded. Then f is uniformlyontinuous for all distanes.(d) Let f : X → Y and x ∈ X. Then f is UC at x i� for some α ∈ MC, f is
α-ontinuous at x.Proof. All parts are trivial. However, the proof of the impliation ⇒ in (a) requires thefollowing fat. If η : (0, a] → [0,∞), and limtt→0 η(t) = 0, then there is α ∈ MC suhthat η ≤ α↾(0, a]. The veri�ation of this fat is left to the reader.Definition 4.4. (a) Suppose thatX, Y are topologial spaesD ⊆ X. De�neH(X,Y ) =

{h | h : X ∼= Y } and H(X;D) = {h ∈ H(X) | h(D) = D}.(b) For metri spaes X,Y de�ne UC(X,Y ) = {h ∈ H(X,Y ) | h is UC}, UC±(X,Y )

= {h ∈ H(X,Y ) | h is bi-UC} and UC(X) = UC±(X,X). For x ∈ X let PNT.UC(X,x)

= {h ∈ H(X) | h(x) = x and h is bi-UC at x}.() Let X be an open subset of a normed spae E, S ⊆ X be open, and F be adense linear subspae of E. De�ne UC(X;F ) = {h ∈ UC(X) | h(X ∩ F ) = X ∩ F} and
UC(X;S, F ) = UC(X) S ∩UC(X;F ). For x ∈ S let UC(X;S, F, x) = {h ∈ UC(X;S, F ) |
h(x) = x}.(d) Let 〈E,X,S,F〉 be a subspae hoie system. Then UC(X,S) denotes the sub-group of H(X) generated by ⋃{UC(X) S | S ∈ S}, and UC(X;S,F) denotes the sub-group of H(X) generated by ⋃{UC(X;S, FS) | S ∈ S}.(e) For metri spaes X,Y let LUC(X,Y ) = {h ∈ H(X,Y ) | h is loally UC}. Asusual we de�ne LUC±(X,Y ) = {h ∈ H(X,Y ) | h is loally bi-UC} and LUC(X) =

LUC±(X,X). �Remark. Note that HMC(X) ≤ UC(X) but equality need not hold. See Proposition4.3. It is the group HMC(X) that �ts into the framework better, but the group whihhas been traditionally onsidered is UC(X). We based the above de�nitions on UC(X)rather than on HMC(X). As for loal uniform ontinuity, the two ways of de�ning thisnotion are equivalent. Hene LUC(X) = HLC
MC(X) for every metri spae X. This fat isa triviality. �The following easy proposition will be used extensively.Proposition 4.5. Let X be a metri spae and {Un | n ∈ N} be a sequene of open setsin X suh that limn→∞ diam(Un) = 0, and for any distint m,n ∈ N, d(Um, Un) > 0.For every n ∈ N let hn ∈ UC(X) be suh that supp(hn) ⊆ Un. Then ◦n∈N hn ∈ UC(X).



80 M. Rubin and Y. YomdinProof. Let h = ◦n∈N hn. Let ε > 0. Let N ∈ N be suh that for every m ≥ N ,
diam(Um) < ε/3. Let δ1 > 0 be suh that for every i < N and x, y ∈ X: if d(x, y) < δ1,then d(hi(x), hi(y)) < ε/3. Let δ2 = min({d(Ui, Uj) | i < j < N}), and let δ =

min(δ1, δ2, ε/3).Suppose that d(x, y) < δ, and we show that d(h(x), h(y)) < ε. Sine for any distint
i, j < N , d(x, y) < d(Ui, Uj), there are no distint i, j < N suh that x ∈ Ui and y ∈ Uj .So we may assume that one of the following ours: (i) for some i < N , x ∈ Ui and
y 6∈ ⋃{Uj | j 6= i}; (ii) for some i < N and j ≥ N , x ∈ Ui and y ∈ Uj ; (iii) for some
i ≥ N , x ∈ Ui and y 6∈ ⋃{Uj | j 6= i}; (iv) for some distint i, j ≥ N , x ∈ Ui and y ∈ Uj ;(v) x, y 6∈ ⋃{Ui | i ∈ N}.In ase (i), h(x) = hi(x) and h(y) = hi(y), so sine d(x, y) < δ1, it follows that
d(h(x), h(y)) < ε. In ase (ii),
d(h(x), h(y)) ≤ d(h(x), y) + d(y, h(y)) = d(hi(x), hi(y)) + d(y, hj(y)) < ε/3 + ε/3 < ε.In ase (iii),
d(h(x), h(y)) = d(hi(x), hi(y)) ≤ d(hi(x), x)+d(x, y)+d(y, hi(y)) < ε/3+ ε/3+ ε/3 = ε.Case (iv) is similar to ase (iii), and ase (v) is trivial.Definition 4.6. Let M be a topologial spae and N be a Hausdor� spae.(a) Let A ⊆M and g : A→ N be ontinuous. For every x ∈ clM (A) there is at mostone y ∈ N suh that g ∪ {〈x, y 〉} is a ontinuous funtion. Let

gcl
M,N = {〈x, y 〉 | x ∈ clM (A), y ∈ N and g ∪ {〈x, y 〉} is a ontinuous funtion}.Obviously, gcl

M,N extends g, and Rng(gcl
M,N ) ⊆ clN (Rng(g)). When possible, gcl

M,N isabbreviated by gcl, and if M = N , then gcl
M,N is denoted by gcl

M . If H is a set ofontinuous funtions from A to B, then Hcl denotes {hcl | h ∈ H}.(b) Let X ⊆M and Y ⊆ N . We de�ne
EXTM,N (X,Y ) = {h ∈ H(X,Y ) | Dom(hcl

M,N ) = clM (X)}.When possible, we abbreviate EXTM,N (X,Y ) by EXT(X,Y ). The notation EXTM (X)stands for (EXTM,M )±(X,X). �Proposition 4.7. (a) (i) Let X be a topologial spae, D ⊆ X be dense, Y be a regulartopologial spae and h : D → Y be ontinuous. Suppose that for every x ∈ X there is aontinuous funtion hx : D ∪ {x} → Y extending h. Then ⋃{hx | x ∈ X} is ontinuous.(ii) Let M be a topologial spae, N be a regular spae A ⊆ M and g : A → N beontinuous. Then gcl
M,N is ontinuous.(b) Let X be a metri spae, Y be a omplete metri spae, A ⊆ X, and g : A → Ybe a uniformly ontinuous funtion. Then Dom(gcl) = cl(A).() Let E be a normed spae, D be a dense linear subspae of E, X ⊆ E be open, u ∈

D, BE(u, p) ⊆ X, x, y ∈ D∩BE(u, p), z ∈ BE(u, p), ε > 0, 0 < s < min(‖x−z‖, ‖y−z‖)and max(‖x− z‖, ‖y− z‖) < t < ‖z− u‖+ p. Then there is h ∈ UC(X;D) suh that : (i)
supp(hcl

E
) ⊆ BE(z, t) −BE(z, s), (ii) h(x) = x and (iii) h(y) ∈ B(x, ε).Proof. The proofs of parts (a) and (b) are trivial.



Reonstrution of manifolds from subgroups of homeomorphism groups 81() Write r′ = ‖z − u‖ + t. For every a ∈ (0, 1) there is h ∈ LIP(X;D) B(u, p)suh that h↾BE(u, r′) is the multipliation by the salar a/r′, that is, h(w) = a
r′w forevery w ∈ BE(u, r′). So we may assume that BE(z, t) ⊆ BE(u, ap). Let s < s̄ <

min(‖x− z‖, ‖y − z‖), t > t̄ > max(‖x− z‖, ‖y − z‖) and z̄ ∈ D be suh that ‖z̄ − z‖ <
min(t − t̄, s̄ − s). Sine trEz̄ is an isometry belonging to H(E;D), we may shift z̄ to theorigin. That is, we may assume that z̄ = 0. We have ‖x‖ ≥ ‖x−z‖−‖z‖ > s−(s− s̄) = s̄.The same omputation applies to y. We onlude that ‖x‖, ‖y‖ > s̄. Another similaromputation shows that ‖x‖, ‖y‖ < t̄. It is also obvious that BE(z, s) ⊆ BE(0, s̄) andthat BE(z, t) ⊇ BE(0, t̄). It thus remains to show that there is h ∈ UC(X;D) suh that
supp(h) ⊆ B(0, t̄) −B(0, s̄), and h ful�lls lauses (ii) and (iii). The onstrution of suha homeomorphism is routine but long, so we skip some details.In the inlusion BE(z, t) ⊆ BE(u, ap), hoose a so small that BE(0, 6 max(‖x‖, ‖y‖))
⊆ X. By an argument similar to the hoie of a above, we may also assume that (1)
t̄ > 5 max(‖x‖, ‖y‖) and s̄ < 1

5 min(‖x‖, ‖y‖). Let F = span({x, y}). As in the proof ofClaim 3 in Lemma 3.30, there is E1 suh that F ⊕E1 = E, and ‖v0‖+ ‖v1‖ ≤ 3‖v0 + v1‖for every v0 ∈ F and v1 ∈ E1. Let ‖ ‖H be a Hilbert norm on F suh that (2) ‖v‖ ≤
‖v‖H ≤ 3

√
2‖v‖ for every v ∈ F .For v ∈ E let vF and vE1

be suh that v = vF + vE1
and de�ne v = ‖vF ‖H + ‖vE1

‖.We may assume that ‖y‖H 6= ‖x‖H. Let S = {v ∈ F | ‖v‖H = ‖y‖H}. By (1)and (2), S ⊆ BE(0, t̄) − BE(0, s̄). So there is b > 0 suh that x 6∈ B〈E, 〉(S, b) ⊆
BE(0, t̄) − BE(0, s̄).Suppose that the angle between x and y in 〈F, ‖ ‖H 〉 is θ. Let η : [0,∞) → [0,∞)be the pieewise linear funtion with a unique breakpoint at b suh that η(0) = θ and
η(b) = 0. For v ∈ X de�ne h1(v) = Rotη( v )(vF ) + vE1

, where Rotφ is rotation throughangle φ in F . Obviously, h1 ∈ LIP(E;D), supp(h1) ⊆ BE(0, t̄) − BE(0, s̄), h1(x) = xand for some c > 0, h1(y) = cx. It is easy to onstrut a radial homeomorphism h2 ∈
LIP(E;D) suh that supp(h2) ⊆ BE(0, t̄) − BE(0, s̄), h2(x) = x and h2(cy) ∈ B(x, ε).So h = h2 ◦h1 is as required.Theorem 4.8 is phrased in a way that part (a) is easiest to read, (b) is the mainstatement of the theorem, and () is the �pointwise� version of (b). So ()⇒(b)⇒(a), andwe atually prove ().Note that Theorem 4.8(b) is analogous to Theorem 3.27, but the assumption here isthat (UC(X))τ ⊆ LUC(Y ), whereas in 3.27 the weaker assumption that (LIP(X))τ ⊆
HLC

Γ
(Y ) did su�e.Theorem 4.8. (a) Let X,Y be open subsets of the normed spaes E and F , and τ ∈

H(X,Y ) be suh that (UC(X))τ ⊆ LUC(Y ). Then τ ∈ LUC±(X,Y ).(b) Let 〈E,X,S,D〉 be a subspae hoie system, Y an open subset of a normed spae
F and τ ∈ H(X,Y ). Suppose that (UC(X;S,D))τ ⊆ LUC(Y ). Then τ ∈ LUC±(X,Y ).() Let X,Y be open subsets of the normed spaes E and F , S ⊆ X be open, D be adense linear subspae of E, x∗ ∈ S and τ ∈ H(X,Y ). Suppose that (UC(X;S,D, x∗))τ ⊆
PNT.UC(Y, τ(x∗)). Then τ is bi-UC at x∗.Proof. () Let X, Y et. be as in ().



82 M. Rubin and Y. YomdinPart 1. τ is UC at x∗.Suppose by ontradition that for every U ∈ NbrX(x∗), τ↾U is not UC. The trivialproof of the following laim is left to the reader.Claim 1. For every r > 0 there are sequenes ~x, ~y and d, e > 0 suh that :(1) Rng(~x) ∪ Rng(~y) ⊆ BX(x∗, r/2) ∩D;(2) limn→∞ ‖xn − yn‖ = 0;(3) either (i) for any distint m,n ∈ N, d({xm, ym}, {xn, yn}) ≥ e, or (ii) ~x is aCauhy sequene;(4) d(Rng(~x) ∪ Rng(~y), x∗) > e;(5) for every n ∈ N, ‖τ (xn) − τ (yn)‖ ≥ d.Let e−1 > 0 be suh that BE(x∗, e−1) ⊆ S. It is easy to de�ne by indution on i ∈ Na radius ri, sequenes ~xi = {xin | n ∈ N}, ~yi = {yin | n ∈ N} and di, ei > 0 suh that
ri = ei−1/8 and suh that ~xi, ~yi, di, ei satisfy (1)�(5) of Claim 1 for r = ri. By deleting,if neessary, initial segments from eah of the ~x i's and ~y i's, we may further assume thatfor every i, n ∈ N, ‖xin − yin‖ < ei/4. We may further assume that either for every i ∈ N,lause (3)(i) of Claim 1 holds, or for every i ∈ N, lause (3)(ii) of Claim 1 holds.Case 1: Clause (3)(i) of Claim 1 holds. Let {〈i(k), n(k) 〉 | k ∈ N} ⊆ N2 be a 1-1 sequeneof pairs suh that limk→∞ ‖xi(k)n(k)−y

i(k)
n(k)‖ = 0, and for every i ∈ N, {k | i(k) = i} is in�nite.For every k ∈ N set uk = x

i(k)
n(k), vk = y

i(k)
n(k), sk = 2‖uk−vk‖ and Bk = B(uk, sk). Then itan be easily heked that for any distint k, l ∈ N, Bk ⊆ S and d(Bk, Bl) > ei(k)/4. Also,

limk→∞ diam(Bk) = 0. Let wk ∈ [uk, vk]−{uk} be suh that ‖τ (wk)−τ (uk)‖ < 1/(k+1).So wk ∈ Bk∩D. By Lemma 2.14(), there is hk ∈ LIP(X;S,D) suh that supp(hk) ⊆ Bk,
hk(uk) = uk and hk(wk) = vk.By Proposition 4.5, h := ◦k∈N hk ∈ UC(X), and indeed h ∈ UC(X;S,D, x∗). How-ever, we shall now see that for every V ∈ NbrY (τ (x∗)), hτ ↾V is not uniformly ontinuousand hene hτ 6∈ PNT.UC(Y, τ(x∗)) whih is a ontradition.Write hτ = ĥ, h(uk) = ûk, h(vk) = v̂k and h(wk) = ŵk. Then ĥ(ûk) = ûk and
ŵk = v̂k. There is i suh that for every n, τ ([xin, yin]) ⊆ V . De�ne σ = {k ∈ N | i(k) = i}.Then ûk, v̂k, ŵk ∈ V for every k ∈ σ. Now, limk∈σ ‖ûk− ŵk‖ = 0, but ‖ĥ(ûk)− ĥ(ŵk)‖ =

‖ûk − v̂k‖ ≥ di for every k ∈ σ. So ĥ↾V is not uniformly ontinuous.Case 2: Clause (3)(ii) of Claim 1 holds. Let z̄i = lim ~xi. Note that z̄i ∈E−E. Clearly,
z̄i ∈BE(x∗,ri)−BE(x∗,ei). Fix i∈N and for j ∈N set ti,j = max(‖xij− z̄i‖,‖yij− z̄i‖) and
si,j = min(‖xij − z̄i‖, ‖yij − z̄i‖). By taking a subsequene of {〈xij , yij 〉 | j ∈ N}, we mayassume that for every j, ti,j+1 < si,j . Let εi,j > 0 be suh that for every u ∈ B(xij , εi,j),
‖τ (u) − τ (xij)‖ < 1

j+1 . Choose s̄i,j , t̄i,j suh that for every j, si,j > s̄i,j > t̄i,j+1 > ti,j+1.We may also assume that for any distint i and i′, d(BE(z̄i, t̄i,0), B
E(z̄i′ , t̄i′,0)) > 0 andthat BE(z̄0, t̄0,0) ⊆ clE(S).By Proposition 4.7(), for every i, j there is hi,j ∈ UC(X;D) suh that supp(hi,j) ⊆

BE(z̄i, t̄i) − BE(z̄i, s̄i), hi,j(xij) = xij and hi,j(yij) ∈ B(xij , εi,j). Let hi = ◦j∈N hi,j . ByProposition 4.5, hi ∈ UC(X). So hi ∈ UC(X;D). Also, supp(hi) ⊆ S. Let h = ◦i∈N hi.Applying again Proposition 4.5, we onlude that h ∈ UC(X;S,D, x∗).



Reonstrution of manifolds from subgroups of homeomorphism groups 83We hek that hτ is not bi-UC at τ (x∗). Let V ∈ NbrY (τ (x∗)). For some i,
supp((hi)

τ ) ⊆ V . De�ne uij = τ (xij) and vij = τ (yij). So(1) for every j, ‖uij − vij‖ > di.Sine hi(y
i
j) ∈ B(xij , εi,j), it follows that limj→∞ ‖τ (xij) − τ (hi(y

i
j)‖ = 0. That is,

limj→∞ ‖(hi)τ (uij) − (hi)
τ (vij)‖ = 0. Hene(2) limj→∞ ‖hτ (uij) − hτ (vij)‖ = 0.(1) and (2) imply that hτ ↾V is not bi-UC. That is, hτ 6∈ PNT.UC(Y, τ(x∗)). A on-tradition. We have reahed a ontradition in both Case 1 and Case 2. So τ is UCat x∗.Part 2. τ−1 is UC at τ (x∗).Suppose by ontradition that this is not true. So for every V ∈ NbrY (τ (x∗)), τ−1↾Vis not UC.Claim 2. For every k ∈ N there are positive numbers rk1 , . . . , rk5 and sequenes ~xk and

~yk whih ful�ll the following requirements.(1) rk1 > rk2 ≥ rk3 > rk4 > rk5 = 2rk+1
1 .(2) limi→∞ ‖xki − x∗‖ = rk2 and limi→∞ ‖yki − x∗‖ = rk3 .(3) There is ek > 0 suh that ‖xki − yki ‖ > ek for every i ∈ N.(4) Rng(~xk) ∪ Rng(~yk) ⊆ D.(5) De�ne sk = sup({‖τ (x) − τ (x∗)‖ | x ∈ B(x∗, rk4 )}) and tk = ‖τ (x∗) − τ (~xk)‖.Then sk < tk.(6) limi→∞ ‖τ (xki ) − τ (yki )‖ = 0.(7) Either ~xk is a Cauhy sequene or ~xk is spaed , and either ~yk is a Cauhy sequeneor ~yk is spaed.Proof. Let r01 > 0 be suh that B(x∗, r01) ⊆ S. Suppose that rk1 has been de�ned, andwe de�ne rk2 , . . . , rk5 and rk+1

1 . Let r = rk1/2. Sine τ−1↾τ (B(x∗, r)) is not uniformlyontinuous, there are ek > 0 and sequenes ~x, ~y ⊆ B(x∗, r) suh that for every i ∈ N,
‖xi−yi‖ > ek and limi→∞ ‖τ (xi)−τ (yi)‖ = 0. Sine D∩S is dense in S, we may assumethat Rng(~x) ∪ Rng(~y) ⊆ D. We may also assume that x∗ 6∈ Rng(~x) ∪ Rng(~y).By interhanging some xi's with their orresponding yi's, we may assume that ‖xi−x∗‖
≥ ‖yi − x∗‖. Taking subsequenes we may assume that rk2 := limi→∞ ‖xi − x∗‖ and
rk3 := limi→∞ ‖yi − x∗‖ exist. Hene rk3 ≤ rk2 . Taking subsequenes again, we may as-sume that either ~x is a Cauhy sequene or ~x is spaed, and that either ~y is a Cauhysequene or ~y is spaed.Note that ~x does not ontain a onvergent subsequene, sine if x′ is a limit of asubsequene of ~x, then τ−1 is not ontinuous at τ (x′). Also reall that x∗ 6∈ Rng(~x). Itthus follows that tk := ‖τ (x∗), τ (~xk)‖ > 0. Next de�ne ~xk = ~x and ~yk = ~y. Let rk4 < rk3be suh that sk := sup({‖τ (x) − τ (x∗)‖ | x ∈ B(x∗, rk4 )}) < tk. Finally, let rk5 = rk4/2and rk+1

1 = rk5/2. This onludes the onstrution whih proves Claim 2.Sine limi→∞ ‖xki ‖ = rk2 and limi→∞ ‖yki ‖ = rk3 , we may assume that(8) for every i ∈ N, rk4 < ‖xki − x∗‖ < (rk2 + rk1 )/2 and rk4 < ‖yki − x∗‖ < (rk2 + rk1 )/2.



84 M. Rubin and Y. YomdinWe may also assume that either for every k ∈ N, ~yk is spaed, or for every k ∈ N, ~yk is aCauhy sequene.Case 1: For every k ∈ N, ~yk is spaed. Fix k ∈ N and denote rki , ~xk, ~yk and ek by ri,
~x, ~y and e respetively.Claim 3. There are subsequenes {xin | n ∈ N} {yin | n ∈ N} of ~x and ~y respetively ,suh that d({xin | n ∈ N}, {yin | n ∈ N}) > 0.Proof. The laim is trivial if ~x is a Cauhy sequene. So suppose ~x is spaed. We showthat there is a sequene {in | n ∈ N} suh that (i) limn>m→∞ ‖xim − yin‖ exists, and (ii)
limn>m→∞ ‖yim − xin‖ exists. By repeatedly applying the Ramsey Theorem, we obtaina dereasing sequene A0 ⊇ A1 ⊇ · · · of in�nite subsets of N suh that for every ℓ ∈ Nand m,n,m′, n′ ∈ Aℓ: if m < n and m′ < n′, then |‖xm − yn‖ − ‖xm′ − yn′‖| < 2−ℓ. Let
{in | n ∈ N} be a 1-1 sequene suh that for every n ∈ N, in ∈ An. Then (i) holds for
{in | n ∈ N}. The same argument is applied to show that (ii) holds.Let s̄1 = limn>m→∞ ‖xim − yin‖ and s̄2 = limn>m→∞ ‖yim − xin‖. It is easy to seethat if s̄1 = 0 or s̄2 = 0, then ~x is a Cauhy sequene. So s̄1, s̄2 > 0. By removing aninitial segment from the sequenes {xin}n∈N and {yin}n∈N we may assume that for every
n > m, ‖xim−yin‖ > s̄1/2 and ‖xin−yim‖ > s̄2/2. Reall also that ‖xi−yi‖ > e for every
i ∈ N. So d({xin | n ∈ N}, {yin | n ∈ N}) ≥ min(s̄1/2, s̄2/2, e). So Claim 3 is proved.We may thus assume that dk := d(Rng(~xk),Rng(~yk)) > 0.Claim 4. For every k ∈ N there is hk ∈ LIP(X;D) with the following properties : (i)
supp(hk) ⊆ B(x∗, rk1 ) − B(x∗, rk5 ); and (ii) there is nk ∈ N suh that for every i ≥ nk,
hk(x

k
i ) = xki and hk(yki ) ∈ B(x∗, rk4 ).Proof. Fix k, for j = 1, . . . , 5 set rkj = rj , write ~xk = ~x, ~yk = ~y, xki = xi, yki = yi andde�ne wi = xi−x∗, zi = yi−x∗, ui = zi/‖zi‖. Note that limi∈N ‖(x∗+r3ui)−yi‖ = 0, andreall that d(Rng(~x),Rng(~y)) > 0. From these fats it follows that by removing an initialsegment of ~x and of ~y, we may assume that there is a > 0 suh that ‖xi−(x∗+r3uj)‖ ≥ afor every i, j ∈ N. Similarly, sine ~y is spaed, we may assume that {x∗ + r3ui}i∈N isspaed too. Certainly we may hoose a to be smaller than r3 − r4 and r1 − r3, and wemay assume that for every i, ‖wi‖ ≥ r3 − a/8 and r3 − a/4 < ‖zi‖ < r3 + a/4. Let

Li = [x∗ + r4ui, x
∗ + (r3 + a/4)ui]. Note that yi ∈ Li. We show that for every i, j,

d(xi, Lj) > a/4. Let y ∈ Lj . If y ∈ [x∗ + (r3 − a/2)uj , x
∗ + (r3 + a/4)uj ], then

‖xi − y‖ ≥ ‖xi − (x∗ + r3uj)‖ − ‖(x∗ + r3uj) − y‖ ≥ a− a/2 = a/2,and if y ∈ [x∗, x∗ + (r3 − a/2)ui], then
‖xi − y‖ ≥ ‖xi − x∗‖ − ‖y − x∗‖ ≥ r3 − a/8 − (r3 − a/2) = 3a/8.It follows that d(xi, Lj) > a/4.Let vi = x∗ + r4ui, and let b > 0 be suh that for every i 6= j, ‖vi − vj‖ > b. Weshow that if i 6= j, then d(Li, Lj) ≥ b/2. It is easy to see that d(Li, Lj) = d(vi, Lj). Let

x∗ + tuj ∈ Lj . If t ∈ [r4, r4 + b/2], then
‖vi − (x∗ + tuj)‖ ≥ ‖vi − vj‖ − ‖x∗ + tuj − vj‖ > b− b/2 = b/2.If t > r4 + b/2, then



Reonstrution of manifolds from subgroups of homeomorphism groups 85
‖vi − (x∗ + tuj)‖ ≥ ‖tuj‖ − ‖vi − x∗‖ > r4 + b/2 − r4 = b/2.It follows that there is d > 0 suh that:(1) for every i 6= j, 2d < d(Li, Lj);(2) for every i 6= j, d < d(xi, Lj);(3) r3 + a/4 + d < r1;(4) r4 − d > r5.Let L1

i = [vi, yi]. So L1
i ⊆ Li. Hene(1.1) for every i 6= j, 2d < d(L1

i , L
1
j );(1.2) for every i 6= j, d < d(xi, L

1
j);(1.3) ‖yi − vi‖ < r3 − r4 + a/4.By (3), d(B(L1

i , d), X−B(x∗, r1))>r1−(r3+a/4+d)>0 and by (4), d(B(L1
i , d), B(x∗, r5))

> r4 − r5 − d > 0. So(1.4) d(B(L1
i , d), X − (B(x∗, r1) −B(x∗, r5))) > 0 for every i ∈ N.Reall that yi ∈ D, but vi need not be in D. For every i, hoose v′i ∈ D su�iently loseto vi and de�ne L′
i = [v′i, yi]. This an be done in suh a way that L′

i satisfy (1.1)�(1.4).So indeed hoose v′i ∈ D ∩B(x∗, r4) in suh a way that the L′
i's ful�ll (1.1)�(1.4). Write

vk,i = v′i.Let K = Kseg(r3 − r4 + a/4, d) be as in 2.14() and i ∈ N. By 2.14(), there is
h′i ∈ LIP(X;D) suh that: supp(h′i) ⊆ B(L′

i, d), h′i is K-bilipshitz, and h′i(yi) = v′i.Sine the L′
i's satisfy (1.1), it follows that for every i 6= j, d(supp(h′i), supp(h′j)) > 0. So

hk := ◦i∈N h
′
i is well de�ned. Also, hk is 2K-bilipshitz.For every i, hk(yi) = h′i(yi) = v′i ∈ B(x∗, r4). By (1.2) applied to the L′

j 's, xi 6∈
supp(hk). So hk(xi) = xi. By (1.4) applied to L′

i, for every i, supp(h′j) ⊆ B(x∗, r1) −
B(x∗, r5). So supp(hk) ⊆ B(x∗, r1) − B(x∗, r5). Reall that for every i, h′i ∈ H(X;D).So hk ∈ H(X;D). We have shown that hk ful�lls the requirements of Claim 4.Let h = ◦k∈N hk. By Proposition 4.5, h ∈ UC(X). Sine B(x∗, r01) ⊆ S, we obtainthat supp(h) ⊆ S, and sine for every k, hk ∈ H(X;D), we onlude that h ∈ H(X;D).Also for every k, x∗ 6∈ supp(hk). So h(x∗) = x∗, that is, h ∈ UC(X;S,D, x∗).We shall reah a ontradition by showing that hτ 6∈ PNT.UC(Y τ(x∗)). Let V ∈
NbrY (τ (x∗)). Let k be suh that τ (B(x∗, rk1 )) ⊆ V . Hene(i) for every i ∈ N, τ (xki ), τ (yki ) ∈ V , and limi→∞ ‖τ (xki ) − τ (yki )‖ = 0.Now hτ (τ (xki )) = τ (xki ) and hτ (τ (yki )) = τ (h(yki )) ∈ τ (B(x∗, rk4 )). So for every i ∈ N,
(†) ‖(hτ (τ (xki )) − τ (x∗)) − (hτ (τ (yki )) − τ (x∗))‖

= ‖(τ (xki ) − τ (x∗)) − (τ (h(yki )) − τ (x∗))‖ ≥ ‖τ (xki ) − τ (x∗)‖ − ‖τ (h(yki )) − τ (x∗)‖.Reall that h(yki ) = vk,i ∈ B(x∗, rk4 ). Let sk, tk be as in lause (5) of Claim 2. Then
‖τ (h(yki )) − τ (x∗)‖ ≤ sk and ‖τ (xki ) − τ (x∗)‖ ≥ tk. Denote the right hand side of (†)by A. So A ≥ tk − sk. By lause (5) in Claim 2, tk − sk > 0. We have proved that(ii) for every i ∈ N, ‖hτ (τ (xki )) − hτ (τ (yki ))‖ ≥ tk − sk > 0.



86 M. Rubin and Y. Yomdin(i) and (ii) demonstrate that hτ ↾V is not bi-UC. We have shown that for every V ∈
Nbr(τ (x∗)), hτ ↾V is not UC. That is, hτ 6∈ PNT.UC(Y, τ(x∗)). A ontradition.Case 2: For every k ∈ N, ~yk is a Cauhy sequene.Claim 5. For every k ∈ N there is hk ∈ LIP(X;D) with the following properties : (i)
supp(hk) ⊆ B(x∗, rk1 ) − B(x∗, rk5 ); and (ii) there is nk ∈ N suh that for every i ≥ nk,
hk(x

k
i ) = xki and hk(yki ) ∈ B(x∗, rk4 ).Proof. Fix k, and denote ~xk, ~xk, rkj et. by ~x, ~y, rj et. Let ȳ = limE ~y. Sine τ−1 isontinuous, ȳ ∈ clE(S)−S. Also, ‖ȳ−x∗‖ = r3. Sine ȳ 6∈ E and Rng(~x) ⊆ E, Rng(~x)∩

[x∗, ȳ] ontains at most one element. By removing this element we may assume that ê :=

d(Rng(~x), [x∗, ȳ]) > 0. Let b = (r4 + r5)/2, a = (r4− r5)/2 and c = min(a, ê, r1− r3). Let
w ∈ [x∗, ȳ] be suh that ‖w−x∗‖ = b. Let u, v ∈ D be suh that ‖u− ȳ‖, ‖v−w‖ < c/12.By Lemma 2.14(), there is h ∈ LIP(X;D) suh that supp(h) ⊆ B([u, v], c/4), h(u) = vand h(B(u, c/12)) = B(v, c/12). Sine h is bilipshitz, Dom(hcl) = clE(X). Denote
ĥ = hcl. We show that ĥ(ȳ) ∈ BE(x∗, r4). Sine ȳ ∈ BE(u, c/12), ĥ(ȳ) ∈ BE(v, c/12).So
‖ĥ(ȳ)−x∗‖ ≤ ‖ĥ(ȳ)− v‖+ ‖v−w‖+ ‖w−x∗‖ < c/12+ c/12 + b ≤ b+ a/6 < b+ a = r4.It follows that(1) for all but �nitely many i's, h(yi) ∈ B(x∗, r4).For every i, d(xi, [u, v]) ≥ d(xi, [ȳ, w]) − (c/12 + c/12) ≥ ê− c/6 ≥ c/4. So xi 6∈ supp(h)and hene(2) h(xi) = xi for all i ∈ N.
‖u − x∗‖ ≤ c/12 + r3 < r1 − c/4. It easily follows that B([u, v], c/4) ⊆ B(x∗, r1).
‖v − x∗‖ ≥ b− c/12 > r5 + a/4. Next we have

d(B([u, v], c/4), x∗) ≥ d(B([ȳ, w], c/4), x∗) − c/6 − c/4 = b− 5c/12 > r5.So B([u, v], c/4) ∩B(x∗, r5) = ∅. Similarly, for every y ∈ B([u, v], c/4),
‖y‖ ≤ max(‖u‖, ‖v‖) + c/4 ≤ max(‖ȳ‖, ‖w‖) + c/12 + c/4 = r3 + 5c/12 < r1.That is, supp(h) ⊆ B(x∗, r1). So(3) supp(h) ⊆ B(x∗, r1) −B(x∗, r5).It follows that hk := h ful�lls the requirements of Claim 5. So Claim 5 is proved.The remaining steps in the proof are idential to those in Case 1. So both Case 1 andCase 2 lead to a ontradition. This means that τ−1 is UC at τ (x∗).Question 4.9. LetX,Y be open subsets of the normed spaes E and F and τ ∈ H(X,Y )be suh that (LIP(X))τ ⊆ LUC(Y ). Is τ loally UC? Is τ−1 loally UC? �Note that by Theorem 3.27, the answer to both parts of the question is positive for

E's suh that κ(E) ≥ 2ℵ0 . Hene the answer is positive for open subsets of ℓ∞.Proof of Theorem 4.1. (a) Let X,Y , Γ ,∆ and ϕ be as in part (a). Suppose that Γ is
(≤κ(E))-generated. Then by Theorem 3.42, Γ = ∆ and there is τ ∈ H(X,Y ) as required.



Reonstrution of manifolds from subgroups of homeomorphism groups 87Note that for every metri spae X, LUC(X) = HLC
MC(X).Suppose that Γ = MC. By Theorem 2.8(a), there is τ ∈ H(X,Y ) suh that τindues ϕ. We have (UC(X))τ ⊆ LUC(Y ). So by Theorem 4.8(a), τ is loally bi-UC.So (LUC(X))τ = LUC(Y ). Hene HLC

MC(X) = HLC
∆

(Y ). We have seen that the aboveequality implies that MC = ∆. So (a) is proved.(b) Let 〈E,X,S, E〉, 〈F, Y, T ,F〉, Γ ,∆ be and ϕ be as in (b). If both Γ and ∆ are
(≤κ(E))-generated, then by Theorem 3.42, Γ = ∆, and there is τ whih indues ϕ.Suppose that ∆ or Γ are not (≤κ(E))-generated. By Theorem 2.8(a), there is τ ∈
H(X,Y ) suh that τ indues ϕ.Suppose by ontradition that Γ = MC and ∆ 6= MC. Hene ∆ is (≤κ(E))-generated.Clearly, (LIP(X;S, E))τ ⊆ HLC

∆
(Y ). By Theorem 3.27, τ is loally ∆-biontinuous.Hene (HLC

∆
(Y ; T ,F))τ

−1 ⊆ HLC
∆

(X). However, (HLC
∆

(Y ; T ,F))τ
−1

= HLC
MC(X;S, E).Hene HLC

MC(X;S, E) ⊆ HLC
∆

(X). A ontradition. It follows that Γ = ∆ = MC.As in Chapter 3, the analogous statement for manifolds is also true.Corollary 4.10. Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be normed manifolds with loally Lipshitzatlases. Let Γ and ∆ be moduli of ontinuity , Suppose that Γ is ountably generated or
Γ = MC, and the same holds for ∆.(a) If ϕ : HLC

Γ
(X,Φ) ∼= HLC

∆
(Y ). Then Γ = ∆ and there is τ : X ∼= Y suh that τindues ϕ, and τ is loally Γ -biontinuous.(b) Let S be an open over of X, T be an open over of Y and ϕ : HLC

Γ
(X,Φ,S) ∼=

HLC
∆

(Y,Ψ , T ). Then Γ = ∆, there is τ : X ∼= Y suh that ϕ(h) = hτ for every h ∈
HLC

Γ
(X;S, E), and τ is loally Γ -biontinuous.



5. Other groups de�ned by properties related to uniformontinuity5.1. General desription. The results we have obtained on groups of type HLC
Γ

(X)are more omprehensive than those obtained for other types of groups. We have presentedthe results on HLC
Γ

(X) in the quite general framework of �subspae hoie systems�. Wenow abandon this framework, and restrit the disussion to the lass of open subsets ofnormed spaes.Reall the following notations whih were introdued in the introdution.Definition 5.1. (a) For a set F of 1-1 funtions let F−1 = {f−1 | f ∈ F}. Suppose that
P is used as an abbreviation for some property of maps, and let X and Y be topologialspaes. We shall use the notation P(X,Y ) to denote the set of all homeomorphismsbetween X and Y whih have property P. We de�ne

P±(X,Y ) := P(X,Y ) ∩ (P(Y,X))−1 and P(X) := P±(X,X).Usually but not always this onvention will be used for P's whih are �losed underomposition�. (P is losed under omposition if for every f : X → Y and g : Y → Z: if
f and g ful�ll P, then g ◦ f ful�lls P.) In suh ases P(X) is a group.(b) Let 〈X, d 〉 be a metri spae. X is uniformly-in-diameter arwise-onneted(UD.AC ) if for every ε > 0 there is δ > 0 suh that for every x, y ∈ X: if d(x, y) < δ,then there is an ar L ⊆ X onneting x and y suh that diam(L) < ε.() Let KO

NRM be the lass of all spaes X suh that X is an open subset of a normedspae. Let KO
BNC be the lass of all spaes X suh that X is an open subset of a Banahspae. Let KO
NFCB be the lass of all spaes X suh that X is an open subset of a normedspae of the �rst ategory, or X is an open subset of a Banah spae. �Note that a disonneted spae may be UD.AC. The spae [0, 1] ∪ [2, 3] is suh anexample.The following statement is a typial example of some of the �nal results obtained inthis hapter. It is restated in Corollary 5.6.Theorem A. Let X,Y ∈ KO

NFCB. Suppose that X and Y are UD.AC spaes. Let
ϕ : UC(X) ∼= UC(Y ). Then there is τ ∈ UC±(X,Y ) suh that τ indues ϕ.The reason that Theorem A an be proved only for members of KO

NFCB and not forall members of KO
NRM is that Theorem 2.8 annot be used. This is so, sine in Theorem2.8 we need to know that LIPLC(X) ≤ G. However, LIPLC(X) 6≤ UC(X).Theorem A assumes that the open sets X and Y are UD.AC. Di�erent extra as-sumptions on the open sets in question are often used in proving other reonstrution[88℄



Reonstrution of manifolds from subgroups of homeomorphism groups 89results. We make sure, though, that these extra assumptions do not exlude the knownwell-behaved open subsets of a normed spae. For example, onvex bounded open setsare always inluded. Usually the lasses for whih reonstrution is proved do ontainsome ompliated open sets.Theorem A has the following orollary.Theorem 5.2. Let F and K be the losures of UD.AC bounded open subsets of Rm and
Rn respetively. Let ϕ : H(F ) ∼= H(K). Then ϕ is indued by a homeomorphism between
F and K.The proof of Theorem 5.2 appears after Example 5.7. The boundedness of F and Kabove is neessary: see Example 5.8. The analogue of Theorem 5.2 for open subsets ofin�nite-dimensional normed spaes is proved in 6.22. The boundedness of F and K isnot required in the in�nite-dimensional ase.Let us point out that the losure of a UD.AC open subset of Rn does not have tobe a Eulidean manifold with boundary, neither does it have to be a polyhedron. Thereonstrution theorems for polyhedra and for Eulidean manifolds with boundary wereproved in [Ru1, 3.34 and 3.43℄. Theorem 5.2 is not a speial ase of these theorems.Definition 5.3. (a) Throughout this setion, if not otherwise stated, X and Y denotenonempty open subsets of normed spaes E and F respetively. The metris dE and
dF are both abbreviated by d. For A ⊆ X, cl(A), bd(A), acc(A), B(A, r) et. areabbreviations for clE(A), bdE(A), accE(A), BE(A, r) et. Let ~x, ~y, ~x0 et. denote thein�nite sequenes {xn | n ∈ N}, {yn | n ∈ N}, {x0

n | n ∈ N} et. So ~x ⊆ X means that
{xn | n ∈ N} ⊆ X.(b) For A ⊆ X de�ne δX(A) := d(A,E−X). The notation δX(x) abbreviates δX({x})and δX(A) and δX(x) are abbreviated by δ(A) and δ(x).() If L is a reti�able ar, then lngth(L) denotes the length of L.(d) Let A ⊆ X. We say that A is a positively distaned set (PD set) if δ(A) > 0.A bounded PD set is alled a BPD set. A sequene ~x is a BPD sequene if Rng(~x) is aBPD set.(e) Let {Ai | i ∈ N} be a sequene of sets. We de�ne limi→∞Ai = x if for every
U ∈ Nbr(x) there is i0 suh that for every i > i0, Ai ⊆ U .(f) Let f : X → Y . We say that f is positive distane preserving (f is PD.P) if forevery PD set A ⊆ X, f(A) is a PD subset of Y . The funtion f is boundedness preserving(f is BDD.P) if for every bounded A ⊆ X, f(A) is a bounded set, and f is boundednesspositive distane preserving (f is BPD.P) if for every bounded PD set A ⊆ X, f(A) is abounded PD subset of Y .(h) Let UC0(X) := {f ∈ UC(X) | Dom(f cl) = cl(X) and fcl↾bd(X) = Id}. �The following de�nition lists some subgroups of H(X) for whih reonstrution anbe proved.Definition 5.4. Let f : X → Y .(a) f is boundedly UC (f is BUC ) if f is boundedness preserving, and for everybounded set B ⊆ X, f↾B is UC. Aording to De�nition 5.1(a), BUC(X,Y ) = {f ∈
H(X,Y ) | f is BUC}.



90 M. Rubin and Y. Yomdin(b) f is extendible if Dom(fcl) = cl(X). Aording to De�nition 4.6(b), EXT(X,Y ) :=

{f ∈ H(X,Y ) | f is extendible}.() f is bounded positive distane UC (f is BPD.UC ) if f is BPD.P, and for everyBPD set A ⊆ X, f↾A is UC.(d) f is positive distane UC (f is PD.UC ) if f is PD.P, and for every PD set A ⊆ X,
f↾A is UC.(e) f is LUC on bd(X) (f is BR.LUC ) if f is extendible, and for every x ∈ bd(X)there is U ∈ Nbrcl(X)(x) suh that fcl↾U is UC.(f) f is ompletely LUC (f is CMP.LUC ) if f is extendible, and f cl is UC at every
x ∈ cl(X). That is, for every x ∈ cl(X) there is U ∈ Nbrcl(X)(x) suh that fcl↾U is UC.(g) f is UC around bd(X) (f is BDR.UC ) if f is extendible, and for some d > 0,
fcl↾{x ∈ cl(X) | δ(x) < d} is UC.(h) Let A,B ⊆ X. We say that f is (A,B)-UC if for every ε > 0 there is δ > 0suh that for every x ∈ A and y ∈ B: if d(x, y) < δ, then d(f(x), f(y)) < ε. Thefuntion f is BI.UC if f is extendible, and fcl is (bd(X), X)-UC. Note that f is BI.UCi� for every ε > 0 there is δ > 0 suh that for every x, y ∈ X: if δ(x), d(x, y) < δ, then
d(f(x), f(y))) < ε. �Note that if P is one of the properties de�ned in (a)�(h), that is, if

P = BUC,EXT,BPD.UC,PD.UC,BR.LUC,CMP.LUC,BDR.UC,BI.UC,then P(X) is a group.For eah P appearing above we an prove the following statement. If ϕ : P(X) ∼=
P(Y ), then there is τ ∈ P±(X,Y ) suh that τ indues ϕ. More preisely, the abovestatement an be proved, provided that some additional restritions are imposed on Xand Y .We shall prove the above statement only for UC(X) and the groups BUC(X), EXT(X),
BPD.UC(X) and CMP.LUC(X) de�ned in 5.4(a), (b), () and (f). Reall that the group
LUC(X) has already been dealt with in Chapter 4. We omit the proof for the remaininggroups, sine the arguments used are similar to those employed in the proofs that we dopresent fully. Also, the groups that we do deal with are de�ned by properties that seemto have played a role in other ontexts in analysis and topology.The group UC(X) and eah of the groups in De�nition 5.4 exept for EXT(X) has ageneralization in whih �uniform ontinuity� is replaed by �Γ -ontinuity�. This type ofgeneralization is demonstrated by the following three examples.Example 1. The generalization of UC(X) is de�ned as follows. Let Γ be a modulus ofontinuity. We say that f : X → Y is nearly Γ -ontinuous if there are α ∈ Γ and r > 0suh that f is (r, α)-ontinuous. Let HNR

Γ
(X,Y ) be the set of f ∈ H(X,Y ) suh that fis nearly Γ -ontinuous. In view of Proposition 4.3(a), UC(X) = HNR

MC(X). �Example 2. The generalization of CMP.LUC(X) is de�ned as follows. For a mod-ulus of ontinuity Γ let HCMP.LC
Γ

(X) = {h ∈ EXT(X) | for every x ∈ cl(X), hcl is
Γ -biontinuous at x}. �



Reonstrution of manifolds from subgroups of homeomorphism groups 91Example 3. The generalization of BPD.UC(X) is the following group. For a modulusof ontinuity Γ let
HNBPD

Γ (X) = {h ∈ H(X) | h and h−1 are BPD.P, and for every BPD set A ⊆ X,

h↾A is nearly Γ -biontinuous}. �The reonstrution problem for these generalizations has not been investigated thor-oughly. However, an answer for the groups in Example 3 is given in Theorem 5.32.Example 2 is onsiderably more di�ult to sort out. It is dealt with in Chapters 8�12.The generalization in Example 1 is not true. A ounter-example is presented in Example5.11.So far, the reonstrution question arising from Example 2 has only a partial answer.It is proved only for prinipal moduli of ontinuity (see M6 in De�nition 1.9), and onlyfor X's with a �well-behaved� boundary. This is proved in Theorem 12.20.5.2. The group of uniformly ontinuous homeomorphisms. The �rst group tobe onsidered is UC(X). The �nal reonstrution theorem for suh groups is stated inCorollary 5.6. The following is the main intermediate theorem.Theorem 5.5. Let X,Y ∈ KO
NRM. Suppose that X is UD.AC. Let τ ∈ H(X,Y ) be suhthat (UC0(X))τ ⊆ UC(Y ). Then τ ∈ UC(X,Y ).Proof. Variants of the argument used in this proof will be applied in several other proofs.Suppose by ontradition that τ 6∈ UC(X,Y ). Let d > 0 and ~x, ~y ⊆ X be suh that

limn→∞ d(xn, yn) = 0, and for every n ∈ N, d(τ (xn), τ (yn)) ≥ d. Sine τ is ontinuous,there is no z ∈ X suh that {n | xn = z} is in�nite. So we may assume that ~x is 1-1. Wemay further assume that for any distint m,n ∈ N, {xm, ym}∩ {xn, yn} = ∅. By 2.15(a),we may assume that either (i) ~x is Cauhy sequene, or (ii) there is e > 0 suh that ~x is
e-spaed.Case 1: (i) holds. Let x∗ = limE ~x. So x∗ ∈ E − X. Note that either x∗ ∈ int

E
(X)or x∗ ∈ clE(bd(X)). By the UD.AC-ness of X and sine limn→∞ d(xn, yn) = 0, we mayassume that for every n ∈ N there is an ar Ln ⊆ X onneting xn and yn suh that

limn→∞ diam(Ln) = 0. By indution on k, we de�ne nk ∈ N and rk > 0. Let n0 = 0.Suppose that nk has been de�ned. Let rk = 1
4d
E(Lnk

, {x∗}∪ (E−X)) and nk+1 be suhthat Lnk+1
⊆ BE(x∗, rk). We denote xnk

, ynk
and Lnk

by uk, vk and Jk respetively.Let Uk = BX(Jk, rk). Clearly, limk→∞ diam(Uk) = 0, and for every k ∈ N, δ(Uk) > rkand d(Uk,⋃{Um | m 6= k}) > rk. Let wk ∈ Jk − {uk} be suh that d(τ (uk), τ (wk)) <
1/(k+1). By Lemma 2.14(d), there is hk ∈ LIP(X) suh that supp(hk) ⊆ Uk, hk(uk) = ukand hk(wk) = vk.Let h = ◦k∈N hk. By Proposition 4.5, h ∈ UC(X). Sine δ(supp(hk)) > 0, h ∈
UC0(X). We hek that hτ 6∈ UC(Y ). Clearly, hτ (τ (uk)) = τ (uk) and hτ (τ (wk)) = τ (vk).However, limk→∞ d(τ (uk), τ (wk)) = 0, whereas for every k ∈ N, d(τ (uk), τ (vk)) ≥ d. So
hτ 6∈ UC(Y ).Case 2: (ii) holds. By the UD.AC-ness of X, and sine limn→∞ d(xn, yn) = 0, there is
N ∈ N suh that for every n ≥ N there is an ar Ln ⊆ X onneting xn and yn suh



92 M. Rubin and Y. Yomdinthat diam(Ln) < e/6 and limn→∞ diam(Ln) = 0. We may assume that N = 0. Let rn =

min(diam(Ln), δ(Ln)/2) and Un = B(Ln, rn). So δ(Un) > 0, limn→∞ diam(Un) = 0, andfor any distint m,n ∈ N, d(Um, Un) ≥ e/3. The proof now proeeds as in Case 1.The �nal result for groups of type UC(X) is at this stage as follows.Corollary 5.6. Let X,Y ∈ KO
NFCB. Suppose that X and Y are UD.AC spaes. Let

ϕ : UC(X) ∼= UC(Y ). Then there is τ ∈ UC±(X,Y ) suh that τ indues ϕ.Proof. Combine Corollary 2.26 and Theorem 5.5.In the ase of loal uniform ontinuity, we dedued from the fat that (UC(X))τ ⊆
LUC(Y ) that both τ and τ−1 are LUC. The analogue of this fat for uniform ontinuityis not true.Example 5.7. (a) Let X = Y = (1,∞), and τ : X → Y be de�ned by τ (x) =

√
x. Then

(UC(X))τ ⊆ UC(Y ), but τ−1 is not UC.(b) There are bounded open subsets X and Y of the Hilbert spae ℓ2 and τ ∈ H(X,Y )suh that (UC(X))τ ⊆ UC(Y ), but τ−1 is not uniformly ontinuous. The boundary ofboth X and Y is the union of a spaed family of spheres.Proof. (a) Clearly τ−1 6∈ UC(X). Let f ∈ UC(X). By Proposition 4.3(b), f is α-ontinuous for some α ∈ MC. By the uniform ontinuity of f−1, there is C suh that forevery y ∈ X, f−1(y + 1) − f−1(y) ≤ C. Set K = C + 1. We hek that f(x) ≥ x/K forevery x ∈ X. Let y ∈ X. Then f−1(y) − 1 ≤ f−1([y] + 1) − f−1(1) ≤ [y] · C ≤ y · C.Hene f−1(y) ≤ Cy + 1 ≤ (C + 1)y. That is, y ≤ f((C + 1)y). Write x = (C + 1)y. Weonlude that if x ≥ C + 1, then x/K ≤ f(x). The above inequality holds automatiallyfor x ≤ C + 1 sine f(x) ≥ 1.We show that fτ is (1, 2
√
Kα)-ontinuous. This trivially implies that fτ is UC. Let

y > x ≥ 1 be suh that y − x ≤ 1. We have τ−1(y) − τ−1(x) = y2 − x2 ≤ 2y(y − x).So f(τ−1(y)) − f(τ−1(x)) ≤ α(2y(y − x)) ≤ 2yα(y − x). The last inequality followsfrom the fat that 2y ≥ 1. Now, τfτ−1(y) − τfτ−1(x) =
√
f(y2) −

√
f(x2). Thereis c ∈ (f(x2), f(y2)) suh that √

f(y2) −
√
f(x2) = 1

2
√
c
(f(y2) − f(x2)). Reall that

f(x2) ≥ x2/K. So
fτ (y) − fτ (x) = τfτ−1(y) − τfτ−1(x) =

1

2
√
c
(f(y2) − f(x2)) ≤ 1

2
√
f(x2)

· 2yα(y − x)

≤ 1√
x2/K

· yα(y − x) ≤ 1√
x2/K

· 2xα(y − x) = 2
√
Kα(y − x).

(b) In ℓ2 let ei = (0, . . . , 0,
i
1, 0, . . .) and ai = 3

√
2ei. Let X = B(0, 6)−⋃

n>0B(ai, 1)and Y = B(0, 6) − ⋃
n>0B(ai, 1/n). For every n > 0 let hn : [0,∞) → [0,∞) be thepieewise linear funtion with two breakpoints whih takes 0 to 0, 1 to 1/n, and suhthat hn(t) = t for every t ≥ 2. Let τn : X → Y be de�ned by

τn(x) = an + hn(‖x− an‖)
x− an
‖x− an‖

,and τ = ◦n>0 τn. It is left to the reader to hek that τ is as required.



Reonstrution of manifolds from subgroups of homeomorphism groups 93We shall later see a �nite-dimensional example in whih (UC(X))τ ⊆ UC(Y ), but
τ−1 is not uniformly ontinuous. In Example 6.7(a) we onstrut two bounded domains
X,Y ⊆ R2 and τ ∈ H(X,Y ) with these properties.However, for some sets X, whih are very well behaved, the fat that (UC(X))τ ⊆
UC(Y ) does imply that τ−1 is uniformly ontinuous. Theorems 7.1 and 7.7(a) andRemark 7.8(b) and () prove the above impliation in some speial ases involving subsetsof a Banah spae or a Banah manifold. For example, the above impliation holds when
X and Y are spheres of a Banah spae.Proof of Theorem 5.2. Let X ′ and Y ′ be UD.AC open subsets of Rm and Rn respetively,
F = cl(X ′), K = cl(Y ′) and ϕ : H(F ) ∼= H(K). Let X = int(F ) and Y = int(K).Clearly, X and Y are regular open sets, F = cl(X) and K = cl(Y ). It is trivial to hekthat X and Y are UD.AC. It is also trivial to hek that if Z is a bounded regular opensubset of Rk, then H(cl(Z)) = {fcl | f ∈ UC(Z)}. Let ψ : H(X) → H(Y ) be de�ned by
ψ(f) = ϕ(fcl)↾Y . So ψ : UC(X) ∼= UC(Y ).By Theorem 2.8, there is τ ∈ H(X,Y ) suh that for every h ∈ UC(X), ψ(h) = hτ .Obviously, (UC(X))τ = UC(Y ). Applying Theorem 5.5 to τ and τ−1 one onludes that
τ and τ−1 are uniformly ontinuous. It follows that τ cl : F ∼= K. It is trivial that forevery h ∈ H(F ), ϕ(h) = hτ

l .Part (a) of the next example shows that in Theorem 5.2, the requirement that F and
K are bounded annot be dropped, and (b) shows that in Theorem 5.2, the requirementthat F and K are losures of UD.AC open sets annot be dropped.Example 5.8. (a) There are regular open onneted subsets X,Y ⊆ R2 suh that X,Yare UD.AC , X is bounded , cl(X) 6∼= cl(Y ) but H(cl(X)) ∼= H(cl(Y )).(b) There are regular open onneted subsets X,Y ⊆ R2 suh that X is UD.AC ,
X and Y are bounded , cl(X) 6∼= cl(Y ) but H(cl(X)) ∼= H(cl(Y )).Proof. (a) Let x ∈ S(0, 1) and Bi = B(x/22i+2, 1/22i+3). So ⋃

i∈N
Bi ⊆ B(0, 1/2), forevery i 6= j, cl(Bi) ∩ cl(Bj) = ∅ and limi→∞Bi = 0.Let F = cl(B(0, 1)) − ⋃

i∈N
Bi. Let τ (x) := x/‖x‖2 be the inversion map in R2 and

K = τ (F − {0}). Let X = int(F ) and Y = int(K). Then F = cl(X) and K = cl(Y ).Clearly, X,Y are UD.AC. It is easy to see that H(K) = {(h↾(F − {0}))τ | h ∈ H(F )}.So H(F ) ∼= H(K). It is obvious F 6∼= K.(b) Let
X0 = {(θ − π, t) | θ ∈ (0, 2π), t ∈ (1 − 1

4 |sin(θ/2)|, 1 + 1
4 |sin(θ/2)|)}and

Y0 = {t · (cos θ, sin θ) | θ ∈ (0, 2π), t ∈ (1 − 1
4 |sin(θ/2)|, 1 + 1

4 |sin(θ/2)|)}.Note that X0 is a strip surrounding the line segment ((−π, 0), (π, 0)) with width tendingto 0 as (θ, 0) approahes (−π, 0) and (π, 0), and Y0 is a strip surrounding the irularar {(cos θ, sin θ) | θ ∈ (0, 2π)} with width tending to 0 as θ approahes 0 and 2π. Let
τ : X0 → Y0 be de�ned by τ ((θ − π, t)) = t · (cos θ, sin θ). Then τ ∈ H(X0, Y0).For every n ∈ Z let xn = ( n

|n|+1 · π, 0), rn = 1
3 min(δX0(xn), d(xn, {xi | i ∈ Z− {n}}))and Bn = B(xn, rn). So Bn ⊆ X0, for n 6= m, Bn ∩ Bm = ∅, limn→∞Bn = (π, 0) and
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limn→−∞Bn = (−π, 0). Let X = X0 − ⋃

n∈Z
Bn and Y = τ (X). Clearly, X and Yare bounded, onneted and regular open. Hene H(cl(X)) = (H(X))cl, and the sameholds for Y . It is also obvious that cl(X) 6∼= cl(Y ). Note that for every h ∈ H(cl(X)),

h((π, 0)) ∈ {(π, 0), (−π, 0)} and the same holds for (−π, 0). Also, for every h ∈ H(cl(Y )),
h((1, 0)) = (1, 0). It follows that hcl 7→ (hτ )cl, h ∈ H(X), is an isomorphism between
H(cl(X)) and H(cl(Y )).Example 5.8(b) leads to the following questions.Question 5.9. A topologial spae Z has the Perfet Orbit Property if for every z ∈ Z,
z ∈ acc({h(z) | h ∈ H(Z)}). Is it true that for every open X ⊆ Rm and Y ⊆ Rn: if cl(X)and cl(Y ) have the Perfet Orbit Property and ϕ : H(cl(X)) ∼= H(cl(Y )), then there is
τ ∈ H(cl(X), cl(Y )) suh that τ indues ϕ?If the above is not true, is the onlusion in the above question true for open subsetsof Rn that have the following stronger property: For every x ∈ bd(X) the orbit of xunder H(cl(X)) is loally arwise onneted?Is the same true for open subsets of in�nite-dimensional normed spaes? �The generalization of Corollary 5.6 is not true for all moduli of ontinuity. As shownin the next example, Γ

LIP is a ounter-example. The question whether Theorem 5.6 istrue for any ountably generated Γ is open.Question 5.10. Is there a ountably generated modulus of ontinuity Γ suh that forevery normed spae E and τ ∈ H(E): if (HΓ (E))τ = HΓ (E), then τ ∈ HΓ (E)? �Example 5.11. Let E be a normed spae and τ ∈ H(E) be de�ned by : τ (x) = x if
‖x‖ ≤ 1 and τ (x) = ‖x‖ · x if ‖x‖ > 1. Then (LIP(E))τ = LIP(E) and τ 6∈ LIP(E,E).Proof. Let g ∈ LIP(X,X). We show that gτ is Lipshitz. Let r be suh that r ≥ 1, ‖g(0)‖and g(B(0, r)) ⊇ B(0, 1). We show that gτ ↾(E − B(0, r2)) is Lipshitz. Suppose that gis K-Lipshitz. Let u ∈ E −B(0, r). Then

‖g(u)‖ ≤ ‖g(u) − g(0)‖ + ‖g(0)‖ ≤ K‖u‖ + ‖g(0)‖ ≤ K‖u‖ + ‖u‖ = (K + 1)‖u‖.That is,(i) ‖g(u)‖ ≤ (K + 1)‖u‖.For u, v ∈ E−{0} write w(u, v) = ‖v‖
‖u‖u, and for u, v 6= g−1(0) set wg(u, v) = w(g(u), g(v)).Clearly,(ii) ‖u− w(u, v)‖ = |‖u‖ − ‖v‖| ≤ ‖u− v‖,(iii) ‖w(u, v) − v‖ ≤ ‖w(u, v) − u‖ + ‖u− v‖ ≤ 2‖u− v‖,and it follows that(iv) ‖g(u) − wg(u, v)‖ ≤ K‖u− v‖,(v) ‖wg(u, v) − g(v)‖ ≤ 2K‖u− v‖.Claim 1. There is M suh that for every x, y ∈ E−B(0, r2): if y = λx for some λ > 1,then ‖gτ (y) − gτ (x)‖ ≤M‖y − x‖.Proof. Let x = az and y = (a+ e)z, where ‖z‖ = 1 and a > 0. Clearly, e > 0 and hene

‖y − x‖ = e. Also, a ≥ r2. Then ‖τ−1((a+ e)z)− τ−1(az)‖ =
√
a+ e−√

a ≤ e/
√
a+ e.
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√
a+ e. The next inequalityuses the de�nitions of τ and wg, the K-Lipshitzness of g and (i):

‖τ (g(u)) − τ (wg(u, v))‖ = |‖g(u)‖2 − ‖wg(u, v)‖2| = |‖g(u)‖2 − ‖g(v)‖2|
= (‖g(u)‖ + ‖g(v)‖) · |‖g(u)‖ − ‖g(v)‖| ≤ (‖g(u)‖ + ‖g(v)‖) · ‖g(u) − g(v)‖

≤ (‖g(u)‖ + ‖g(v)‖) ·K‖u− v‖ ≤ (‖g(u)‖ + ‖g(v)‖) · Ke√
a+ e

≤ (K + 1)(‖u‖ + ‖v‖) · Ke√
a+ e

= (K + 1)(
√
a+ e+

√
a) · Ke√

a+ e

≤ 2(K + 1)2
√
a+ e · e√

a+ e
= 2(K + 1)2e = 2(K + 1)2‖y − x‖.We next �nd a bound for ‖τ (wg(u, v)) − τ (g(v))‖. Sine g is K-Lipshitz and by (v),

‖τ (wg(u, v)) − τ (g(v))‖ = ‖g(v)‖ · ‖wg(u, v) − g(v)‖ ≤ (K + 1) · ‖v‖ · 2K · ‖u− v‖
≤ (K + 1) · √a · 2K · e√

a+ e
≤ 2(K + 1)2 · ‖y − x‖.Note that gτ (y) = τ (g(u)) and gτ (x) = τ (g(v)). It follows that

‖gτ (y)−gτ (x)‖ ≤ ‖τ (g(u))−τ (wg(u, v))‖+‖τ (wg(u, v))−τ (g(v))‖ ≤ 4(K+1)2 · ‖y−x‖.So Claim 1 is proved.Claim 2. There is M suh that for every x, y ∈ E − B(0, r2): if ‖x‖ = ‖y‖, then
‖gτ (x) − gτ (y)‖ ≤M‖x− y‖.Proof. Let ‖x‖ = ‖y‖ = a ≥ r2. Set u = τ−1(x) and v = τ−1(y). Then by (iv),
‖g(u) − wg(u, v)‖ ≤ K‖u− v‖. So
‖τ (g(u)) − τ (wg(u, v))‖ = |‖g(u)‖2 − ‖wg(u, v)‖2| = |‖g(u)‖2 − ‖g(v)‖2|

= (‖g(u)‖ + ‖g(v)‖) · |‖g(u)‖ − ‖g(v)‖| ≤ (K + 1)(‖u‖ + ‖v‖) · ‖g(u) − g(v)‖

≤ 2(K + 1)
√
a ·K‖u− v‖ = 2(K + 1)K

√
a · ‖x− y‖√

a
≤ 2(K + 1)2‖x− y‖.We next �nd a bound for ‖τ (wg(u, v)) − τ (g(v))‖. By (iv) we have ‖wg(u, v) − g(v)‖ ≤

2K‖u− v‖. So
‖τ (wg(u, v)) − τ (g(v))‖ = ‖g(v)‖ · ‖wg(u, v) − g(v)‖ ≤ (K + 1)

√
a · ‖wg(u, v) − g(v)‖

≤ (K + 1)
√
a · 2K‖u− v‖ = (K + 1)

√
a · 2K · ‖x− y‖√

a
≤ 2(K + 1)2‖x− y‖.It follows that ‖gτ (x) − gτ (y)‖ ≤ 4(K + 1)2‖x− y‖. We have proved Claim 2.Let x, y ∈ E −B(0, r2). By Claims 1 and 2 and by (ii) and (iii),

‖gτ (x) − gτ (y)‖ ≤ ‖gτ (x) − gτ (w(x, y))‖ + ‖gτ (w(x, y)) − gτ (y)‖
≤ 4(K + 1)2‖x− w(x, y)‖ + 4(K + 1)2‖w(x, y) − y‖ ≤ 12(K + 1)2‖x− y‖.We have shown that if g is Lipshitz, then gτ ↾(E − B(0, r2)) is Lipshitz. Sine forevery bounded set B, τ↾B is bilipshitz, it follows that gτ ↾B(0, r2) is Lipshitz. It is nowesay to onlude that gτ is Lipshitz.



96 M. Rubin and Y. YomdinThe proof that (LIP(E))τ
−1 ⊆ LIP(E) is slightly di�erent. Denote τ−1 by η. Weprove that if g is bilipshitz, then gη is Lipshitz. Let g ∈ LIP(X), suppose that g is

K-bilipshitz and let r be suh that r ≥ max(1, 2K‖g(0)‖) and g(B(0, r)) ⊇ B(0, 1). Weshow that gη↾(E −B(0,
√
r)) is Lipshitz.We shall use fats (ii)�(v) from the preeding part of the proof. In addition, we needthe following fat. Let u ∈ E −B(0, r). Then

‖g(u)‖ ≥ ‖g(u) − g(0)‖ − ‖g(0)‖ ≥ ‖u‖/K − ‖g(0)‖ ≥ ‖u‖/K − ‖u‖/2K = ‖u‖/(2K).That is,(vi) ‖g(u)‖ ≥ ‖u‖/(2K).Claim 3. There is M suh that for every x, y ∈ E−B(0,
√
r): if y = λx for some λ > 1,then ‖gη(y) − gη(x)‖ ≤M‖y − x‖.Proof. Let x = az and y = (a+ e)z, where ‖z‖ = 1 and a, e > 0. Then ‖y − x‖ = e and

a ≥ √
r. Set u = η−1((a+e)z) and v = η−1(az). We skip the veri�ation of the followingfats:

‖gη(x) − η(wg(v, u))‖ ≤
√

2K3/2‖x− y‖,(1)

‖η(wg(v, u)) − gη(y)‖ ≤ 4
√

2K3/2‖x− y‖.(2)From (1) and (2) it follows that
‖gη(x)− gη(y)‖ ≤ ‖η(g(v))− η(wg(v, u))‖+ ‖η(wg(v, u))− η(g(u))‖ ≤ 5

√
2K3/2‖x− y‖.This proves Claim 3.Claim 4. There is M suh that for every x, y ∈ E − B(0,

√
r): if ‖x‖ = ‖y‖, then

‖gη(x) − gη(y)‖ ≤M‖x− y‖.Proof. Let ‖x‖ = ‖y‖ ≥ √
r. Set u = η−1(x) and v = η−1(y). We skip the veri�ation ofthe following fats:

‖η(gη(y)) − η(wg(v, u))‖ ≤ (
√

2/2)K3/2‖y − x‖,(3)

‖η(wg(v, u)) − gη(x)‖ ≤ 2
√

2K3/2‖y − x‖.(4)We onlude that
‖gη(y) − gη(x)‖ ≤ (5

√
2/2)K3/2‖y − x‖.This proves Claim 4.The rest of the argument is the same as in the preeding part of the proof.5.3. The group of homeomorphisms whih are uniformly ontinuous on everybounded set. We now turn to the group BUC(X) of all homeomorphisms f of X suhthat f and f−1 are boundedness preserving, and f and f−1 are uniformly ontinuous onevery bounded subset of X. The �nal reonstrution result for suh groups is stated inTheorem 5.20. The onlusion of 5.20 is the statement: (∗) if ϕ : BUC(X) ∼= BUC(Y ),then there is τ ∈ BUC±(X,Y ) suh that τ indues ϕ. However, (∗) is not true forgeneral open subsets of a normed spae, so we shall make some extra assumptions on

X and Y . These assumptions are (roughly): (1) X and Y are uniformly-in-diameter



Reonstrution of manifolds from subgroups of homeomorphism groups 97arwise-onneted; (2) the orbit of every member of bd(X) under the ation of BUC(X)ontains an ar, and the same holds for Y .Let ABUC(X,Y ) = {h ∈ H(X,Y ) | for every bounded set A ⊆ X, h↾A is UC}.Reall that ABUC(X) = ABUC±(X,X). While BUC(X) is a group, it is not alwaystrue that ABUC(X) is a group. It is easy to onstrut an open set X in a normedspae and f ∈ ABUC(X) suh that f takes a bounded set to an unbounded set. We anthen hoose another g ∈ ABUC(X) suh that g ◦ f 6∈ ABUC(X). However, if X has thedisrete path property for large distanes (see 4.2(f)), then every member of ABUC(X)is boundedness preserving, and hene ABUC(X) = BUC(X). So ABUC(X) is a group.Proposition 5.12. Let X have the disrete path property for large distanes.(a) There are a1, b1 > 0 suh that , for every x, y ∈ X and 0 < t < d(x, y), there are
n ∈ N and x = x0, x1, . . . , xn = y suh that n ≤ (a1d(x, y) + b1)/t, and for every i < n,
d(xi, xi+1) ≤ t.(b) If Y is a metri spae, and τ ∈ ABUC(X,Y ), then τ is boundedness preserving.(Hene τ ∈ BUC(X,Y ).)() BUC(X) = ABUC(X).Proof. (a) Let x = z0, z1, . . . , zm = y be suh that d(zi, zi+1) < t/2 for every i < m,and ∑

i<m d(zi, zi+1) ≤ ad(x, y) + b. There are n ∈ N and 0 = i0 < · · · < in ≤ msuh that for every j < n, t/2 ≤ d(zij , zij+1
) < t and d(zin , zm) ≤ t/2. It followsthat n · t2 ≤ ∑

j<in
d(zj , zj+1) ≤ ad(x, y) + b. Hene n ≤ (2ad(x, y) + 2b)/t and so

n+ 1 ≤ ((2a+ 1)d(x, y) + 2b)/t. For j ≤ n de�ne xj = zij and de�ne xn+1 = zm. Then
n+ 1 and x0, . . . , xn+1 are as required. That is, we may take a1 and b1 to be 2a+ 1 and
2b. So (a) is proved.(b) Let a1, b1 be the numbers obtained by applying (a) to X. Let C ⊆ X be bounded.De�ne r = diam(C) and B = B(C, a1r + b1). Sine B is bounded, there is δ > 0suh that for every x, y ∈ B: if d(x, y) ≤ δ, then d(τ (x), τ (y)) ≤ 1. Let x, y ∈ C. If
d(x, y) ≤ δ, then d(τ (x), τ (y)) ≤ 1. Otherwise, let n ∈ N and x = z0, . . . , zn = y besuh that n ≤ (a1d(x, y) + b1)/δ and d(zi, zi+1)) ≤ δ for every i < n. So for every i ≤ n,
d(x, zi) ≤ nδ ≤ a1d(x,y)+b1

δ ·δ ≤ a1r+b1. So zi ∈ B and hene d(τ (zi), τ (zi+1)) ≤ 1. Then
d(τ (x), τ (y)) ≤ ∑

i<n d(τ (zi), τ (zi+1)) ≤ n ≤ (a1d(x, y) + b1)/δ ≤ (a1 · diam(C) + b1)/δ.So τ (C) is bounded.() By (b), if f ∈ ABUC(X,X), then f ∈ BUC(X,X). So ABUC(X) = BUC(X).Remark. Part (b) of the above proposition follows trivially from Proposition 4.3(b).However, the proof of 4.3 was left to the reader. �Suppose that τ ∈ H(X,Y ) and (UC(X))τ ⊆ ABUC(Y ). Assuming that τ is bound-edness preserving, the proof that τ ∈ ABUC(X,Y ) is just as the proof of 5.5. This is theontent of the next lemma. The main problem will be to dedue that τ is boundednesspreserving.Definition 5.13. Let X be a metri spae. X is boundedly uniformly-in-diameterarwise-onneted (X is BUD.AC ) if for every bounded set B ⊆ X and ε > 0 thereis δ > 0 suh that for every x, y ∈ B: if d(x, y) < δ, then there is an ar L ⊆ Xonneting x and y suh that diam(L) < ε. �



98 M. Rubin and Y. YomdinLemma 5.14. Let X be BUD.AC , and τ ∈ H(X,Y ) be boundedness preserving. Supposethat (UC(X))τ ⊆ BUC(Y ). Then τ ∈ BUC(X,Y ).Proof. The proof is the same as that of 5.5.The following example is a preparation for Theorem 5.18. It shows that the assump-tions of that theorem are �orret�.Example 5.15. (a) Let X = BE(0, 1) − {0}, Y = E − cl(BE(0, 1)), and τ (x) := x
‖x‖2be the inversion map from X to Y . Then (BUC(X))τ = BUC(Y ), but τ is not ABUC.Note that 0 ∈ bd(X) and for every h ∈ BUC(X), hcl(0) = 0. In part (b) we get rid ofthis pathology.(b) Let X, Y and τ be as in part (a). Let X1 = X × R, Y1 = Y × R and τ1(x, y) =

(τ (x), y). Then (BUC(X1))
τ1 ⊆ BUC(Y1), but τ1 is not ABUC. In this example, Xdoes not have boundary points �xed under BUC(X), but we have ontainment and notequality between (BUC(X1))
τ1 and BUC(Y1). �We next formulate the movability property of X, whih will be used in the proof that

τ is boundedness preserving. It is rather tehnial but it inludes many open sets whoseboundary is not so well-behaved.Definition 5.16. For h : [0, 1] × X → X and t ∈ [0, 1] we de�ne ht(x) := h(t, x). Wesay that X has Property MV1 if for every bounded B ⊆ X there are r = rB > 0 and
α = αB ∈ MC suh that for every x ∈ B and 0 < s ≤ r, there is an α-ontinuous funtion
h : [0, 1]×X → X suh that: (1) for every t ∈ [0, 1], ht ∈ H(X) and h−1

t is α-ontinuous;(2) h0 = Id and d(x, h1(x)) = s; and (3) for every t ∈ [0, 1], supp(ht) ⊆ B(x, 2s). �Note that if there is x ∈ bd(X) suh that f(x) = x for every f ∈ BUC(X), then
X does not have Property MV1. On the other hand, Property MV1 holds for setswhose boundary is, in a ertain sense, well-behaved. Open half spaes, open balls, andomplements of losed subspaes ful�ll MV1.The following family of examples ontains open sets X suh that cl(X) is not amanifold with boundary. Let U be any nonempty open subset of a normed spae E0 and
X = U × R. Then X has Property MV1. More generally, X has Property MV1 if thefollowing happens. Let E0 be a normed spae, E = E0×R, s > 0 and α ∈ MBC. Supposethat X is an open subset of E with the following property. For every x ∈ bd(X) there are:an open subset U ⊆ E0, x0 ∈ bd(U) and a homeomorphism ϕ from BE0(x0, s) × [−1, 1]into E, suh that:(1) ϕ(x0, 0) = x,(2) Rng(ϕ) is losed in E, and ϕ(BE0(x0, s) × (−1, 1)) is open in E,(3) X ∩ Rng(ϕ) = ϕ((U ∩BE0(x0, s)) × [−1, 1]),(4) ϕ is α-biontinuous.Proposition 5.17. (a) Let X be a metri spae, α ∈ MC and {hn | n ∈ N} ⊆ H(X).Suppose that for any distint m,n ∈ N, hm is α-ontinuous and supp(hm)∩supp(hn) = ∅.Then ◦n∈N hn is α ◦α-ontinuous.



Reonstrution of manifolds from subgroups of homeomorphism groups 99(b) Let X be a subset of a normed spae E, α ∈ MC and {hn | n ∈ N} ⊆ H(X).Suppose that for any distint m,n ∈ N, hm is α-ontinuous , clE(supp(hn)) ⊆ X and
supp(hm) ∩ supp(hn) = ∅. Then ◦n∈N hn is 2α-ontinuous.Proof. (a) De�ne h = ◦n∈N hn. Let x, y ∈ X. Then there are m,n ∈ N suh that x, y ∈
supp(hm)∪supp(hn)∪(X−⋃

i∈N
supp(hi)). So h(x) = hm ◦hn(x) and h(y) = hm ◦hn(y).Sine hm ◦hn is α ◦α-ontinuous, d(h(x), h(y)) ≤ α ◦α(d(x, y)).(b) De�ne h = ◦n∈N hn. Let x, y ∈ X. Then there are m,n ∈ N suh that x, y ∈

supp(hm) ∪ supp(hn) ∪ (X − ⋃
i∈N

supp(hi)). If x or y belong to X − ⋃
i∈N

supp(hi),or x, y ∈ supp(hm), or x, y ∈ supp(hn), then either d(h(x), h(y)) = d(hm(x), hm(y)) ≤
α(d(x, y)), or d(h(x), h(y)) = d(hn(x), hn(y)) ≤ α(d(x, y)).So we may assume that x ∈ supp(hm) and y ∈ supp(hn). Let z ∈ [x, y]∩bd(supp(hm)).Then z ∈ X and z 6∈ supp(hn). Hene hm(z) = hn(z) = z. So

d(h(x), h(y)) ≤ d(h(x), h(z)) + d(h(z), h(y)) = d(hm(x), hm(z)) + d(hn(z), hn(y))

≤ α(d(x, z)) + α(d(z, y)) ≤ 2α(d(x, y)).Theorem 5.18. Let X,Y ∈ KO
NRM. Suppose that X has Property MV1 , and let τ ∈

H(X,Y ) be suh that (UC(X))τ ⊆ BUC(Y ) ⊆ (BUC(X))τ . Then τ is boundednesspreserving.Proof. Suppose otherwise. Let ~x ⊆ X be a bounded sequene suh that τ (~x) is un-bounded. We may assume that either ~x is a Cauhy sequene or ~x is spaed.Case 1: ~x is a Cauhy sequene. Applying MV1 to the bounded set Rng(~x) we obtain r =

rRng(~x) > 0 and α = αRng(~x) ∈ MC. Set x∗ = limE ~x, and hoose δ > 0 suh that δ, α(δ) <

r/4, and m suh that d(xm, x∗) < δ. Let h : [0, 1] ×X → X be the isotopy provided byMV1 when x and s are taken to be xm and r, and let h̄ = hcl
[0,1]×E . (See De�nition 4.6.)From the fat that h is α-ontinuous it follows that h̄ : cl[0,1]×E([0, 1]×X) → clE(X) and

h̄ is α-ontinuous. Sine h̄1 is α-ontinuous, d(h̄1(x
∗), h̄1(xm)) ≤ α(d(x∗, xm)) < α(δ) <

r/4. So d(x∗, h̄1(x
∗)) ≥ d(xm, h̄1(xm))−d(xm, x∗)−d(h̄1(xm), h̄1(x

∗)) > r− r/4− r/4 =

r/2. That is, d(x∗, h̄1(x
∗)) > r/2. For n ∈ N de�ne Ln = h(xn, [0, 1]).Claim 1. limn→∞ d(τ (Ln), 0) = ∞.Proof. Suppose otherwise. Then there are a 1-1 sequene {nk | k ∈ N} and a sequene

{tk | k ∈ N} ⊆ [0, 1] suh that {τ (h(xnk
, tk)) | k ∈ N} is bounded. We may assumethat {tk | k ∈ N} onverges to t∗. Sine ht∗ ∈ UC(X), (ht∗)

τ ∈ BUC(Y ). In partiular,
(ht∗)

τ ∈ BDD.P(Y ). It follows that {τ (ht∗(xnk
)) | k ∈ N} = (ht∗)

τ ({τ (xnk
) | k ∈ N}) isunbounded. Let Ik be the interval whose endpoints are tk and t∗ and L′

k = h(Ik×{xnk
}).By the α-ontinuity of h, limk→∞ diam(L′

k) = 0. Proeeding as in the proof of Case 1of Theorem 5.5, we onstrut a 1-1 sequene {ki | i ∈ N} and g ∈ UC(X) suh that
g(h(tki

, xnki
)) = h(t∗, xnki

). The fat that g ∈ UC(X) implies that gτ ∈ BUC(Y ), soin partiular, gτ is boundedness preserving. However, gτ takes the bounded sequene
τ (h(tki

, xnki
)) to the unbounded sequene τ (h(t∗, xnki

)). A ontradition, so Claim 1 isproved.



100 M. Rubin and Y. YomdinLet un = h(1, xn) and Un = BY (τ (Ln), 1). There is a subsequene {Unk
| k ∈ N} of

{Un | n ∈ N} suh that for every k ∈ N, Unk
⊆ B(0, d(0, Unk+1

))/2. For every k ∈ N, let
gk ∈ UC(Y ) be suh that supp(gk) ⊆ Unk

and gk(τ (xnk
)) = τ (unk

). Let g = ◦k∈N g2kand f = gτ
−1 .Clearly, g ∈ BUC(Y ). So f must belong to BUC(X). Note that limn∈N un = h̄1(x

∗) 6=
x∗ = limn∈N xn. So sine f(xn2k

) = un2k
and f(xn2k+1

) = xn2k+1
, {f(xnk

) | k ∈ N} isnot onvergent in E. However, {xnk
| k ∈ N} is onvergent in E. Hene f takes aCauhy sequene to a sequene whih is not a Cauhy sequene. So f 6∈ BUC(X), aontradition.Case 2: ~x is spaed. Let r0 > 0 be suh that ~x is 5r0-spaed. Applying MV1 tothe bounded set Rng(~x) we obtain r1 = rRng(~x) > 0 and α = αRng(~x) ∈ MC. Let

s = min(r0, r1). For every n ∈ N let hn : [0, 1]×X → X be the funtion ensured by MV1for xn and s. Reall that for t ∈ [0, 1], hn,t(x) is the homeomorphism of X taking every
x ∈ X to hn(t, x). Set Ln = hn([0, 1] × {xn}).Claim 2. limn→∞ d(τ (Ln), 0) = ∞.Proof. Suppose otherwise. Then there are a 1-1 sequene {nk | k ∈ N} and a sequene
{tk | k ∈ N} ⊆ [0, 1] suh that {τ (hnk

(tk, xnk
)) | k ∈ N} is bounded. Clearly, for anydistint m,n ∈ N and q, t ∈ [0, 1], d(supp(hm,q), supp(hn,t)) ≥ r0. So by 5.17(a), f :=

◦k∈N hnk,tk ∈ UC(X). So fτ ∈ BUC(Y ) ⊆ BDD.P(Y ). We shall reah a ontradition byshowing that fτ takes an unbounded sequene to a bounded sequene. {τ (xnk
) | k ∈ N}is unbounded, whereas fτ ({τ (xnk

) | k ∈ N}) = {τ (hnk
(tk, xnk

)) | k ∈ N} is bounded.Claim 2 is thus proved.Let un = hn(1, xn), vn = hn(1/n, xn) and Un = BY (τ (Ln), 1). There is a subsequene
{Unk

| k ∈ N} of {Un | n ∈ N} suh that for every k ∈ N, Unk
⊆ B(0, d(0, Unk+1

))/2.For every k ∈ N, let gk ∈ UC(Y ) be suh that supp(gk) ⊆ Unk
, gk(τ (xnk

)) = τ (xnk
) and

gk(τ (vnk
)) = τ (unk

). Let g = ◦k∈N gk and f = gτ
−1 .Clearly, g ∈ BUC(Y ). So f must belong to BUC(X). By the α-ontinuity of all hn's,

limk→∞ d(xnk
, vnk

) = 0, whereas for every k ∈ N, d(f(xnk
), f(vnk

)) = d(xnk
, unk

) = s.So f 6∈ BUC(X), a ontradition.Reall the onvention that X and Y denote open subsets of the normed spaes Eand F .Corollary 5.19. Let X,Y ∈ KO
NRM. Suppose that X is BUD.AC , and X has Prop-erty MV1. Let τ ∈ H(X,Y ) be suh that (UC(X))τ ⊆ BUC(Y ) and (BUC(Y ))τ

−1 ⊆
BUC(X). Then τ ∈ BUC(X,Y ).Proof. Combine Lemma 5.14 and Theorem 5.18.The following theorem is the �nal result for groups of type BUC(X).Theorem 5.20. Let X,Y ∈ KO

NFCB. Suppose that X and Y are BUD.AC , and X and
Y have Property MV1. Let ϕ : BUC(X) ∼= BUC(Y ). Then there is τ ∈ BUC±(X,Y )suh that τ indues ϕ.Proof. Combine Corollaries 2.26 and 5.19.



Reonstrution of manifolds from subgroups of homeomorphism groups 1015.4. Groups of homeomorphisms whih are uniformly ontinuous on everybounded positively distaned set. We next deal with the group BPD.UC(X) andwith some related groups. Reall that BPD.UC(X) is the group of all homeomorphisms
f suh that f and f−1 take every subset of X whose distane from the boundary of Xis positive to a set whose distane from the boundary of X is positive, and suh that fand f−1 are uniformly ontinuous on every suh set. The generalization of BPD.UC(X)to arbitrary moduli of ontinuity is denoted by HNBPD

Γ
(X). That is, BPD.UC(X) is thegroup HNBPD

Γ
(X) when Γ = MC. These groups are explained in the next de�nition. The�nal reonstrution result for suh groups appears in Theorem 5.32, and this result isobtained for ountably generated Γ 's and for Γ = MC. The main intermediate result forountably generated Γ 's appears in Theorem 5.24(b), and it says that if (LIP00(X))τ ⊆

HNBPD
Γ

(X), then τ ∈ HNBPD
Γ

(X,Y ). The intermediate result fot Γ = MC appears inTheorem 5.31. The analogous statement here is: if (UC00(X))τ ⊆ BPD.UC(Y ), then
τ ∈ BPD.UC(X,Y ). The groups LIP00(X) and UC00(X) are de�ned in 5.23.For open subsets of a Banah spae we an also onlude that τ−1 ∈ BPD.UC(X,Y ).That is, if (BUC(X))τ ⊆ BPD.UC(Y ), then τ−1 ∈ BPD.UC(Y,X). This is done inTheorem 5.41(a).A weaker variant of uniform ontinuity pops up, and is also dealt with. Groups arisingfrom this variant are de�ned in 5.21() and are denoted by HWBPD

Γ
(X). The �nal resultfor suh groups is stated in Theorem 5.36. The main intermediate results for suh groupsappear in Theorem 5.24(a) and Proposition 5.35.We next de�ne the groups HBPD

Γ
(X), HNBPD

Γ
(X) and HWBPD

Γ
(X).Definition 5.21. (a) De�ne

HBPD
Γ (X,Y ) = {f ∈ BPD.P(X,Y ) | for every BPD set A ⊆ X, f↾A is Γ -ontinuous}.(b) Let Γ be a modulus of ontinuity and f : X → Y . We say that f is nearly

Γ -ontinuous on BPD sets if for every BPD set A ⊆ X there are α ∈ Γ and r > 0 suhthat f↾A is (r, α)-ontinuous. See De�nition 4.2(b). We denote by HNBPD
Γ

(X,Y ) the setof all h ∈ BPD.P(X,Y ) suh that h is nearly Γ -ontinuous on BPD sets.() Let α ∈ MC, and f : X → Y be a funtion between metri spaes. Reall thataording to De�nition 1.12(a), f is loally {α}-ontinuous if for every x ∈ X there is
U ∈ NbrX(x) suh that f↾U is α-ontinuous. Let f : X → Y be a funtion betweenmetri spaes and Γ be a modulus of ontinuity. Call f weakly Γ -ontinuous if there is
α ∈ Γ suh that f is loally {α}-ontinuous. If f ∈ H(X,Y ) and both f and f−1 areweakly Γ -ontinuous, then f is said to be weakly Γ -biontinuous.Let X and Y be open subsets of normed spaes E and F respetively, Γ be a modulusof ontinuity and f : X → Y . Call f weakly Γ -ontinuous on BPD sets if for every BPDset A ⊆ X, f↾A is weakly Γ -ontinuous. We denote by HWBPD

Γ
(X,Y ) the set of all

h ∈ BPD.P(X,Y ) suh that h is weakly Γ -ontinuous on BPD sets.(d) Let X be a subset of a metri spae E. X has the disrete path property for BPDsets if for every BPD subset A ⊆ X there are d > 0 andK ≥ 1 suh that for every x, y ∈ Aand r > 0 there are n ∈ N and x = x0, . . . , xn = y ∈ X suh that n ≤ K · d(x, y)/r, andfor every i < n, δ(xi) > d and d(xi, xi+1) ≤ r. �



102 M. Rubin and Y. YomdinNote that HBPD
Γ

(X), HNBPD
Γ

(X) and HWBPD
Γ

(X) are groups. It is easy to hek thatfor X's whih are open subsets of a �nite-dimensional normed spae, X has the disretepath property for BPD sets i� X is onneted. For in�nite-dimensional normed spaesneither of the above impliations is true. In any ase, �well-behaved� open subsets ofa normed spae have the disrete path property for BPD sets. For example, an openball has this property. We �rst observe the following easy fats. Part (a) follows fromProposition 4.3(a), and the proof of (b) is left to the reader.Proposition 5.22. (a) BPD.UC(X) = HNBPD
MC (X).(b) Suppose that X has the disrete path property for BPD sets. Then HBPD

Γ
(X) =

HNBPD
Γ

(X).Definition 5.23. (a) X is BPD-arwise-onneted (X is BPD.AC ) if for every BPD set
A ⊆ X there are C,D > 0 suh that for every x, y ∈ A there is a reti�able ar L ⊆ Xonneting x and y suh that lngth(L) ≤ D and δ(L) ≥ C.(b) In some of the subsequent lemmas it will be onvenient to regard a sequene as afuntion whose domain is an in�nite subset of N. So if σ ⊆ N is in�nite, then the objet
{xi | i ∈ σ} is onsidered to be a sequene. The notions of a subsequene, a onvergentsequene et. are easily modi�ed to �t into this setting.() Let LIP00(X) = {h ∈ LIP(X) | supp(h) is a BPD set} and UC00(X) = {h ∈
UC(X) | supp(h) is a BPD set}.(d) For x ∈ X let δX1 (x) = max(‖x‖, 1/δX(x)). We abbreviate δX1 (x) by δ1(x).(e) Let A ⊆ N and n ∈ N. De�ne A≥n = {m ∈ A | m ≥ n}. The notations A>n,
A≤n, A<n et. are de�ned analogously. �Note that if X is BPD.AC, then X is onneted. Note that a subset A ⊆ X is BPDi� sup({δX1 (x) | x ∈ A}) <∞.Theorem 5.24. Let Γ be a ountably generated modulus of ontinuity. Suppose that
X and Y are open subsets of normed spaes E and F respetively , X is BPD.AC and
τ ∈ H(X,Y ).(a) If (LIP00(X))τ ⊆ HWBPD

Γ
(Y ), then τ ∈ HWBPD

Γ
(X,Y ).(b) If (LIP00(X))τ ⊆ HNBPD

Γ
(Y ), then τ ∈ HNBPD

Γ
(X,Y ).The argument of Claim 3 in the proof below is repeated in some other proofs.Lemma 5.25. Suppose that X is BPD.AC , τ ∈ H(X,Y ) and (LIP00(X))τ ⊆ BPD.P(Y ).Then τ ∈ BPD.P(X,Y ).Proof. Let X,Y and τ be as in the lemma.Claim 1. Suppose that u ∈ X, 0 < r < s, B(u, s) ⊆ X and ~x ⊆ B(u, r). Then τ (~x) isBPD in Y .Proof. Suppose by ontradition that τ (~x) is not BPD in Y . Let a ∈ (0, 1) be suh that

τ (B(u, ar)) is BPD in Y . Let η : [0,∞) → [0,∞) be the pieewise linear funtion withbreakpoints at ar and (r+ s)/2 suh that η(ar) = r and for every t ≥ (r+ s)/2, η(t) = t.Let h = RadEη,u↾X. (See De�nition 3.17(b).) Then h ∈ LIP00(X). Let ~v = h−1(~x).Clearly, ~v ⊆ B(u, ar). So τ (~v) is BPD in Y . Obviously, hτ (τ (~v)) = τ (~x). Hene hτ takesa BPD set to a set whih is not BPD. That is, hτ 6∈ BPD.P(Y ), a ontradition.



Reonstrution of manifolds from subgroups of homeomorphism groups 103Claim 2. If ~x is a BPD sequene in X and ~x is a Cauhy sequene, τ (~x) is a BPDsequene in Y .Proof. Suppose by ontradition that ~x is a ounter-example. Let x∗ = limE(~x). Clearly,
x∗ ∈ int(X). Let u ∈ X and r > 0 be suh that x∗ ∈ BE(u, r) and BE(u, 2r) ⊆ X. Let
~y be a �nal segment of ~x suh that ~y ⊆ B(u, r). Then ~y is a ounter-example to Claim 1.This proves Claim 2.Suppose by ontradition that τ 6∈ BPD.P(X,Y ). Let ~x be a BPD 1-1 sequene suhthat τ (~x) is not BPD. We may assume that limn→∞ δ1(τ (xn)) = ∞. Hene for everysubsequene ~y of ~x, τ (~y) is not BPD.It follows from Claim 2 that ~x has no Cauhy subsequenes. Let x∗ ∈ X − Rng(~x)and A = Rng(~x) ∪ {x∗}. Let C an D be as ensured by the property BPD.AC. For ev-ery n ∈ N let Ln ⊆ X be a reti�able ar onneting x∗ and xn suh that δ(Ln) ≥ Cand lngth(Ln) ≤ D. Note that ⋃

n∈N
Ln is a BPD set. Let γn : [0, 1] → Ln be aparametrization of Ln suh that γn(0) = x∗, γn(1) = xn, and for every t ∈ [0, 1],

lngth(γn([0, t])) = t · lngth(Ln).For every in�nite σ ⊆ N and t ∈ [0, 1] let A[σ, t] = {γn(t) | n ∈ σ}. We regard A[σ, t] asa sequene whose domain is σ. Clearly, for every t ∈ [0, 1], A[N, t] ⊆ cl(B(x∗, tD)). So bythe ontinuity of τ , there is t0 > 0 suh that for every t ∈ [0, t0], and σ ⊆ N, τ (A[σ, t]) is aBPD set. For every in�nite σ ⊆ N let sσ = inf({t ∈ [0, 1] | τ (A[σ, t]) is not a BPD set}).So sσ > 0.For σ, η ⊆ N let σ ⊂∼ η mean that σ − η is �nite.Claim 3. There is an in�nite σ ⊆ N suh that for every in�nite η ⊆ σ, sη = sσ.Proof. Suppose by ontradition that no suh σ exists. Clearly if η ⊂∼ σ, then sη ≥ sσ.We de�ne by trans�nite indution on ν < ω1 an in�nite subset σν ⊆ N suh that forevery ν < µ: σµ ⊂∼ σν and sσµ
> sσν

. If σν has been de�ned, let σν+1 ⊆ σν be suhthat sσν+1
> sσν

. If µ is a limit ordinal, and σν has been de�ned for every ν < µ, let
σµ be an in�nite set suh that for every ν < µ, σµ ⊂∼ σν . By the indution hypothesis, if
ν < µ, then sσν+1

> sσν
. Hene sσµ

≥ sσν
> sσν

. So the indution assertion holds. Theset {sσν
| ν < ω1} is a subset of R order isomorphi to ω1, a ontradition. Claim 3 isproved.Let σ be as ensured by Claim 3 and write s = sσ.Claim 4. A[σ, s] does not have Cauhy subsequenes.Proof. Suppose by ontradition that η ⊆ σ is in�nite, and A[η, s] is a Cauhy sequene.Sine A[N, 1] = ~x does not ontain Cauhy subsequenes, s < 1. Let x̂ = limA[η, s].Sine A[η, s] is a BPD sequene x̂ ∈ int(X). So there are u ∈ X and r > 0 suh that

x̂ ∈ BE(u, r) and BE(u, 3r) ⊆ X. We may assume that A[η, s] ⊆ B(u, r). For every iand t, ‖γi(t) − γi(s)‖ ≤ (t− s) ·D. So for every t ∈ (s, s+ r/D), A[η, t] ⊆ B(u, 2r). Bythe de�nition of σ, sη = sσ = s. So there is t ∈ (s, s+ r/D) suh that τ (A[η, t]) is not aBPD subset of Y . But A[η, t] ⊆ B(u, 2r) and B(u, 3r) ⊆ X. This ontradits Claim 1.So Claim 4 is proved.



104 M. Rubin and Y. YomdinBy Proposition 2.15(a) and Claim 4, we may assume that there is d > 0 suh that
A[σ, s] is d-spaed. Let r = min(C, d)/4. δ(A[σ, s]) ≥ C, and so BE(A[σ, s], r) ⊆ X and
δ(BE(A[σ, s], r)) > 0. Also for any distint m,n ∈ σ, d(B(γm(s), r), B(γn(s), r)) ≥ d/2.Let t1 ∈ (s − r

2D , s). Sine t1 < s, it follows that τ (A[σ, t1]) is a BPD set. Let t2 ∈
[s, s+ r

2D ) be suh that τ (A[σ, t2]) is not a BPD set.By Lemma 2.14(b), there is K ≥ 1 suh that for every normed spae E, u ∈ E, r > 0and x, y ∈ BE(u, r/2) there is h ∈ H(E) suh that h is K-bilipshitz, supp(h) ⊆ BE(u, r)and h(x) = y.Clearly, for every n ∈ σ, γn(t1), γn(t2) ∈ B(γn(s), r/2). So by the above fat, thereis hn ∈ H(X) suh that hn is K-bilipshitz, supp(hn) ⊆ B(γn(s), r) and hn(γn(t1)) =

γn(t2).By Proposition 5.17(b), h := ◦n∈σ hn ∈ LIP(X). Sine supp(h) ⊆ BE(A[σ, s], r), and
δ(BE(A[σ, s], r)) > 0, h ∈ LIP00(X). Hene hτ ∈ BPD.P(Y ). However, τ (A[η, t1]) is aBPD set, τ (A[η, t2]) is not a BPD set, and hτ (τ (A[η, t1])) = τ (A[η, t2]). A ontradi-tion.Proposition 5.26. For a ompat metri spae C and t > 0 let νC(t) denote the minimalardinality of a over of C onsisting of subsets of C with diameter ≤ t. Let ~C = {Ci |
i ∈ N} be a sequene of ompat subsets of a metri spae X, and let ν : (0,∞) → N.Suppose that for every i ∈ N, νCi

≤ ν. Suppose further that there is no in�nite set η ⊆ Nand a sequene {ci | i ∈ η} suh that for every i ∈ η, ci ∈ Ci, and {ci | i ∈ η} is a Cauhysequene. Then there is a subsequene ~D of ~C suh that ~D is spaed.Proof. Suppose that ~C has no spaed subsequenes, and we show that there are an in�niteset A ⊆ N and a Cauhy sequene ~c = {ci | i ∈ A} suh that for every i ∈ A, ci ∈ Ci.There are a subsequene ~C1 of ~C and r ∈ R ∪ {∞} suh that limi,j→∞ d(C1
i , C

1
j ) = r.Sine ~C has no spaed subsequenes, r = 0. We may assume that ~C = ~C1.For ~p ⊆ N let T~p be the tree of �nite sequenes ~n suh that for every i < lngth(~n),

ni < pi. Let S~p =
∏
i∈N
N<pi .Let pi =

∏
j≤i ν(1/j), T = T~p and S = S~p. Then for every i ∈ N there is {Ci,~n | ~n ∈ T}suh that for every ~n ∈ T , Ci,~n is losed and diam(Ci,~n) ≤ 1/lngth(~n); for every ℓ ∈ N,

Ci =
⋃{Ci,~n | ~n ∈ T and lngth(~n) = ℓ}; and for every ~m,~n ∈ T : if ~m is an initialsegment of ~n, then Ci,~n ⊆ Ci,~m.By the Ramsey Theorem, there are a sequene of in�nite subsets of N, A0 ⊇ A1 ⊇ · · · ,and ~q, ~r ∈ S suh that for every ℓ and i, j ∈ Aℓ: if i < j, then d(Ci,~q↾N≤ℓ , Cj,~r↾N≤ℓ) =

d(Ci, Cj).Let A ⊆ N be an in�nite set suh that for every i, A − Ai is �nite. For every i ∈ Alet Di =
⋂
j∈N

Ci,~q↾N≤j and Ei =
⋂
j∈N

Ci,~r↾N≤j . Clearly, Di, Ei are singletons, denotethem by xi and yi respetively. We hek that limi→∞,i<j d(xi, yj) = 0. Let ε > 0.Then there is N1 suh that for every i, j > N1, d(Ci, Cj) < ε/3. Let N2 be suh that
1/N2 < ε/3, N3 be suh that A≥N3 ⊆ AN2

and N = max(N1, N3). Let i < j and
i, j ∈ A≥N . So i, j ∈ AN2

. Hene d(Ci,~q↾N≤N2 , Ci,~r↾N≤N2 ) = d(Ci, Cj) < ε/3. It followsthat
d(xi, yj) ≤ diam(Ci,~q↾N≤N2 ) + d(Ci, Cj) + diam(Cj,~r↾N≤N2 ) < ε/3 + ε/3 + ε/3 = ε.



Reonstrution of manifolds from subgroups of homeomorphism groups 105We have proved that limi→∞,i<j d(xi, yj) = 0. Let ε > 0. Choose N suh that for every
i, j ∈ A≥N : if i < j, then d(xi, yj) < ε/2. Suppose that i1, i2 ∈ A≥N and let j be suhthat i1, i2 < j ∈ A. Then d(xi1 , xi2) ≤ d(xi1 , yj) + d(yj , xi2) < ε. So {xi | i ∈ A} is aCauhy sequene.Lemma 5.27. There is Karc(ℓ, t) > 0 suh that for every normed spae E, L, r > 0, anda reti�able ar γ ⊆ E with endpoints x, y: if lngth(γ) ≤ L, then there is h ∈ H(E) suhthat :(1) supp(h) ⊆ B(γ, r);(2) h↾B(x, r/2) = try−x↾B(x, r/2);(3) h is Karc(L, r)-bilipshitz.Proof. Let n = [ Lr/2 ] + 1. Suppose that γ : [0, 1] → X. There are 0 = t0, t1, . . . , tn = 1suh that for every i < n, lngth(γ↾[ti, ti+1]) < r/2. Let xi = γ(ti). Then for every
z ∈ [xi, xi+1], d(z, γ↾[ti, ti+1]) < r/4. So ⋃

i<nB([xi, xi+1], 3r/4) ⊆ B(γ, r). By Lemma2.14(), there are h1, . . . , hn ∈ H(E) suh that for every i = 1, . . . , n:(1.1) supp(hi) ⊆ B([xi−1, xi], 3r/4);(1.2) hi↾B(xi−1,
2
3 · 3r

4 ) = trxi−xi−1
|̀B(xi−1,

2
3 · 3r

4 ).(1.3) hi is Kseg(r/2, 3r/4)-bilipshitz.Let h = hn ◦ · · · ◦h1. Then h satis�es requirements (1) and (2) in the lemma. Also,
h is Kseg(r/2, 3r/4)n-bilipshitz. Sine n = [2L/r] + 1, we may de�ne Karc(ℓ, t) =

Kseg(t/2, 3t/4)[2ℓ/t]+1.If L is a reti�able ar let γL : [0, 1] → L be a parametrization of L suh that forevery t ∈ [0, 1], lngth(γL↾[0, t]) = t · lngth(L).Lemma 5.28. Let X be an open subset of a normed spae E. For n ∈ N let Ln ⊆ X bea reti�able ar with lngth(Ln) ≤ M and δ(Ln) ≥ d > 0. Let γn = γLn
and xn = γn(0).Suppose that {xn | n ∈ N} is spaed and 1-1 and that there is x∗ ∈ X suh that for every

n ∈ N, γn(1) = x∗. Then there are x̂ ∈ X, r > 0, an in�nite η ⊆ N and t ∈ (0, 1] suhthat :(1) B(x̂, r) ⊆ X, B(x̂, r) is a BPD set , and for every n ∈ η, xn 6∈ clE(B(x̂, r));(2) for every n ∈ η, γn(t) ∈ B(x̂, r);(3) {γn↾[0, t] | n ∈ η} is spaed.Proof. For η ⊆ N and t ∈ [0, 1] let A[η, t] = {γn(t) | n ∈ N}. We regard A[η, t] both as aset and as a sequene. For every in�nite η ⊆ N let
sη = inf({s ∈ [0, 1] | A[η, s] ontains a Cauhy sequene}).Sine for every n ∈ N, γn(1) = x∗, sη is well de�ned. Clearly, if η ⊆ σ, then sη ≥ sσ.As in 5.25, there is an in�nite σ ⊆ N suh that for every in�nite η ⊆ σ, sη = sσ. Let

s = sσ. We show that if t ∈ [0, s), then
(∗) there is no in�nite set η ⊆ σ and a sequene {ti | i ∈ η} suh that for every i ∈ η,

ti ∈ [0, t], and {γi(ti) | i ∈ η} is a Cauhy sequene.



106 M. Rubin and Y. YomdinSuppose otherwise. We may assume that {ti | i ∈ η} is a onvergent sequene. Let t∗ bethe limit of this sequene. So t∗ < s. Let Ii be the interval whose endpoints are ti and t∗.Reall that lngth(γi↾Ii) = |t∗− ti| · lngth(γi) ≤ |t∗− ti| ·M . So limi∈η d(γi(ti), γi(t∗)) = 0.Hene {γi(t∗) | i ∈ η} is a Cauhy sequene. This ontradits the de�nition of s.Suppose by ontradition that there is an in�nite η ⊆ σ suh that A[η, s] is spaed.Let e > 0 be suh that A[η, s] is e-spaed. Then for every t ∈ [s, s + e/3M ], A[η, t] isspaed. So sη > sσ. This ontradits the de�nition of σ.It follows that A[σ, s] ontains a Cauhy sequene. Hene we may assume that A[σ, s]is a Cauhy sequene. Let x̄ = limE A[σ, s]. Sine {xn | n ∈ σ} is 1�1, we may as-sume that for every n, x̄ 6= xn. Sine δ(Ln) ≥ d > 0, dE(x̄, E − X) ≥ d > 0. Sine
{xn | n ∈ N} is spaed, there is 0 < r < d suh that {xn | n ∈ σ} ∩ BE(x̄, r) = ∅.Let t = s − r/2M . There is i0 suh that for every i0 ≤ i ∈ σ, d(γi(s), x̄) < r/4. Wemay assume that i0 = 0. So for every i ∈ σ, d(γi(t), x̄) ≤ d(γi(t), γi(s)) + d(γi(s), x̄) <

lngth(γi↾[t, s]) + r/4 ≤ (s − t) ·M + r/4 ≤ 3r/4. Let x̂ ∈ E ∩ BE(x̄, r/8). So for every
i ∈ σ, d(γi(t), x̂) < 7r/8.By (∗) and Proposition 5.26, there is an in�nite η ⊆ σ suh that {γi↾[0, t] | i ∈ η} isspaed. Also, sine δ(x̂) ≥ d − r/8, δ(B(x̂, 7r/8)) ≥ d − r > 0. So B(x̂, 7r/8) is a BPDset. Hene x̂, r, η and t are as required in the lemma.Proposition 5.29. Let Γ be a ountably generated modulus of ontinuity , and let a > 0.Then there is {αn | n ∈ N} ⊆ Γ suh that(1) for every α ∈ Γ there is n ∈ N suh that α � αn, that is , {αn | n ∈ N}generates Γ ;(2) for every m < n, αm↾[0, a] ≤ αn↾[0, a].Proof. Let {βn | n ∈ N} be a generating set for Γ suh that for every m < n, βm � βn.We de�ne by indution Kn > 0 and αn ∈ Γ . We assume by indution that αn = Knβn.Let K0 = 1 and α0 = β0. Suppose that Kn and αn have been de�ned. Let i ≤ n. Sine
βi � βn+1 and αi = Kiβi, it follows that Mi := supx∈[0,a] αi(x)/βn+1(x) < ∞. Let
Kn+1 = max(M0, . . . ,Mn)+1 and αn+1 = Kn+1βn+1. Obviously, {αn | n ∈ N} ⊆ Γ and
{αn | n ∈ N} is as required.Proof of Theorem 5.24. (a) Let Γ , X, Y and τ be as in (a). We have LIP00(X) ⊆
HWBPD

Γ
(X) and HWBPD

Γ
(Y ) ⊆ BPD.P(Y ), hene (LIP00(X))τ ⊆ BPD.P(Y ). So byLemma 5.25, τ ∈ BPD.P(X,Y ).Using the notation of De�nition 2.7(a), LIP00(X) = LIP(X;U), where U is the set ofall open BPD subsets of X. Clearly, HWBPD

Γ
(Y ) ⊆ HLC

Γ
(Y ) so (LIP(X;U))τ ⊆ HLC

Γ
(Y ).Hene by Theorem 3.27, τ is loally Γ -ontinuous.Suppose by ontradition that there is an open BPD set U ⊆ X suh that for no

α ∈ Γ , τ↾U is loally {α}-ontinuous. Let {αn | n ∈ N} generate Γ . We may assumethat for every m < n ∈ N, αm � αn. For every n ∈ N let βn = αn ◦αn and xn ∈ U besuh that for every V ∈ NbrX(xn), τ↾V is not βn-ontinuous. Let ~x = {xn | n ∈ N}.Suppose by ontradition that ~x has a Cauhy subsequene ~y. Let ȳ = limE ~y. Sine
U is a BPD set and Rng(~y) ⊆ U , ȳ ∈ int(X). Let u ∈ X and r > 0 be suh that
BE(u, 2r) ⊆ X and ȳ ∈ BE(u, r). Sine τ is loally Γ -ontinuous, there are V ∈ NbrX(u)



Reonstrution of manifolds from subgroups of homeomorphism groups 107and β ∈ Γ suh that τ↾V is β-ontinuous. There is h ∈ LIP(X) B(u, r) suh that
hcl
E

(ȳ) ∈ int(V ). Sine h ∈ LIP00(X), hτ ∈ HWBPD
Γ

(Y ).Reall that τ ∈ BPD.P(X,Y ). Sine B(u, r) is a BPD set in X, W := τ (B(u, r)) is aBPD set in Y . So there is α ∈ Γ suh that (hτ )−1↾W is loally {α}-ontinuous. Sine
lim ~y = ȳ and hcl

E
(ȳ) ∈ int(V ), we may assume that h(~y) ⊆ V . Let K be suh that his K-bilipshitz, and de�ne γ(t) = Kt. So γ ∈ Γ . We show that for every n ∈ N, τ is

α ◦β ◦γ-biontinuous at yn. Note that τ = (hτ )−1 ◦ τ ◦h. We have(i) h is γ-biontinuous at yn.Sine h(yn) ∈ B(u, r), we have(ii) τ is β-biontinuous at h(yn).Also, τ (h(yn)) ∈ τ (B(u, r)) = W . So(iii) (hτ )−1 is α-biontinuous at τ (h(yn)).It follows from (i)�(iii) that τ is α ◦β ◦γ-biontinuous at yn. Clearly, α ◦β ◦γ ∈ Γ , sothere is n suh that α ◦β ◦γ � βn. Hene τ is βn-biontinuous at yn. This ontraditsthe hoie of yn. So ~x does not have Cauhy subsequenes.We may thus assume that ~x is spaed. Let x∗ ∈ U . Sine X is BPD.AC, there are
M,d > 0 and reti�able ars {Ln | n ∈ N} suh that for every n ∈ N, Ln onnets xnwith x∗, δ(Ln) ≥ d and lngth(Ln) ≤ M . Applying Lemma 5.28 to x∗ and {Ln | n ∈ N}we obtain x̂ ∈ X, r > 0, an in�nite η ⊆ N and t ∈ (0, 1] as ensured by that lemma. Sofor the parametrization γn of Ln de�ned in Lemma 5.28 the following holds:(1.1) B(x̂, r) ⊆ X, B(x̂, r) is a BPD set, and for every n ∈ η, xn 6∈ clE(B(x̂, r));(1.2) for every n ∈ η, γn(t) ∈ B(x̂, r);(1.3) {γn↾[0, t] | n ∈ η} is spaed.We may assume that η = N. For every n ∈ N let tn be the least t′ suh that γn(t′) ∈
clE(B(x̂, r)). Let γ ′

n = γn↾[0, tn] and yn = γn(tn). So d(yn, x̂) = r and Rng(γ ′
n) ∩

B(x̂, r) = ∅.Sine τ is loally Γ -ontinuous, there is α∗ ∈ Γ and r1 < r suh that τ↾B(x̂, r1) is
α∗-ontinuous. Let zn = x̂+ r1

2 · (yn − x̂)/‖yn − x̂‖ and L∗
n = Rng(γ ′

n) ∪ [yn, zn]. So L∗
nis a reti�able ar. Clearly, there are M∗, d∗, D∗ > 0 suh that for any distint m,n ∈ N,(2.1) lngth(L∗

m) ≤M∗;(2.2) δ(L∗
m) ≥ d∗;(2.3) d(L∗
m, L

∗
n) ≥ D∗.Let r∗ > 0 be suh that r∗ < d∗/2, D∗/3, r1/2. For every n ∈ N we apply Lemma 5.27with L = M∗, r = r∗, γ = L∗

n, x = xn and y = zn. We obtain hn ∈ H(X) suh that:(3.1) supp(hn) ⊆ B(L∗
n, r

∗);(3.2) hn↾B(xn, r
∗/2) = trzn−xn

↾B(xn, r
∗/2);(3.3) hn is Karc(M

∗, r∗)-bilipshitz.Clearly, {hn | n ∈ N} and {h−1
n | n ∈ N} satisfy the onditions of Proposition 5.17(b) with

α(x) = Karc(M
∗, r∗) · x. De�ne h = ◦n∈N hn and g = h−1. So by Proposition 5.17(b),

h and g are 2K(M∗, r∗)-Lipshitz. Also δ(supp(h)) ≥ d∗ − r∗ > 0. So h, g ∈ LIP00(X).



108 M. Rubin and Y. YomdinSine τ ∈ BPD.P(X,Y ), τ (U) is a BPD subset of Y . We shall thus reah a ontraditionby proving the following statement:
(∗) There is no α ∈ Γ suh that gτ ↾τ (U) is loally {α}-ontinuous.Let α ∈ Γ . Choose n suh that α, α∗ � αn and set u = τ (zn). For s > 0 de�ne

Us = B(u, s), Ts = τ−1(Us) and Ss = h−1(Ts). There is s > 0 suh that:(4.1) α↾[0, 2s] ≤ αn↾[0, 2s];(4.2) Ts ⊆ B(zn, r
∗/2);(4.3) α∗↾[0, diam(Ts)] ≤ αn↾[0, diam(Ts)].Let s′ < s. We show that hτ ↾B(u, s′) is not α-ontinuous. Sine Ss′ is a neighborhoodof xn, there are x1, x2 ∈ Ss′ suh that(5.1) d(τ (x1), τ (x2)) > βn(d(x

1, x2)).For i = 1, 2 let zi = h(xi) and ui = τ (zi). So z1, z2 ∈ Ts′ and so u1, u2 ∈ Us′ . By(4.2), the hoie of zn and the hoie of r∗, Ts′ ⊆ B(zn, r
∗/2) ⊆ B(x̂, r1). So τ↾Ts′ is

α∗-ontinuous. Hene α∗(d(z1, z2)) ≥ d(u1, u2). By (4.3), αn(d(z1, z2)) ≥ α∗(d(z1, z2)).So αn(d(z1, z2)) ≥ d(u1, u2). Hene(5.2) d(z1, z2) ≥ (αn)
−1(d(u1, u2)).Sine Ts′ ⊆ B(zn, r

∗/2) and by property (3.2) of hn, h−1↾Us′ is an isometry. So(5.3) d(z1, z2) = d(x1, x2).By (5.1) and (5.3),(5.4) d(τ (x1), τ (x2)) > βn(d(z
1, z2)).Combining (5.2) and (5.4) we obtain(5.5) d(τ (x1), τ (x2)) > βn((αn)
−1(d(u1, u2))).But βn = αn ◦αn. So(5.6) d(τ (x1), τ (x2)) > αn(d(u

1, u2)).By lause (4.1) in the de�nition of s, and sine u1, u2 ∈ B(u, s),(5.7) d(τ (x1), τ (x2)) > α(d(u1, u2)).But τ (xi) = (h−1)τ (ui) = gτ (ui). So(5.8) d(gτ (u1), gτ (u2)) > α(d(u1, u2)).We have proved (∗), and this ontradits the fat that gτ ∈ HWBPD
Γ

(Y ). So (a) isproved.(b) Let Γ , X, Y and τ be as in (b). As in the proof of (a), we onlude that
τ ∈ BPD.P(X,Y ) and τ is loally Γ -ontinuous.Suppose by ontradition that there is an open BPD set U ⊆ X suh that for no α ∈ Γand r > 0, τ↾U is (r, α)-ontinuous. By Proposition 5.29, there is a set {αn | n ∈ N}whih generates Γ and suh that αm↾[0, 1] ≤ αn↾[0, 1] for every m < n. For every n ∈ Nlet βn = αn ◦αn, and xn, x

′
n ∈ U be suh that d(xn, x′n) < 1/n and d(τ (xn), τ (x

′
n)) >

βn(d(xnx
′
n)). Let ~x = {xn | n ∈ N}.



Reonstrution of manifolds from subgroups of homeomorphism groups 109Suppose by ontradition that {xni
| i ∈ N} is a Cauhy subsequene ~x. Set yi = xniand y′i = x′ni

. Let ȳ = limE ~y. Sine U is a BPD set and Rng(~y) ⊆ U , ȳ ∈ int(X).Let u ∈ X and r > 0 be suh that BE(u, 2r) ⊆ X and ȳ ∈ BE(u, r). Sine τ is loally
Γ -ontinuous, there are V ∈ NbrX(u) and β ∈ Γ suh that τ↾V is β-ontinuous. Thereis h ∈ LIP(X) B(u, r) suh that hcl

E
(ȳ) ∈ int(V ). Sine h ∈ LIP00(X), hτ ∈ HNBPD

Γ
(Y ).Reall that τ ∈ BPD.P(X,Y ). Sine B(u, r) is a BPD set in X, it follows that

W := τ (B(u, r)) is a BPD set in Y . So there are α ∈ Γ and s > 0 suh that hτ ↾Wis (s, α)-ontinuous, and (hτ )−1↾W is (s, α)-ontinuous. Sine lim ~y = lim ~y′ = ȳ and
hcl
E

(ȳ) ∈ int(V ), we may assume that h(~y), h(~y′) ⊆ V .From the fat h ∈ LIP(X) it follows that limi→∞ d(h(yi), h(y
′
i)) = 0. Set ui =

h(yi) and u′i = h(y′i). Sine h(~y), h(~y′) ⊆ V and τ↾V is β-ontinuous, it follows that
limi→∞ d(τ (ui), τ (u

′
i)) = 0. We may thus assume that for every i ∈ N, d(τ (ui), τ (u′i)) < s.Let K be suh that h is K-bilipshitz, de�ne γ(t) = Kt and ̺ = α ◦β ◦γ. So γ ∈ Γand hene ̺ ∈ Γ . We show that for every i ∈ N

(†) d(τ (yi), τ (y′i)) ≤ ̺(d(yi, y
′
i)).Note that τ (yi) = (hτ )−1 ◦ τ ◦h(yi), and the same holds for y′i. So(1) d(h(yi), h(y′i) ≤ γ(d(yi, y
′
i).Now, h(yi), h(y′i) ∈ V and τ↾V is β-ontinuous, so(2) d(τ (h(yi)), τ (h(y′i))) ≤ β(γ(d(yi, y

′
i))).Sine d(τ (ui), τ (u′i)) < s and τ (ui), τ (u′i) ∈W , it follows that(3) d((hτ )−1(τ (ui)), (h

τ )−1(τ (u′i))) ≤ α(d(τ (ui), τ (u
′
i)).Obviously, (1)�(3) imply (†).De�ne β̂i = βni

. There is j suh that ̺ � β̂j . Let ℓ ∈ N be suh that ̺|̀[0, 1/ℓ] ≤
β̂j |̀[0, 1/ℓ]. Let i = max(j, ℓ). So d(yi, y

′
i) ≤ 1/ni ≤ 1/ℓ. From (†) and the fat

β̂j↾[0, 1] ≤ β̂i↾[0, 1] we onlude that d(τ (yi), τ (y′i)) ≤ ̺(d(yi, y
′
i)) ≤ β̂i(d(yi, y

′
i)). Thatis,

d(τ (xni
), τ (x′ni

)) ≤ βni
(d(xni

, x′ni
)).This ontradits the way that xni

and x′ni
were hosen. So ~x has no Cauhy subse-quenes.We may thus assume that ~x is spaed. Let x∗ ∈ U . Sine X is BPD.AC, there are

M,d > 0 and reti�able ars {Ln | n ∈ N} suh that for every n ∈ N, Ln onnets xn with
x∗, δ(Ln) ≥ d and lngth(Ln) ≤M . From Lemma 5.28 we obtain x̂ ∈ X, r > 0, an in�nite
η ⊆ N and t ∈ (0, 1] suh that for the parametrization γn of Ln de�ned in Lemma 5.28the following holds: B(x̂, r) is a BPD subset of X, for every n ∈ η, xn 6∈ clE(B(x̂, r))and γn(t) ∈ B(x̂, r) and the set of ars {γn↾[0, t] | n ∈ η} is spaed. We may assume that
η = N.For every n ∈ N let tn be the least t′ suh that γn(t′) ∈ clE(B(x̂, r)). Let γ ′

n =

γn↾[0, tn] and yn = γn(tn). So d(yn, x̂) = r and Rng(γ ′
n) ∩B(x̂, r) = ∅.Sine τ is loally Γ -ontinuous, there is α∗ ∈ Γ and r1 < r suh that τ↾B(x̂, r1)is α∗-ontinuous. Let zn = x̂ + r1

2 · (yn − x̂)/‖yn − x̂‖ and L∗
n = Rng(γ ′

n) ∪ [yn, zn].



110 M. Rubin and Y. YomdinSo L∗
n is a reti�able ar. Clearly, there are M∗, d∗, D∗ > 0 suh that for any distint

m,n ∈ N, lngth(L∗
m) ≤ M∗, δ(L∗

m) ≥ d∗ and d(L∗
m, L

∗
n) ≥ D∗. Let r∗ > 0 be suh that

r∗ < d∗/2, D∗/3, r1/2.For every n ∈ N we apply Lemma 5.27 with L = M∗, r = r∗, γ = L∗
n, x = xnand y = zn. We obtain hn ∈ H(X) suh that supp(hn) ⊆ B(L∗

n, r
∗), hn↾B(xn, r

∗/2) =

trzn−xn
↾B(xn, r

∗/2) and hn is Karc(M
∗, r∗)-bilipshitz.The families {hn | n ∈ N} and {h−1
n | n ∈ N} satisfy the onditions of Proposi-tion 5.17(b) with α(x) = Karc(M

∗, r∗) · x. Let h = ◦n∈N hn and g = h−1. So by Propo-sition 5.17(b), h is 2Karc(M
∗, r∗)-bilipshitz. Also, δ(supp(h)) ≥ d∗ − r∗ > 0, and hene

h, g ∈ LIP00(X). Sine τ ∈ BPD.P(X,Y ), τ (U) is a BPD subset of Y . From the fat
(LIP00(X))τ ⊆ HNBPD

Γ
(Y ) it follows that for some α ∈ Γ and r > 0, gτ ↾τ (U) is (r, α)-biontinuous. We shall thus reah a ontradition by proving the following statement:

(∗) There are no r > 0 and α ∈ Γ suh that gτ ↾τ (U) is (r, α)-ontinuous.Let r > 0 and α ∈ Γ . For n ∈ N set z′n = h(x′n), un = τ (zn) and u′n = τ (z′n). Choose
m ∈ N and b ∈ (0, 1) suh that α↾[0, b], α∗↾[0, b] ≤ αm↾[0, b]. So for every n ≥ m,(1) α↾[0, b] ≤ αn↾[0, b];(2) α∗↾[0, b] ≤ αn↾[0, b].There is n ≥ m suh that:(3) 1/n < b;(4) α∗(1/n) < r;(5) α∗(1/n) < b;(6) 1/n < r∗/2.By the hoie of zn and r∗, B(zn, r

∗) ⊆ B(x̂, r1). So τ↾B(zn, r
∗) is α∗-ontinuous. Sine

d(xn, x
′
n) ≤ 1/n < r∗/2 and by the de�nition of hn and h,(7) d(xn, x′n) = d(zn, z

′
n).Hene z′n ∈ B(zn, r

∗), and so(8) d(un, u′n) ≤ α∗(d(zn, z′n)).By (3) and (7), d(zn, z′n) ≤ 1/n < b, so by (2) and (8), d(un, u′n) ≤ αn(d(zn, z
′
n)). Itfollows that(9) d(zn, z′n) ≥ α−1

n (d(un, u
′
n)).By (7) and (9), d(xn, x′n) ≥ α−1
n (d(un, u

′
n)). By the de�nition of βn, xn and x′n,

d(τ (xn), τ (x
′
n)) > αn ◦αn(d(xn, x′n)). So(10) d(τ (xn), τ (x′n)) > αn(d(un, u

′
n)).Note that τ (xn) = gτ (un) and τ (x′n) = gτ (u′n). So(11) d(gτ (un), gτ (u′n)) > αn(d(un, u

′
n)).Sine d(zn, z

′
n) ≤ 1/n, by (8) and (5), d(un, u′n) ≤ b. So by (1), αn(d(un, u′n)) ≥

α(d(un, u
′
n)). It now follows from (11) that(12) d(gτ (un), gτ (u′n)) > α(d(un, u

′
n)).



Reonstrution of manifolds from subgroups of homeomorphism groups 111By (8), d(un, u′n) ≤ α∗(1/n). So by (4),(13) d(un, u′n) < r.Fats (12), (13) mean that gτ ↾τ (U) is not (r, α)-ontinuous. This was proved for arbitrary
r and α, that is, we have proved (∗). We have a ontradition to the fat that gτ ∈
HNBPD

Γ
(Y ). So (b) is proved.Question 5.30. Does Theorem 5.24 remain true when the assumption that Γ is ount-ably generated is dropped or replaed by the assumption that Γ is generated by a setwhose ardinality is ≤ κ(X)? �Note that the use of the ountable generatedness of Γ in the proof of 5.24 was essential.Theorem 5.31. Let X,Y ∈ KO

NRM. Suppose that X is BPD.AC. Let τ ∈ H(X,Y ) besuh that (UC00(X))τ ⊆ BPD.UC(Y ). Then τ ∈ BPD.UC(X,Y ).Proof. By de�nition, BPD.UC(Y )⊆BPD.P(Y ), hene by Lemma 5.25, τ ∈BPD.P(X,Y ).Suppose by ontradition that τ 6∈ BPD.UC(X,Y ). Then there are d > 0 and ~x, ~y
⊆ X suh that Rng(~x)∪Rng(~y) is a BPD set, limn→∞ d(xn, yn) = 0, and for every n ∈ N,
d(τ (xn), τ (yn)) ≥ d.Suppose by ontradition that ~x has a Cauhy subsequene. We may then assumethat ~x is a Cauhy sequene. Let x̄ = limE ~x. Sine Rng(~x) is a BPD set, x̄ ∈ int(X).Let u ∈ X and r > 0 be suh that BE(u, 2r) ⊆ X and x̄ ∈ BE(u, r).We have BPD.UC(X) ⊆ LUC(X) and UC00(X) = UC(X,U), where U is the setof all open BPD subsets of X. So by Theorem 4.8(b), τ ∈ LUC(X,Y ). So there is
V ∈ NbrX(u) suh that τ↾V is uniformly ontinuous. There is h ∈ LIP(X) B(u, r) suhthat hcl

E
(ȳ) ∈ int(V ). Sine h ∈ UC00(X), hτ ∈ BPD.UC(X).Reall that τ ∈ BPD.P(X,Y ). Sine B(u, r) is a BPD set in X, W := τ (B(u, r)) isa BPD set in Y . So hτ↾W is bi-UC. Sine lim ~x = lim ~y = x̄ and hcl

E
(x̄) ∈ int(V ), wemay assume that h(~x), h(~y) ⊆ V . Sine h is uniformly ontinuous and τ↾V is uniformlyontinuous,(1) limi→∞ d(τ (h(xi)), τ (h(yi))) = 0.Note that (hτ )−1(τ (h(xi))) = τ (xi), and the same holds for yi. So for every i,(2) d((hτ )−1(τ (h(xi))), (h

τ )−1(τ (h(yi)))) ≥ d.(1) and (2) ontradit the fat that hτ ↾W is bi-UC. So ~x has no Cauhy subsequenes.We may thus assume that there is s>0 suh that ~x is s-spaed. Let r=min(s, δ(~x))/3.We may assume that for every n ∈ N, d(yn, xn) < r/3. Let rn = 2d(yn, xn). Hene
BE(xn, rn) ⊆ X, and limn→∞ diam(BE(xn, rn)) = 0. Also, for any distint m,n ∈ N,
d(BE(xm, rm), BE(xn, rn)) ≥ s/3.For every n ∈ N, let zn ∈ [xn, yn] be suh that d(τ (zn), τ (xn)) ≤ d/(n + 2), and
hn ∈ UC(X) be suh that supp(hn) ⊆ B(xn, rn), hn(xn) = xn and hn(zn) = yn. ByProposition 4.5, h := ◦n∈N hn ∈ UC(X). Also δ(supp(h)) ≥ r/3. So h ∈ UC00(X).Hene hτ ∈ BPD.UC(Y ). ~x ∪ ~y ∪ ~z is a BPD set. So sine τ ∈ BPD.P(X,Y ), it followsthat τ (~x)∪τ (~y)∪τ (~z) is a BPD set. However, hτ↾(τ (~x)∪τ (~y)∪τ (~z)) is not UC. This is so,



112 M. Rubin and Y. Yomdinbeause limn→∞ d(τ (xn), τ (zn)) = 0, whereas for every n ∈ N, d(hτ (τ (xn)), hτ (τ (zn))) =

d(τ (xn), τ (yn)) ≥ d. A ontradition.Theorem 5.32. Let Γ ,∆ be moduli of ontinuity. Suppose that Γ is ountably generatedor Γ = MC, and that the same holds for ∆. Let X,Y ∈ KO
NFCB, and assume that X and

Y are BPD.AC. Suppose that ϕ : HNBPD
Γ

(X) ∼= HNBPD
∆

(Y ). Then Γ = ∆ and there is
τ ∈ (HNBPD

Γ
)±(X,Y ) whih indues ϕ.Proof. Let U denote the set of all open BPD subsets of X. Note that(1) LIP00(X) ≤ HNBPD

Γ
(X) ≤ IXT(X) and LIP00(X) = LIP(X,U).Hene by Corollary 2.26, there is τ ∈ H(X,Y ) suh that τ indues ϕ. Suppose that ∆ isountably generated. Clearly,(2) HNBPD

∆
(Y ) ⊆ HLC

∆
(Y ).By (1) and (2), (LIP(X,U))τ ⊆ HLC

∆
(Y ). By Theorem 3.27, τ is loally ∆-biontinuous.Suppose by ontadition that α ∈ ∆ − Γ . Let B be an open ball in E suh that B isa BPD subset of X and suh that for some β ∈ ∆, τ↾B is β-biontinuous. There is

g ∈ H(X) B suh that g is α-biontinuous, and for every γ ∈ Γ , g is not γ-biontinuous.So g 6∈ HNBPD
Γ

(X), but gτ ∈ HNBPD
∆

(Y ), a ontradition. So ∆ ⊆ Γ . An identialargument shows that Γ ⊆ ∆. Hene Γ = ∆. Applying Theorem 5.24 to τ and τ−1, weonlude that τ ∈ (HNBPD
Γ

)±(X,Y ).Suppose next that Γ = ∆ = MC. Sine UC00(X) ≤ HNBPD
MC (X), we have (UC00(X))τ

⊆ HNBPD
MC (X), and the same holds for Y . Hene Theorem 5.31 may be applied to τ and

τ−1. We onlude that τ ∈ BPD.UC±(X,Y ). That is, τ ∈ (HNBPD
MC )±(X,Y ).We now turn to the group HWBPD

MC (X). We shall reah the same �nal result as forthe groups of type HNBPD
MC (X). But here we need the extra assumption that X is �llable.This notion is de�ned below.Definition 5.33. Let X be a topologial spae and G ≤ H(X). A sequene ~x ⊆ X isalled a G-�lling of X if the following holds. For every sequene {Ui | i ∈ N} suh thatfor every i, Ui ∈ Nbr(xi), there is a sequene {gi | i ∈ N} ⊆ G suh that ⋃

i∈N
gi(Ui) = X.We say that X is G-�llable if X has a G-�lling. �The trivial veri�ation of the following observation is left to the reader.Proposition 5.34. Let E be a normed spae.(a) If E is separable and X ⊆ E is open, then X is LIP00(X)-�llable.(b) If r > 0, then BE(0, r) is LIP00(X)-�llable.The following observation gives some answer for the groups of type HWBPD

MC (X).Proposition 5.35. Suppose that X is BPD.AC , UC00(X) ≤ G ≤ HWBPD
MC (X) and X is

G-�llable. Let τ ∈ H(X,Y ) be suh that Gτ ⊆ HWBPD
MC (Y ). Then τ ∈ HWBPD

MC (X,Y ).Proof. Let U be the set of all open BPD subsets of X. Then UC00(X) = UC(X,U).Note that HWBPD
MC (Y ) ⊆ LUC(Y ). So (UC(X,U))τ ⊆ LUC(Y ). By Theorem 4.8(b),

τ ∈ LUC±(X,Y ). Similarly, (LIP00(X))τ ⊆ (UC00(X))τ ⊆ HWBPD
MC (Y ) ⊆ BPD.P(Y ).So by Lemma 5.25, τ ∈ BPD.P(X,Y ).



Reonstrution of manifolds from subgroups of homeomorphism groups 113Let ~x be a G-�lling for X. For every i ∈ N let Ui ∈ Nbr(xi) and αi be suh that τ↾Uiis αi-biontinuous. Let {gi | i ∈ N} ⊆ G be suh that ⋃{gi(Ui) | i ∈ N} = X.Let A ⊆ X be a BPD set. We show that τ↾A is weakly MC-biontinuous. Sine
τ ∈ BPD.P(X,Y ), τ (A) is a BPD set. For every i ∈ N let βi be suh that gi↾A is loally
{βi}-biontinuous and γi be suh that gτi ↾τ (A) is loally {γi}-biontinuous. Next notethat

τ↾gi(Ui) = (gτi ↾τ (Ui)) ◦ (τ↾Ui) ◦ ((gi)
−1↾gi(Ui)).Hene τ↾(gi(Ui) ∩A) is loally {γi ◦αi ◦βi}-biontinuous.There is ̺ ∈ MC suh that for every i ∈ N, γi ◦αi ◦βi � ̺. Hene for every i ∈ N,

τ↾(gi(Ui) ∩ A) is loally {̺}-biontinuous, and from the fat ⋃
i∈N

(gi(Ui) ∩ A) = A weonlude that τ↾A is {̺}-biontinuous. So τ ∈ HWBPD
MC (X,Y ).Theorem 5.36. Let Γ ,∆ be moduli of ontinuity. Suppose that Γ is ountably generatedor Γ = MC, and that the same holds for ∆. Let X,Y ∈ KO

NFCB. Assume that(1) X and Y are BPD.AC ;(2) If Γ = MC, then X is HWBPD
MC (X)-�llable, and the same holds for ∆ and Y .Suppose that ϕ : HWBPD

Γ
(X) ∼= HWBPD

∆
(Y ). Then Γ = ∆ and there is τ ∈ HWBPD

Γ
(X,Y )whih indues ϕ.Proof. The proof is very similar to the proof of Theorem 5.32.In some ases we reah a �nal reonstrution result of the following strong form:(1) If ϕ : P(X) ∼= Q(Y ), then either P(X) = Q(X) and there is τ ∈ Q±(X,Y ) whihindues ϕ, or P(Y ) = Q(Y ) and there is τ ∈ P±(X,Y ) whih indues ϕ.In other ases we are able to reah only the following weaker onlusion:(2) If ϕ : P(X) ∼= P(Y ), then there is τ ∈ P±(X,Y ) whih indues ϕ.Roughly speaking, in order to prove results of the �rst form, we need to prove the followingintermediate laim:(3) If τ ∈ H(X,Y ) and (P(X))τ ⊆ P(Y ), then τ ∈ P±(X,Y ),and in order to prove a result of the seond form, the following intermediate laim su�es:(4) If τ ∈ H(X,Y ) and (P(X))τ ⊆ P(Y ), then τ ∈ P(X,Y ).For example, Theorem 4.8 whih deals with the group LUC(X) has the stronger form (3),and Theorem 5.5 whih deals with the group UC(X) has the weaker form (4).The strong intermediate laim is not always true. Example 5.7 shows that (3) is falsefor UC(X), and also false for BPD.UC(X), as is shown in Example 5.38(a). However, if

X is an open subset of a Banah spae, and X ful�lls some additional requirements, thenthe impliation
(BPD.UC(X))τ ⊆ BPD.UC(Y ) ⇒ τ ∈ BPD.UC±(X,Y )is true. This will be proved in Theorem 5.41(a). Later, in Theorem 7.7 we shall prove ananalogous statement for UC(X). Namely, if X satis�es ertain additional requirements,then (UC(X))τ ⊆ UC(Y ) ⇒ τ ∈ UC±(X,Y ).



114 M. Rubin and Y. YomdinWe need yet another notion of weak uniform arwise onnetedness. This will be theadditional assumption in Theorem 5.41(a).Definition 5.37. Let E be a metri spae, X ⊆ E and x ∈ bdE(X). We say that Xis loally arwise onneted at x if for every ε > 0 there is δ > 0 suh that for every
y, z ∈ X: if d(x, y), d(x, z) < δ, then there is an ar L ⊆ X onneting y and z suhthat diam(L) < ε. We then all x a simple boundary point of X. We say that X isloally arwise onneted at its boundary with respet to E (BR.LC.AC with respet to E)if every boundary point of X is simple. �An equivalent formulation of simpliity is as follows. For every ε > 0 there is δ > 0suh that for every y, z ∈ X ∩ B(x, δ) there is an ar L onneting y and z suh that
L ⊆ X ∩B(x, ε). Note that being loally arwise onneted at x ∈ bd(X) implies but isnot equivalent to the fat that X ∪ {x} is loally arwise onneted at x.The following example shows that the ompleteness requirement in Lemma 5.39 an-not be dropped.Example 5.38. Let E be an inomplete normed spae, K ⊆ [0, 1/2) be a losed nowheredense perfet set ontaining 0, X ′ = BE(0, 2)−BE(0, 1), u ∈ SE(0, 1), C = {(1 + t) · u |
t ∈ K − {0}}, X = X ′ − C, Y ′ = BE(0, 1), D = {(1 − t) · u | t ∈ K − {0}}, and
Y = Y ′ −D.(a) X and Y are BPD.AC , BR.LC.AC and UD.AC.(b) There is τ ∈ H(X,Y ) suh that (BPD.UC(X))τ ⊆ BPD.UC(Y ) and τ−1 6∈
BPD.UC(Y,X).() There is τ ∈ H(X,Y ) suh that(1) (BPD.UC(X))τ ⊆ BPD.UC(Y ),(2) τ−1 6∈ BPD.P(Y,X),(3) for every BPD set A ⊆ X, τ↾A is bilipshitz.Proof. (a) This part is trivial, so we leave its veri�ation to the reader. In any ase, (a)shows that the fat that the boundaries of X and Y are well-behaved does not by itselfimply that τ−1 ∈ BPD.UC(Y,X).(b) This follows from (). So it su�es to prove ().() Note the following fats: C ⊆ BE(0, 3/2)−BE(0, 1), D ⊆ BE(0, 1)−BE(0, 1/2),
u ∈ acc(C) and u ∈ acc(D).Let y ∈ BE(0, 1/2) − BE(0, 1/2). Proposition 2.25(b) yields ̺ ∈ LIP(E) BE(0, 1/2)suh that ̺(0) = y and ̺(E − {0}) = E. So ̺(D) = D and hene ̺(Y − {0}) = Y . Let
η : X → Y −{0} be de�ned by η(x) = (2−‖x‖) · x

‖x‖ and τ = ̺ ◦ η. Clearly, τ ∈ H(X,Y ),and it is easy to hek that τ satis�es lause (3).Let r > 0 be suh that BE(y, r) ⊆ BE(0, 1/2) and M = BE(y, r) ∩ E. Then M is aBPD subset of Y . However, τ−1(M) ontains a set of the form BE(0, 2) − B(0, 2 − ε),where ε > 0. So τ−1(M) is not a BPD subset of X. Hene lause (2) is ful�lled.We show that τ ful�lls lause (1). It is easy to hek that (BPD.P(X))τ ⊆ BPD.P(Y ).So it remains to show that if h ∈ BPD.UC(X) and M ⊆ Y is a BPD set, then hτ ↾M isbi-UC.



Reonstrution of manifolds from subgroups of homeomorphism groups 115Sine ̺ is bilipshitz it su�es to show that for every h ∈ BPD.UC(X) and M ⊆
Y − {0}: if d(M,D ∪ S(0, 1)) > 0, then hη↾M is bi-UC. (Indeed we show that hη↾M isbi-UC, even for M 's whih satisfy M ⊆ Y − {0} and d(M,D) > 0.)Claim 1. Let Z,W be metri spaes , z ∈ Z, and f : Z → W . Suppose that f isontinuous at z, and for every r > 0, f↾(Z −B(z, r)) is UC. Then f is UC.Proof. Let ε > 0. There is δ1 > 0 suh that diam(f(B(z, δ1))) < ε. Let δ2 > 0be suh that for every x, y ∈ Z − B(z, δ1/2): if d(x, y) < δ2, then d(f(x), f(y)) < ε.Let δ = min(δ1/2, δ2). Suppose that d(x, y) < δ. Either x, y ∈ Z − B(z, δ1/2) or
x, y ∈ B(z, δ1). In either ase d(f(x), f(y)) < ε. Claim 1 is proved.Claim 2. Let h ∈ BPD.P(X) and ~x ⊆ X be suh that limn→∞ ‖xn‖ = 2. Then
limn→∞ ‖h(xn)‖ = 2.Proof. Suppose by way of ontradition that this is not true, and let ~x be a ounter-example. Sine h ∈ BPD.P(X), for every subsequene ~x′ of ~x, h(~x′) is not a BPD se-quene. It follows easily that either ~x has a subsequene ~x′ suh that limn→∞ ‖h(x′n)‖ = 1,or ~x has a subsequene ~x′ whih onverges to a member of C. Taking ~x to be ~x′ we mayassume that either (i) limn→∞ ‖h(xn)‖ = 1 or (ii) for some û ∈ C, limh(~x) = û.Suppose that (i) happens. Then for every n ∈ N there are un ∈ C, sn > rn > 0 andan ar Ln ⊆ X suh that the following hold:(1) h(xn) ∈ Ln and Ln intersets both S(un, rn) and S(un, sn).(2) Set Sn = S(un, rn) ∪ S(un, sn). Then δX(Sn) > 0. (Hene Sn ⊆ X.)(3) De�ne dn = sup({d(z, S(0, 1)) | z ∈ Ln ∪ Sn}). Then limn→∞ dn = 0.(4) (B(un, sn) − B(un, rn)) ∩ C 6= ∅.Suppose that (ii) happens. Then for every n ∈ N there are sn > rn > 0 and an ar
Ln ⊆ X suh that the following hold:(5) h(xn) ∈ Ln, and Ln intersets both S(û, rn) and S(û, sn).(6) Set Sn = S(û, rn) ∪ S(û, sn). Then δX(Sn) > 0. (Hene Sn ⊆ X.)(7) De�ne dn = sup({d(z, û) | z ∈ Ln ∪ Sn}). Then limn→∞ dn = 0.(8) (B(û, sn) −B(û, rn)) ∩ C 6= ∅.In both ase (i) and ase (ii) set An = Ln∪Sn and Bn = h−1(An). Let ~z be a sequenesuh that zn ∈ Bn for every n ∈ N. By (3) and (7), limn→∞ δX(h(zn)) = 0. From the fatthat h ∈ BPD.P(X) it follows that limn→∞ δX(zn) = 0. There is a subsequene {ni |
i ∈ N} suh that either limn→∞ d(zni

, S(0, 2)) = 0 or limn→∞ d(zni
, S(0, 1) ∪ C) = 0.We may assume that ni = i for every i. Suppose by ontradition that the latter hap-pens. Now, xn, zn ∈ Bn, Bn is onneted and limn→∞ d(xn, S(0, 2)) = 0. We also have

d(S(0, 2), S(0, 1) ∪ C) > 0. Choose yn ∈ Bn suh that ‖yn − xn‖ = ‖zn − xn‖/2. Then
d({yn | n ∈ N}, bd(X)) > 0, a ontradition. So limn→∞ d(zn, S(0, 2)) = 0.Let en = sup({d(z, S(0, 2)) | z ∈ Bn}). It follows that limn→∞ en = 0. Let n be suhthat en ≤ 1/4. De�ne S = Sn and T = h−1(S). Sine S is a BPD set, T is a BPDset. Let d = d(T, S(0, 2)). It is obvious that X − S has three onneted omponents,and neither of them is a BPD set. So the same holds for T . However, sine en ≤ 1/4,
T ⊆ B(0, 2)−B(0, 3/2) and so X ∩B(0, 3/2) is ontained in a omponent of X −T , and
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B(0, 2) − B(0, 2 − d) is also ontained in a omponent of X − T . It follows that one ofthe omponents of X −T is ontained in W := B(0, 2− d)−B(0, 3/2). But W is a BPDsubset of X. A ontradition, so Claim 2 is proved.Let h ∈ BPD.UC(X) and de�ne g = hη.Claim 3. 0 ∈ Dom(gcl) and gcl(0) = 0.Proof. Let ~x ⊆ B(0, 1)−{0} be suh that lim ~x = 0. Then limn→∞ ‖η−1(xn)‖ = 2. Notethat h ∈ BPD.P(X). Applying Claim 2 to h, we onlude that limn→∞ ‖h(η−1(xn))‖ = 2.Hene limn→∞ ‖η(h(η−1(xn)))‖ = 0. That is, limn→∞ ‖g(xn)‖ = 0. So Claim 3 is proved.Let M ⊆ Y − {0} be suh that d(M,D) > 0. Let r > 0 and N = η−1(M − B(0, r)).Then d(N,S(0, 2)) ≥ r. So η↾N is bilipshitz, hene (i) η−1↾(M −B(0, r)) is bilipshitz.
N is a BPD subset of X. So (ii) h↾N is bi-UC. Also, h(N) is a BPD subset of X. Inpartiular, d(h(N), S(0, 2)) > 0. So (iii) η↾h(N) is bilipshitz.
g↾(M −B(0, r)) = η ◦h ◦η−1↾(M −B(0, r))

= (η↾h(η−1(M −B(0, r)))) ◦ (h↾η−1(M −B(0, r))) ◦ (η−1↾(M −B(0, r)))

= η↾h(N) ◦ (h↾N) ◦ (η−1↾(M −B(0, r))).By (i)�(iii), g↾(M − B(0, r)) is bi-UC. By Claim 3 and Claim 1, gcl↾M is UC. Applyingthe same argument to h−1 we onlude that (gcl)−1↾g(M) is UC. So g↾M is bi-UC. Thatis, hη↾M is bi-UC. It has already been argued that this implies that hτ ∈ BPD.UC(Y ).Lemma 5.39. Suppose that X is an open subset of a Banah spae E.(a) BUC(X) ⊆ BPD.UC(X).(b) Suppose that X is BR.LC.AC , τ ∈ H(X,Y ) and (BUC(X))τ ⊆ BPD.P(Y ). Then
τ−1 ∈ BPD.P(Y,X).Proof. (a) Let h ∈ BUC(X). Suppose that x ∈ bd(X), ~x ⊆ X and lim ~x = x. Then h(~x)is a Cauhy sequene. Let y = limh(~x). Clearly, y ∈ bdE(X)∪ int(X) and y 6∈ X. Sine
E is omplete, int(X) = X. Hene y ∈ bd(X). We have shown that Dom(hcl) = cl(X)and that hcl(bd(X)) ⊆ bd(X). Applying the same argument to h−1 one onludes that
(†) hcl(bd(X)) = bd(X). It is trivial that hcl ∈ BUC(cl(X)).Suppose by ontradition that A is a BPD set and h(A) is not a BPD set. Byde�nition, h is boundedness preserving. So h(A) is bounded and hene δ(h(A)) = 0.Let ~x ⊆ h(A) and ~y ⊆ bd(X) be suh that limn→∞ d(xn, yn) = 0. By (†), (hcl)−1(~y) ⊆
bd(X). So for every n, d(h−1(xn), h

−1(yn)) ≥ δ(A) > 0. Hene (hcl)−1↾(Rng(~x)∪Rng(~y))is not uniformly ontinuous. A ontradition.(b) Let X,E, Y and τ be as in part (b), and suppose that Y is an open subset of thenormed spae F . Then F is a Banah spae. To see this note that an open ball B of Fis homeomorphi to an open subset of E. So B is ompletely metrizable. But F ∼= B,so F is ompletely metrizable. So F is a dense Gδ subset of F , and so is every oset of
F in F . Sine F has no disjoint dense Gδ subsets, F = F . Suppose by ontradition
τ−1 6∈ BPD.P(Y,X). Then there is a 1-1 sequene ~x ⊆ X suh that ~x is not a BPDsequene, but τ (~x) is a BPD sequene. We may assume that limn→∞ δX1 (xn) = ∞.



Reonstrution of manifolds from subgroups of homeomorphism groups 117Sine τ (~x) is a BPD set, it does not have onvergent subsequenes in F , hene τ (~x)does not have a Cauhy subsequene. So we may assume that there is d > 0 suh that
τ (~x) is d-spaed.Claim 1. ~x is not a Cauhy sequene.Proof. Suppose otherwise, and let x∗ = lim ~x. Then x∗ ∈ bd(X), for if x∗ 6∈ X, then ~x isa BPD sequene.By the simpliity of x∗, we an �nd a subsequene ~y of ~x, ars {Ln | n ∈ N} andopen sets {Un | n ∈ N} suh that y2n, y2n+1 ∈ Ln ⊆ Un ⊆ cl(Un) ⊆ X, for any distint
m,n ∈ N, d(Um, Un) > 0, and limn→∞ diam(Un) = 0.Let zn ∈ Ln − {y2n} be suh that limn→∞ d(τ (y2n), τ (zn)) = 0. It follows that(1) τ (~y) ∪ τ (~z) is a BPD set.Let hn ∈ UC(X) be suh that hn(y2n) = y2n, hn(zn) = y2n+1 and supp(hn) ⊆ Un. ByProposition 4.5, h := ◦n∈N hn ∈ UC(X). However,(2) hτ ↾(τ (~y) ∪ τ (~z)) is not UC.To see this reall that limn→∞ d(τ (y2n), τ (zn)) = 0. However, d(hτ (τ (y2n)), hτ (τ (zn))) =

d(τ (y2n), τ (y2n+1)) ≥ d. Fats (1) and (2) mean that hτ 6∈ BPD.UC(Y ). A ontradition,so Claim 1 is proved.Claim 2. It is not true that limn→∞ δ(xn) = 0.Proof. Suppose otherwise. By Claim 1, we may assume that there is e1 > 0 suh that
~x is e1-spaed. For every n ∈ N let bn ∈ bd(X) be suh that d(xn, bn) ≤ 2δ(xn), and
[xn, bn) ⊆ X.For every n ∈ N let ~xn = {xni | i ∈ N} ⊆ [xn, bn) be a sequene onverging to bn.By Claim 1, τ (~xn) is not a BPD set. It follows that there is a sequene {in | n ∈ N}suh that {τ (xnin) | n ∈ N} is not a BPD set. Let yn = xnin . Sine ~x is e1-spaed and
limn→∞ d(xn, yn) = 0, we may assume that there is e > 0 suh that {[xn, yn] | n ∈ N} is
e-spaed.Let {Un | n ∈ N} be a sequene of open subsets of X suh that [xn, yn] ⊆ Un,
limn→∞ diam(Un) = 0 and for any distintm,n ∈ N, d(Um, Un) > 0. Let hn ∈ UC(X) besuh that supp(hn) ⊆ Un and hn(xn) = yn. By Proposition 4.5, h := ◦n∈N hn ∈ UC(X),but hτ 6∈ BPD.P(Y ). This is so, beause hτ (τ (~x)) = τ (~y), and τ (~x) is a BPD set, whereas
τ (~y) is not. A ontradition. This proves Claim 2.From Claims 1 and 2 and the fat that ~x is not a BPD sequene, it follows that ~xis unbounded. So we may assume that {‖xn‖ | n ∈ N} is a stritly inreasing sequeneonverging to ∞. Reall also that τ (~x) is d-spaed. We now deal with two ases.Case 1: E −X is bounded. We may assume that E −X ⊆ B(0, ‖x0‖/2). Set x−1 = 0.Choose yn∈(x2n, x2n+1] with d(τ (x2n), τ (yn))<1/(n+1). De�ne rn=min(‖x2n−x2n−1‖,
‖x2n+2 − x2n+1‖)/2 and let hn ∈ UC(X) be suh that hn(x2n) = x2n, hn(yn) = x2n+1and supp(hn) ⊆ B([x2n, x2n+1], rn). Clearly, supp(hm) ∩ supp(hn) = ∅ for every n 6= mand hene h := ◦n∈N hn ∈ BUC(X). Sine limn→∞ d(τ (x2n), τ (yn)) = 0, it follows that
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τ (~x) ∪ τ (~y) is a BPD set. But hτ ↾(τ (~x) ∪ τ (~y)) is not UC. So hτ 6∈ BPD.UC(Y ). Aontradition, so Case 1 does not our.Case 2: E −X is unbounded. We de�ne by indution on n ∈ N: un ∈ Rng(~x), vn ∈ X,
hn ∈ UC(X) and rn > 0. Let r−1 = 0. Suppose that rn−1 has been de�ned. Let
un ∈ Rng(~x)− cl(B(0, rn−1)) and Let bn ∈ bd(X)− cl(B(0, rn−1)). We may assume thatthere is an ar Ln ⊆ (X ∪ {bn})− cl(B(0, rn−1)) onneting un and bn. Let ~vn := {vn,i |
i ∈ N} ⊆ Ln − {bn} be a sequene onverging to bn. So ~vn is a Cauhy sequene. So byClaim 1, τ (~vn) is not a BPD set. Hene there is vn ∈ Ln − {bn} suh δ1(τ (vn)) > n.Let rn be suh that Ln ⊆ B(0, rn) and hn ∈ UC(X) be suh that hn(un) = vn and
supp(hn) ⊆ B(0, rn)−cl(B(0, rn−1)). Clearly, supp(hm)∩ supp(hn) = ∅ for every m 6= n,and hene h := ◦n∈N hn ∈ BUC(X). However, sine τ (~u) is a BPD sequene, τ (~v) is nota BPD sequene, and hτ (τ (~u)) = τ (~v), hτ 6∈ BPD.P(Y ). A ontradition, so Case 2 doesnot happen. It follows that τ−1 ∈ BPD.P(Y,X).If X is BPD.AC, and we remove from X a spaed set, then the resulting open set isalso BPD.AC. This is proved in the next proposition. Although this fat is quite trivial,a omplete proof requires muh writing.Proposition 5.40. (a) Let E be a normed spae whih is not 1-dimensional. Let u, v, w
∈ E be suh that ‖u− w‖ = ‖v − w‖ = r > 0. Then there is an ar L ⊆ X onneting uand v suh that L ∩B(w, r) = ∅, and lngth(L) ≤ 8r.(b) Suppose that X is BPD.AC , and is not 1-dimensional. If A ⊆ X is spaed , then
X −A is BPD.AC.Proof. (a) We may assume that E is 2-dimensional, w = 0 and r = 1. Let z ∈ S(0, 1) besuh that ℓ := {u+tz | t ∈ R} is a supporting line for B(0, 1). Represent v as v = au+bz,and hoose z in suh a way that b > 0. Let L1 = [u, u + 2z], L2 = [2z + u, 2z − u],
L3 = [2z−u,−u] and L0 = L1 ∪L2 ∪L3. Sine ℓ is a supporting line of B(0, 1) it followsthat L1 and L3 are disjoint from B(0, 1). Suppose that w ∈ L2. So w = 2z + tu, where
|t| ≤ 1. We may assume that t ≥ 0. Then ‖w‖ ≥ 2‖z‖ − t‖u‖ ≥ 1. So L2 ∩ B(0, 1) = ∅.Reall that v = au + bz ∈ S(0, 1). From the fat that ℓ supports B(0, 1) it follows that
a ≤ 1. Then 1 = ‖v‖ ≥ b− a ≥ b− 1. So b ≤ 2. Let λ = min(1/|a|, 2/b) and Lv = [v, λv].Clearly, Lv ∩B(0, 1) = ∅. Either λv = u+ b1z, where b1 ∈ [0, 2], or λv = −u+ b1z, where
b1 ∈ [0, 2], or λv = a1u+ 2z, where a1 ∈ [−1, 1]. Hene λv ∈ L1 ∪L3 ∪L2 = L0. The set
L0 ∪ Lv is disjoint from B(0, 1) and ontains an ar L onneting u and v. Obviously,for i = 1, . . . , 3, lngth(Li) = 2 and lngth(Lv) = ‖λv‖ − ‖v‖ ≤ 2‖z‖ + ‖u‖ − 1 = 2. So
lngth(L) ≤ 8.(b) We prove Claim 1 stated below, and leave it to the reader to verify that (b) isimplied by Claim 1.Claim 1. For every r, C,D > 0 there are r1, C1, D1 > 0 suh that for every normedspae E, an open subset X ⊆ E and an r-spaed subset A ⊆ X the following holds. If
x, x∗ ∈ X −A are suh that d({x, x∗}, A) ≥ r, and L ⊆ X is an ar onneting x and x∗suh that δX(L) ≥ C and lngth(L) ≤ D, then there is an ar M ⊆ X − A onneting xand x∗ suh that d(M,A) ≥ r1, δX(M) ≥ C1 and lngth(M) ≤ D1.



Reonstrution of manifolds from subgroups of homeomorphism groups 119Proof. Let D1 = 8D, C1 = C/2 and r1 = min(r, C)/64. Let E, X, A, x, x∗ and L be asin the laim and γ : [0, 1] → L be a parametrization of L whih satis�es lngth(γ↾[0, t]) =

t · lngth(L) for every t ∈ [0, 1]. For every a ∈ A let Ta = {t ∈ [0, 1] | γ(t) ∈ B(w, 2r1)}.Clearly, Ta is an open subset of (0, 1), and cl(Ta) ∩ cl(Tb) = ∅ for any distint a, b ∈ A.De�ne T =
⋃{Ta | a ∈ A}, and let I be a set of pairwise disjoint open intervals of (0, 1)suh that ⋃ I = T . For an open interval I in (0, 1) denote by sI and tI the left andright endpoints of I, and if I ∈ I denote by aI that member of A suh that I ⊆ Ta.Clearly, sI , tI ∈ S(aI , 2r1). For every I ∈ I let LI = γ([sI , tI ]) and MI be a reti�ablear onneting aI and bI suh that MI ∩ B(aI , 2r1) = ∅ and lngth(MI) ≤ 16r1. Theexistene of MI is ensured by part (a). Let I0 = {I ∈ I | d(LI , aI) ≤ r1}. Let

M = L−
⋃

I∈I0

LI ∪
⋃

I∈I0

MI .Certainly, M is an ar whose endpoints are x and x∗. It is trivial that if I ∈ I0, then
lngth(LI) ≥ 2r1, and so for every I ∈ I0, lngth(MI)/lngth(LI) ≤ 8. It follows that M isreti�able and that lngth(M) ≤ 8 · lngth(L) ≤ 8D.Let w ∈ M . If w ∈ L − ⋃

I∈I0
LI , then d(w,A) ≥ 2r1. If there is I ∈ I0 suh that

w ∈MI , then d(w, aI) ≥ 2r1 and for every b ∈ A− {aI},
d(w, b) ≥ d(b, aI) − d(w, aI) ≥ r − 8r1 − 2r1 ≥ 64r1 − 10r1 = 54r1.It follows that d(M,A) ≥ r1.It remains to show that δX(M) ≥ C/2. Obviously, δX(L− ⋃

I∈I0
LI) ≥ δX(L) ≥ C.Let I ∈ I0 and be suh that w ∈MI . Then

d(w,E −X) ≥ d(aI , E −X) − d(w, aI) ≥ C − 8r1 − 2r1 = C − 10r1 ≥ C − 16r1 ≥ C/2.It follows that δX(M) ≥ C/2. We have proved Claim 1.We are ready to prove that for open subsets of Banah spaes, if (BUC(X))τ ⊆
BPD.UC(Y ), then τ−1 ∈ BPD.UC(Y,X). This is the ontent of part (a) of the nexttheorem. The main argument lies though in part (b), and one it is proved, (a) followseasily. So we shall start with the proof of (b).Theorem 5.41. Let E be a Banah spae and X be an open subset of E.(a) Suppose that X is BPD.AC and BR.LC.AC , and that τ ∈ H(X,Y ) is suh that
(BUC(X))τ ⊆ BPD.UC(Y ). Then τ−1 ∈ BPD.UC(Y,X).(b) Suppose that X is BPD.AC , and that τ ∈ H(X,Y ) is suh that (LIP00(X))τ ⊆
BPD.UC(Y ). Assume further that τ−1 ∈ BPD.P(Y,X). Then τ−1 ∈ BPD.UC(Y,X).Proof. (b) We shall see that the proof of (b) an be redued to an instane of Lemma 5.25.Suppose by ontradition that τ−1 6∈ BPD.UC(Y,X). So there are sequenes ~x′, ~y′ in Yand e > 0 suh that Rng(~x′)∪Rng(~y′) is a BPD subset of Y , limn→∞ d(x′n, y

′
n) = 0, and

d(τ−1(x′n), τ
−1(y′n)) > e for every n ∈ N. We may assume that ~x′ is either a Cauhysequene or ~x′ is spaed. However, ~x′ annot be a Cauhy sequene beause in that aseits limit belongs to Y , and this violates the ontinuity of τ−1. So we may assume that

~x′ is spaed. Set ~x = τ−1(~x′) and ~y = τ−1(~y′). From the fat that τ−1 ∈ BPD.P(Y,X)it follows that Rng(~x) is a BPD set. We may assume that ~x is either spaed or is aCauhy sequene. But if it is a Cauhy sequene then its limit belongs to X, and by the



120 M. Rubin and Y. Yomdinontinuity of τ at x, ~x′ is a Cauhy sequene, whih we have already exluded. So wemay assume that ~x is spaed. Let d > 0 be suh that ~x is d-spaed. Then for every n ∈ Nthere is at most one m suh that ‖yn− xm‖ < d/2. It follows that there is an in�nite set
η ⊆ N suh that ‖yn − xm‖ ≥ min(e, d/2) for every m,n ∈ η. We may thus assume that
d(Rng(~x),Rng(~y)) > 0.We denote Rng(~x),Rng(~y),Rng(~x′) and Rng(~y′) by A,B,A′ and B′ respetively. Let
X̂ = X −A, Ŷ = Y −A′ and τ̂ = τ↾X̂. So τ̂ ∈ H(X̂, Ŷ ). We shall prove that(i) X̂ is BPD.AC,(ii) (LIP00(X̂))τ̂ ⊆ BPD.P(Ŷ ),(iii) B is a BPD subset of X̂, whereas τ̂(B) is not a BPD subset of Ŷ .Fats (i)�(iii) ontradit Lemma 5.25.(i) By Proposition 5.40(b), X̂ is BPD.AC.(ii) Let h ∈ LIP00(X̂). Then h is extendible, and hcl↾bd(X̂) = Id. So hcl(A) = A.Hene h∗ := hcl↾X ∈ H(X) and learly, h∗ ∈ LIP00(X). So (h∗)τ ∈ BPD.UC(Y ).We show that if C is a BPD subset of Ŷ , then hτ̂ (C) is a BPD subset of Ŷ . Clearly,
hτ̂ = (h∗)τ↾Ŷ . Obviously, C ∪ A′ is a BPD subset of Y , and hene (h∗)τ↾(C ∪ A′) isbi-UC. So sine d(C,A′) > 0, d((h∗)τ (C), (h∗)τ (A′)) > 0. Sine (h∗)τ (A′) = A, it followsthat (†) d((h∗)τ (C), A′) > 0. Sine (h∗)τ ∈ BPD.P(Y ), and C is a BPD subset of Y , wealso have (††) (h∗)τ (C) is a BPD subset of Y . From (†) and (††) it follows that (h∗)τ (C)is a BPD subset of Ŷ . That is, hτ̂ (C) is a BPD subset of Ŷ . We have shown that forevery h ∈ LIP00(X̂), hτ̂ is BPD.P. The same holds for h−1, so (LIP00(X̂))τ̂ ⊆ BPD.P(Ŷ ).(iii) Sine τ−1 ∈ BPD.P(Y,X) and B′ is a BPD subset of Y , we see that B is a BPDsubset of X. From the fat that d(A,B) > 0 we onlude that B is a BPD subset of
X − A = X̂. On the other hand, d(A′, B′) = d(Rng(~x′),Rng(~y′)) = 0, so B′ is not aBPD subset of Ŷ .Fats (i)�(iii) ontradit Lemma 5.25, so τ−1 ∈ BPD.UC(Y,X). Part (b) is thusproved.(a) Let X,Y, τ be as in (a). Then (BUC(X))τ ⊆ BPD.P(Y ). So by Lemma 5.39(b),
τ−1 ∈ BPD.P(Y,X). We also have (LIP00(X))τ ⊆ BPD.UC(Y ). So by part (b) of thistheorem, τ−1 ∈ BPD.UC(Y,X).



6. Groups of extendible homeomorphisms andreonstrution of the losure of open sets6.1. General desription. This hapter deals with the homeomorphism groups oflosed sets whih are the losures of open subsets of a normed spae and with groups ofextendible homeomorphisms. Under appropriate assumptions on the open sets X and Ywe prove that if ϕ : H(cl(X)) ∼= H(cl(Y )), then there is τ ∈ H(cl(X), cl(Y )) whihindues ϕ. Under the same assumptions we also prove that if ϕ : EXT(X) ∼= EXT(Y ),then there is τ ∈ EXT±(X,Y ) whih indues ϕ. The de�nitions of EXT(X,Y ) and
EXT(X) appear in 4.6(b) and 5.1(a).The results about H(cl(X)) appear in Theorems 6.22 and 6.24, and those about
EXT(X) appear in Theorems 6.3, 6.12 and 6.18. These theorems over open subsets of anormed spae whose boundary may be quite ompliated. So they go far beyond the lassof open sets whose losure is a manifold with boundary. Nevertheless, the statementsEvery ϕ : H(cl(X)) ∼= H(cl(Y )) is indued by some τ ∈ H(cl(X), cl(Y ))and Every ϕ : EXT(X) ∼= EXT(Y ) is indued by some τ ∈ EXT±(X,Y )are not true for every pair of open subsets of a normed spae, not even in the �nite-dimensional ase. Example 5.8 exhibits two di�erent trivial reasons why the above state-ments are not true in their full generality.The proofs of the theorems about EXT(X) and about H(cl(X)) are essentially identi-al. Moreover, for �nite-dimensional normed spaes the question about the faithfulness of
{H(cl(X)) | X is open} is a speial ase of the question about the EXT-determinednessof {X | X is open}. To see this, notie the following fats.(1) If U is a regular open subset of Rn, then EXT(U) = H(cl(U)).(2) If X ⊆ Rn is open and X̂ = int(cl(X)), then X̂ is regular open and cl(X) = cl(X̂).Suppose now that ϕ : H(cl(X)) ∼= H(cl(Y )). By (2), ϕ : H(cl(X̂)) ∼= H(cl(Ŷ )), andby (1), ϕ : EXT(X̂) ∼= EXT(Ŷ ). So if it an be proved that there is τ ∈ EXT±(X̂, Ŷ )whih indues ϕ, then this τ indeed belongs to H(cl(X), cl(Y )).Theorems 6.3 and 6.18 prove the EXT-determinedness of ertain lasses. In 6.3 it isassumed that the members of the EXT-determined lass are BR.LC.AC (see 5.37). Thisproperty is a weakening of uniform-in-diameter arwise onnetedness. It may happenthough that every point in the boundary of suh a set is �xed under EXT(X). In 6.18, onthe other hand, the EXT-determinedness is derived from the property that the EXT(X)-orbit of every member of bd(X) ontains an ar, but X need not be BR.LC.AC.[121℄



122 M. Rubin and Y. YomdinIn Corollary 6.6(a) we prove that if X and Y satisfy ertain weak assumptions onarwise onnetedness, and (EXT(X))τ = EXT(Y ), then τ ∈ EXT(X,Y ). A statementof the form: �(EXT(X))τ ⊆ EXT(X) ⇒ τ ∈ EXT(X,Y )� is also proved, but only underrather restritive assumptions on X and Y . See Corollary 6.6(b).Suppose that X is an open subset of Rn. Then EXT(X) = BUC(X). If in addition,
X is bounded, then EXT(X) = UC(X). So for �nite-dimensional bounded X's Corollary5.6 whih deals with BUC(X) is indeed about EXT(X). However, Theorems 6.12 and6.18 are stronger than 5.6 even for �nite-dimensional bounded X's.Groups of ompletely loally uniformly ontinuous homeomorphisms are dealt within Theorem 6.20. (See De�nition 5.3(f).) The Γ -ontinuous version of these groups isthe subjet of Chapters 8�12.At the end of this hapter in items 6.25�6.30, we disuss two generalizations of theseresults. The �rst generalization deals with subsets Z of a normed spae suh that Z ⊆
cl(int(Z)). The seond generalization deals with sets whih are the losures of opensubsets in a normed manifold.Reall that unless otherwise stated, X and Y denote respetively open subsets of thenormed spaes E and F .6.2. Groups of extendible homeomorphisms. The following de�nition ontainssome notions related to arwise onnetedness. These notions are used in the statementof Theorem 6.3 whih deals with EXT-determinedness. In the next de�nition only, Edenotes a general metri spae.Definition 6.1. Let E be a metri spae and X ⊆ E.(a) A set of pairwise disjoint sets is alled a pairwise disjoint family. Let A be apairwise disjoint family of subsets of X. A is ompletely disrete with respet to E if forevery x ∈ E there is U ∈ Nbr(x) suh that {A ∈ A | A∩U 6= ∅} is �nite. A set A ⊆ X isompletely disrete with respet to E if A does not have aumulation points in E. Themention of E in the above de�nition is often omitted, sine E is usually understood fromthe ontext. A sequene ~x ⊆ X is a ompletely disrete sequene if it is 1-1, and its rangeis ompletely disrete.(b) X is said to be boundedly arwise onneted (BD.AC ) if for every bounded A ⊆ Xthere is d > 0 suh that for every x, y ∈ A there is a reti�able ar L ⊆ X onneting xand y suh that lngth(L) ≤ d.() X is said to be a wide set if for every in�nite ompletely disrete set A ⊆ Xthere is an in�nite B ⊆ A, a set {yb | b ∈ B} and a set of ars {Lb | b ∈ B} suh that:
{yb | b ∈ B} is bounded; for every b ∈ B, yb, b ∈ Lb ⊆ X; and {Lb | b ∈ B} is ompletelydisrete.(d) Let ~x ⊆ X be a ompletely disrete sequene. Let x∗ ∈ cl(X), {Ln | n ∈ N} be asequene of ars and ~y ⊆ X. Assume that(1) Ln ⊆ X for every n ∈ N,(2) Ln onnets xn with yn for every n ∈ N,(3) lim ~y = x∗,



Reonstrution of manifolds from subgroups of homeomorphism groups 123(4) Lm ∩ Ln = ∅ for any distint m,n ∈ N,(5) for every r > 0, {Ln −BE(x∗, r) | n ∈ N} is ompletely disrete.Then 〈~x, x∗, {Ln | n ∈ N}, ~y 〉 is alled a joining system for ~x with respet to E.(e) X is jointly arwise onneted (JN.AC ) with respet to E if for every ompletelydisrete sequene ~x ⊆ X there is a subsequene ~x′ of ~x suh that ~x′ has a joining system. �In (a)�(d) of the next proposition we infer joint arwise onnetedness from varioussimpler properties of X. Part (e) is a trivial observation, so we do not prove it.Proposition 6.2. (a) Suppose that ~x⊆X is a Cauhy sequene and limE ~x∈ int(X)−X.Then ~x has a subsequene ~x′ suh that ~x′ has a joining system.(b) Suppose that X is an open subset of a �nite-dimensional normed spae. Then Xis JN.AC i� X is bounded.() Suppose that X is an open subset of a Banah spae and X is BD.AC. Then everybounded ompletely disrete sequene ~x ⊆ X has a subsequene ~x′ suh that ~x′ has ajoining system. In partiular , if in addition X is bounded , then X is JN.AC.(d) If X is an open subset of a Banah spae, X is wide and X is BD.AC , then Xis JN.AC.(e) Let X be a bounded subset of a �nite-dimensional normed spae. Then X isBR.LC.AC i� X is UD.AC.Proof. (a) Let x̄ = limE ~x. Let u ∈ E and r > 0 be suh that B(u, r) ⊆ E and
x̄ ∈ BE(u, r). Let v ∈ B(u, r). There is a subsequene ~y of ~x suh that ~y ⊆ B(u, r) and
{[yn, v) | n ∈ N} is a pairwise disjoint family. Let vn ∈ [yn, v) be suh that lim~v = v.Then 〈~y, v, {[yn, vn] | n ∈ N}, ~v 〉 is a joining system for ~y.(b) If X is a bounded open subset of a �nite-dimensional spae, then X does notontain an in�nite ompletely disrete set. So X is JN.AC.Suppose that X is an unbounded open subset of a �nite-dimensional spae, Let ~x ⊆ Xbe a 1-1 sequene suh that limn→∞ ‖xn‖ = ∞. Then ~x is ompletely disrete, and it istrivial that ~x has no joining system.() Let X be as in (). Let ~x ⊆ X be ompletely disrete. Sine X is an open subsetof a Banah spae, we may assume that ~x is spaed. Let u ∈ X. For every n ∈ N let
Ln ⊆ X be a reti�able ar onneting xn with u suh that lngth(Ln) ≤ d. Let γn(t)be the parametrization of Ln satisfying γn(0) = u, γn(1) = xn and lngth(γn([0, t])) =

t · lngth(Ln).For every σ ⊆ N and t ∈ [0, 1] set A[σ, t] = {γn(t) | n ∈ σ}, and if σ is in�nite de�ne
tσ = inf({t | A[σ, t] is spaed}). There is an in�nite σ suh that for every in�nite η ⊆ σ,
tη = tσ. It is easy to see that there is no in�nite η ⊆ σ suh that A[η, tσ] is spaed. Sothere is η ⊆ σ suh that A[η, tσ] is a Cauhy sequene. Then A[η, 1] is a subsequene of
~x and 〈A[η, 1], limA[η, tη], {γn([tη, 1]) | n ∈ η}, A[η, tη] 〉 is a joining system for A[η, 1].(d) This part follows easily from ().In the next theorem, (a) is a speial ase of (b). It seems worthwhile to state (a)separately, beause the lass onsidered there is more understandable than the lassdealt with in (b).



124 M. Rubin and Y. YomdinTheorem 6.3. (a) Let KO
BCX denote the lass of all X ∈ KO

BNC suh that X is wide,BR.LC.AC and BD.AC. Suppose that X,Y ∈ KO
BCX and ϕ : EXT(X) ∼= EXT(Y ). Thenthere is τ ∈ EXT±(X,Y ) whih indues ϕ. Note that KO

BCX ontains the lass of allbounded members of KO
BNC whih are BR.LC.AC and BD.AC.(b) Let KO

NMX denote the lass of all X ∈ KO
NRM suh that X is BR.LC.AC andJN.AC. Let X,Y ∈ KO

NMX. Suppose that ϕ : EXT(X) ∼= EXT(Y ). Then there is
τ ∈ EXT±(X,Y ) whih indues ϕ.The proof of Theorem 6.3 appears after Corollary 6.6.Remark. (a) By Proposition 6.2(), KO

BCX ⊆ KO
NMX. So 6.3(b) is a speial ase of 6.3(a).(b) Note that all members of KO

BCX whih are subsets of a �nite-dimensional normedspae are bounded. This is so, sine for �nite-dimensional spaes, wideness implies bound-edness. Yet KO
BCX ontains unbounded subsets of in�nite-dimensional Banah spaes.() There is a regular open subset X ⊆ R3 suh that X ∈ KO

BCX and gcl↾bd(X) = Idfor every g ∈ EXT(X). This is maybe somewhat unexpeted, sine it means that bd(X)is reoverable from EXT(X) even though every member of EXT(X) is the identity on
bd(X). See Example 6.7(d). �Reall that UC0(X) = {f ∈ UC(X) | Dom(f cl) = cl(X) and fcl |̀bd(X) = Id}.Proposition 6.4. Suppose that X is BR.LC.AC , and let τ ∈ H(X,Y ) be suh that
(UC0(X))τ ⊆ EXT(Y ). Let x ∈ bd(X), y ∈ bd(Y ) and ~x ⊆ X be suh that lim ~x = xand lim τ (~x) = y. Then τ ∪ {〈x, y 〉} is ontinuous.Proof. Let ~u ⊆ X be suh that lim ~u = x. Suppose by ontradition that τ (~u) does notonverge to y. We may assume that y is not a limit point of τ (~u).We now repeat the onstrution appearing in the proof of Case 1 in Theorem 5.5.Using the fat that X is BR.LC.AC, by indution on i ∈ N we onstrut ni ∈ N and
Li ⊆ X suh that: (i) Li is an ar onneting xni

and uni
; (ii) limi→∞ diam(Li) = 0;and (iii) for every i ∈ N, d(Li,⋃j 6=i Lj) > 0. For every i ∈ N let Ui ⊆ X be an open setsuh that Li ⊆ Ui, limi→∞ diam(Ui) = 0, and for every i 6= j, d(Ui, Uj) > 0.Let hi ∈ UC(X) be suh that supp(hi) ⊆ U2i and hi(xn2i

) = un2i
. By Proposition 4.5,

h := ◦i∈N hi ∈ UC(X). It is also obvious that h ∈ UC0(X). However, hτ is not exendible,sine τ (~x) is onvergent, whereas hτ (τ (~x)) is not onvergent. A ontradition.Our next goal is to show that if (EXT(X))τ ⊆ EXT(Y ), then for every y ∈ bd(Y )there is a sequene ~y onverging to y suh that τ−1(~y) is a onvergent sequene. This holdsautomatially when X is bounded and �nite-dimensional, but in that ase extendibilityis equivalent to uniform ontinuity, and so Theorem 5.2 already answers our question. Inthe general ase we have to make an additional arwise onnetedness assumption on X.For a metri spae E and X ⊆ E de�ne
LUC01(X) = {h ∈ LUC(X) | there is an E-open set U ⊇ bd(X)suh that h↾(U ∩X) = Id}.Lemma 6.5. Assume that X is JN.AC , τ ∈ H(X,Y ) and (LUC01(X))τ ⊆ EXT(Y ), andlet y ∈ bd(Y ).



Reonstrution of manifolds from subgroups of homeomorphism groups 125(a) Suppose that ~x ⊆ X is ompletely disrete, 〈~x, x∗, {Ln | n ∈ N}, ~x′ 〉 is a joiningsystem for ~x and lim τ (~x) = y. Then there is a sequene ~u ⊆ X suh that lim ~u = x∗ and
lim τ (~u) = y.(b) There is a sequene ~u ⊆ X suh that ~u onverges to a member of bd(X) and
lim τ (~u) = y.Proof. (a) Suppose that ~x is ompletely disrete, 〈~x, x∗, {Ln | n ∈ N}, ~x′ 〉 is a joiningsystem for ~x, and τ (~x) onverges to y. We may assume that x∗ 6∈ {xn | n ∈ N}. Henesine ~x is ompletely disrete, d := d(~x, x∗) > 0. Also assume that Ln(0) = xn and
Ln(1) = x′n.Claim 1. For every r > 0 there is a sequene ~ur ⊆ B(x∗, r)∩X suh that τ (~ur) onvergesto y.Proof. Let r ∈ (0, d). For every n ∈ N we de�ne vn. If n is even and d(x′n, x∗) ≤ r/2,let tn = min{t ∈ [0, 1] | d(Ln(t), x∗) = r/2} and vn = Ln(tn). Otherwise, let vn = xn.Let ~v = {vn | n ∈ N}. Let L′

n be the subar of Ln onneting xn with vn. Clearly L′
n ∩

B(x∗, r/2) = ∅, and hene by De�nition 6.1(d)(5), {L′
n | n ∈ N} is ompletely disrete.It is easy to see that there is a ompletely disrete family of open sets {Un | n ∈ N}suh that for every n ∈ N, L′

n ⊆ Un ⊆ cl(Un) ⊆ X. Let hn ∈ UC(X) be suh that
supp(hn) ⊆ Un and hn(xn) = vn. It is easy to see that h := ◦{hn | n ∈ N} ∈ LUC01(X).Hene hτ ∈ EXT(Y ).The fats that τ (~x) is onvergent in cl(Y ) and that hτ ∈ EXT(Y ) imply that hτ (τ (~x))is also onvergent in cl(Y ). Note that hτ (τ (~x)) = τ (~v). So τ (~v) is onvergent in cl(Y ).Reall that for every n ∈ N, v2n+1 = x2n+1. So lim τ (~v) = lim τ (~x) = y. Let Nr ∈ Nbe suh that for every n > Nr, d(x′n, x∗) ≤ r/2 and de�ne ~ur = {v2n | 2n > Nr}. Then
~ur ⊆ B(x∗, r) ∩X and hene ~ur is as required in Claim 1.Let rn = 1/n. For every n ∈ N let kn be suh that d(y, τ (urn

kn
)) < 1/n. Then

~u := {urn

kn
| n ∈ N} onverges to x∗ and lim τ (~u) = y.(b) Suppose by ontradition that y is a ounter-example to the laim of (b). Let ~y ⊆

Y be a 1-1 sequene onverging to y and ~z = τ−1(~y). If ~z has a onvergent subsequene,then this subsequene onverges to a member of bd(X), so y is not a ounter-example.Hene ~z is ompletely disrete.Sine X is JN.AC, there is a subsequene ~x of ~z suh that ~x has a joining system
〈~x, x∗, {Ln | n ∈ N}, ~x′ 〉. By (a) there is a sequene ~u ⊆ X suh that lim ~u = x∗ and
lim τ (~u) = y. If x∗ ∈ X, then y = lim τ (~u) = τ (x∗) ∈ Y , a ontradition. So x∗ ∈ bd(X).This means that y is not a ounter-example to (b). A ontradition, so (b) is proved.The fat (EXT(X))τ ⊆ EXT(X) does not imply that τ ∈ EXT(X,Y ). To deduethat τ ∈ EXT(X,Y ), we need to assume that (EXT(X))τ = EXT(X). This is shown inpart (a) of the next orollary. In (b) we show that if EXT(X) ats transitively on bd(X),then the assumption (EXT(X))τ ⊆ EXT(X) does su�e.Corollary 6.6. (a) Suppose that X is BR.LC.AC , and Y is JN.AC. Let τ ∈ H(X,Y )be suh that (†) (UC0(X))τ ⊆ EXT(Y ) and (††) (LUC01(Y ))τ

−1 ⊆ EXT(X). Then
τ ∈ EXT(X,Y ).



126 M. Rubin and Y. Yomdin(b) Suppose that X is BR.LC.AC , X is JN.AC , and that the boundary of X has thefollowing transitivity property : (∗) for every x, y ∈ bd(X) there is h ∈ EXT(X) suh that
hcl(x) = y. Let τ ∈ H(X,Y ) be suh that (EXT(X))τ ⊆ EXT(Y ). Then τ ∈ EXT(X,Y ).Proof. The two parts of the orollary will be proved by ombining Lemma 6.5(b) andPropositions 6.4 and 4.7(a).(a) Let x ∈ bd(X). By Lemma 6.5(b) applied to τ−1, there is ~x ⊆ X onverging to
x suh that τ (~x) onverges to a point in bd(Y ). Let y = lim τ (~x). By Proposition 6.4,
τ ∪ {〈x, y 〉} is ontinuous. So by Proposition 4.7(a), τ is extendible.(b) By Lemma 6.5(b) applied to τ , there are x0 ∈ bd(X) and ~x ⊆ X onverging to x0suh that τ (~x) onverges to a member of bd(Y ). Let x ∈ bd(X). There is h ∈ EXT(X)suh that h(x0) = x. Sine hτ ∈ EXT(Y ), hτ (τ (~x)) onverges to a member of bd(Y ). But
τ (h(~x)) = hτ (τ (~x)). It follows that for every x ∈ bd(X) there is a sequene ~u onvergingto x suh that τ (~u) is onvergent. By Propositions 6.4 and 4.7(a), τ ∈ EXT(X,Y ).Proof of Theorem 6.3. (a) This is a speial ase of (b), beause by Proposition 6.2(d), aBD.AC wide open subset of a Banah spae is JN.AC.(b) LIP00(X) ⊆ EXT(X) and LIP00(X) = LIP(X,S), where S is the set of allopen BPD subsets of X. The same holds for Y . So by Theorem 2.8(b), there is τ ∈
H(X,Y ) suh that τ indues ϕ. From the fat that UC0(X) ⊆ EXT(X) we onludethat (UC0(X))τ ⊆ EXT(Y ). So 6.6(a) an be applied to τ and τ−1. We onlude that
τ ∈ EXT±(X,Y ). This proves (b).Part (a) of the next example is designed to show that the ondition (†) of 6.6(a) isneeded. Indeed, for Y,X and τ−1 of (a), (††) holds but the onlusion of 6.6(a) doesnot. Part (b) shows that assumption (††) in Corollary 6.6(a) annot be omitted. Theexample is in�nite-dimensional. Indeed, for �nite-dimensional normed spaes (†) doessu�e. This follows from Theorem 5.5 and Proposition 6.2(e). Part () shows that thetransitivity assumption (∗) in Corollary 6.6(b) is indeed needed. Part (d) shows thatthere is X ∈ KO

BCX suh that EXT(X) �xes bd(X) pointwise. The set X is a regularopen subset of R3, therefore EXT(X) = H(cl(X)).Let Cmp(X) denote the set of onneted omponents of a topologial spae X.Example 6.7. (a) There are bounded regular open onneted sets X and Y in R2 and
τ ∈ H(X,Y ) suh that X and Y are BR.LC.AC , (EXT(X))τ ⊆ EXT(Y ), but τ−1 6∈
EXT(Y,X). Note that by Proposition 6.2(b), X and Y are JN.AC.(b) There are regular open bounded domains X and Y in an in�nite-dimensional Ba-nah spae and τ ∈ H(X,Y ) suh that X and Y are BR.LC.AC and JN.AC , (EXT(X))τ

⊆ EXT(Y ), but τ 6∈ EXT(X,Y ).() There are bounded domains X and Y in an in�nite-dimensional Banah spae and
τ ∈ H(X,Y ) suh that X and Y are BR.LC.AC and JN.AC , bd(X) has two onnetedomponents , bd(Y ) is onneted , EXT(X) and EXT(Y ) at very transitively on bd(X)and bd(Y ) respetively , (EXT(X))τ ⊆ EXT(Y ), but τ 6∈ EXT(X,Y ).(d) There is X ∈ KO

BCX suh that X is a regular open bounded subset of R3, and
gcl↾bd(X) = Id for every g ∈ EXT(X).



Reonstrution of manifolds from subgroups of homeomorphism groups 127Proof. (a) Let X ′ ⊆ R2 be the open square whose verties are (0, 0), (1, 0), (0, 1) and
(1, 1), and Y ′ ⊆ R2 be the open triangle whose verties are (0, 0), (0, 1) and (1, 1). Let
τ ′ ∈ H(X ′, Y ′) be de�ned by τ ′((x, y)) = (xy, y). Let A = [(0, 0), (1, 0)].Clearly, τ ′ ∈ EXT(X ′, Y ′), (τ ′)cl↾(cl(X) −A) ∈ H(cl(X ′) − A, cl(Y ′) − {(0, 0)}) and
(τ ′)cl(A) = {(0, 0)}. Also, if g ∈ EXT(X ′, X ′) and gcl(A) = A, then gτ ′ ∈ EXT(Y ′).For n > 1 and 1 ≤ k < n let xn,k = (k/2n, 1/2n), Bn,k = cl(B(xn,k, 1/8

n)) and
B = {Bn,k | n > 1, 1 ≤ k < n}. Note that B is a pairwise disjoint family of losed ballsontained in X ′ and cl(

⋃B) − ⋃B = A. Let X = X ′ − ⋃B, Y = τ ′(X) and τ = τ ′↾X.Clearly, for every g ∈ EXT(X), gcl(A) = A. It follows that X, Y and τ are as required.Note also that for every x, y ∈ A−{(0, 0), (1, 0)} there is g ∈ EXT(X) suh that g(x) = y.(b) Let E be the Hilbert spae ℓ2, Y ′ be the open ylinder de�ned by
Y ′ =

{
(x0, x1, . . .)

∣∣∣ |x0| < 3 and ∞∑

i=1

x2
i < 9

}

and X ′ = Y ′−BE(0, 1). Let τ1 : X ′ ∼= Y ′−{0} be suh that τ1↾(Y ′−BE(0, 2)) = Id. Let
τ2 : Y ′−{0} ∼= Y ′ be suh that τ2↾(Y ′−BE(0, 2)) = Id and τ ′ = τ2 ◦ τ1. The existene of
τ2 follows from the fats that a point in RN is a strongly negligible set, and that ℓ2 ∼= RN.See [BP, Chapter IV, De�nition 5.1 and Chapter V, Proposition 2.2()℄ and Theorem 6.4.Note that τ ′ annot be ontinued to a ontinuous funtion de�ned on S(0, 1). Hene
τ ′ 6∈ EXT(X ′, Y ′). It is trivial that bd(Y ′) is homeomorphi to a sphere, and that bd(X ′)has two omponents: bd(Y ′) and S(0, 1). It an be easily heked that for every h ∈
EXT(X ′): if hcl(S(0, 1)) = S(0, 1), then hτ ′ ∈ EXT(Y ′). However, there is h ∈ EXT(X ′)suh that hcl(S(0, 1)) = bd(Y ′). This implies that (EXT(X ′))τ 6⊆ EXT(Y ′), ontrary towhat is required in this example.For a pairwise disjoint family C of subsets a topologial spae Z de�ne

accZ(C) = {z ∈ Z | for every U ∈ NbrZ(z), {C ∈ C | U ∩ C 6= ∅} is in�nite}.To de�ne X we onstrut a pairwise disjoint family F of losed sets suh that (i) ⋃F ⊆
Y ′−B(0, 2) and (ii) acc(F) ⊆ bd(Y ′)∪⋃F . We then de�neX, Y and τ to be respetively
X ′ − ⋃F , τ ′(X) and τ ′↾X. It follows from (ii) that X is open, and the onstrution of
F will ensure that S(0, 1) is the unique onneted omponent of bd(X) whih is lopenin bd(X) and whih is also strongly onneted (a notion to be de�ned later). It will thusfollow that for every h ∈ EXT(X), hcl(S(0, 1)) = S(0, 1), and this in turn implies that
(EXT(X))τ ⊆ EXT(Y ).Let {ei | i ∈ N} be the standard basis of ℓ2, denote by T the set of �nite sequenes ofnatural numbers, let f : T → N− {0} be a 1-1 funtion, and for η ∈ T de�ne dη = ef(η).Let Λ denote the empty sequene and T ∗ = T − {Λ}. The relation �ν is a proper initialsegment of η� is denoted by η < ν. Suppose that η = ν ˆ〈 i〉, ζ = ν ˆ〈j 〉 and i 6= j. Inthat ase we write ν = pred(η), η ∈ Suc(ν) and ζ ∈ Brthr(η).Let <T be the relation on T de�ned by ν <T η if either η < ν or there is n ∈
Dom(ν) ∩ Dom(η) suh that ν↾N<n = η↾N<n and ν(n) < η(n). It is easy to hek that
<T is a dense linear ordering with maximum Λ and with no minimum. Denote by Tnthe set of all η ∈ T suh that Dom(η) = N<m for some m ≤ n. Then Tn is well-orderedby <T .



128 M. Rubin and Y. YomdinWe de�ne a line segment Lη for every η ∈ T ∗. If η = ν ˆ〈m〉, then Lη has theform [dν + aη · e0, dη + aη · e0], where 2 < aη < 3. So for Lη to be de�ned we needto de�ne aη. We de�ne aη by indution. Let {ηn | n ∈ N} be a 1-1 enumerationof T suh that for every n ∈ N and ν < ηn there is m < n suh that ηm = ν. De�ne
Sn = {ηm 〈̂ i〉 | m < n and i ∈ N}. We de�ne by indution on n the set {aν | ν ∈ Sn}. Soat stage n we need to de�ne the set {aηnˆ〈 i 〉 | i ∈ N}. Sine {ν | ν < ηn} ⊆ {ηm | m < n}for every n, it follows that η0 = Λ. Let {a〈 i 〉}i∈N be a stritly inreasing sequeneonverging to 3 suh that a〈0 〉 = 5/2. So

L〈 i 〉 = [dΛ + a〈 i 〉 · e0, d〈 i 〉 + a〈 i 〉 · e0].Let n > 0 and suppose that aν has been de�ned for every ν ∈ Sn. Let 0̄ = 〈0, . . . 〉 denotethe in�nite sequene of 0's. It is onvenient to de�ne a0̄ = 2. We assume by indutionthat(1) 2 < aν < 3 for every ν ∈ Sn,(2) {aηmˆ〈 i 〉 | i ∈ N} is a stritly inreasing sequene onverging to aηm
for every

0 < m < n,(3) if ν, ̺ ∈ Sn and ν <T ̺, then aν < a̺.Note that for n = 1 the indution hypotheses hold. Clearly, Sn ⊆ Tn+1, so {aν | ν ∈ Sn}is well-ordered. Obviously, ηn ∈ Sn. If ηn = 〈0, . . . , 0〉, then ηn = min(Sn). In this aseset ̺n = 0̄. Otherwise, write ηn as ν ˆ〈k 〉ˆ〈0, . . . , 0〉, where k > 0, and the sequene of
0's at the end of ηn may be the empty sequene. De�ne ̺n = ν ˆ〈k − 1〉. It is easy tohek that in this ase ̺n is the predeessor of ηn in Sn. Choose {aηnˆ〈 i 〉 | i ∈ N} to bea stritly inreasing sequene onverging to aηn

suh that aηnˆ〈0 〉 = (a̺n
+ aηn

)/2. It isleft to the reader to verify that the indution hypotheses hold.Let L = {Lη | η ∈ T ∗}, set aΛ = 3, for η ∈ T de�ne cη = dη + aηe0 and let
C = {cη | η ∈ T}. Note that cΛ ∈ bd(Y ′). For η = ν ˆ〈 i〉 ∈ T ∗ de�ne bη = dν + aηe0. So
Lη = [bη, cη].We �rst establish some fats about the distane between the members of L.Claim 1. If ν 6= pred(η), η 6= pred(ν) and pred(ν) 6= pred(η), then d(Lν , Lη) > 1.Proof. Lν and Lη an be written as Lν = aνe0 + [b, c] and Lη = aηe0 + [d, e], where
b, c, d, e ∈ {ei | i ∈ N≥1} and {b, c} ∩ {d, e} = ∅. So (d(Lν , Lη))

2 = (aν − aη)
2 + 4 · 1

4 > 1.Claim 2. Suppose that ν = pred(η) or η = pred(ν) or ν ∈ Brthr(η) and write Lν =

aνe0 + [b, c] and Lη = aηe0 + [b, d], where b, c, d ∈ {ei | i ∈ N≥1}. Let x ∈ Lν and write
x = aνe0 + b+ e. Then d(x, Lη) > √

3
2 ‖e‖.Proof. Clearly, e an be written as e = t(c− b) and so

d(x, Lη)
2 = (aη − aν)

2 + d(b+ e, [b, d])2 > d(b+ e, [b, d])2 = d(t(c− b), [0, d− b])2.Also,
d(t(c− b), [0, d− b]) ≥ d(t(c− b), {s(d− b) | s ∈ R}) = ‖t(c− b)‖ · sin π

3
=

√
3

2
‖e‖.So d(x, Lη) > √

3
2 ‖e‖. This proves Claim 2.



Reonstrution of manifolds from subgroups of homeomorphism groups 129If we de�ne X0 = X ′ − ⋃L, Y0 = τ ′(X0) and τ0 = τ ′↾X0, then all the requirementsof part (b) are ful�lled exept that X0 is not regular open. To ahieve that X be regularopen, we replae every Lη by a set Fη suh that Fη = cl(int(Fη)). This will ensure that
X is regular open. The veri�ation of the following trivial fat is left to the reader.Claim 3. C is √

2-spaed.Let η, ν ∈ T ∗. For distint x, y ∈ ℓ2 de�ne Hx,y = ({t(y − x) | t ∈ R})⊥. Let θ besuh that tan θ = 1/8 and de�ne the �losed double one� of x, y to be
dcone(x, y) = {z ∈ [x, y] +Hx,y | d(z, [x, y]) ≤ d(z, {x, y}) · sin θ}.Note that dcone(x, y) is the union of two ones with verties x, y. The ommon base ofthe two ones is B((x+ y)/2, r)∩ ((x+ y)/2 +Hx,y), where r = 1

2‖y− x‖ · tan θ, and theopening angle of the ones is θ. The veri�ation of the following fat is omitted.Claim 4. There is K > 1 suh that for any distint x, y, u, v ∈ ℓ2 and ε > 0: if u, v 6∈
dcone(x, y) and d(u, dcone(x, y)), d(v, dcone(x, y)) ≤ ε, then there is a reti�able ar Jonneting u, v suh that J ⊆ {z | d(z, dcone(x, y)) ≤ ε} − dcone(x, y), d(J, {x, y}) =

d({u, v}, {x, y}) and lngth(J) ≤ K‖u− v‖.Note that in order to prove Claim 4 it su�es to onsider the a�ne subspae of ℓ2generated by x, y, u, v. So the proof an be arried out in a 3-dimensional Eulideanspae.De�ne Fη = dcone(bη, cη), F = {Fη | η ∈ T ∗}, F̂ =
⋃F , X = X ′−F̂ , Y = Y ′−F̂ and

τ = τ ′↾X. Clearly, τ ∈ H(X,Y ). Sine τ ′ annot be ontinued to a ontinuous funtionde�ned on S(0, 1), neither an τ . Hene τ 6∈ EXT(X,Y ). The next laim ontains theentral fat about F .Claim 5. Let η ∈ T ∗ and r > 0. Then d(Fη −B(cη, r), F̂ − Fη) > 0.Proof. Let η = ν ˆ〈 i〉. If i > 0 de�ne δη = min(aνˆ〈 i+1 〉 − aνˆ〈 i 〉, aνˆ〈 i 〉 − aνˆ〈 i−1 〉) andif i = 0 de�ne δη = aνˆ〈 i+1 〉 − aνˆ〈 i 〉. Let εη,r = min(3/4, 3r/4, δη/3). Let ζ ∈ T ∗ − {η}.We show that d(Fη − B(cη, r), Fζ) ≥ εη,r. If ζ 6∈ Brthr(η) ∪ Suc(η) ∪ {pred(η)}, then byClaim 1, d(Lη, Lζ) > 1. So d(Fη, Fζ) > 1 − 2 · 1
8

√
2

2 > 3/4.Suppose that ζ ∈ Suc(η). Reall that cη = aηe0 + dη. Let x ∈ Fη − B(cη, r)and let y be the nearest point to x in Lη. Then y = aηe0 + dη + e, where e has theform e = s(dν − dη). Sine ‖x − y‖ ≤ ‖e‖/8 and ‖x − (aηe0 + dη)‖ ≥ r, we have
‖e‖ ≥ 8r/9. Take a point z ∈ Fζ , let w be the nearest point to z in Lζ and suppose that
‖w−(aζe0+dη)‖ = t. Then ‖y−w‖ >

√
‖e‖2 + t2 and hene ‖y−z‖ > √

‖e‖2 + t2−t/8.The minimal value of the funtion g(t) =
√
‖e‖2 + t2 − t/8 is ≥ ‖e‖ − ‖e‖/56. Thisimplies that d(y, Fζ) ≥ ‖e‖ − ‖e‖/56. Sine ‖x − y‖ ≤ ‖e‖/8, it follows that d(x, Fζ) ≥

‖e‖ − ‖e‖/56 − ‖e‖/8 = 6‖e‖/7. Hene d(x, Fζ) ≥ 6
7 · 8

9r ≥ 3r/4.Assume that ζ ∈ Brthr(η)∪{pred(η)}. De�ne f = aηe0 +dν . Let x ∈ Fη and suppose�rst that ‖x− f‖ ≤ δη/2. If w ∈ Lζ and ‖w− (aζe0 + dν)‖ = t, then d(f, w) ≥
√
δ2η + t2,So the distane between f and a general point in Fζ is ≥ √

δ2η + t2 − t/8. So d(f, Fζ) ≥
δη − δη/56 and hene d(x, Fζ) ≥ δη − δη/56 − δη/2 > δη/3.



130 M. Rubin and Y. YomdinSuppose that x ∈ Fη and ‖x− f‖ ≥ δη/2. Let y be the nearest point to x in Lη and
δ = ‖y−f‖. Then d(y, Fζ) ≥ δ− δ/56 and hene d(x, Fζ) ≥ δ− δ/56− δ/8 = 6δ/7. Also,
δ ≥ 8

9 · δη

2 . So d(x, Fζ) ≥ 6
7 · 8

9 · δη

2 >
δη

3 . The proof of Claim 5 is omplete.Claim 6. (i) F is a pairwise disjoint family and accE(F) = C.(ii) Let η ∈ T , {Fn | n ∈ N} ⊆ F be a 1-1 sequene, xn ∈ Fn and limn→∞ xn = cη.Then {Fn | n ∈ N} − {Fηˆ〈 i 〉 | i ∈ N} is �nite.Proof. By Claim 5, (Fη−{cη})∩Fζ = ∅ for any distint η, ζ ∈ T ∗. Sine cη 6= cζ for any
η 6= ζ, it follows that F is pairwise disjoint.We show that C ⊆ acc(F). Reall that C = {cη | η ∈ T}, where cη = dη + aηe0and aΛ = 3. We start with cΛ. By the onstrution, a〈n 〉 · e0 + dΛ ∈ L〈n 〉 ⊆ F〈n 〉 and
cΛ = 3e0 + dΛ = limn→∞ a〈n 〉 · e0 + dΛ. So cΛ ∈ acc(F). Suppose now that η 6= Λ. Then
aηˆ〈n 〉 · e0 + dη ∈ Lηˆ〈n 〉 ⊆ Fηˆ〈n 〉 and cη = aηe0 + dη = limn→∞ aηˆ〈n 〉 · e0 + dη. So
cη ∈ acc(F). We have shown that C ⊆ acc(F).Let {νi | i ∈ N} ⊆ T ∗ be a 1-1 sequene, xi ∈ Fνi

, and suppose that {xi}i∈N isonvergent. Let x = limi→∞ xi. We shall show that for some η ∈ T , x = cη and {Fνi
|

i ∈ N}−{Fηˆ〈 i 〉 | i ∈ N} is �nite. This will imply both that acc(F) ⊆ C and (ii). We olorthe unordered pairs of N in three olors. The pair {i, j} has Color 1 if νi ∈ Brthr(νj), and
{i, j} has Color 2 if νi = pred(νj) or νj = pred(νi). The remaining unordered pairs haveColor 3. By the Ramsey Theorem we may assume that N is monohromati. Color 2has no in�nite monohromati sets, and if N has Color 3, then by the �rst paragraph inthe proof of Claim 5 the sequene {xi}i∈N is 3

4 -spaed. It follows that for some η ∈ T ,
{νi | i ∈ N} ⊆ Suc(η).Let yi be the nearest point to xi in Lνi

, and write yi = aνi
· e0 + dη + fi, where

fi = ti(dηˆ〈ni 〉 − dη) for some ti ∈ [0, 1]. We may assume that {fi}i∈N is onvergent andlet f = limi→∞ fi. Suppose by way of ontradition that f 6= 0. Let n be suh that forevery i, j ≥ n, ‖xi−xj‖ < ε, where ε is to be hosen later, and 4
5‖f‖ < ‖fi‖ < 2‖f‖. Let

i, j ≥ n be distint. Then ‖xi − yi‖ ≤ ‖fi‖/8 ≤ ‖f‖/4 and ‖xj − yj‖ ≤ ‖f‖/8 ≤ ‖f‖/4.So
‖yi − yj‖ ≤ ‖yi − xi‖ + ‖xi − xj‖ + ‖xj − yj‖ ≤ ‖fi‖/8 + ‖fj‖/8 + ε < ‖f‖/2 + ε.On the other hand, by Claim 2,

‖yi − yj‖ ≥ d(yi, Lνj
) ≥

√
3

2
‖fi‖ ≥ 2

√
3

5
‖f‖.If ε is su�iently small, then the last two inequalities are ontraditory. So f = 0. Now,

‖xi − yi‖ ≤ ‖fi‖/8. So limi→∞ ‖xi − yi‖ = 0 and hene
lim
i→∞

xi = lim
i→∞

yi = lim
i→∞

aνi
e0 + dη + fi = lim

i→∞
aνi
e0 + dη = aηe0 + dη = cη ∈ C.We have proved that acc(F) ⊆ C. We have also shown that if {Fn | n ∈ N} ⊆ F is a 1-1sequene, xn ∈ Fn and limn→∞ xn = cη, then {Fn | n ∈ N} ∩ {Fηˆ〈 i 〉 | i ∈ N} is in�nite.Obviously, this implies (ii). This ompletes the proof of Claim 6.Denote F̂ ∪ {cΛ} by F̃ . Sine every member of F is losed and acc(F) = C ⊆ F̃ , itfollows that F̃ is losed. Reall that cΛ ∈ bd(Y ′) and hene cΛ 6∈ X ′. It follows that
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X = X ′ − F̃ , so X is open. Clearly, F = cl(int(F )) for every F ∈ F . So F̃ = cl(int(F̃ )).This implies that E − F̃ is regular open, and hene X = X ′ ∩ (E − F̃ ) is regular open.An idential argument shows that Y is regular open in E.Claim 7. Let K be the onstant mentioned in Claim 4. Then for every x, y ∈ Y there isa reti�able ar J ⊆ Y onneting x and y suh that lngth(J) ≤ 2K‖x − y‖. Similarly ,let K1 = max(2K,π). Then for every x, y ∈ X there is a reti�able ar J ⊆ X onneting
x and y suh that lngth(J) ≤ K1‖x− y‖.Proof. Let x, y ∈ Y . By Claim 3, C is spaed, so for every ε > 0 there is z ∈ B(y, ε) suhthat [x, z]∩C = ∅. Choose suh a z for a small ε whih will be determined later. Sine Yis open, we may hoose z suh that [z, y] ⊆ Y , and sine Y ′ is onvex, [x, z] ⊆ Y ′. Sine
[x, z] ∩ C = ∅ and acc(F) = C, F0 := {F ∈ F | F ∩ [x, z] 6= ∅} is �nite. The fat that Cis spaed implies that r := d([x, z], C) > 0. Let F0 = {F0, . . . , Fn−1}, Fi = Fηi

, bi = bηi
,

ci = cηi
, Fi ∩ [x, z] = [xi,0, xi,1] and

δi = 1
2 min(d(Fi −B(ci, r/2), F̂ − Fi), r, δ

Y ′

(
⋃F0)).By Claim 5, δi > 0. Let x̂i,j ∈ [x, z] be suh that ‖x̂i,j − xi,j‖ ≤ δi and [x̂i,j , xi,j) ∩

Fi = ∅. By Claim 4, there is a reti�able ar Ji onneting x̂i,0 and x̂i,1 suh that
lngth(Ji) ≤ K‖x̂i,0 − x̂i,1‖, Ji ⊆ {z ∈ ℓ2 | d(z, Fi) ≤ δi} − Fi and d(Ji, {bi, ci}) =

d({x̂i,0, x̂i,1}, {bi, ci}). Sine d({x̂i,0, x̂i,1}, {bi, ci}) ≥ r, it follows that d(Ji, ci) ≥ r. Let
u ∈ Ji and v be the nearest point to u in Fi. Then ‖ci−v‖ ≥ ‖ci−u‖−‖u−v‖ ≥ r/2. So
v ∈ Fi−B(ci, r/2), and hene d(v, F̂−Fi) ≥ 2δi. From the fat that ‖u−v‖ ≤ δi it followsthat u 6∈ F̂ − Fi, so Ji ∩ F̂ = ∅. Also, sine for every u ∈ Ji, d(u,⋃F0) < δY

′

(
⋃F0), wehave Ji ⊆ Y ′. Let J ′ = [x, z] ∪ ⋃

i<n Ji −
⋃
i<n[x̂i,0, x̂i,1] and J = J ′ ∪ [z, y]. It is easilyseen that J ′ and J are reti�able ars, and it follows that J ⊆ Y ′ − F̂ = Y . From thefat that lngth(Ji) ≤ K‖x̂i,0 − x̂i,1‖, it follows that lngth(J ′) ≤ K‖z − x‖. Reall that

‖y − z‖ < ε. So if ε is su�iently small, then lngth(J) < 2K‖y − x‖.The proof of the analogous fat for X is almost idential. We have proved Claim 7.We now show that X and Y are BR.LC.AC and JN.AC. Claim 7 implies that Y isUD.AC and BD.AC. It follows diretly from the de�nitions that if F is any metri spae,
Z ⊆ F and Z is UD.AC, then Z is BR.LC.AC with respet to F . Hene Y is BR.LC.ACwith respet to ℓ2. The bounded arwise onnetedness of Y and Proposition 6.2()imply that Y is JN.AC. The same arguments apply to X, hene X too is BR.LC.AC andJN.AC.Our next goal is to show (∗) h(S(0, 1)) = S(0, 1) for every h ∈ EXT(X). It mayvery well be true that (†) S(0, 1) is the only lopen omponent of bd(X). This wouldimply (∗), but we do not know how to prove this. So instead we prove (††) S(0, 1) isthe only lopen omponent of bd(X) whih is strongly onneted in bd(X). This alsoimplies (∗).Let Z be a onneted spae. We say that Z is strongly onneted if for every z ∈ Zand U ∈ Nbr(z), there is V ∈ Nbr(z) suh that V ⊆ U and Z − V is onneted. Clearly,
S(0, 1) is strongly onneted.For η ∈ T ∗ let Sη = bdℓ2(Fη). It is easy to see that bd(X) = S(0, 1) ∪ S(0, 3) ∪⋃
η∈T∗ Sη. Obviously, S(0, 1) is a omponent of bd(X), and S(0, 1) is lopen in bd(X).



132 M. Rubin and Y. YomdinLet K denote the set of omponents of bd(X) whih are lopen in bd(X) and whih aredi�erent from S(0, 1). Let η ∈ T and T ′ ⊆ T . We say that T ′ is η-large if η ∈ T ′ ⊆ T ≥ η,and for every ν ∈ T ′, {i | ν ˆ〈 i〉 6∈ T ′} is �nite. De�ne SΛ = S(0, 3) and for T ′ ⊆ T set
ST ′ =

⋃
ν∈T ′ Sν .Claim 8. For every K ∈ K there are a �nite set σ ⊆ T and a family {Tν | ν ∈ σ} suhthat Tν is ν-large for every ν ∈ σ, and K =

⋃
ν∈σ STν

.Proof. Note that Sη is onneted for every η ∈ T . Hene for every K ∈ K and η ∈ T ,either Sη ⊆ K or Sη ∩ K = ∅. Also, for every η ∈ T and an in�nite σ ⊆ N, Sη ∩
acc({Sηˆ〈 i 〉 | i ∈ σ}) 6= ∅. This implies that (†) if K ∈ K and Sη ∩K 6= ∅, then Sη ⊆ Kand {i | Sηˆ〈 i 〉 6⊆ K} is �nite. The fat that the members of K are losed implies that
(††) if K ∈ K and {i | Sηˆ〈 i 〉 ⊆ K} is in�nite, then Sη ⊆ K. Fats (†) and (††) implythat Claim 8 is true.Let K ∈ K and suppose that σ ⊆ T and {Tν | ν ∈ σ} are as ensured by Claim 8.So there are η ∈ T ∗ and an in�nite T ′ ⊆ T suh that Sη ⊆ K = ST ′ . By Claim 5,
d(Sη −B(cη, r), F̂ − Fη) > 0 for every r > 0. Sine Sη and SΛ are losed and disjoint, itfollows that d(Sη, SΛ) > 0, and from the fats that K ⊆ F̂ ∪SΛ and Sη ⊆ Fη we onludethat d(Sη − B(cη, r),K − Sη) > 0. So Sη − B(cη, r) is lopen in K. This implies that
K is not strongly onneted. We have shown that S(0, 1) is the unique lopen stronglyonneted omponent of bd(X). Hene h(S(0, 1)) = S(0, 1) for every h ∈ EXT(X). Itfollows that (EXT(X))τ ⊆ EXT(Y ). This ompletes the proof of (b).() Let S ⊆ ℓ2 be a two-dimensional sphere with radius 1 and enter at 0. Let
X = B(0, 3) − S and Y = B(0, 3). Then there is τ ∈ H(X,Y ) suh that τ↾(B(0, 3) −
B(0, 2)) = Id. It is trivial that X and Y are BR.LC.AC and JN.AC, and it is easy to seethat (EXT(X))τ ⊆ EXT(Y ) and τ 6∈ H(X,Y ).(d) We onstrut a set X with the following properties:(1) X is a regular open bounded subset of R3,(2) there is K > 1 suh that for every x, y ∈ X there is a reti�able ar L ⊆ Xsuh that lngth(L) ≤ K‖x− y‖,(3) for every g ∈ EXT(X), gcl↾bd(X) = Id.It is easy to verify that if X satis�es (1)�(3), then it ful�lls the requirements of theexample.We turn to the onstrution of X. Let R̂n be the n-fold solid torus and T̂n denoteits boundary. A subset A ⊆ R3 is K-bypassable if for every x, y ∈ R3 − A there is areti�able ar L ⊆ R3 − A onneting x and y suh that lngth(L) ≤ K‖x − y‖ and
d(z,A) ≤ d(x,A), d(y,A) for every z ∈ L. Obviously, there is K > 1 suh that for every
n there is a K-bypassable F ⊆ R3 suh that F ∼= R̂n. Let D be a ountable dense subsetof B(0, 1), E be a ountable dense subset of S(0, 1) and {{an, bn} | n ∈ N} be a list ofall 2-element subsets of D and all singletons from D ∪E. Also assume that a0 = b0 ∈ E.We de�ne by indution a �nite family of open sets Un and a �nite family of losed sets
Fn suh that for any distint A ∈ Un ∪ Fn and F ∈ Fn, cl(A) ⊆ B(0, 1), cl(A) ∩ F = ∅and F is K-bypassable. Let U0 = F0 = ∅. Suppose that Un and Fn have been de�ned.



Reonstrution of manifolds from subgroups of homeomorphism groups 133Case 1: an 6= bn. If {an, bn} ∩ ⋃Fn 6= ∅ de�ne Un+1 = Un and Fn+1 = Fn. Supposeotherwise. De�ne Fn+1 = Fn. Sine Fn is a �nite pairwise disjoint family of losed
K-bypassable sets there is a reti�able ar Ln ⊆ B(0, 1) − ⋃Fn onneting an and
bn suh that lngth(Ln) ≤ K‖an − bn‖. Let r = d(Ln, S(0, 1) ∪ ⋃Fn) and Un+1 =

Un ∪ {B(Ln, r/2)}.Case 2: an = bn. If an ∈ D let cn ∈ ⋃
F∈Fn

bd(F )) be suh that ‖cn − an‖ =

d(an,
⋃
F∈Fn

bd(F )) and Hn ∈ Fn be suh that cn ∈ bd(Hn). If an ∈ E let cn =

an and Hn = S(0, 1). Let Fn ⊆ B(cn,
1

n+1 ) ∩ (B(0, 1) − ⋃Fn − ⋃
U∈Un

cl(U)) besuh that Fn ∼= R̂n and Fn is K-bypassable. De�ne Fn+1 = Fn ∪ {Fn}. Let rn =

d(Hn, S(0, 1)∪⋃Fn+1 −Hn) and Un,0 = B(0, 1)∩ (B(Hn, rn/2)− cl(B(Hn, rn/4))). Let
xn ∈ B(0, 1)∩(B(cn, rn/2)−Hn), sn ∈ (0, rn/2) be suh that Un,1 := B(xn, sn) is disjointfrom Hn and Un+1 = Un ∪ {Un,0, Un,1}. This onludes the indutive onstrution.Let X = B(0, 1) − cl(

⋃
n∈N

Fn). Sine any two members of D ∩ X lie in the samemember of Cmp(X) and D ∩X is dense in X, it follows that X is onneted.Set A = {n | an = bn}, for every n ∈ A let fn : R̂n ∼= Fn and Tn = fn(T̂n) and de�ne
T = S(0, 1) ∪ ⋃

n∈A Tn. The veri�ation of the following fats is left to the reader.(1) bd(X) = cl(T ) and T ⊆ cl(int(R3 −X)).(2) For every n ∈ A, Tn ∈ Cmp(bd(X)), and S(0, 1) ∈ Cmp(bd(X)).(3) For every C ∈ Cmp(bd(X)) − {Tn | n ∈ A} − {S(0, 1)}, R3 − C is onneted.Fat (1) implies that X is regular open. It follows from (3) and Alexander's DualityTheorem that for every C ∈ Cmp(bd(X))−{Tn | n ∈ A}−{S(0, 1)} and n ∈ N, C 6∼= T̂n.Let x ∈ T . Then there is a sequene {kn | n ∈ N} ⊆ A suh that limkn→∞ Tn = x. Hene
x has the following property:There is a sequene {Cn | n ∈ N} of members of Cmp(bd(X)) suh that Cn ∼= Tknand limn→∞ Cn = x.However, if y ∈ bd(X)−{x}, then y does not have this property. Sine bd(X) is invariantunder EXT(X), it follows that g(x) = x for every g ∈ EXT(X). That is, g↾T = Id forevery g ∈ EXT(X). Sine T is dense in bd(X), it follows that g↾bd(X) = Id for every
g ∈ EXT(X).Remark. Reall that in Corollary 6.6(b) it was assumed that for every x, y ∈ bd(X)there is h ∈ EXT(X) suh that hcl(x) = y. In part () of the above example bd(X)has two onneted omponents K0,K1, neither is a singleton, and for every i = 0, 1and x, y ∈ Ki there is h ∈ EXT(X) suh that hcl(x) = y. The spae Y in the aboveexample has the property that bd(Y ) is onneted, bd(Y ) is not a singleton, and for every
x, y ∈ bd(Y ), there is h ∈ EXT(X) suh that hcl(x) = y. These transitivity propertiesof bd(X) and bd(Y ), though quite strong, do not imply the onlusion of 6.6(b). �In Theorem 6.3 it was shown that if ϕ : EXT(X) ∼= EXT(Y ), then ϕ is indued bysome τ ∈ EXT±(X,Y ). But Theorem 6.3 applies only to sets X with �nitely manyonneted omponents. To see this let X be BR.LC.AC and JN.AC as was assumed in6.3, and suppose by ontradition that X has in�nitely many onneted omponents. Let
~z be a sequene of members of X whih lie in distint omponents of X. Let 〈~x, x∗, {Ln |
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n ∈ N}, ~x′ 〉 be a joining system for some subsequene ~x of ~z. Then ~x′ is a onvergentsequene, but eah member of Rng(~x′) lies in a di�erent omponent ofX. This ontraditsthe fat that X is BR.LC.AC. So X has only �nitely many onneted omponents.Our next goal is to extend 6.3 to sets X that may have in�nitely many onnetedomponents. We have four test ases X for whih EXT(X) seems to be su�iently wellbehaved to imply a reonstrution theorem for EXT(X), but whih are not overed byTheorem 6.3. The �rst example whih is de�ned below, has in�nitely many omponents.The three others appear in Example 6.15, and they are onneted.Example 6.8. Let E be a Banah spae. We de�ne

RE1 =
⋃

n∈N

(
BE

(
0, 1 − 1

2n+ 3

)
−BE

(
0, 1 − 1

2n+ 2

))

The set RE1 is the union of a sequene of pairwise disjoint open rings onverging to
SE(0, 1). �We shall prove a reonstrution theorem for a lass whih ontains RE1 . The de�nitionof this lass is rather tehnial, but it ontains quite ompliated sets. This lass willbe denoted by KO

BX. For simpliity, we onsider only subsets of Banah spaes and notsubsets of general normed spaes. Hene only 6.3(a) is extended. That is, KO
BCX ⊆ KO

BX.Definition 6.9. (a) Reall that Cmp(X) denotes the set of onneted omponents of atopologial spae X. For x, y ∈ X, x ≃X y denotes that x and y lie in the same onnetedomponent of X. The notation ~x ≃X ~y means that xn ≃X yn for every n ∈ N.(b) Let X be a metri spae. We say that X is boundedly omponent-wise arwiseonneted (BD.CW.AC ) if for every bounded set A ⊆ X there is d = dA suh that forevery x, y ∈ A: if x ≃X y, then there is a reti�able ar L ⊆ X onneting x and y suhthat lngth(L) ≤ d.() Let X ∈ KO
NRM and x ∈ bd(X). We say that X is omponent-wise loally arwiseonneted at x if for every ε > 0 there is δ > 0 suh that for every y, z ∈ B(x, δ) ∩ X:if y ≃X z, then there is an ar L ⊆ B(x, ε) ∩ X onneting y and z. We say that

X is omponent-wise loally arwise onneted at its boundary (BR.CW.LC.AC ) if X isomponent-wise loally arwise onneted at every x ∈ bd(X).(d) Let X ∈ KO
NRM. Call X a omponent-wise wide spae if for every r > 0, ⋃{C ∈

Cmp(X) | C ∩B(0, r) 6= ∅} is wide.(e) Let X ⊆ E. A point x ∈ bd(X) is alled a multiple boundary point of X if forevery C ∈ Cmp(X), x ∈ bd(X − C), and x is a double boundary point of X if there aredistint C1, C2 ∈ Cmp(X) suh that x ∈ bd(C1) ∩ bd(C2).(f) A subspae X ⊆ E is loally movable at its multiple boundary if for every ~x ⊆ Xwhih onverges in E to a multiple boundary point and U ∈ Nbrcl(X)(lim~x) there is asubsequene ~x′ of ~x and g ∈ EXT(X) suh that: g(~x′) ≃X ~x′, gcl(lim ~x) 6= lim ~x and
supp(g) ⊆ U .(g) Let KO

BX be the lass of all X ∈ KO
BNC suh that:(1) X is omponent-wise wide, BR.CW.LC.AC and BD.CW.AC,(2) X is loally movable at its multiple boundary. �



Reonstrution of manifolds from subgroups of homeomorphism groups 135Proposition 6.10. (a) Let RE1 be as de�ned in Example 6.8. Then RE1 ∈ KO
BX.(b) KO

BCX ⊆ KO
BX.Proof. The proofs of both parts are trivial. Anyway, we indiate the proof of (b). Supposethat X ∈ KO

BCX. It is easily seen that the multiple boundary of X is empty, hene Xis loally movable at its multiple boundary. The fat that X is wide implies that it isomponent-wise wide. Similarly, sine X is BR.LC.AC and BD.AC, it is BR.CW.LC.ACand BD.CW.AC. So X ∈ KO
BX.Proposition 6.11. (a) Let X ∈ KO

BX. Then for every C ∈ Cmp(X), C is BR.LC.ACand JN.AC.(b) Let X,Y ∈ KO
BX and τ ∈ H(X,Y ) be suh that (EXT(X))τ = EXT(Y ). Let

C ∈ Cmp(X), D = τ (C) and η = τ↾C. Then D ∈ Cmp(Y ) and η ∈ EXT±(C,D).Proof. (a) The fat that X is omponent-wise wide implies that C is wide. The fat that
X is BD.CW.AC implies that C is BD.AC. So by Proposition 6.2(d), C is JN.AC.Let x ∈ bd(C). The fat that X is omponent-wise loally arwise onneted at ximplies that C is loally arwise onneted at x. So C is BR.LC.AC.(b) It is trivial that C is an open subset of E and that D ∈ Cmp(Y ). So by (a),
C is JN.AC and BR.LC.AC, and the same holds for D. We wish to apply Corollary6.6(a) to η, so we need to hek that (UC0(C))η ⊆ EXT(D) and that (LUC01(D))η

−1 ⊆
EXT(C). Let g ∈ UC0(C). Set h = g ∪ Id↾(X − C). Then h ∈ UC0(X) ⊆ EXT(X).So hτ ∈ EXT(Y ). Hene gη = hτ ↾D ∈ EXT(D). A similar argument shows that
(LUC01(D))η

−1 ⊆ EXT(C). By Corollary 6.6(a), η ∈ EXT(C,D). The same argumentan be applied to η−1. Hene η ∈ EXT±(C,D).Theorem 6.12. Let X,Y ∈ KO
BX and ϕ : EXT(X) ∼= EXT(Y ). Then there is τ ∈

EXT±(X,Y ) suh that τ indues ϕ.Proof. By Theorem 2.8(b), there is τ ∈ H(X,Y ) suh that τ indues ϕ.Claim 1. Let ~x, ~u ⊆ X. Suppose that ~x, ~u, τ(~x), τ (~u) are onvergent sequenes and
lim ~x = lim ~u ∈ bd(X). Then lim τ (~x) = lim τ (~u).Proof. Let x = lim ~x, y = lim τ (~x) and v = lim τ (~u), and suppose by ontradition that
y 6= v. Clearly, y, v ∈ bd(Y ). Assume �rst that either y or v is a multiple boundary pointof Y , and assume without loss of generality that y is suh a point. Sine Y is loallymovable at its multiple boundary, there are h ∈ EXT(Y ) and a subsequene ~y′ of τ (~x)suh that hcl(y) 6= y, h(~y′) ≃Y ~y′ and for some W ∈ Nbrcl(Y )(v), h↾(W ∩ Y ) = Id. Byremoving an initial segment of τ (~u) we may assume that τ (~u) ⊆ W . So h, ~y′ and Wsatisfy

(∗) h ∈ EXT(Y ), ~y′ is a subsequene of τ (~x), W ∈ Nbrcl(Y )(v), hcl(y) 6= y, τ (~u) ⊆Wand hcl↾W = Id.Now assume that y, v are not multiple boundary points of Y . Then there are C1, C2 ∈
Cmp(X) suh that all but �nitely members of ~x belong to C1, and all but �nitely membersof ~u belong to C2. From Proposition 6.11(b) and the fat that lim τ (~x) 6= lim τ (~u)it follows that C1 6= C2. So x is a double boundary point of X. Let D1 = τ (C1)



136 M. Rubin and Y. Yomdinand set D̂ = Y − D1. Then by 6.11(b), D1 ∈ Cmp(Y ), and sine y is not a multipleboundary point of Y , it follows that y ∈ bd(D1)− cl(D̂). Let V ∈ NbrF (y) be suh that
cl(V ) ∩ cl(D̂) = ∅, and let U ∈ NbrE(x) be suh that τ (U ∩ C1) ⊆ V . Sine X is loallymovable at its multiple boundary, there is k ∈ EXT(X) and a subsequene ~z′ of ~x suhthat kcl(x) 6= x, supp(k) ⊆ U and k(~z′) ≃ ~z′. Let h = (k↾C1)

τ ∪ Id↾(Y − D1). Then
h↾D1 ∈ EXT(D1). Also,

supp(h) = supp(h↾D1) = τ (supp(k↾C1)) ⊆ τ (U ∩ C1) ⊆ V.So supp((h↾D1)
cl) ⊆ cl(V ). From the fat that cl(V ) ∩ cl(D̂) = ∅, it follows that h ∈

EXT(Y ). Let ~y′ = τ (~z′). Then hcl(y) 6= y and h(~y′) ≃Y ~y′. Clearly, v ∈ cl(τ (C2)) and
τ (C2) ⊆ D̂. So v ∈ cl(D̂), and hene for some W ∈ Nbrcl(Y )(v), h↾(W ∩ Y ) = Id. Byremoving an initial segment of τ (~u) we may assume that τ (~u) ⊆ W . It follows that h,
~y′ and W satisfy (∗). So whether or not {u, v} ontains a multiple boundary point, wehave found h, ~y′ and W satisfying (∗).Let g = hτ

−1 and ~x′ = τ−1(~y′). So g ∈ EXT(X) and g↾~u = Id. Sine ~u∪ ~x′ onvergesto x and g ∈ EXT(X), lim g(~x′) = x. Sine h(~y′) ≃Y ~y′, it follows that g(~x′) ≃X ~x′.Sine X is BR.CW.AC, there is {fk | k ∈ N} ⊆ UC(X) and subsequenes {nk}k∈N and
{mk}k∈N suh that: (i) for every k, fk(x′nk

) = g(x′nk
), cl(supp(fk)) ⊆ X and fk↾{x′mk

|
k ∈ N} = Id, (ii) limk→∞ diam(supp(fk)) = 0, (iii) for any ℓ 6= k, supp(fℓ)∩supp(fk) = ∅.Let f = ◦k∈N fk. So f ∈ UC0(X) ⊆ EXT(X), and hene fτ must belong to EXT(Y ).Let us see that this does not happen. Reall that lim ~y′ = y. However, limk f

τ (y′nk
) =

limk h(y
′
nk

) = h(y) 6= y, and on the other hand, limk f
τ (y′mk

) = limk y
′
mk

= y. So ~y′ isonvergent, but fτ (~y′) is not, and hene fτ 6∈ EXT(Y ). A ontradition, so Claim 1 isproved.Claim 2. Let ~x ⊆ X be a onvergent sequene in E. Then there is a subsequene ~x′ of
~x suh that τ (~x′) is onvergent in F .Proof. Let x = lim ~x. We may assume that x ∈ bd(X). If for some C ∈ Cmp(X),
{n | xn ∈ C} is in�nite, then by Proposition 6.11(b), there is a subsequene as requiredin the laim.Hene we may assume that for every m 6= n, xm 6≃X xn, and so x is a multipleboundary point. For every n let yn = τ (xn), and Cn and Dn be suh that xn ∈ Cn ∈
Cmp(X) and yn ∈ Dn ∈ Cmp(Y ).Suppose by ontradition that {Dn | n ∈ N} is ompletely disrete. Let ~u ∈ ∏

n∈N
Cn.De�ne ~v = τ (~u). There is k ∈ EXT(Y ) suh that for every n, k(y2n) = v2n and k(y2n+1) =

y2n+1. Let g = kτ
−1 . Then g ∈ EXT(X). Sine ~x is onvergent, g(~x) is onvergent. Forevery n, g(x2n) = u2n and g(x2n+1) = x2n+1. So limn→∞ u2n = limn→∞ x2n+1 = x. Thisimplies that limn→∞ C2n = x. Hene for every f ∈ EXT(X): if {n ∈ N | f(x2n) ≃X x2n}is in�nite, then f(x) = x. Clearly, x is a multiple boundary point. So the above fat is inontradition with the fat that X is loally movable at its multiple boundary. It followsthat {Dn | n ∈ N} is not ompletely disrete. By hoosing a subsequene of ~x we mayassume that there is ~v ∈ ∏

i∈N
Dn suh that ~v is onvergent in F . Let v = lim~v.Suppose by way of ontradition that ~y does not ontain a onvergent subsequene.We show that if ~y is unbounded, then there is another ounter-example to Claim 2 in



Reonstrution of manifolds from subgroups of homeomorphism groups 137whih ~y is bounded. Let r be suh that v ∈ BF (0, r). Then for every n, Dn∩BF (0, r) 6= ∅.Sine Y is omponent-wise wide, there are a subsequene ~y′ of ~y, s > 0 and a ompletelydisrete sequene of ars {Ln | n ∈ N} suh that for every n, Ln ⊆ Dn and Ln onnets
y′n with a member of BF (0, s). We may assume that ~y′ = ~y.Denote the endpoint of L2n whih is not y2n by ŵn. Let k̂ ∈ EXT(Y ) be suh that forevery n, k̂(y2n) = ŵn and k̂(y2n+1) = y2n+1 and set ĝ = k̂τ

−1 . Then ĝ ∈ EXT(X) andhene lim ĝ(~x) exists. So limn→∞ ĝ(x2n+1) = limn→∞ ĝ(x2n) = x. Sine k̂(y2n) = ŵn,it follows that ĝ(x2n) = τ−1(ŵn). That is, τ (ĝ(x2n)) = ŵn. So {τ (g(x2n)) | n ∈ N}is bounded and ompletely disrete. By replaing ~x by {ĝ(x2n) | n ∈ N} we obtain aounter-example to Claim 2 in whih ~y is bounded. Sine E is a Banah spae, we mayalso assume that ~y is spaed.Sine Y is BR.CW.AC, there are d and reti�able ars Ln ⊆ Dn suh that Ln onnets
yn with vn and lngth(Ln) ≤ d. Let γn(t) be a parametrization of Ln suh that γn(1) = yn,
γn(0) = vn, and for every t, lngth(γn([0, t])) = t · lngth(Ln). For every in�nite σ ⊆ N let
sσ = inf({t ∈ [0, 1] | {γn([t, 1]) | n ∈ σ} is spaed}). Let σ be an in�nite set suh thatfor every in�nite η ⊆ σ, sη = sσ. Then {γn(sσ) | n ∈ σ} ontains a Cauhy sequene,and for every t > sσ, {γn([t, 1]) | n ∈ σ} is spaed. Set s = sσ. It an be assumed that
{γn(s) | n ∈ σ} is a Cauhy sequene, that σ = N and that s = 0. So γn(1) = yn forevery n ∈ N, {γn(0) | n ∈ N} is a Cauhy sequene, and {γn([t, 1]) | n ∈ N} is spaed forevery t ∈ (0, 1]. Let wn = γn(0) and w = lim ~w.For every t > 0 let ~wt = {γ2n(t) | n ∈ N}. Let ~y 0 = {y2n | n ∈ N} and ~y 1 = {y2n+1 |
n ∈ N}. For every t > 0 there is kt ∈ EXT(Y ) suh that kt(~y 0) = ~wt and kt(~y 1) = ~y 1.This follows from the fat that for t > 0, {γn([t, 1]) | n ∈ N} is ompletely disrete. Wehek that for every t ∈ (0, 1], lim τ−1(~wt) = x. Let ht = kτ

−1

t . Then ht(x2n+1) = x2n+1and ht(x2n) = τ−1(wtn). Clearly, ht ∈ EXT(X), so ht takes ~x to a onvegent sequene.But ht(x2n) = x2n, hene limht(~x) = limn x2n = x. So limn τ
−1(wtn) = x.Note that for every ε > 0 there are tε > 0 and mε suh that for every t ≤ tε and

n ≥ mε, ‖wtn−w‖ < ε. Also, x2n ≃X τ−1(wtn) for every n and t. It follows that there aresequenes ~z and {nk}∞k=1 suh that lim~z = x, lim τ (~z) = w, and for every k, zk ≃X x2nk
.To see this, take zk to be τ−1(wtknk

), where {tk}∞k=1 is any sequene onverging to 0 and
nk is suh that nk ≥ m1/k and ‖τ−1(wtknk

) − x‖ < 1/k.From the fats X is BR.CW.AC, zk ≃X x2nk
and lim ~z = limk x2nk

, we onlude thatthere is g ∈ EXT(X) suh that for in�nitely many k's, g(x2nk
) = zk. We now hekthat gτ 6∈ EXT(Y ), and this is of ourse a ontradition. Using the fat that τ (~x) = ~y,it is evident that gτ takes an in�nite subsequene of ~y to an in�nite subsequene of

τ (~z). However, ~y is spaed, and τ (~z) is onverges to w, that is, gτ takes a spaed se-quene to a onvergent sequene. Hene gτ 6∈ EXT(Y ). A ontradition. This provesClaim 2.We prove that τ ∈ EXT(X,Y ). Suppose by ontradition that ~x ⊆ X is a onvergentsequene and τ (~x) is not a onvergent sequene. By Claim 2, there is a subsequene ~x 0of ~x suh that τ (~x 0) is onvergent. Sine τ (~x) is not onvergent, there is a subsequene
~x 2 of ~x suh that d(τ (~x 2), τ (~x 0)) > 0. By Claim 2, there is a subsequene ~x1 of ~x 2suh that τ (~x1) is onvergent. But lim τ (~x 0) 6= lim τ (~x1). This ontradits Claim 1. So
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τ ∈ EXT(X,Y ). The assumptions on X, Y and τ were symmetri with respet to Xand Y . So τ ∈ EXT±(X,Y ).Remark 6.13. The requirement that X be loally movable at its multiple boundary,whih appears in Theorem 6.12 is stronger than what is really needed in the proof ofthat theorem. However, the exat assumption needed in that proof is longer and moreompliated, so we inlude it only as a remark. Thus in Theorem 6.12 the assumptionthat X is loally movable at its multiple boundary an be replaed by the followingweaker requirement. The proof remains essentially unhanged.Let X ⊆ E. Then(1) For every ~x ⊆ X whih is onvergent to a multiple boundary point and z ∈

bd(X) − {lim ~x}, there is a subsequene ~x′ of ~x and g ∈ EXT(X) suh that:
g(~x′) ≃X ~x′, gcl(lim ~x′) 6= lim ~x′ and for some U ∈ NbrE(z), g↾(U ∩X) = Id.(2) For every ~x ⊆ X whih onverges to a double boundary point and U ∈ NbrE(lim~x)there is a subsequene ~x′ of ~x and g ∈ EXT(X) suh that: g(~x′) ≃X ~x′, gcl(lim~x)

6= lim ~x and supp(g) ⊆ U . �The requirement that X be loally movable at its multiple boundary whih appearsin De�nition 6.9(g) annot be entirely omitted. This is demonstrated by the followingtrivial example.Example 6.14. There are regular open subsets X,Y ⊆ R2 whih satisfy lause 1 in thede�nition of KO
BX suh that EXT(X) ∼= EXT(Y ) and cl(X) 6∼= cl(Y ).Proof. Let u ∈ R2 and F0, . . . , F3 ⊆ R2 be losed solid triangles suh that for any i 6= j,

Fi∩Fj = {u}. For i = 1, 2, 3 let {Di,j | j < i} be a set of pairwise disjoint losed balls suhthat Di,j ⊆ int(Fi) for every j < i. Let X =
⋃
i<4 int(Fi) −

⋃{Di,j | i = 1, 2, 3, j < i}.Let v, w ∈ R2 and G0, . . . , G3 ⊆ R2 be losed solid triangles suh that G0 ∩G1 = {v},
G2 ∩ G3 = {w} and Gi ∩ Gℓ = ∅ for every i ∈ {0, 1} and ℓ ∈ {2, 3}. For i = 1, 2, 3 let
{Ei,j | i = 1, 2, 3, j < i} be a set of pairwise disjoint losed balls suh that Ei,j ⊆ int(Gi)for every j < i. Let Y =

⋃
i<4 int(Gi) −

⋃{Ei,j | i = 1, 2, 3, j < i}. Then X and Y areas required in the example.For open subsets of �nite-dimensional spaes we have Theorem 5.2 whih says that thelass of bounded sets whih are the losures of open UD.AC subsets of a Eulidean spaeis faithful. We shall next de�ne another faithful lass of spaes whih are not requiredto be UD.AC. This lass, denoted by KO
IMX, is de�ned in 6.16(b). Loosely speaking,we replae the assumption that X is UD.AC by the assumption that the orbit of every

x ∈ bd(X) under EXT(X) ontains an ar. This gives rise to a rather large lass. SeeProposition 6.17.The next example ontains �nite- and in�nite-dimensional sets whih belong to KO
IMXbut do not belong to any of the previously de�ned EXT-determined lasses. The threeexamples are onneted. The �rst example is a subset of R2 whih is not UD.AC. Theseond set is in�nite-dimensional. It is quite similar to the set RE1 de�ned in 6.8, yet itdoes not belong to KO

BX. Note the seond example is BD.AC, and the �rst two examplesare regular open.



Reonstrution of manifolds from subgroups of homeomorphism groups 139Example 6.15. (a) Let R2 = {(r, θ) | θ ∈ (π,∞) and 1− 1
θ−π/2 < r < 1− 1

θ+π/2} (R2 isdesribed in polar oordinates). So R2 is an open spiral strip onverging to S(0, 1). Notethat R2 is onneted, R2 is not UD.AC and R2 6∈ KO
BX.(b) Let E = ℓ2 and RE1 be as in Example 6.8. So the set RE1 is the union of asequene of pairwise disjoint open rings onverging to SE(0, 1). We onnet any twoonseutive rings by an open tube whose losure is disjoint from the losure of any otherring. The set of tubes is to be spaed. Let {en}n∈N be the standard basis of ℓ2 and

Ln = [(1 − 1
2n+3 )en, (1 − 1

2n+4 )en]. So eah Ln onnets two onseutive rings in RE1 .For some d > 0, {Ln | n ∈ N} is d-spaed. Let sn = 1
2n+4 − 1

2n+5 and rn = min(d/3, sn)and R3 = RE1 ∪ ⋃
n∈N

B(Ln, rn). It follows that R3 is onneted, R3 is not UD.AC and
R3 6∈ KO

BX. However, R3 is JN.AC.() Let E be a normed spae with dimension > 2 and F be a subspae of E witho-dimension 1. Let RE4 = BE(0, 2) −BF (0, 1). �Definition 6.16. (a) Let h : [a, b]×Z1 → Z2 and t ∈ [a, b]. We denote by ht the funtion
g(z) = h(t, z). LetX ∈ KO

NRM and x ∈ bd(X). We say that x is isotopially movable withrespet toX if for every r > 0 there is a ontinuous funtion h : [0, 1]×cl(X) → cl(X) suhthat h0 = Id, h1(x) 6= x, and for every t ∈ [0, 1], ht↾X ∈ EXT(X) and supp(ht) ⊆ B(x, r).We say that X is isotopially movable at its boundary (BR.IS.MV ) if every x ∈ bd(X)is isotopially movable with respet to X.(b) Let KO
IMX be the lass of all open subsets X of a normed spae suh that X isJN.AC and BR.IS.MV. �The next observation and Proposition 6.2 show that KO

IMX is a large lass. Let E bea normed spae and X ⊆ E × (0,∞) be open and Z = {z ∈ E | ∃a ((z, a) ∈ X)}. Thebody of revolution of X is de�ned as follows:
revb(X) = {(z, u, v) | (z,

√
u2 + v2) ∈ X}.So revb(X) is an open subset of E × R2. If inf({a | (z, a)) ∈ X}) > 0 for every z ∈ Z,then revb(X) is alled a hollow body of revolution. Clearly if revb(X) is hollow, then

revb(X) ∼= X × S1.Proposition 6.17. Let X,Y ∈ KO
NRM.(1) If Y is BR.IS.MV , then X × Y is BR.IS.MV.(2) If X and Y are JN.AC , then X × Y is JN.AC.(3) If X ⊆ Rn, Y ⊆ Rm, X,Y are bounded , and Y is BR.IS.MV , then X×Y ∈ KO

IMX.(4) If X and Y are JN.AC and Y is BR.IS.MV , then X × Y ∈ KO
IMX.(5) If X ⊆ Rn, X is bounded and revb(X) is hollow , then revb(X) ∈ KO

IMX.Proof. The proof is trivial. For (3) and (5) see 6.2(b).Remark. The lass KO
IMX does not ontain any of the lasses KO

NMX, KO
BCX and KO

BXde�ned in 6.3 and 6.9(g). Reall that KO
BCX ⊆ KO

BX,K
O
NMX. Example 6.8 belongs to

KO
BCX but not to KO

IMX. �Theorem 6.18. Suppose that X,Y ∈ KO
IMX and ϕ : EXT(X) ∼= EXT(Y ). Then there is

τ ∈ EXT±(X,Y ) whih indues ϕ.



140 M. Rubin and Y. YomdinProof. By Theorem 2.8(b), there is τ ∈ H(X,Y ) whih indues ϕ.Claim 1. For every x ∈ bd(X) there is a sequene ~x onverging to x suh that τ (~x)onverges to a member of bd(Y ).Proof. This laim follows from Lemma 6.5(b) applied to τ−1.Claim 2. Let x ∈ bd(X) and ~x, ~u ⊆ X. Suppose that lim ~x = lim ~u = x and that τ (~x)and τ (~u) are onvergent. Then lim τ (~x) = lim τ (~u).Proof. Set ~y = τ (~x), ~v = τ (~u), y = lim ~y, v = lim~v, and suppose by ontradition that
y 6= v. Obviously, y, v ∈ bd(Y ). Let r = ‖y − v‖/2. We may assume that ~v ⊆ B(v, r)and that ~y ∩ B(v, r) = ∅. Let h : [0, 1] × cl(Y ) → cl(Y ) be an isotopy as ensured by thefat that v is isotopially movable with respet to Y , and suh that for every t ∈ [0, 1],
supp(ht) ⊆ B(v, r).For every t ∈ [0, 1] let un,t = τ−1(h(t, vn)). We �rst prove the following fat. (∗) Forevery t ∈ [0, 1], limn→∞ un,t = x. Let t ∈ [0, 1]. Let h̄ = ht↾Y and ḡ = h̄τ

−1 . Then
ḡ ∈ EXT(X). Also ḡ↾~x = Id. So ḡcl(x) = x. Hene limn→∞ un,t = limn→∞ ḡ(un) =

ḡ(limn→∞ un) = ḡ(x) = x. So (∗) is proved.Let Ln = h([0, 1] × {vn}) and Kn = τ−1(Ln). We prove that limn→∞Kn = x.Suppose by ontradition that this is not true. Then there are d > 0, ~t ⊆ [0, 1] and a1-1 sequene {ni | i ∈ N} suh that d(x, uni,ti) ≥ d for every i ∈ N. We may assumethat ~t is onvergent. Set t∗ = lim~t. Let Ii be the losed interval whose endpoints are
ti and t∗ and Ji = h(Ii × {vni

}). Then limi→∞ Ji = h(t∗, v). Sine for every t ∈ [0, 1],
ht↾Y ∈ EXT(Y ) and v ∈ bd(Y ), it follows that h(t∗, v) ∈ bd(Y ). The fat ~v ⊆ Yimplies that Ji ⊆ Y , and hene h(t∗, v) 6∈ Ji for every i ∈ N. Sine Ji is ompat,
d(Ji, h(t

∗, v)) > 0. We may thus replae {ni}i∈N by a subsequene and dedue that
max({d(z, h(t∗, v)) | z ∈ Ji+1}) < d(Ji, h(t

∗, v)) for every i ∈ N. There is a sequene
{Vi}i∈N of open sets suh that for any distint i, j ∈ N, Ji ⊆ Vi ⊆ cl(Vi) ⊆ Y ∩ B(v, r),
Vi ∩ Vj = ∅ and limi→∞ Vi = limi→∞ Ji. From the fat that Ji onnets h(vni

, t∗) and
h(vni

, ti), it follows that there is hi ∈ UC(Y ) Vi suh that hi(h(vni
, t∗)) = h(vni

, ti). Let
ĥ = ◦i∈N hi. Then by Proposition 4.5, ĥ ∈ UC0(Y ) ⊆ EXT(Y ). Clearly, supp(ĥ) ⊆
B(v, r) and so ĥ↾~y = Id. Let ĝ = ĥτ

−1 . So ĝ ∈ EXT(X). Sine ĥ↾~y = Id, it follows that
ĝ↾~x = Id and hene ĝcl(x) = x. Clearly, for every i, ĝ(uni,t∗) = uni,ti , and from (∗) itfollows that limi→∞ uni,t∗ = x. So

lim
i→∞

uni,ti = lim
i→∞

ĝ(uni,t∗) = ĝcl( lim
i→∞

uni,t∗) = ĝcl(x) = x.This ontradits the fat that d(x, uni,ti) ≥ d. So limn→∞Kn = x.There is an in�nite set σ ⊆ N suh that Ki ∩Kj = ∅ for any distint i, j ∈ σ. Let
{Ui | i ∈ σ} be suh that Ki ⊆ Ui ⊆ X, Ui is open, Ui ∩ Uj = ∅ for any i 6= j and
limi∈σ Ui = x. Let η ⊆ σ be suh that η and σ − η are in�nite. For every i ∈ η let
gi ∈ UC(X) Ui be suh that gi(ui) = ui,1. Let ḡ = ◦i∈η gi and h̄ = ḡτ . By Proposition4.5, ḡ ∈ UC0(X) ⊆ EXT(X), hene it follows that h̄ ∈ EXT(Y ).For every i ∈ η, h̄(vi) = h(vi, 1), so limi∈η h̄(vi) = h(v, 1). For every i ∈ σ − η,
h̄(vi) = vi, so limi∈σ−η h̄(vi) = v. Reall that h(v, 1) 6= v. Also, limi→∞ vi = v. So ~v is



Reonstrution of manifolds from subgroups of homeomorphism groups 141onvergent and h̄(~v) is not onvergent. Hene h̄ 6∈ EXT(Y ). A ontradition, so Claim 2is proved.Suppose by ontradition that x ∈ bd(X) and x 6∈ Dom(τ cl). By Claim 1, thereis a sequene ~x ⊆ X suh that lim ~x = x and τ (~x) is onvergent. Set y = lim τ (~x).There are a 1-1 sequene ~u ⊆ X and d > 0 suh that lim ~u = x and d(τ (~u), y) ≥ d.De�ne ~v = τ (~u). By Claim 2, ~v does not have a onvergent subsequene. That is, ~v isompletely disrete. Sine Y is JN.AC, there is a subsequene ~w of ~v suh that ~w has ajoining system. Let 〈~w,w∗, {Ln | n ∈ N}, ~w′ 〉 be a joining system for ~w. We may assumethat w∗ 6∈ Rng(~w).We show that it an be assumed that w∗ 6= y. Suppose that w∗ = y. Let r = d(~w, y).Sine Y is BR.IS.MV and y ∈ bd(Y ), there is h ∈ EXT(Y ) suh that supp(h) ⊆ B(y, r)and hcl(y) 6= y. So h↾~w = Id. It follows that 〈~w, hcl(y), {h(Ln) | n ∈ N}, h(~w′) 〉 is ajoining system for ~w. So we may assume that w∗ 6= y.Reall that Y is JN.AC. So we may apply Lemma 6.5(b) to τ−1. Reall also that
lim τ−1(~w) = lim τ−1(~v) = x. Hene there is ~z ⊆ Y suh that lim ~z = w∗ and
lim τ−1(~z) = x. We now have two sequenes: ~x and τ−1(~z), both onverge to x, and
τ (~x) and τ (τ−1(~z)) are onvergent, but not to the same point. This ontradits Claim 2,so x ∈ Dom(τ cl).We have shown that τ ∈ EXT(X,Y ), and an idential argument shows that τ−1 ∈
EXT(Y,X). That is, τ ∈ EXT±(X,Y ).6.3. Completely loally uniformly ontinuous homeomorphism groups. Havingobtained the results about EXT(X) and LUC(X), only little extra work is needed to proveCMP.LUC-determinedness. See De�nition 5.3(f). This faithfulness result will ompletethe piture of groups of type HCMP.LC

Γ
(X) disussed in Chapters 8�12.The following is a strengthening of property BR.LC.AC.Definition 6.19. X is loally uniformly-in-diameter arwise onneted (LC.UD.AC ) iffor every x ∈ bd(X) there is U ∈ Nbr(x) suh that for every ε > 0 there is δ > 0 suhthat for every u, v ∈ U : if d(u, v) < δ, then there is an ar L ⊆ X onneting u and vsuh that diam(L) < ε. �Theorem 6.20. (a) Let X,Y ∈ KO

NRM. Suppose that X and Y are LC.UD.AC andJN.AC. Let ϕ : CMP.LUC(X) ∼= CMP.LUC(Y ). Then there is τ ∈ CMP.LUC±(X,Y )whih indues ϕ.(b) Suppose that X is LC.UD.AC and Y is JN.AC , and let τ ∈ H(X,Y ) be suhthat (UC0(X))τ ⊆ CMP.LUC(Y ) and (LUC01(Y ))τ
−1 ⊆ CMP.LUC(X). Then τ ∈

CMP.LUC(X,Y ).Proof. We shall see that (b) implies (a). So we start by proving (b).(b) It is trivial thatX is BR.LC.AC.We �rst show that τ ∈ EXT(X,Y ). By de�nition,
CMP.LUC(X) ⊆ EXT(X). So (UC0(X))τ ⊆ EXT(Y ) and (LUC01(Y ))τ

−1 ⊆ EXT(X).By Corollary 6.6(a), τ ∈ EXT(X,Y ).



142 M. Rubin and Y. YomdinWe show that τ ∈ LUC(X,Y ). Let S be the set of BPD-subsets of X. Then
UC(X,S) ⊆ UC0(X) and CMP.LUC(Y ) ⊆ LUC(Y ). So (UC(X,S))τ ⊆ LUC(Y ). ByTheorem 4.8(b), τ ∈ LUC±(X,Y ).Let x∗ ∈ bd(X). We show that there is U ∈ Nbr(x∗) suh that τ↾(U ∩X) is UC. Theproof is very muh a repetition of the proof of part 1 of Theorem 4.8().Suppose by ontradition that for every U ∈ NbrX(x∗), τ↾U is not UC. The followinglaim is an easy onsequene of the fat that τ↾B(x∗, r) ∩X is not UC. Its proof is leftto the reader.Claim 1. For every r > 0 there are sequenes ~x, ~y and d, e > 0 suh that :(1) Rng(~x) ∪ Rng(~y) ⊆ BX(x∗, r/2);(2) limn→∞ ‖xn − yn‖ = 0;(3) either (i) for any distint m,n ∈ N, d({xm, ym}, {xn, yn}) ≥ e, or (ii) ~x is aCauhy sequene;(4) d(Rng(~x) ∪ Rng(~y), x∗) > e;(5) for every n ∈ N, ‖τ (xn) − τ (yn)‖ ≥ d.Let U ∈ Nbr(x∗) be as ensured by the LC.UD.AC-ness of X. There is a > 0 and afuntion η : (0, a] → R suh that limt→0 η(t) = 0 and for every u, v ∈ U∩X, if ‖u−v‖ ≤ t,then there is an ar L ⊆ X onneting u and v suu that diam(L) ≤ η(t).Let e−1 > 0 be suh that BE(x∗, e−1) ⊆ U . It is easy to de�ne by indution on i ∈ N,
ri > 0, sequenes ~x i, ~y i and di, ei > 0 suh that: (i) ~x i, ~y i, di, ei satisfy the onlusionof Claim 1 for ri; and (ii) for every i ∈ N, ri = ei−1/8. Clearly ei+1 ≤ ei/4. By deletinginitial segments from the ~x i's and ~y i's, we may further assume that for every i, n ∈ N,
η(‖xin − yin‖) < ei/8. We may further assume that either for every i ∈ N lause (3)(i) ofClaim 1 holds, or for every i ∈ N lause (3)(ii) of Claim 1 holds.Case 1: Clause (3)(i) of Claim 1 holds. Let {〈i(k), n(k) 〉 | k ∈ N} be a 1-1 enumerationof N2. Then limk→∞ ‖xi(k)n(k)−y

i(k)
n(k)‖ = 0. Set uk = x

i(k)
n(k), vk = y

i(k)
n(k) and let Lk ⊆ X be anar onneting uk and vk suh that diam(Lk) ≤ η(‖uk−vk‖). Let Bk = B(Lk, ei(k)+1/4).Then

diam(Bk) ≤ diam(Lk) + ei(k)+1/2 ≤ η(‖uk − vk‖) + ei(k)+1/2

≤ ei(k)/8 + ei(k)+1/2 ≤ ei(k)/4.It follows that if i(k) = i(ℓ), then d(Bk, Bℓ) ≥ ei(k)/2. Suppose that i(k) < i(ℓ). Then
‖uℓ−uk‖ ≥ 7eiℓ/8, diam(Bk) ≤ ei(k)/4 ≤ ei(ℓ)/4 and diam(Bℓ) ≤ ei(ℓ)/4. So d(Bk, Bℓ) ≥
3eiℓ/8. Obviously, limk→∞ diam(Bk) = 0. Let wk ∈ Lk − {uk} be suh that ‖τ (wk) −
τ (uk)‖ < 1

k+1 . By Lemma 2.14(d), there is hk ∈ LIP(X) suh that supp(hk) ⊆ Bk,
hk(uk) = uk and hk(wk) = vk. By Proposition 4.5, h := ◦k∈N hk ∈ UC(X) and indeed
h ∈ UC0(X).Let us see that for every V ∈ Nbr(τ cl(x∗)), hτ ↾(V ∩ Y ) is not UC. For i ∈ N de�ne
σi = {k | i(k) = i}. So if k ∈ σi, then Lk ⊆ B(x∗, η(2rk)). Sine limi→∞ η(2ri) = 0, andsine τ cl is ontinuous at x∗, there is i suh that for every k ∈ σi, τ (Lk) ⊆ V .For every k ∈ σi, τ (ui), τ (wi) ∈ V . Clearly, limk∈σi

‖τ (uk) − τ (wk)‖ = 0. However,for every k ∈ σi, ‖hτ (τ (uk))−hτ (τ (wk))‖ = ‖τ (ui))− τ (vi))‖ ≥ di. So hτ ↾(V ∩Y ) is notUC. Hene hτ 6∈ CMP.LUC(Y ) even though h ∈ UC0(X), a ontradition.



Reonstrution of manifolds from subgroups of homeomorphism groups 143Case 2: Clause (3)(ii) of Claim 1 holds. Let z̄i = lim ~x i. Clearly, z̄i ∈ BE(x∗, ri) −
BE(x∗, ei). So {z̄i | i ∈ N} is 1-1 and limi→∞ z̄i = x∗. Also, z̄i ∈ E − E. This is so,beause if z̄i ∈ E, then either z̄i ∈ X and τ is not ontinuous at z̄i, or z̄i ∈ bdE(X) and
z̄i 6∈ Dom(τ cl). Both situations are impossible. For every i and n let Li,n ⊆ X be anar onneting xin and yin suh that diam(Li,n) ≤ η(‖xin − yin‖). Note that for every i,
limn→∞ Li,n = z̄i. From the fats z̄i 6∈ E and Li,n ⊆ E we onlude that d(z̄i, Li,n) > 0.It follows easily that there is a sequene {〈i(k), n(k) 〉 | k ∈ N} suh that(1) for every i ∈ N, {k | i(k) = i} is in�nite,(2) for every k ∈ N, ck := d(Li(k),n(k),

⋃
m 6=k Li(m),n(m)) > 0.It is also lear from the onstrution that(3) limk→∞ diam(Li(k),n(k)) = 0.Set Lk = Li(k),n(k), uk = x

i(k)
n(k), vk = y

i(k)
n(k) and Bk = B(Lk, ck/3). Clearly, for every

ℓ 6= k, d(Bℓ, Bk) ≥ ck and limk→∞ diam(Bk) = 0. From this point on the proof proeedsexatly as in Case 1. So in Case 2 too, a ontradition is reahed.It follows that there is U ∈ Nbr(x∗) suh that τ↾(U ∩X) is UC, and this implies that
τ cl is UC at x∗. Reall that we have already shown before that τ ∈ EXT(X,Y ) and that
τ ∈ LUC(X,Y ). So τ ∈ CMP.LUC(X,Y ).(a) Let ϕ : CMP.LUC(X) ∼= CMP.LUC(Y ). Clearly, LIPLC(X) ≤ CMP.LUC(X) ≤
H(X), and the same holds for Y . So by Theorem 2.8(a), there is τ ∈ H(X,Y ) suhthat τ indues ϕ. Hene (CMP.LUC(X))τ = CMP.LUC(Y ). Obviously, UC0(X) ⊆
CMP.LUC(X) and LUC01(Y ) ⊆ CMP.LUC(Y ). So part (b) of this lemma an beapplied. Hene τ ∈ CMP.LUC(X,Y ). Similarly, τ−1 ∈ CMP.LUC(Y,X). That is,
τ ∈ CMP.LUC±(X,Y ).6.4. The reonstrution of cl(X) from H(cl(X)). The next two theorems 6.22 and6.24 deal with the reonstrution of F from H(F ), when F is the losure of an opensubset of a normed spae. The sets to whih these theorems apply may have ratherompliated boundaries. It is not true though that for any F,K whih are the losures ofopen subsets of a normed spae, H(F ) ∼= H(K) implies that F ∼= K. See Example 5.8.Reall that if A ⊆ E has a nonempty interior, then ENI(A) := {h(x) | x ∈ intE(A)and h ∈ H(A)}. For f ∈ UC0(X), de�ne feni = fcl↾ENI(cl(X)). Hene feni ∈
H(ENI(cl(X))). Also de�ne UCeni

0 (X) = {feni | f ∈ UC0(X)}.Parts (a) and (b) of the next proposition are analogous to Proposition 6.4 andLemma 6.5(a). The proofs of (a) and (b) are essentially idential to the proofs of theirounterparts, so they are omitted. Part () is analogous to Lemma 6.5(b), but () isstated for η−1 rather than for η.Proposition 6.21. (a) Let X be BR.LC.AC and τ ∈ H(ENI(cl(X)),ENI(cl(Y ))). As-sume that (UCeni
0 (X))τ ⊆ EXT(ENI(cl(Y ))). Let x ∈ bd(X) − ENI(cl(X)), y ∈ bd(Y )and ~x ⊆ X be suh that lim ~x = x and lim τ (~x) = y. Then (τ↾X)∪{〈x, y 〉} is ontinuous.(b) Let X be JN.AC and τ ∈ H(ENI(cl(X)),ENI(cl(Y ))) be suh that (LUC01(X))τ ⊆

H(ENI(cl(Y ))). Let y ∈ bd(Y )−ENI(cl(Y )). Suppose that ~x ⊆ X is ompletely disrete,
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〈~x, x∗, {Ln | n ∈ N}, ~x′ 〉 is a joining system for ~x and lim τ (~x) = y. Then there is asequene ~u ⊆ X suh that lim ~u = x∗ and lim τ (~u) = y.() Let X,Y ∈ KO

NRM. Assume that Y is JN.AC. Set K = cl(X) and M = cl(Y ),and let η ∈ H(ENI(K),ENI(M)) be suh that for every h ∈ H(M), ((h↾ENI(M))η
−1

)cl ∈
H(K). Then for every x ∈ K −ENI(K) there is a sequene ~x ⊆ X onverging to x suhthat η(~x) ⊆ Y , and η(~x) is onvergent in M .Proof. () Let x ∈ K − ENI(K). Let ~x′ ⊆ X be a sequene onverging to x. For every
n ∈ N let rn = min(δ(x′n), d(x

′
n, x)). So BE(x′n, rn) is a nonempty open subset of ENI(K).Clearly, bd(Y )∩ENI(M) is nowhere dense in ENI(M). So there is xn ∈ BE(x′n, rn) suhthat η(xn) 6∈ bd(Y ) ∩ ENI(M). That is, η(xn) ∈ Y . So ~x ⊆ X, lim ~x = x and η(~x) ⊆ Y .De�ne ~y = η(~x). Suppose that ~y has a subsequene ~y′ suh that ~y′ is onvergent in

cl(Y ). Then η−1(~y′) is as required in the proposition. Suppose that suh a ~y′ does notexist. Hene ~y is ompletely disrete.Let 〈~y, y∗, {Ln | n ∈ N}, ~y′ 〉 be a joining system for ~y. By 6.21(b) applied to ~yand η−1, there is ~v ⊆ Y suh that lim~v = y∗ and lim η−1(~v) = x. It is obvious that
y∗ ∈ bd(Y ) − ENI(cl(Y )).As at the beginning of the proof, there is a sequene ~v′ ⊆ Y suh that lim~v′ = y∗,
η−1(~v′) ⊆ X and lim η−1(~v′) = lim η−1(~v) = x. So η−1(~v′) is as required.The following theorem is analogous to Theorem 6.3(b). The proofs are essentially thesame.Theorem 6.22. Let X,Y ∈ KO

NMX (see 6.3(b)). If ϕ : H(cl(X)) ∼= H(cl(Y )), then thereis τ : cl(X) ∼= cl(Y ) suh that τ indues ϕ.Proof. Let K = cl(X) and M = cl(Y ). From Theorem 2.30() it follows that there is
η ∈ H(ENI(K),ENI(M)) whih indues ϕ.For every x ∈ bd(X) − ENI(cl(X)) let ~x ⊆ X be suh that lim ~x = x and η(~x)is onvergent in M . The existene of ~x is ensured by Proposition 6.21(). Let yx =

lim η(~x). Sine Rng(η) ⊇ Y , yx ∈ bd(Y ). Sine η indues ϕ, for every g ∈ H(K),
((g↾ENI(K))η)cl ∈ EXT(ENI(M)). In partiular, (UCeni

0 (X))η ⊆ EXT(ENI(M)). Heneby Proposition 6.21(a), η↾X ∪ {〈x, yx 〉} is ontinuous. Also, for every x ∈ bd(X) ∩
ENI(cl(X)), η↾X ∪ {〈x, η(x) 〉} is ontinuous. We thus have(1) for every x ∈ bd(X) − ENI(cl(X)), η↾X ∪ {〈x, yx 〉} is ontinuous,(2) for every x ∈ bd(X) ∩ ENI(cl(X)), η↾X ∪ {〈x, η(x) 〉} is ontinuous.So by Proposition 4.7(a), η∪{〈x, yx 〉 | x ∈ bd(X)−ENI(cl(X))} is ontinuous. So η anbe extended to a ontinuous funtion τ from cl(X) to cl(Y ).Similarly, η−1 an be extended to a ontinuous funtion ̺ from cl(Y ) to cl(X). Itfollows easily that τ is 1-1 and that τ−1 = ̺. So τ ∈ H(cl(X), cl(Y )). Sine η indues ϕand Dom(η) is dense in Dom(τ ), it follows that τ indues ϕ.Proposition 6.23. (a) Let X ∈ KO

NRM, K = cl(X), U ⊆ ENI(K) be open in K, L ⊆ Ube an ar and x, y be the endpoints of L. Then there is h ∈ H(K) U suh that h(x) = y.(b) Let Z be a topologial spae z ∈ Z and {hi | i ∈ N} ⊆ H(Z) be suh that for any
i 6= j, supp(hi) ∩ supp(hj) = ∅ and limi→∞ supp(hi) = z. Then ◦i∈N hi ∈ H(Z).



Reonstrution of manifolds from subgroups of homeomorphism groups 145Proof. (a) Let γ : [0, 1] → L be a parametrization of L suh that γ(0) = x and γ(1) = y.There are n ∈ N, {Ui | i < n} and 0 = t0 < · · · < tn = 1 suh that for every i < n:
Ui is open in K, Ui is homeomorphi to an open ball of a normed spae, Ui ⊆ U and
γ([ti, ti+1]) ⊆ Ui. So for every i < n there is hi ∈ H(K) Ui suh that hi(zi) = zi+1.Clearly, hn−1 ◦ · · · ◦h0 is as required.(b) The proof is trivial.The following theorem is analogous to Theorem 6.18. The proofs are essentially thesame.Theorem 6.24. Let X,Y ∈ KO

IMX and ϕ : H(cl(X)) ∼= H(cl(Y )). Then there is τ ∈
H(cl(X), cl(Y ))) whih indues ϕ.Proof. SetK = cl(X) andM = cl(Y ). Then by Theorem 2.30(), there is η ∈ H(ENI(K),

ENI(M)) whih indues ϕ. So for every g ∈ H(K), ((g↾ENI(K))η)cl = ϕ(g) ∈ H(M).We shall prove that ηcl ∈ H(K,M).Claim 1. Let x ∈ K − ENI(K) and ~x, ~u ⊆ X. Suppose that lim ~x = lim ~u = x and that
η(~x) and η(~u) are onvergent in M . Then lim η(~x) = lim η(~u).Proof. Let ~y = η(~x), ~v = η(~u), y = lim ~y, v = lim~v, and suppose by ontradition that
y 6= v. Obviously, y, v ∈ bd(Y ). Let r = ‖y − v‖/2. We may assume that ~v ⊆ B(v, r)and that ~y ∩ B(v, r) = ∅. Let h : [0, 1] × cl(Y ) → cl(Y ) be an isotopy as ensured by thefat that v is isotopially movable with respet to Y , and suh that for every t ∈ [0, 1],
supp(ht) ⊆ B(v, r).For every t ∈ [0, 1] let un,t = η−1(h(t, vn)). We prove the following fat. (∗) Forevery t ∈ [0, 1], limn→∞ un,t = x. Let t ∈ [0, 1]. Let h̄ = ht↾ENI(M) and ḡ = h̄η

−1 .Then ḡ ∈ EXT(ENI(K)). Clearly, ḡ↾~x = Id and so ḡcl(x) = x. Hene limn→∞ un,t =

limn→∞ ḡ(un) = ḡ(limn→∞ un) = ḡ(x) = x. So (∗) is proved.Let Ln = h([0, 1] × {vn}) and Kn = η−1(Ln). We prove that limn→∞Kn = x.Suppose by ontradition that this is not true. Then there are d > 0, ~t ⊆ [0, 1] and a1-1 sequene {ni | i ∈ N} suh that for every i ∈ N, d(x, uni,ti) ≥ d. We may assumethat ~t is onvergent. Let t∗ = lim~t. Let Ii be the losed interval whose endpoints are
ti and t∗ and Ji = h(Ii × {vni

}). Then limi→∞ Ji = h(t∗, v). Sine for every t ∈ [0, 1],
ht↾Y ∈ EXT(Y ) and v ∈ bd(Y ), it follows that h(t∗, v) ∈ bd(Y ). The fat that vni

∈ Yimplies that Ji ⊆ Y . Hene for every i ∈ N, h(t∗, v) 6∈ Ji. We may thus assume that forany i 6= j, Ji ∩ Jj = ∅.There is a sequene {Vi}i∈N of pairwise disjoint open sets suh that for every i ∈ N,
Ji ⊆ Vi ⊆ cl(Vi) ⊆ Y ∩ B(v, r) and limi→∞ Vi = h(t∗, v). Let hi ∈ UC(Y ) Vi besuh that hi(h(vni

, t∗)) = h(vni
, ti) and h̃ = ◦i∈N hi. Then h̃ ∈ UC0(Y ). Hene ĥ :=

h̃eni ∈ EXT(ENI(M)). Let ĝ = ĥη
−1 . So ĝ ∈ EXT(ENI(K)). Clearly, ĝ↾~x = Id andhene ĝcl(x) = x. Also, for every i ∈ N, ĝ(uni,t∗) = uni,ti . It follows from (∗) that

limi→∞ uni,t∗ = x and so
lim
i→∞

uni,ti = lim
i→∞

ĝ(uni,t∗) = ĝcl( lim
i→∞

uni,t∗) = ĝcl(x) = x.This ontradits the fat that d(x, uni,ti) ≥ d, so limn→∞Kn = x.



146 M. Rubin and Y. YomdinReall that x ∈ K − ENI(K), and note that Ki = η−1(Li) ⊆ η−1(Y ) ⊆ ENI(K).So x 6∈ Ki. Hene there is an in�nite set σ ⊆ N suh that for any distint i, j ∈ σ,
Ki ∩ Kj = ∅. There is a sequene {Ui | i ∈ σ} of pairwise disjoint sets suh that
Ki ⊆ Ui ⊆ ENI(K), Ui is open in ENI(K) and limi∈σ Ui = x. Let ̺ ⊆ σ be suh that ̺and σ − ̺ are in�nite.By Proposition 6.23(a), for every i ∈ ̺ there is gi ∈ H(K) Ui suh that gi(ui) = ui,1.By Proposition 6.23(b), ĝ := ◦i∈̺ gi ∈ H(K). Let ḡ = ĝ↾ENI(K) and h̄ = ḡη. Then
ḡcl = ĝ ∈ H(K). From the fat that η indues ϕ it follows that h̄cl ∈ H(M).For every i ∈ ̺, h̄(vi) = h(vi, 1). So limi∈̺ h̄(vi) = h(v, 1). For every i ∈ σ − ̺,
h̄(vi) = vi. So limi∈σ−̺ h̄(vi) = v. Reall that h(v, 1) 6= v and that limi→∞ vi = v.So ~v is onvergent and h̄(~v) is not onvergent. Hene h̄cl 6∈ H(M). A ontradition, soClaim 1 is proved.Suppose by ontradition that x ∈ K − ENI(K) and x 6∈ Dom((η↾X)cl). Reall that
Y ∈ KO

IMX and hene Y is JN.AC. So by Proposition 6.21(), for every x ∈ K −ENI(K)there is a sequene ~x ⊆ X onverging to x suh that η(~x) ⊆ Y , and η(~x) is onvergentin M . Set y = lim η(~x). Obviously, y ∈ bd(Y ). Sine x 6∈ Dom((η↾X)cl), there are a 1-1sequene ~u ⊆ X and d > 0 suh that lim ~u = x and d(η(~u), y) ≥ d. De�ne ~v = η(~u). Thenby Claim 1, ~v does not have a onvergent subsequene. That is, ~v is ompletely disrete.Sine Y is JN.AC, there is a subsequene ~w of ~v suh that ~w has a joining system. Let
〈~w,w∗, {Ln | n ∈ N}, ~w′ 〉 be a joining system for ~w. We may assume that w∗ 6∈ Rng(~w).It an be assumed that w∗ 6= y. For suppose that w∗ = y. Let r = d(~w, y). Sine
Y is BR.IS.MV and y ∈ bd(Y ), there is h ∈ EXT(Y ) suh that supp(h) ⊆ B(y, r) and
hcl(y) 6= y. So h↾~w = Id. It follows that 〈~w, hcl(y), {h(Ln) | n ∈ N}, h(~w′) 〉 is a joiningsystem for ~w, and if we rede�ne w∗ to be hcl(y), then w∗ 6= y.Reall that Y is JN.AC. So we may apply Lemma 6.21(b) to η−1. Reall alsothat lim η−1(~w) = lim η−1(~v) = x. Hene there is ~z ⊆ Y suh that lim ~z = w∗ and
lim η−1(~z) = x. The two sequenes ~x and η−1(~z) onverge to x, however, η(~x) and
η(η−1(~z)) are onvergent, but they do not onverge to the same point. This ontra-dits Claim 1, so Dom((η ↾ X)cl) ⊇ K − ENI(K). Sine Dom(η) = ENI(K), we have
Dom(ηcl) = K.We have shown that η ∈ EXT(ENI(X),ENI(Y )). An idential argument showsthat η−1 ∈ EXT(ENI(Y ),ENI(X)). Hene ηcl ∈ H(K,M). Sine η indues ϕ, ηclindues ϕ.6.5. Generalizations to manifolds and to nearly open sets. The results of thishapter are true in two other settings, whih are more general than the present setting.The proofs remain exatly the same.Remark 6.25. (a) Let Z be a subset of the normed spae E. Z is a nearly open set if
Z ⊆ clE(intE(Z)). The results of this hapter an be extended to the lass of nearly opensubsets of a normed spae. Let

KNO
NRM = {〈X,Z 〉 | X ∈ KO

NRM and X ⊆ Z ⊆ cl(X)}.Note that {〈X, cl(X) 〉 | X ∈ KO
NRM} ⊆ KNO

NRM.



Reonstrution of manifolds from subgroups of homeomorphism groups 147(b) The analogy with KO
NRM is as follows. Let 〈X,Z 〉 ∈ KNO

NRM. The group
EXTZ(X) = {h↾X | h ∈ H(Z) and h(X) = X}is the analogue of EXTE(X), and the group H(Z) is the analogue of H(cl(X)).() Suitable reformulations of Theorem 6.3, Corollary 6.6 and Theorems 6.18, 6.20,6.22 and 6.24 are true for KNO

NRM. �We demonstrate the generalization disussed in Remark 6.25 by desribing the ana-logues of Theorem 6.3(b) and 6.22. The faithful lass aptured by this generalizationontains 22ℵ0 subsets of R3.Let KNO
NMX be the lass of all 〈X,Z 〉 ∈ KNO

NRM suh that X is BR.LC.AC with respetto Z, and X is JN.AC with respet to Z. Evidently, this is the analogue of KO
NMX de�nedin 6.3(b). Let us �rst see that KNO

NMX is a large lass. Write X = (0, 1)3, that is, X isan open ube in R3. We onstrut sets Z suh that 〈X,Z 〉 ∈ KNO
NMX, and in fat, weshow that |{Z | 〈X,Z 〉 ∈ KNO

NMX}| = 22ℵ0 . We skip the easy proof of part (b) of the nextexample.Example 6.26. Let X = (0, 1)3.(a) For x, y ∈ R let Lx,y = [(x, 0, 0), (x, y, 0)]. Let ∅ 6= A ⊆ [0, 1] and ̺ : A → [0, 1).(We do not assume that ̺ is ontinuous.) Let Z̺ = X ∪ ⋃
x∈A Lx,̺(x). Then 〈X,Z̺ 〉 ∈

KNO
NMX.(b) Let F be a losed nonempty subset of bdR

3

(X). Then 〈X,X ∪ F 〉 ∈ KNO
NMX.Proof. (a) Let X,A, ̺ and Z be as above. It is trivial that X is BR.LC.AC with respetto Z. We show thatX is JN.AC with respet to Z. Let ~u = {un}n∈N ⊆ X be a ompletelydisrete sequene with respet to Z. It may be assumed that ~u is onvergent in R3, andwe denote its limit by û. So û ∈ clR

3

(X) − Z. Write un = (xn, yn, zn) and û = (x̂, ŷ, ẑ).Case 1: Assume that ẑ = 0. Suppose �rst that there is a ∈ A suh that {n | xn = a}is in�nite. So we may assume that xn = a for every n ∈ N. It follows that for some
b > ̺(a), lim ~u = (a, b, 0). Hene ~u has a subsequene ~v suh that [vm, (a, ̺(a), 0)] ∩
[vm, (a, ̺(a), 0)] = {(a, ̺(a), 0)} for any m 6= n. Choose wn ∈ [vn, (a, b, 0)) suh that
limn→∞ wn = (a, b, 0) and de�ne Ln = [vn, wn]. It is easy to see that 〈~v, (a, ̺(a), 0),
~L, {wn}n∈N 〉 is a joining system for ~vSuppose next that for every a ∈ A, {n | xn = a} is �nite. Choose any a ∈ A andremove from ~u all un's suh that xn = a. Then a 6= xn for every n ∈ N. We may alsoassume that z0 < 1/2 and that {zn}n∈N is stritly dereasing. Let y′n = max(1− zn, yn),
u′n = (xn, y

′
n, zn) and L0

n = [un, u
′
n]. We show that ~L0 := {L0

n}n∈N is ompletely disretewith respet to Z. Sine {zn}n∈N is 1-1, ~L0 is a pairwise disjoint sequene, that is,
L0
m ∩ L0

n = ∅ for any m 6= n. If (x, y, z) ∈ accR
3

(~L0), then x = x̂, z = 0 and y ≥ ŷ, andsine (x̂, ŷ, 0) 6∈ Z, it follows that (x̂, y, 0) 6∈ Z. The sequene {y′n}n∈N onverges to 1, sowe may assume that it is stritly inreasing. Let vn = (xn, y
′
n, 1/2) and L1

n = [u′n, vn].It is trivial that ~L1 := {L1
n}n∈N is a pairwise disjoint sequene. If (x, y, z) ∈ accR

3

(~L1),then y = 1 and so (x, y, z) 6∈ Z. So ~L1 is ompletely disrete with respet to Z. Supposethat m < n. Then L0
m ∩ L1

n = ∅, sine the y-oordinate of any member of L0
m is ≤ y′m,and the y-oordinate of any member of L1

n is equal to y′n whih is > y′m. Similarly,
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L1
m∩L0

n = ∅, sine members of L1
m and L0

n di�er in their z-oordinate. We onlude that
(L0

m ∪ L1
m) ∩ (L0

n ∩ L1
n) = ∅ for any m 6= n.Let wn = (a, y′n, 1/2) and L2

n = [vn, wn]. The sequene ~L2 := {L2
n}n∈N is a pairwisedisjoint sequene, sine members of L2

m and L2
n di�er in their y-oordinate. Also, L2

n ∩
(L0

m∪L1
m) = ∅ for any m 6= n. This follows from the fat that the only point in L0

m∪L1
mwhose z-oordinate is 1/2 is vm and vm 6∈ L2

n. The y-oordinate of any member of
accR

3

(~L2) is 1, so accR
3

(~L2) ∩ Z = ∅ and hene ~L2 is ompletely disrete with respetto Z. Let w∗ = (a, ̺(a), 0), hoose w′
n ∈ [wn, w

∗) suh that limn→∞ w′
n = w∗ andde�ne L3

n = [wn, w
′
n]. Clearly, ~L3 := {L3

n}n∈N is a pairwise disjoint sequene. Sine
limn→∞ wn = (a, 1, 0), it follows that accR

3

(~L3) = [w∗, (a, 1, 0)]. So accZ(~L3) = {w∗}. Itfollows that for every r > 0, {L3
n −B(w∗, r) | n ∈ N} is ompletely disrete with respetto Z. Note that wm is the only point in ⋃

i≤2 L
i
m whose x-oordinate is a. So sinefor n 6= m, wm 6∈ L3

n, L3
n ∩ (

⋃
i≤2 L

i
m) = ∅. De�ne Ln =

⋃
i≤3 L

i
m, ~w′ = {w′

n}n∈N and
~L = {Ln}n∈N. It follows that ~L is a pairwise disjoint sequene and that for every r > 0,
{Ln − B(w∗, r) | n ∈ N} is ompletely disrete with respet to Z. So 〈~u,w∗, ~L, ~w′ 〉 is ajoining system for ~u.The ase that ẑ 6= 0 is divided into several subases. Their proofs are similar to theproof of Case 1, but simpler.Theorem 6.27. For ℓ = 1, 2 let 〈Xℓ, Zℓ 〉 ∈ KNO

NMX.(a) If ϕ : Z1
∼= Z2, then there is τ ∈ H(Z1, Z2) whih indues ϕ.(b) If ϕ : EXTZ1(X1) ∼= EXTZ2(X2), then there is τ ∈ EXTZ1,Z2(X1, X2) whihindues ϕ.Proof. The proof of (a) is idential to the proof of Theorem 6.22. The proof of (b) isidential to the proof of Theorem 6.3.Remark 6.28. The seond generalization is motivated by the following example. Let

E = R × SR
2

(0, 1), Y = [0, 1] × SR
2

(0, 1) and X = (0, 1) × SR
2

(0, 1). X is a normedmanifold. So its reonstrution from subgroups of H(X) is inluded in Theorem 2.30(a).The loal Γ -ontinuity of onjugating homeomorphisms of X is proved in 3.47(a), 3.48(a)and 4.10. The spae Y , however, is not overed by any of the above theorems beauseit is not a normed manifold. Also, Y is not the losure of an open subset of a normedspae. So the theorems proved so far in Chapter 6 do not apply to Y . However, Y isa well-behaved spae and is very similar to the spaes whih have already been dealtwith. �The above remark alls for the setting in whih E is a normed manifold, X is an opensubset of E and Y = clE(X). This setting will yield reonstrution results for Y .Definition 6.29. (a) Let 〈X,Φ, d〉 be suh that 〈X,Φ 〉 is a normed manifold, 〈X, d 〉is a metri spae, and there is K suh that for every ϕ ∈ Φ, ϕ is K-bilipshitz. Then
〈X,Φ, d〉 is alled a normed Lipshitz manifold.(b) Let KO

NLPM = {Y | Y is an open subset of a normed Lipshitz manifold}. �Chapter 6 in its entirety an be proved for KO
NLPM.



Reonstrution of manifolds from subgroups of homeomorphism groups 149Theorem 6.30. In De�nitions 6.1, 6.9, 6.16, 6.19 and in Remark 6.25 hange everymention of KO
NRM to a mention of KO

NLPM. Then the variants obtained in this way fromTheorem 6.3 and Theorems 6.12, 6.18, 6.20, 6.22, 6.24 and 6.27 are true.Proof. The proofs of all the above theorems are idential to the proofs of their ounter-parts.



7. Groups whih are not of the same type are not isomorphiIn the previous hapters we onsidered several properties of homeomorphisms, for in-stane, UC homeomorphisms, LUC homeomorphisms, extendible homeomorphisms andhomeomorphisms whih are uniformly ontinuous on every bounded positively distanedset. In this hapter we prove that for properties P and Q as above, if P(X) ∼= Q(Y ),then either P(X) = Q(X) or P(Y ) = Q(Y ). But before we deal with these questions,we prove some additional fats about the group UC(X).7.1. The group UC(X) revisited. We have seen in Theorem 5.5 that if X,Y ∈
KO

NRM, X is UD.AC and (UC(X))τ ⊆ UC(Y ), then τ is uniformly ontinuous. We nextreonsider the problem of deduing that τ−1 is uniformly ontinuous from the fat that
(UC(X))τ ⊆ UC(Y ). Reall that the impliation
(†) (UC(X))τ ⊆ UC(Y ) ⇒ τ−1 is uniformly ontinuousis not true for every X,Y ∈ KO

NRM. Counter-examples appear in 5.7 and 6.7(a). Yet,
(†) holds when X and Y are well-behaved. Theorem 7.1 below deals with �nite-dimen-sional spaes for whih (†) is true. The in�nite-dimensional ase is onsidered in 7.7. Theresult of 7.7 is needed in the proof of Corollary 7.11(d) and (e).Theorem 7.1. Let X,Y ∈ KO

NRM. Suppose that X is �nite-dimensional and bounded ,
X is UD.AC , |Cmp(bd(X))| ≤ ℵ0 and (∗) for every C ∈ Cmp(bd(X)), distint x, y ∈ C,and z ∈ bd(X) − {x, y}, there is f ∈ UC(X) suh that either f cl(x) = y and fcl(z) = z,or fcl(z) = y and fcl(x) = x. Suppose that for every C ∈ Cmp(bd(Y )), |C| > 1. Let
τ ∈ H(X,Y ) be suh that (UC(X))τ ⊆ UC(Y ). Then τ−1 is uniformly ontinuous.Proof. By Theorem 5.5, τ is uniformly ontinuous, and hene τ cl maps cl(X) onto cl(Y ).It thus su�es to show that τ cl is injetive. Suppose otherwise. For x ∈ bd(X) let Cxdenote the onneted omponent of bd(X) ontaining x. It follows from (∗) that if forsome z 6= x, τ cl(x) = τ cl(z), then for every y ∈ Cx, τ cl(y) = τ cl(x). The argument is asfollows. Suppose indeed that z 6= x, τ cl(x) = τ cl(z) and y ∈ Cx−{x, z}. Let f ∈ UC(X)be as ensured by (∗). We assume �rst that f cl(x) = x and fcl(z) = y, Let ~x, ~y ⊆ Xonverge respetively to x and y, and let ~x′ = f−1(~x) and ~z = f−1(~y). Then
τ cl(y) = lim τ (~y) = lim fτ ◦ τ ◦ f−1(~y) = lim fτ (τ (~z)) = (fτ )cl(lim τ (~z)) = (fτ )cl(τ cl(z)).Similarly,

τ cl(x) = lim τ (~x) = lim fτ ◦ τ ◦ f−1(~x) = lim fτ (τ (~x′))

= (fτ )cl(lim τ (~x′)) = (fτ )cl(τ cl(lim ~x′)).[150℄



Reonstrution of manifolds from subgroups of homeomorphism groups 151Sine fcl(x) = x and lim ~x = x, we have lim ~x′ = x. So
τ cl(x) = (fτ )cl(τ cl(lim ~x′)) = (fτ )cl(τ cl(x)) = (fτ )cl(τ cl(z)) = τ cl(y).The same argument applies to the ase that fcl(z) = z and fcl(x) = y. It follows thatfor any distint C,D ∈ Cmp(bd(X)), either τ cl(C) = τ cl(D) and τ cl(C) is a singleton,or τ cl(C) ∩ τ cl(D) = ∅.Let x and y be distint members of bd(X) suh that τ cl(x) = τ cl(y), and C be theomponent of τ cl(x) in bd(Y). The family {τ cl(Cu) ∩ C | u ∈ bd(X)} is a partitionof C into more than one and at most ountably many losed sets. This ontraditsthe theorem of Sierpi«ski that a ontinuum annot be partitioned into ountably manynonempty losed sets. See [En, Theorem 6.1.27℄.We do not know whether in the above theorem, the requirement that bd(X) has atmost ountably many omponents an be dropped. Here is an easy example of a boundedregular open subset X ⊆ R3 suh that X is UD.AC, X satis�es (∗) of Theorem 7.1,every onneted omponent of bd(X) has ardinality > 1, and bd(X) has 2ℵ0 onnetedomponents.Example 7.2. Let C ⊆ [0, 1] be the Cantor set. Let K = C×{1}. So K ⊆ BR

2

(0, 2) and
BR

2

(0, 2)−K is onneted. Let A = {an | n ∈ N} ⊆ BR
2

(0, 2) be suh that cl(A)−A = K,and every member of A is an isolated point in A. Let rn > 0 andDn = B(an, rn). Assumethat Dn ⊆ B(0, 2) ∩ {(x, y) | x > 0} and B(am, 2rm) ∩ B(an, 2rn) = ∅ for any m 6= n,and that cl(
⋃
n∈N

Dn)−
⋃
n∈N

Dn = K. Let U = B(0, 3)− cl(
⋃
n∈N

Dn). Let X ⊆ R3 bethe set obtained by rotating U about the x-axis. Note that if x, y ∈ U , then there is anar L ⊆ U onneting x and y suh that lngth(L) ≤ 2π · ‖x− y‖. It follows easily that Xis as required. �We next deal with in�nite-dimensional open sets for whih the fat that (UC(X))τ ⊆
UC(Y ) implies that τ−1 is uniformly ontinuous.Definition 7.3. (a) For A ⊆ X de�ne ∆X,E(A) = supa∈A d(a,E − X). As usual, weabbreviate ∆X,E(A) by ∆(A).(b) Let h ∈ H(X). We say that h is strongly extendible if for every ε > 0 there is
h̃ ∈ H(E) suh that h̃ extends h and supp(h̃) ⊆ B(supp(h), ε). De�ne UCe(X) := {h ∈
UC(X) | h is strongly extendible}.() A simple ar is a spae homeomorphi to [0, 1]. For a simple ar L and x, y ∈ Llet [x, y]L denote the subar of L whose endpoints are x and y. Let α ∈ MBC and
η : (0,∞) → (0,∞) be suh that η is monotoni and limtt→0 η(t) = 0. Let X be a metrispae and L ⊆ X be a simple ar. We say that L is an 〈α, η 〉-trak if for every x, y ∈ Lthere is h ∈ UC(X) suh that h is α-biontinuous, h(x) = y and supp(h) ⊆ B([x, y]L, r),where r = η(diam([x, y]L). If in the above de�nition we require that h ∈ UCe(X), then
L is alled an 〈α, η 〉-e-trak.(d) We de�ne the notion of a trak system for ~x. Let ~x ⊆ X be a ompletely disretesequene, y∗ ∈ bd(X), ~y ⊆ X and ~L = {Ln | n ∈ N} be a sequene of simple ars suhthat lim ~y = y∗, Ln ⊆ X, Ln onnets xn with yn and ⋃

n∈N
Ln is bounded. Assume that(1) there are α and η suh that Ln is an 〈α, η 〉-trak for every n ∈ N,



152 M. Rubin and Y. Yomdin(2) there are β ∈ MC and for every n a parametrization γn of Ln suh that
Dom(γn) = [0, 1], γn is β-UC for every n ∈ N and γn(0) = yn and γn(1) = xn.Then T = 〈~x, y∗, ~L, ~y 〉 is alled a trak system for ~x, and γn is alled a legal parametriza-tion of Ln in T . Note that (2) just means that {γn | n ∈ N} is equiontinuous. If in (1)we require that Ln be an e-trak, then T is alled an e-trak system.Let T = 〈~x, y∗, ~L, ~y 〉 be a trak system. If for every r > 0, {Ln − B(y∗, r) | n ∈ N}is ompletely disrete, then T is alled a ompletely disrete trak system. If for every

r > 0, {Ln −B(y∗, r) | n ∈ N} is spaed, then T is alled a spaed trak system.(f) X is jointly trak onneted (JN.TC ) if for every ompletely disrete boundedsequene ~x ⊆ X: if limn→∞ δ(xn) = 0, then ~x has a subsequene ~y suh that ~y has atrak system. X is jointly e-trak onneted (JN.ETC ) if the above subsequene ~y isrequired to have an e-trak system. �Remark 7.4. We explain the notion of a trak system by an example. Let X be theunit ball of the Hilbert spae ℓ2 and S be the unit sphere. Let ~x be a ompletely disretesequene in X suh that δ(~x) = 0. We onstrut a trak system for a subsequene of ~x.Let e0 = (1, 0, 0, . . .). Take a subsequene ~y of ~x suh that {e0}∪Rng(~y) is an independentset. For n ∈ N let zn = ‖yn‖e0, Sn = S(0, ‖yn‖) ∩ span({yn, e0}) and Ln be any of thetwo subars of Sn onneting yn with zn. Then T = 〈~y, e0, {Ln}n∈N, {zn}n∈N 〉 is a traksystem for ~y. Indeed, T is an e-trak system.The property JN.ETC is needed in the proof that UC(X) 6∼= EXT(X). �Proposition 7.5. (a) Let {hn | n ∈ N} ⊆ UCe(X), and suppose that {supp(hn) | n ∈ N}is spaed. Then ◦n∈N hn ∈ UCe(X).(b) Let x, y ∈ E be suh that ‖x‖ = ‖y‖ and ‖x − y‖ = d > 0. Let L = {tx | t ≥ 0}.Then d(y, L) ≥ d/2.() If T = 〈~x, y∗, ~L, ~y 〉 a trak system, then the following hold.(i) For every t ∈ (0, 1), Tt := 〈{γn(t)}n∈N, y
∗, {γn([0, t])}n∈N, ~y 〉 is a trak sys-tem, and if T is ompletely disrete, so is Tt.(ii) limn→∞∆(Ln) = 0.(d) Let 〈~x, y∗, ~L, ~y 〉 be a ompletely disrete trak system. Then there is an in�nite

σ ⊆ N suh that 〈~x↾σ, y∗, ~L↾σ, ~y↾σ 〉 is a spaed trak system.(e) Let T = 〈~x, y∗, ~L, ~y 〉 be a trak system. Let γn be legal parametrization of Ln in T .Then there are t ∈ [0, 1), z∗ ∈ bd(X) and an in�nite σ ⊆ N suh that 〈~x↾σ, z∗, {γn([t, 1]) |
n ∈ σ}, {γn(t) | n ∈ σ} 〉 is a spaed trak system.(f) Let T = 〈~x, y∗, ~L, ~y 〉 be a ompletely disrete trak system and C ∈ Cmp(bd(X))be suh that d(~x,C) = 0. Then y∗ ∈ C.(g) Let T = 〈~x, y∗, ~L, ~y 〉 be a trak system, h ∈ UC(X) and T ′ := 〈h(~x), hcl(y∗), h(~L),

h(~y) 〉. Then T ′ is a trak system.Proof. (a) The proof is trivial and is left to the reader.(b) We may assume that ‖x‖ = 1. Let tx ∈ L. If |1 − t| ≤ d/2, then use thetriangle with verties x, tx and y to onlude that ‖y − tx‖ ≥ ‖y − x‖ − ‖x− tx‖ ≥ d/2;and if |1 − t| ≥ d/2, then use the triangle with verties 0, tx and y to onlude that
‖y − tx‖ ≥ | ‖y − 0‖ − ‖tx− 0‖ | = |1 − t| ≥ d/2.



Reonstrution of manifolds from subgroups of homeomorphism groups 153() The �rst part of () follows from the de�nition of a trak system. To prove theseond part, suppose by way of ontradition that for some d > 0, {n | ∆(Ln) > d}is in�nite. Let α and η be as ensured by the fat that T is a trak system. Sine
lim ~y = y∗ ∈ bd(X), there is n suh that α(δ(yn)) < d and ∆(Ln) > d. Choose z ∈ Lnsuh that δ(z) > d and w ∈ bd(X) suh that α(‖yn−w‖ < d. Sine Ln is an 〈α, η 〉-trak,there is h ∈ H(X) suh that h is α-biontinuous and h(yn) = z. Then

‖h(yn) − h(w)‖ = ‖z − h(w)‖ ≥ d(z, bd(X)) > d > α(‖yn − w‖),and this ontradits the α-ontinuity of h.(d) For every r > 0, {Li − B(y∗, r) | i ∈ N} is ompletely disrete. So by Propo-sition 5.26, for every r > 0 and an in�nite η ⊆ N there is an in�nite ν ⊆ η suh that
{Li − B(y∗, r) | i ∈ ν} is spaed. We de�ne by indution ̺n ⊆ N. Let ̺0 = N. Forevery n ∈ N let ̺n+1 be an in�nite subset of ̺n suh that {Li − B(z∗, 1

n+1 ) | i ∈ ̺n+1}is spaed. Let σ = {min(̺n ∩ N≥n) | n ∈ N}. It is easy to see that for every r > 0,
{Li −B(z∗, r) | i ∈ σ} is spaed. So 〈~x↾σ, y∗, ~L↾σ, ~y↾σ 〉 is a spaed trak system.(e) For every in�nite η ⊆ N and t ∈ [0, 1] let A[η, t] = {γn(t) | n ∈ η}. Let sη =

sup({t | A[η, t] is not ompletely disrete}). Let ̺ ⊆ N be an in�nite set suh that forevery in�nite η ⊆ ̺, sη = s̺. Set s = s̺. Suppose by ontradition that A[̺, s] does notontain a Cauhy sequene. Then for some in�nite η ⊆ ̺ and d > 0, A[η, s] is d-spaed.There is ε > 0 suh that for every t > s− ε, A[η, t] is spaed. The existene of ε followsfrom the equiontinuity of {γn | n ∈ N}, that is, from the existene of β appearing inlause (2) of the de�nition of a trak system. So sη < s. A ontradition. So A[̺, s]ontains a Cauhy sequene. We may thus assume that A[̺, s] is a Cauhy sequene. Let
z∗ = limA[̺, s].Let Ji = γi([s, 1]). We show that there are no r > 0, an in�nite η ⊆ ̺ and ~u ∈∏
i∈η(Ji − B(z∗, r)) suh that ~u is a Cauhy sequene. Suppose otherwise. Let ti ∈

[s, 1] be suh that ui = γi(ti). We may assume that ~t = {ti | i ∈ η} is a Cauhysequene. Let t∗ = lim~t. Sine Rng(~u) ∩ B(z∗, r) = ∅, it follows that t∗ 6= s, and sine
limi∈η d(γi(ti), γi(t∗)) = 0, we �nd that {γi(t∗) | i ∈ η} is a Cauhy sequene. That is,
sη > s, a ontradition. We have shown that 〈{xn | n ∈ ̺}, z∗, {γn([s, 1]) | n ∈ ̺}, A[̺, s] 〉is a ompletely disrete trak system. By (d), there is an in�nite σ ⊆ ̺ suh that
〈{xn | n ∈ σ}, z∗, {γn([s, 1]) | n ∈ σ}, A[σ, s] 〉 is a spaed trak system.(f) Suppose by ontradition that y∗ 6∈ C. By (d), we may assume that T is a spaedtrak system. Let α, η be as ensured by the fat that T is a trak system. Clearly,
a := d(y∗, C) > 0. Choose u ∈ C, and for every n ∈ N hoose zn ∈ (B(y∗, a/2) −
B(y∗, a/4)) ∩ Ln and set Jn = [xn, zn]

Ln . Then b1 := d(u,
⋃
n∈N

Jn) > 0, and there is
b2 suh that {Jn | n ∈ N} is b2-spaed. Set b = min(b1, b2)/3, and let c > 0 be suhthat c+ η(c) < b. From the equiontinuity of {γn}n∈N it follows that there is k ∈ N and
{zn,i | n ∈ N, i ≤ k} suh that for every n ∈ N, zn,0 = xn, zn,k = zn and zn,i ∈ Ln,and diam([zn,i, zn,i+1]

Ln) < c for every i < k. So for every n ∈ N and i < k thereis hn,i ∈ UC(X) suh that hn,i is α-biontinuous, hn,i(zn,i) = zn,i+1 and supp(hn,i) ⊆
B([zn,i, zn,i+1]

Ln , c). Let hn = ◦i<k hn,i. Clearly, hn ∈ UC(X), and it is easily seenthat {supp(hn) | n ∈ N} is b2/3-spaed and d(u, supp(hn)) > b1/2 > 0. It follows that
h := ◦i<k hn,i ∈ UC(X), hcl(u) = u and h(xn) = zn for every n ∈ N. Sine h(u) = u,



154 M. Rubin and Y. Yomdinit follows that h(C) = C. However, d(~x,C) = 0 and d(h(~x), h(C)) = d(~z, C) > a/2 > 0.This ontradits the fat that h is uniformly ontinuous.(g) By Proposition 4.3(), there is γ ∈ MBC suh that h is γ-biontinuous. Let α, ηand β be as in the de�nition of a trak system. De�ne α′ = γ ◦α ◦γ, η′ = γ ◦ η ◦γ and
β′ = γ ◦β. Then α′, η′ and β′ demonstrate that T ′ is a trak system.Proposition 7.6. Let Z be a metri spae, and {Fn | n ∈ N} and {Kn | n ∈ N} besequenes of ompat subsets of Z suh that : (i) {Fn | n ∈ N} is spaed ; (ii) for every
ε > 0 there is ℓε ∈ N suh that for every n ∈ N and a subset A ⊆ Kn, if |A| ≥ ℓε, thenthere are distint x, y ∈ A suh that d(x, y) < ε; and (iii) inf({d(Fn,Kn) | n ∈ N}) > 0.Then there is an in�nite σ ⊆ N suh that d(⋃{Fn | n ∈ σ},⋃{Kn | n ∈ σ}) > 0.Proof. Write N+ = {n ∈ N | n > 0}. We de�ne by indution on i ∈ N+ a sequene ofin�nite subsets of N, σ0 ⊇ σ1 ⊇ · · · . Let σ0 = N. Suppose that σi has been de�ned. Weolor the inreasing pairs 〈m,n 〉 of members of σi in four olors, aording to whether
d(Fm,Kn) < 1/i or not, and aording to whether d(Km, Fn) < 1/i or not. By theRamsey Theorem, there is a monohromati in�nite σi+1 ⊆ σi. If there is i ∈ N+ suhthat for any distint m,n ∈ σi, d(Fm,Kn) ≥ 1/i and d(Km, Fn) ≥ 1/i, then σ := σi is asrequired. Otherwise, for every i ∈ N either (1) for every m < n in σi, d(Fm,Kn) < 1/i,or (2) for every m < n in σi, d(Km, Fn) < 1/i.Let i ∈ N and ℓ = ℓ1/i be as ensured by lause (ii). Let k0 < · · · < kℓ be members of
σi. Suppose that ase (1) ours. For every j < ℓ let xj ∈ Fj and yj ∈ Kℓ be suh that
d(xj , yj) < 1/i. Hene for some j1 < j2 < ℓ, d(yj1 , yj2) < 1/i. So d(Fj1 , Fj2) < 3/i. Thesame argument is repeated in ase (2). Hene for every i ∈ N+ there are distint j1 and
j2 suh that d(Fj1 , Fj2) < 3/i, ontraditing the fat that {Fn | n ∈ N} is spaed.The properties that X is required to ful�ll in the next theorem are quite restritive.However, they are shared by �well-behaved� open sets. For example, if X = B−⋃

i<k Bi,where B is an open ball and {B0, . . . , Bk−1} is a pairwise disjoint family of losed ballsontained in B, then X ful�lls the requirements of the theorem. Part (b) of the theoremis a slight modi�ation of its �rst part. This modi�ation is needed in the proof that
UC(X) and EXT(X) are not isomorphi unless they oinide.Theorem 7.7. (a) Let X ∈ KO

BNC. Suppose that the following hold.(1) X is bounded and X is UD.AC ,(2) bd(X) has �nitely many onneted omponents ,(3) if C ∈ Cmp(bd(X)), x, y ∈ C are distint and z ∈ bd(X) − {x, y}, then thereis f ∈ UC(X) suh that either f cl(x) = y and fcl(z) = z, or fcl(z) = y and
fcl(x) = x,(4) X is JN.TC ,Let Y ∈ KO

BNC and assume that(5) if C is a omponent of bd(Y ), then |C| > 1.Let τ ∈ H(X,Y ) be suh that (UC(X))τ ⊆ UC(Y ). Then τ−1 is uniformly ontinu-ous.



Reonstrution of manifolds from subgroups of homeomorphism groups 155(b) Modify lause (3) of (a) by requiring that f ∈ UCe(X), and modify (4) by requiringthat X is JN.ETC. Let τ ∈ H(X,Y ) be suh that (UCe(X))τ ⊆ UC(Y ). Then τ−1 isuniformly ontinuous.Proof. The proofs of (a) and (b) are idential. We prove (a). Reall that X and Y aresubsets of the Banah spaes E and F respetively. By Theorem 5.5, τ is uniformlyontinuous.Claim 1. Let ~x ⊆ X be a ompletely disrete sequene suh that τ (~x) is a Cauhysequene. Then there is a sequene ~x′ ⊆ X suh that limn→∞ δ(x′n) = 0, ~x′ is ompletelydisrete, and limn→∞ τ (~x′) = limn→∞ τ (~x).Proof. If δ(~x) = 0, then we take ~x′ to be a subsequene of ~x suh that limn→∞ δ(x′n) = 0.Suppose otherwise. Sine X ∈ KO
BNC, we may assume that for some d > 0, ~x is d-spaed,and sine X is bounded, we may also assume that for every n ∈ N+, d(xn, x0) ≤ d+ d/8.Without loss of generality, x0 = 0. For every n ∈ N+ let tn = min({t > 1 | txn ∈ bd(X)}),

yn = tnxn, Ln = [xn, yn] and γn(t) = xn + t(yn − xn), t ∈ [0, 1]. If m 6= n, then
∥∥∥∥d ·

xm
‖xm‖ − d · xn

‖xn‖

∥∥∥∥ ≥ ‖xm − xn‖ −
∥∥∥∥xm − d · xm

‖xm‖

∥∥∥∥ −
∥∥∥∥xn − d · xn

‖xn‖

∥∥∥∥ ≥ 3d

4
.Hene by Proposition 7.5(b), d(Lm, Ln) ≥ 3d/8.De�ne η(t) = δ({γn(t) | n ∈ N+}). Sine {‖xn − yn‖ | n ∈ N} is bounded, η isontinuous. Also, η(1) = 0. Let s = min(η−1(0)). We may assume that for every

n ∈ N+, δ(γn(s)) < 1/n. It follows that for every t ∈ (0, s), the family {γn([0, t]) |
n ∈ N+} is spaed, and δ(

⋃{γn([0, t]) | n ∈ N+}) > 0. Also, sine X is bounded,
{d(xn, γn(t)) | n ∈ N+} is bounded. So for every t < s there is ht ∈ UC(X) suh that forevery n ∈ N+, ht(x2n) = γ2n(t) and ht(x2n−1) = x2n−1. Let z∗ = lim τ (~x). Let t ∈ (0, s).Clearly, τ ({γ2n(t) | n ∈ N+} ∪ {x2n−1 | n ∈ N+}) = (ht)

τ (~x), and sine (ht)
τ ∈ UC(Y )and τ (~x) is a Cauhy sequene, τ ({γ2n(t) | n ∈ N+} ∪ {x2n−1 | n ∈ N+}) is a Cauhysequene. Denote this sequene by ~u. Then τ ({x2n−1 | n ∈ N+}) is a subsequene of ~uonverging to z∗. So ~u onverges to z∗, and hene τ ({γ2n(t) | n ∈ N+}) onverges to z∗.Let ~s ⊆ (0, s) be a sequene onverging to s. For every n ∈ N+ let kn ≥ n be suh that

d(τ (γ2kn
(sn)), z

∗) < 1/n. Let x′n = γ2kn
(sn). So lim τ (~x′) = z∗, limn→∞ δ(x′n) = 0 and

~x′ is spaed. Claim 1 is thus proved.Claim 2. Let T = 〈~y, y∗, {Ln | n ∈ N}, ~z 〉 be a ompletely disrete trak system in X,and suppose that lim τ (~y) = w∗. Then τ cl(y∗) = w∗.Proof. Suppose by ontradition that τ cl(y∗) 6= w∗. Let γn be a legal parametrizationof Ln, and β ∈ MC be suh that for every t1, t2 ∈ [0, 1] and n ∈ N, γn(t1) − γn(t2) ≤
β(|t1 − t2|).We now follow the proof of Lemma 5.25. For every in�nite σ ⊆ N and t ∈ [0, 1] let
A[σ, t] = {γn(t) | n ∈ σ} and sσ = inf({t ∈ [0, 1] | τ (A[σ, t]) onverges to w∗}). Sine
τ cl(y∗) 6= w∗, there is U ∈ Nbr(y∗) suh that d(w∗, τ (U ∩X)) > 0. Thus there is t0 > 0suh that for every t < t0, d(w∗, τ (A[N, t])) > 0. So for every in�nite σ ⊆ N, sσ > 0. Asin Lemma 5.25, there is an in�nite σ ⊆ N suh that for every in�nite η ⊆ σ, sη = sσ.Write s = sσ.



156 M. Rubin and Y. YomdinSuppose by ontradition that d(A[σ, s], y∗)=0. We may assume that limA[σ, s]=y∗.Let r > 0. Then there ism suh that A[σ≥m, s] ⊆ B(y∗, r/2). By the de�nition of s, thereis t ≥ s suh that β(t − s) < r/2 and lim τ (A[σ, t]) = w∗. Then A[σ≥m, t] ⊆ B(y∗, r).Hene for every r, ε > 0 there are m ∈ N and t ∈ [s, s+ ε) suh that A[σ≥m, t] ⊆ B(y∗, r)and lim τ (A[σ, t]) = w∗. It follows that there is a sequene ~u ⊆ X suh that lim ~u = y∗and lim τ (~u) = w∗, and hene τ cl(y∗) = w∗. A ontradition, so d(A[σ, s], y∗) > 0.From the fat that {Ln − B(y∗, r) | n ∈ N} is ompletely disrete for every r > 0, itfollows that A[σ, s] is ompletely disrete. So we may assume that for some d > 0, A[σ, s]is d-spaed. Let α and η be as ensured by the fat that T is a trak system. It followsfrom the equiontinuity of {γn}n∈N that there is δ > 0 suh that for every n ∈ N and
t1, t2 ∈ [0, 1]: if 0 < t2 − t1 < δ, then

diam(γn([t1, t2])) + η(diam(γn([t1, t2]))) < d/3.Choose t1 ∈ [s, s+ δ/2)∩ [0, 1] suh that lim τ (A[σ, t1]) = w∗ and t2 ∈ (s− δ/2, s)∩ [0, 1].For every n ∈ σ let xn = γn(t1), un = γn(t2) and Jn = [xn, un]
Ln , that is, Jn =

γn([t2, t1]). Sine |t1 − t2| < δ, it follows that
diam(B(Jn, η(diam(Jn)))) ≤ diam(Jn) + η(diam(Jn)) ≤ d/3.We may assume that σ = N. Sine T is a trak system, there is hn ∈ H(X) suh that

hn(xn) = un, supp(hn) ⊆ B(Jn, η(diam(Jn))) and hn is α-biontinuous. We hek that
{supp(hn) | n ∈ N} is d/3-spaed. Let m 6= n. Then γm(s), γn(s) ∈ A[σ, s] and so
‖γm(s) − γn(s)‖ ≥ d. Sine γm(s) ∈ Jm and the same holds for n, it follows that

d(B(Jn, η(diam(Jn))), B(Jn, η(diam(Jn)))) ≥ d− 2d/3 = d/3.So {supp(hn) | n ∈ N} is d/3-spaed.By Proposition 5.17(a), h := ◦n∈N h2n ∈ UC(X). It follows that hτ ∈ UC(Y ). Let
wn = xn if n is odd, and wn = un if n is even. Hene hτ (τ (~x)) = τ (~w). By the hoie of
t1, τ (~x) onverges to w∗. By the hoie of σ and t2, τ ({u2n | n ∈ N}) does not onvergeto w∗. So τ (~w) is not a Cauhy sequene. This ontradits the fat that hτ ∈ UC(Y ).We have thus proved Claim 2.Claim 3. bd(Y ) ⊆ Rng(τ cl).Proof. Suppose by ontradition that z∗ ∈ bd(Y ) − Rng(τ cl). Let ~z ⊆ Y onvergeto z∗. So ~x := τ−1(~z) is ompletely disrete. By Claim 1, we may assume that
limn→∞ δ(xn) = 0. Let ~y be a subsequene of ~x whih has a trak system. By Proposition7.5(e), ~y has a ompletely disrete trak system 〈~y, y∗, {Ln | n ∈ N}, ~y′ 〉. By Claim 2,
τ cl(y∗) = z∗. A ontradition, so Claim 3 is proved.Claim 4. If C ∈ Cmp(bd(X)), then τ cl(C) is losed in F .Proof. Let C ∈Cmp(bd(X)) and v∈cl(τ cl(C)). Let ~x′⊆C be suh that limn→∞ τ cl(x′n)
= v. If ~x′ has a Cauhy subsequene ~y, then lim ~y ∈ C and τ cl(lim ~y) = v. Suppose that
~x′ does not have Cauhy subsequenes, that is, ~x′ is ompletely disrete. There is ~x ⊆ Xsuh that limn→∞ d(xn, x

′
n) = 0 and limn→∞ τ (xn) = v. So ~x is ompletely disrete.Sine X is JN.TC, there are a subsequene ~y of ~x and a trak system T = 〈~y, z∗, ~L, ~z 〉.



Reonstrution of manifolds from subgroups of homeomorphism groups 157By Proposition 7.5(e), we may assume that T is a spaed trak system, and by 7.5(f),
z∗ ∈ C. By Claim 2, τ cl(z∗) = v, so τ cl(C) is losed.Claim 5. τ cl is 1-1.Proof. By (3), for every omponent C ∈ Cmp(bd(X)), either τ cl↾C is 1-1 or τ cl(C) is asingleton; and for any distint C,D ∈ Cmp(bd(X)), either τ cl(C) = τ cl(D) and τ cl(C) isa singleton, or τ cl(C) ∩ τ cl(D) = ∅. The argument is as in the proof of Theorem 7.1.Suppose by ontradition that τ cl is not 1-1. Then there is C ∈ Cmp(bd(X)) and
y ∈ bd(Y ) suh that τ cl(C0) = {y}. Let D be the omponent of y in bd(Y ). Then
|D| > 1. By Claims 3 and 4, {τ cl(C) | C ∈ Cmp(bd(X)) and τ cl(C) ⊆ D} is a partitionof D into �nitely many and more than 1 losed sets. This ontradits the onnetivityof D.Claim 6. Let T = 〈~x, y∗, ~L, ~y 〉 be a trak system in X. Then for every d > 0 there is
h ∈ UC(X) suh that hcl(y∗) 6= y∗ and supp(h) ⊆ B(y∗, d).Proof. Let α and η be as ensured by the fat that T is a trak system. We may assumethat y∗ 6∈ Rng(~x), and hene we may also assume that d < d(~x, y∗). Let a > 0 be suhthat 2a + η(a) < d and b be suh that α(b) < a − b. Clearly, b < a. Let n be suhthat ‖yn − y∗‖ < b. Then ‖xn − yn‖ ≥ d − b > a, and hene there is z ∈ Ln suhthat ‖z − yn‖ = diam([z, yn]

Ln) = a. Sine Ln is an 〈α, η 〉-trak, there is h ∈ H(X)suh that h is α-biontinuous, h(yn) = z and supp(h) ⊆ B([z, yn]Ln , η(a)). Clearly,
B([z, yn]

Ln , η(a)) ⊆ B(y∗, b+ a + η(a)) ⊆ B(y∗, d). So supp(h) ⊆ B(y∗, d). Suppose byway of ontradition that h(y∗) = y∗. Then ‖z− y∗‖ = ‖h(yn)−h(y∗)‖ ≤ α(‖yn− y∗‖ <
α(b). However, ‖z − y∗‖ ≥ ‖z − yn‖ − ‖yn − y∗‖ ≥ a − b. That is, α(b) > a − b,a ontradition. So h(y∗) 6= y∗. So Claim 6 is proved.Claim 7. There is no sequene ~x ⊆ X suh that ~x is ompletely disrete, and τ (~x) is aCauhy sequene.Proof. Suppose otherwise, and let ~x be a ounter-example to the laim. By Claim 1, wemay assume that limn→∞ δ(xn) = 0. Sine X is JN.TC, there are a subsequene ~y of
~x, y∗, ~L and ~z suh that T = 〈~y, y∗, ~L, ~z 〉 is a trak system. By Proposition 7.5(e), wemay assume that T is a spaed trak system. Let w = lim τ (~x). So w = lim τ (~y). ByClaim 2, (i) τ cl(y∗) = w. Sine y∗ ∈ bd(X) and ~y ⊆ X, it follows that y∗ 6∈ Rng(~y),and sine ~y is ompletely disrete, d(~y, y∗) > 0. By Claim 6, there is h ∈ UC(X) suhthat (ii) hcl(y∗) 6= y∗ and supp(h) ⊆ B(y∗, d(~y, y∗)). So h↾~y = Id. By Proposition 7.5(g),
T ′ := 〈h(~y), hcl(y∗), h(~L), h(~z) 〉 is a trak system. Sine T is spaed and h ∈ UC(X) itfollows that T ′ is also spaed. Reall that h(~y) = ~y and so limh(~y) = w. So by Claim 2applied to T ′, (iii) τ cl(hcl(y∗)) = w. Fats (i)�(iii) ontradit the fat that τ cl is 1-1.This proves Claim 7.Suppose by ontradition that τ−1 is not uniformly ontinuous. Then there are se-quenes ~x, ~y ⊆ X and d > 0 suh that for every n ∈ N, d(xn, yn) ≥ d and limn→∞ d(τ (xn),

τ (yn)) = 0. We may assume that eah of the sequenes ~x, ~y, τ (~x) and τ (~y) is either spaedor is a Cauhy sequene.Claim 8. The sequenes ~x, ~y, τ (~x) and τ (~y) are spaed.



158 M. Rubin and Y. YomdinProof. Suppose by ontradition that ~x is a Cauhy sequene. Sine τ cl is uniformlyontinuous and Dom(τ cl) = cl(X), it follows that τ (~x) is a Cauhy sequene. Hene τ (~y)is also a Cauhy sequene. If ~y is a Cauhy sequene, then τ cl is not 1-1, ontraditingClaim 5; and if ~y is ompletely disrete, then Claim 7 is ontradited. So ~x is not aCauhy sequene. The same is true for ~y. By Claim 7, τ (~x) and τ (~y) are ompletelydisrete. Claim 8 is proved.We all a pair of sequenes 〈~u,~v 〉 in X a ounter-example if ~u and ~v are spaed,
inf({d(un, vn) | n ∈ N}) > 0 and limn→∞ d(τ (un), τ (vn)) = 0.Claim 9. There is a ounter-example 〈~u,~v 〉 suh that δ(~u) = 0.Proof. By Claim 8, there is a ounter-example 〈~x, ~y 〉. If δ(~x) = 0 or δ(~y) = 0, thenthere is nothing to prove. Suppose otherwise. By Proposition 7.6, we may assume that
d(~x, ~y) > 0. Let d > 0 be suh that ~x is d-spaed and d(~x, ~y) ≥ d. By possibly interhang-ing ~x and ~y, we may also assume that there are e1 ≥ e2 > 0 suh that limn→∞ ‖xn‖ = e1and limn→∞ ‖yn‖ = e2. Let x′n = (e1/‖xn‖)xn. Sine δ(~x) > 0, there is a > 0 suh thatfor every n ∈ N, B(x′n, a) ⊆ X. We may further assume that a < d/8, and that for every
n ∈ N, d(xn, x′n) < a/2. So (

⋃{B(x′n, a) | n ∈ N})∩{yn | n ∈ N} = ∅, and for any distint
m,n ∈ N, d(B(x′m, a), B(x′n, a)) > d/2. Let x′′n = (1 + a/2)x′n. It follows that there is
h ∈ LIP(X) suh that for every n ∈ N, h(xn) = x′′n and supp(h) ⊆ ⋃{B(x′n, a) | n ∈ N}.Sine h(~x) = ~x′′ and h(~y) = ~y, it follows that 〈~x′′, ~y 〉 is a ounter-example. So we mayassume that e1 > e2, and that ‖xn‖ = e1 for every n ∈ N. We still assume that ~x is
d-spaed and that d(~x, ~y) ≥ d.We now proeed as in the proof of Claim 1. For n ∈ N+ let tn = min({t > 1 | txn ∈
bd(X)}), zn = tnxn, Ln = [xn, zn] and γn(t) = xn + t(zn − xn), t ∈ [0, 1]. By Propo-sition 7.5(b), for any distint m,n ∈ N, d(Lm, Ln) ≥ d/2, and learly, d(Lm, ~y) ≥ e1−e2.Let s = min({t | δ({γn(t) | n ∈ N+}) = 0}). We may assume that for every n ∈ N+,
δ(γn(s)) < 1/n. It follows that for every t ∈ (0, s), the family {γn([0, t]) | n ∈ N+}is spaed, d(⋃{γn([0, t]) | n ∈ N+}, ~y) > 0 and δ(

⋃{γn([0, t]) | n ∈ N+}) > 0. Also,sine X is bounded, {d(xn, γn(t)) | n ∈ N+} is bounded. So for every t < s thereis ht ∈ UC(X) suh that for every n ∈ N+, ht(xn) = γn(t) and ht(yn) = yn. Sine
hτt ∈ UC(Y ), limn→∞ d(τ (xn), τ (yn)) = 0 and hτt (τ (xn)) = τ (γn(t)), it follows that
limn→∞ d(τ (γn(t)), τ (yn)) = 0.Let ~s ⊆ (0, s) be a sequene onverging to s. For every n ∈ N+ let kn ≥ n be suhthat d(τ (γkn

(sn)), τ (yn)) < 1/n. De�ne x′n = τ (γkn
(sn)). It follows that d(~x′, ~y) > 0,

limn→∞ d(τ (x′n), τ (yn)) = 0, limn→∞ δ(x′n) = 0 and ~x′ is spaed. Claim 9 is thus proved.Let T = 〈~y, y∗, ~L, ~z 〉 be a trak system, and γn be a legal parametrization of Ln. Wesay that T is good if for every t ∈ [0, 1), inf({d(yn, γn([0, t])) | n ∈ N}) > 0.Claim 10. If 〈~y, y∗, ~L, ~z 〉 is a trak system, and γn is a legal parametrization of Ln,then there is s ∈ (0, 1] and an in�nite σ ⊆ N suh that 〈{γn(s) | n ∈ σ}, y∗, {γn([0, s]) |
n ∈ σ}, ~z 〉 is a good trak system, and limn∈σ d(τ (yn), τ (γn(s))) = 0.Proof. For every in�nite η ⊆ N let sη = inf({t ∈ [0, 1] | limn∈η d(yn, γn(t)) = 0}).As in previous analogous arguments, there is an in�nite η ⊆ N suh that for every in-�nite ζ ⊆ η, sζ = sη. Let s = sη and ~t be a sequene onverging to s suh that



Reonstrution of manifolds from subgroups of homeomorphism groups 159for every i ∈ N, limn∈η d(yn, γn(ti)) = 0. Let σ = {ni | i ∈ N} ⊆ η be an inreas-ing sequene suh that limi→∞ d(yni
, γni

(ti)) = 0. By the equiontinuity of {γn}n∈N,
limi→∞ d(γni

(ti), γni
(s)) = 0. So limn∈σ d(yn, γn(s)) = 0. Hene sine τ is uniformlyontinuous, limn∈σ d(τ (yn), τ (γn(s))) = 0. Now suppose by ontradition that thereis t < s suh that lim infn∈σ d(yn, γn([0, t])) = 0. So there is an inreasing sequene

ζ = {ki | i ∈ N} ⊆ σ and ~t ⊆ [0, t] suh that limi→∞ d(yki
, γki

(ti)) = 0. We may as-sume that ~t onverges, say to s∗. Hene s∗ ≤ t < s, and limn∈ζ d(yn, γn(s∗)) = 0. So
sζ ≤ s∗ < s, a ontradition. So for every t ∈ [0, s), lim infn∈σ d(yn, γn([0, t])) > 0. Sine
limn∈σ d(yn, γn(s))=0, it follows that for every t ∈ [0, s), lim infn∈σ d(γn(s), γn([0, t]))>0;and the fat that Ln is a simple ar implies that γn(s) 6∈ γn([0, s)). So inf({d(γn(s),
γn([0, t])) | n ∈ σ}) > 0. Claim 10 is proved.Claim 11. There are a ounter-example 〈~u,~v 〉 and a ompletely disrete trak system
〈~u, u∗, ~J, ~u′ 〉 suh that infn∈N d(Jn, vn) > 0.Proof. By Claim 9, there is a ounter-example 〈~x, ~y 〉 suh that δ(~x) = 0. Let T =

〈~x, x∗, ~L, ~x′ 〉 be a ompletely disrete trak system for ~x. By Claim 10, we may assumethat T is a good trak system.Suppose �rst that d := lim infn→∞ d(Ln, yn) > 0. Let {ℓi | i ∈ N} be a subsequeneof N suh that d(Lℓi , yℓi) ≥ d/2. Hene ~u = {xℓi | i ∈ N}, u∗ = x∗, ~v = {yℓi | i ∈ N} and
~J = {Lℓi | i ∈ N} are as required in the laim.Assume next that lim infn→∞ d(Ln, yn)=0. So we may assume that limn→∞ d(Ln, yn)

= 0. Let γn be a legal parametrization of Ln. Hene there is ~t ⊆ [0, 1] suh that
limn→∞ d(γn(tn), yn) = 0. We may assume that ~t is onvergent. Let t = lim~t. It easilyfollows that limn→∞ d(γn(t), yn) = 0. Clearly t < 1, for otherwise limn→∞ d(xn, yn) = 0.For every n ∈ N let un = γn(t), vn = xn and Jn = γn([0, t]).Sine τ is uniformly ontinuous, we know that limn→∞ d(τ (un), τ (yn)) = 0. Also,
limn→∞ d(τ (vn), τ (yn)) = 0. Hene limn→∞ d(τ (un), τ (vn)) = 0. Sine 〈~x, x∗, ~L, ~x′ 〉 isa good trak system, infn∈N d(xn, γn([0, t])) > 0. That is, infn∈N d(vn, Jn) > 0. ByProposition 7.5()(i) applied to T and t, 〈~u, x∗, ~J, ~x′ 〉 is a trak system. So ~u, ~v, x∗ and
~J are as required. Claim 11 is proved.Claim 12. There are a ounter-example 〈~u,~v 〉 and a ompletely disrete trak system
〈~u, u∗, ~J, ~u′ 〉 suh that d(⋃{Jn | n ∈ N}, ~v) > 0.Proof. Let 〈~u,~v 〉 and 〈~u, u∗, ~J, ~u′ 〉 be as ensured by the previous laim. We show thatthere is an in�nite σ ⊆ N suh that 〈~u↾σ,~v↾σ 〉 and 〈~u↾σ, u∗, ~J↾σ, ~u′↾σ 〉 are as requiredin the laim. We shall apply Proposition 7.6 with Fn taken to be {vn} and Kn takento be Jn. By our assumptions, lauses (i) and (iii) of 7.6 hold. We show that (ii) holds.Let γn be a legal parametrization of Jn. Suppose that ε > 0. Then by the equiontinuityof {γn}n∈N, there is δ > 0 suh that for every n ∈ N and t1, t2 ∈ [0, 1]: if |t1 − t2| < δ,then ‖γn(t1) − γn(t2)‖ < ε. De�ne ℓε = [1/δ] + 1. Then ℓε ful�lls the requirement oflause (ii) of 7.6. The set σ obtained from 7.6 is as required. This proves Claim 12.Conlusion of the proof of the theorem. Let 〈~x, ~y 〉 and T = 〈~x, x∗, ~L, ~x′ 〉 be as ensured byClaim 12. By Claim 7, τ (~y) is ompletely disrete. So we may assume that τ (~y) is spaed.



160 M. Rubin and Y. YomdinWrite d1 = d(
⋃{Ln | n ∈ N}, ~y). Let γn be a legal parametrization of Ln. For every in�-nite σ ⊆ N let sσ = inf({t ∈ [0, 1] | limn∈σ d(τ (γn(t)), τ (yn)) = 0}). Let σ be suh that forevery in�nite η ⊆ σ, sη = sσ. Sine τ (~x′) is onvergent and τ (~y) is spaed, s := sσ > 0.As in previous analogous arguments, {γn(s) | n ∈ σ} is ompletely disrete. So we may as-sume that for some d2 > 0, {γn(s) | n ∈ σ} is d2-spaed. Set d = min(d1, d2). Let α, η beas ensured by the fat that T is a trak system. Let a > 0 be suh that a+η(a) < d/3. Bythe equiontinuity of {γn}n∈N, there is δ > 0 suh that for every n ∈ N and t1, t2 ∈ [0, 1]:if |t1−t2| < δ, then ‖γn(t1)−γn(t2)‖ < a. By the hoie of s, there is t1 ∈ [s, s+δ/2) suhthat limn∈σ d(τ (γn(t1)), τ (yn)) = 0. Also, hoose t2∈(s−δ/2, s). Then by the hoie of σand s, infn∈σ d(τ (γn(t2)), τ (yn))>0. For n ∈ σ write un = γn(t1), vn = γn(t2) and Jn =

γn([t2, t1]). Let n ∈ σ. Then sine Ln is an 〈α, η 〉-trak, there is hn ∈ H(X) suh that hnis α-biontinuous, hn(un) = vn and supp(hn) ⊆ B(Jn, η(diam(Jn))). Sine |t1 − t2| < δ,it follows that diam(Jn) < a. So for every x ∈ supp(hn), ‖x− γn(s)‖ < a+ η(a) < d2/3.This implies that d(supp(hm), supp(hn)) > d2/3 for any m 6= n. We onlude that h :=

◦n∈σ1
hn is well de�ned and belongs to UC(X). Clearly, supp(h) ⊆ B(

⋃
n∈N

Ln, η(a)).Sine d(⋃n∈N
Ln, ~y) = d1 and η(a) < d1, we infer that supp(h) ∩ Rng(~y) = ∅ and hene

h↾~y = Id. It follows that infn∈σ d(hτ (τ (yn)), hτ (τ (un))) = infn∈σ d(τ (yn), τ (vn))) > 0.But limn∈σ d(τ (yn), τ (un)) = 0. So hτ 6∈ UC(Y ). A ontradition.Remark 7.8. (a) Clause (2) in Theorem 7.7 an be relaxed. In that ase (5) has to bestrengthened. Replae (2) and (5) by (2.1) and (5.1) stated below.(2.1) bd(X) has ountably many omponents.(5.1) If C is a omponent of bd(Y ), then C is not a singleton, and either C is arwiseonneted or C is loally onneted.The proof of 7.7 is hanged only in one plae. In the proof of Claim 5, the omponent Dof bd(Y ) is partitioned into ountably many losed sets. By (5.1), this is impossible. Soa ontradition is reahed.There are spaes X whih satisfy (1), (2.1), (3) and (4), but do not satisfy (2).However, suh examples are rare.(b) LetKO
BLPM = {Y | Y is an open subset of a Banah Lipshitz manifold} (see Def-inition 6.29). In Theorem 7.7 replae the assumption that X ∈ KO

BNC by the assumptionthat X ∈ KO
BLPM. Then parts (a) and (b) of 7.7 remain true, and the proof remains asis. () The sphere of a Banah spae satis�es the assumptions of (b). See Remark 7.4. �Question 7.9. (a) Prove Theorem 7.7 for inomplete normed spaes.(b) Let E be a Banah spae. Let {Bn | n ∈ N} be a spaed set of losed balls suhthat for every n, Bn ⊆ BE(0, 1). Let X = BE(0, 2) − ⋃

n∈N
Bn. Let Y ∈ KO

BNC and
τ ∈ H(X,Y ). Suppose that (UC(X))τ ⊆ UC(Y ). Is τ−1 uniformly ontinuous?Note that X is not JN.TC, but it satis�es all the other assumptions of Theorem 7.7. �Proposition 7.10. Suppose that X is an open ball of a Banah spae. Then X satis�eslauses (1)�(4) of Theorem 7.7(b).Proof. The proof is easy and is left to the reader.



Reonstrution of manifolds from subgroups of homeomorphism groups 1617.2. The nonexistene of isomorphisms between groups of di�erent types. Inthe previous hapters we onsidered groups of various types. We now show that groups ofdi�erent types annot be isomorphi unless they oinide. We shall deal with the groups
UC(X), LUC(X), BUC(X), BPD.UC(X) and EXT(X), and we add to this list the group
H(X). Let P,Q denote one of the above properties and P(X),Q(X) be the groups theyde�ne. We desribe the situation preisely. It may happen that for distint properties Pand Q, there is ϕ suh that ϕ : P(X) ∼= Q(Y ). But in that ase either P(X) = Q(X) and
ϕ is indued by a homeomorphism belonging to Q±(X,Y ), or P(Y ) = Q(Y ), and ϕ isindued by a homeomorphism belonging to P±(X,Y ). The situation with regard to suhquestions is not sorted out ompletely, and we only state results whih follow diretlyfrom the theorems that have been proved so far. Only some of the possible onsequenesare stated and proved.Let X ∈ KO

NRM and h ∈ H(X). Reall that h is said to be internally extendible ifthere is h̄ ∈ H(int(X)) suh that h̄ ⊇ h. Denote h̄ by hint. If P = UC,BUC,BPD.UC,then P(X) ⊆ IXT(X). See De�nition 2.24(b). For these P's de�ne XP = int(X) and
PBNO(X) = {hint | h ∈ P(X)}. So 〈XP ,PBNO(X) 〉 ∈ KBO. See De�nition 2.7(b).For P = LUC,EXT, write XP = X and PBNO(X) = P(X). So 〈XP ,PBNO(X) 〉
∈ KNO.Corollary 7.11. Let X,Y ∈ KO

NRM.(a) If ϕ : LUC(X) ∼= P(Y ), then P(Y ) = LUC(Y ), and there is τ ∈ LUC±(X,Y )whih indues ϕ.(b) Let X,Y ∈ KO
NFCB. Assume that X is BUD.AC and MV1 , Y is UD.AC and that

ϕ : UC(X) ∼= BUC(Y ). Then BUC(X) = UC(X), and there is τ ∈ BUC±(X,Y ) whihindues ϕ. (X may be unbounded , and X need not be UC-equivalent to Y .)() Let X,Y ∈ KO
NFCB. Suppose that X is BPD.AC , Y is UD.AC , and Y hasthe disrete path property for large distanes. Let ϕ : UC(X) ∼= BPD.UC(Y ). Then

BPD.UC(X) = UC(X), and there is τ ∈ BPD.UC±(X,Y ) whih indues ϕ.(d) Let X,Y ∈ KO
BNC. Suppose that X is BPD.AC and BR.LC.AC. Let ϕ : BUC(X) ∼=

BPD.UC(Y ). Then BUC(X) = BPD.UC(X), and there is τ ∈ BPD.UC±(X,Y ) whihindues ϕ.(e) Suppose that X,Y ∈ KO
BNC, and X or Y is in�nite-dimensional. Then there is no

ϕ : UC(X) ∼= EXT(Y ). (Sine EXT(X) = BUC(X) whenever X is �nite-dimensional ,suh ases are inluded in ().)(f) Suppose that X,Y ∈ KO
BNC, and X or Y is in�nite-dimensional. Then there is no

ϕ : UC(X) ∼= H(Y ).Proof. (a) Sine PBNO(Y ) ∼= P(Y ), there is ϕ̄ : LUC(X) ∼= PBNO(Y ). We have
〈Y P ,PBNO(Y ) 〉 ∈ KBNO. Also 〈X,LUC(X) 〉 ∈ KBNO. So by Theorem 2.8(b), thereis τ ∈ H(X,Y P) whih indues ϕ̄. Sine 〈X,LUC(X) 〉 is transitive, 〈Y P ,PBNO(Y ) 〉 istransitive. Sine Y is an orbit of 〈Y P ,PBNO(Y ) 〉, Y P = Y . Hene ϕ̄ = ϕ, and hene τindues ϕ.Note that if P = UC,LUC,BUC,BPD.UC, then UC00(Y ) ⊆ P(Y ). So (UC00(Y ))τ

−1

⊆ (P(Y ))τ
−1 ⊆ LUC(X). Also, UC00(Y ) = UC(Y,U), where U is the set of all open



162 M. Rubin and Y. YomdinBPD subsets of Y . So by Theorem 4.8(b), τ−1 ∈ LUC±(Y,X), that is, τ ∈ LUC±(X,Y ).So P(Y ) = (LUC(X))τ = LUC(Y ).(b) By Corollary 2.26 there is τ ∈ H(X,Y ) whih indues ϕ. So (†) (UC(X))τ =

BUC(Y ). We show that τ ∈BUC(X,Y ). By (†), (UC(X))τ⊆BUC(Y ) and (BUC(Y ))τ
−1

⊆ BUC(X). Reall that X is BUD.AC and MV1. So by Corollary 5.19, τ ∈ BUC(X,Y ).We show that τ−1 ∈ UC(Y,X). By (†), UC0(Y ))τ
−1 ⊆ UC(X). Reall that Yis UD.AC. So by Theorem 5.5, τ−1 ∈ UC(Y,X), and hene τ ∈ BUC±(X,Y ). Then

UC(X) = (BUC(Y ))τ
−1

= BUC(X).() Let ϕ : UC(X) ∼= BPD.UC(Y ). By Corollary 2.26, there is τ ∈ H(X,Y ) whihindues ϕ. So (∗) (UC(X))τ = BPD.UC(Y ). By (∗), (UC00(X))τ = BPD.UC(Y ). Reallthat X is BPD.AC. Hene by Theorem 5.31, τ ∈ BPD.UC(X,Y ).Obviously, UC0(Y ) ⊆ BPD.UC(Y ). So by (∗), (UC0(Y ))τ
−1 ⊆ UC(X). Reallthat Y is UD.AC. Hene by Theorem 5.5, τ−1 ∈ UC(Y,X). Sine Y has the disretepath property for large distanes, by Proposition 4.3(b), τ−1 is uniformly ontinuousfor all distanes. That is, for some α ∈ MC, τ−1 is α-ontinuous. In partiular, τ−1 isboundedness preserving. So τ−1 ∈ BPD.UC(Y,X). In summary, τ−1 ∈ BPD.UC±(Y,X).It follows that UC(X) = (BPD.UC(Y ))τ

−1

= BPD.UC(X).(d) By Theorem 2.8(a), there is τ ∈ H(X,Y ) whih indues ϕ. This means that
(BUC(X))τ = BPD.UC(Y ). By Theorem 5.31, τ ∈ BPD.UC(X,Y ), and by Theo-rem 5.41(a), τ−1 ∈ BPD.UC(Y,X). Hene τ−1 ∈ BPD.UC±(Y,X). It follows that
BUC(X) = (BPD.UC(Y ))τ

−1

= BPD.UC(X).(e) Suppose by ontradition that ϕ : UC(X) ∼= EXT(Y ). By Theorem 2.8(a), thereis τ ∈ H(X,Y ) whih indues ϕ. So (UC(X))τ = EXT(Y ).Suppose that Y is an open subset of the Banah spae F . Let B be a ball in F suhthat clF (B) ⊆ Y . Clearly, for every h ∈ UCe(B) there is h̃ ∈ EXT(Y ) whih extends h.Let η = τ−1↾B and C = η(B). Sine (EXT(Y ))τ
−1 ⊆ UC(X), (UCe(B))η ⊆ UC(C). Soalso (UC0(B))η ⊆ UC(C). So by Theorem 5.5, η is UC. It follows that C is bounded, andhene bd(C) is not a singleton. Clearly, bd(C) = ηcl(bd(B)), and so bd(C) is onneted.So no omponent of bd(C) is a singleton. By Proposition 7.10, B satis�es lauses (1)�(4)of Theorem 7.7(b). By Theorem 7.7(b) applied to B, C and η, η−1 is UC. In summary,

η ∈ UC±(B,C).Choose h ∈ H(B) − UC(B) whih is strongly extendible. So there is h̃ ∈ EXT(Y )extending h. So h̃τ−1 ∈ UC(X). Hene hη = h̃τ
−1

↾C ∈ UC(C). Sine η−1 ∈ UC±(C,B),
h = (hη)η

−1 ∈ UC(B). A ontradition.(f) The proof is idential to that of (e).The following trivial examples show that the onlusions of Corollary 7.11(b), () and(f) annot be strengthened.Example 7.12. (a) There are regular open sets X,Y ⊆ R2 suh that(1) UC(X) = BUC(X) ∼= BUC(Y ) 6∼= UC(Y ).(2) X is BUD.AC and MV1 , and Y is UD.AC.(b) Let X = (0, 1). Then UC(X) = BPD.UC(X).



Reonstrution of manifolds from subgroups of homeomorphism groups 163() Let E be a Banah spae. Let Y = BE(0, 1). Let τ : E → Y be de�ned by τ (x) =

x/(1 + ‖x‖). Then τ ∈ BPD.UC±(E, Y ), BUC(E) = BPD.UC(E) and BPD.UC(Y ) 6∼=
BUC(Y ).Proof. (a) For n ∈ N we de�ne an open set Bn by

Bn = B(0, 1) −
⋃

i<n

B((i/n, 0), 1/3n).So Bn is obtained by removing from B(0, 1) n pairwise disjoint losed balls eah ofwhih ontained in B(0, 1). For every n ∈ N let Xn = (n, 0) + 1
n+4 · Bn and Yn =

(n, 0) + 1
4 · Bn. Let X =

⋃
n∈N

Xn and Y =
⋃
n∈N

Yn. Note that for every n 6= m,
d(Xn, Xm), d(Yn, Ym) ≥ 1/2 and Xn

∼= Yn 6∼= Ym. Note that limn→∞ diam(Xn) = 0and for every n, diam(Yn) = 1/2. It is easy to hek that X and Y have the requiredproperties.The proofs of (b) and () are trivial.Question 7.13. For n > 1, onstrut an open subset X ⊆ Rn suh that UC(X) =

BPD.UC(X). Note that if X is suh an example, then every onneted omponent of Xis an example. Note that every example whih is a onneted set is bounded. �



8. The group of loally Γ -ontinuous homeomorphisms of thelosure of an open set8.1. General desription. Lipshitz equivalene between open subsets of Rn is relevantin the theory of funtion spaes. Suppose that U, V are open subsets of Rn. The fatthat U, V are homeomorphi by a bilipshitz homeomorphism or by a quasionformalhomeomorphism is equivalent to the fat that ertain Sobolev spaes of funtions from Uto R and from V to R are isomorphi as lattie ordered vetor spaes. These resultsappear in [GV1℄, [GV2℄ and [GRo℄. We onsider the analogous question for the settingin whih the Sobolev funtion spaes are replaed by homeomorphism groups.The simplest question of this kind is as follows. Let X ⊆ Rn and Y ⊆ Rm be opensets. Suppose that ϕ : LIP(cl(X)) ∼= LIP(cl(Y )). Prove that there is τ ∈ LIP±(X,Y )whih indues ϕ.We shall prove the above statement for bounded open subsets of Rn whih have awell-behaved boundary. In fat, we shall deal with a di�erent group of homeomorphisms,namely, the group LIPLC(cl(X)) of loally bilipshitz homeomorphisms of cl(X). But forbounded subsets of Rn this group oinides with LIP(cl(X)).The group of bilipshitz homeomorphisms is only a speial ase. It is generalizedto the setting of Γ -biontinuous homeomorphisms, where Γ is any prinipal modulus ofontinuity. (See Property M6 in De�nition 1.9.)The open sets for whih we an prove suh results at this point, have a very well-behaved boundary. They are alled loally Γ -LIN-bordered sets. See De�nition 8.1().Essentially these are the open subsets of a normed spae whose losure is a manifoldwith boundary. For suh sets we de�ne the group of ompletely loally Γ -biontinuoushomeomorphisms. This group is denoted byHCMP.LC
Γ

(X), and is de�ned in De�nition 8.2.We give here an equivalent de�nition. Let X be an open subset of a metri spae E and
Γ be a modulus of ontinuity. De�ne

HCMP.LC
Γ (X) = {g ∈ H(cl(X)) | g is loally Γ -biontinuous and g(X) = X}.Suppose that Γ ,∆ are moduli of ontinuity and Γ is prinipal, E,F are normed spaes,

X ⊆ E, Y ⊆ F and X,Y are loally Γ -LIN-bordered sets. We shall prove thatif ϕ : HCMP.LC
Γ

(X) ∼= HCMP.LC
∆

(Y ), then Γ = ∆ and there is τ : cl(X) ∼= cl(Y )suh that τ (X) = Y , τ is loally Γ -biontinuous and ϕ(g) = τ ◦ g ◦ τ−1 for every g ∈
HCMP.LC

Γ
(X).The above statement is also true whenX and Y are open subsets of a normed Lipshitzmanifold; see Theorem 8.4(b). The argument for manifolds is essentially idential, soproofs will be given only for the lass of open subsets of normed spaes.[164℄



Reonstrution of manifolds from subgroups of homeomorphism groups 1658.2. Statement of the main theorems and the plan of the proof. We shall nowde�ne the lass of open sets with a well-behaved boundary.Definition 8.1. (a) Let E be a normed spae, A ⊆ E and r > 0. The set BCDE(A, r) :=

BE(0, r)−A is alled the boundary hart domain based on E and A with radius r. We saythat A ⊆ E is a losed half spae of E if there is ϕ ∈ E∗ suh that A = {x ∈ E | ϕ(x) ≥ 0}.Suppose that dim(E) > 1, and A is either a losed subspae of E di�erent from {0} or alosed half spae of E. Then BCDE(A, r) is alled a linear boundary hart domain.(b) Let 〈Y,Φ, d〉 be a normed manifold, X ⊆ Y be open, x ∈ bd(X) and α ∈ MBC.We say that X is α-linearly-bordered at x (α-LIN-bordered) if there are a linear boundaryhart domain BCDE(A, r) and a funtion ψ : BE(0, r) → Y suh that:(i) ψ : BE(0, r) ∼= Rng(ψ),(ii) ψ takes open subsets of E to open subsets of Y and losed subsets of E tolosed subsets of Y ,(iii) ψ(BCDE(A, r)) = Rng(ψ) ∩X,(iv) ψ↾BCDE(A, r) is α-biontinuous,(v) ψ(0) = x.
〈ψ,A, r〉 is alled a boundary hart element for x.() Let Γ ⊆ MC. We say that X is loally Γ -LIN-bordered if for every x ∈ bd(X)there is α ∈ Γ suh that X is α-LIN-bordered at x. �The open sets that we had in mind when de�ning LIN-borderedness are desribedbelow. Take an open subset U of Rn whose boundary is a smooth submanifold. Let
K1, . . . ,Kn be pairwise disjoint subsets of U , and assume that for every i, Ki is a ompatsmooth submanifold of Rn whih is not a singleton. Then U − ⋃n

i=1Ki is Γ
LIP-LIN-bordered.We reall the de�nition of the group HCMP.LC

Γ
(X).Definition 8.2. Suppose that E,F are metri spaes, X ⊆ E and Y ⊆ F , Γ ⊆ MC.Let f : X → Y . Then f is ompletely loally Γ -ontinuous if f ∈ EXTE,F (X,Y ),and for every x ∈ clE(X) there are α ∈ Γ and T ∈ NbrE(x) suh that f↾(T ∩ X) is

α-ontinuous. Complete loal Γ -biontinuity is de�ned analogously.
HCMP.LC

Γ
(X,Y ;E,F ) denotes the set of ompletely loally Γ -ontinuous homeomor-phisms between X and Y . We use the notation HCMP.LC

Γ
(X,Y ) as an abbreviation of

HCMP.LC
Γ

(X,Y ;E,F ). The notations (HCMP.LC
Γ

)±(X,Y ) and HCMP.LC
Γ

(X) are derivedin the usual way. �Remark 8.3. (a) Note that in the above de�nition, if E and F are omplete metrispaes, then the requirement that f ∈ EXT(X,Y ) is not needed.(b) In the above de�nition assume that E,F are �nite-dimensional normed spaes,and X,Y are bounded. Let g ∈ H(X,Y ). Then g ∈ (HCMP.LC
Γ

)±(X,Y ) i� there is α ∈ Γsuh that gcl is α-biontinuous.() The motivation for dealing with groups of the type HCMP.LC
Γ

(X) is the �nite-dimensional speial ase desribed in (b). However, the proof of Theorem 8.4 belowovers other types of groups. The following is an example. Let E be a normed spae,



166 M. Rubin and Y. Yomdinand E be its ompletion. Let X ⊆ E be open. Write
bd(X) = clE(X) − int(X).See De�nition 2.24(a). Let cl(X) = X∪bd(X). Let HCMP.LC

Γ
(X) = HCMP.LC

Γ
(X; cl(X)).The proof of Theorem 8.4 arries over to the group HCMP.LC

Γ
(X) exept for a slighthange in the onstrution of homeomorphisms in Chapter 11. �The next theorem is our main �nal goal. It is proved in 12.20(a).Theorem 8.4. (a) Let Γ be a prinipal modulus of ontinuity and ∆ be a modulus ofontinuity. Let E,F be normed spaes , X ⊆ E be a loally Γ -LIN-bordered open set ,and Y ⊆ F be a loally ∆-LIN-bordered open set. Suppose that ϕ : HCMP.LC

Γ
(X) ∼=

HCMP.LC
∆

(Y ). Then Γ = ∆, and there is τ ∈ (HCMP.LC
Γ

)±(X,Y ) suh that ϕ(g) = gτ forevery g ∈ HCMP.LC
Γ

(X).(b) In (a) assume that E and F are normed Lipshitz manifolds. Then the laim of(a) is true.Part (a) is a speial ase of (b). But we shall prove only (a), sine the setting of (b)is more ompliated and the proofs are essentially idential.In the speial ase of bounded �nite-dimensional spaes, Theorem 8.4 has a morenatural formulation, whih we state in the next orollary.Corollary 8.5. Let Γ be a prinipal modulus of ontinuity , ∆ be a modulus of ontinuityand 〈X, d 〉 and 〈Y, e 〉 be ompat metri Eulidean manifolds with boundary. Assume that
〈X, d 〉 has an atlas onsisting of Γ -biontinuous harts , 〈Y, e 〉 has an atlas onsisting of
∆-biontinuous harts and ϕ : HΓ (X) ∼= H∆(Y ). Then Γ = ∆ and there is τ : X ∼= Ysuh that τ is Γ -biontinuous and ϕ(g) = gτ for every g ∈ HΓ (X).Proof. The orollary follows from Theorem 8.4(b) and Remark 8.3(b).Plan of the proof of Theorem 8.4(a). The proof of Theorem 8.4(a) has four main steps:Step 1: There is τ ∈ H(X,Y ) suh that ϕ(g) = gτ for every g ∈ HCMP.LC

Γ
(X).Step 2: Γ = ∆, and τ is loally Γ -biontinuous.Step 3: τ ∈ EXT±(X,Y ).Step 4: τ is ompletely loally Γ -biontinuous.The �rst two steps have already been aomplished. Step 1 follows from Theorem 2.8and Step 2 from Theorem 3.27. The exat statement of Step 3 is given in Theorem 8.8.The proof of this theorem takes all of Chapters 8�11, and the onlusion of the proofappears at the end of Chapter 11. Chapter 12 is devoted to the proof of Step 4.Theorem 8.8 has two variants. Part (a) is indeed the main goal. However, the strengthof the argument is partially lost when dealing only with groups of the type HCMP.LC

Γ
(X).Part (b) is stated in order to later reveal the full strength of the argument. See furtherexplanation after the statement of Theorem 8.8.Definition 8.6. (a) Suppose thatX ⊆ E is open. A subset H ⊆ EXTE(X) is E-disreteif {supp(h) | h ∈ H} is ompletely disrete with respet to E. (See De�nition 6.1(a).)Note that if H is E-disrete, then ◦{h | h ∈ H} ∈ EXTE(X).



Reonstrution of manifolds from subgroups of homeomorphism groups 167(b) A subgroup G ≤ EXT(X) is losed under E-disrete omposition if ◦{h | h ∈ H}
∈ G for every E-disrete set H ⊆ G.() Let E be a metri spae, X ⊆ E be open, and G ≤ EXT(X). We say that G is ofboundary type Γ if for every x ∈ bd(X):(i) there is U ∈ NbrE(x) suh that G U ∩X ⊇ HCMP.LC

Γ
(X) U ∩X ,(ii) for every g ∈ G, there is V ∈ NbrE(x) suh that g↾(V ∩X) is Γ -biontinuous.A subgroup G ≤ EXT(X) is Γ -appropriate if G is losed under E-disrete omposition,and G is of boundary type Γ .(d) Let HBDR.LC

Γ
(X) = {g ∈ EXT(X) | for every x ∈ bd(X), g is Γ -biontinuousat x}. Let∆ be a modulus of ontinuity. De�neHCMP.LC

∆,Γ (X)=HLC
∆

(X)∩HBDR.LC
Γ

(X).�Example 8.7. HCMP.LC
Γ

(X) and HBDR.LC
Γ

(X) are Γ -appropriate, and if Γ ⊆ ∆, then
HCMP.LC

∆,Γ (X) is Γ -appropriate. �Theorem 8.8. Let Γ ,∆ be ountably generated moduli of ontinuity , E and F be normedspaes and X ⊆ E, Y ⊆ F be open. Suppose that X is loally Γ -LIN-bordered , and Y isloally ∆-LIN-bordered and let τ ∈ H(X,Y ).(a) If (HCMP.LC
Γ

(X))τ = HCMP.LC
∆

(Y ), then τ ∈ EXT±(X,Y ).(b) Suppose that G ≤ EXT(X), H ≤ EXT(Y ) are respetively Γ - and ∆-appropriateand Gτ = H. Then τ ∈ EXT±(X,Y ).The proof of Theorem 8.8 appears at the end of Chapter 11.Explanation. Suppose that (HCMP.LC
Γ

(X))τ = HCMP.LC
∆

(Y ). Then Γ = ∆. This iseasily onluded in the following way. Let U ⊆ X be an open set suh cl(U) ⊆ X and
cl(τ (U)) ⊆ Y . Sine cl(U) ⊆ X, HCMP.LC

Γ
(X) U = HLC

Γ
(X) U . Sine cl(τ (U)) ⊆ Y ,

HCMP.LC
∆

(Y ) τ (U) = HLC
∆

(Y ) τ (U) . So (HLC
Γ

(X) U )τ = HLC
∆

(Y ) τ (U) . It now followseasily from Theorem 3.27 or from Theorem 3.42(b) that Γ = ∆.When dealing with HBDR.LC
Γ

(X), the above argument is no longer valid. Instead onehas to infer that Γ = ∆ from the behavior of τ at bd(X). This is more di�ult, and wehave a proof only in speial ases. Part (b) of 8.8 prepares the ground for this argument.As a onsequene of Step 2, at the time that we reah Step 4, we already know that
Γ = ∆. So the statement of Step 4 is as follows.Theorem 8.9. Let Γ be a prinipal modulus of ontinuity , X ⊆ E and Y ⊆ F be opensubsets of the normed spaes E and F and τ ∈ EXT±(X,Y ). Suppose that X and Y are
Γ -LIN-bordered and (HCMP.LC

Γ
(X))τ = HCMP.LC

Γ
(Y ). Then τ ∈ (HCMP.LC

Γ
)±(X,Y ).Chapter 12 is devoted to the proof of Theorem 8.9. Atually, the main result ofChapter 12 is Theorem 12.19, and 8.9 is just a orollary of that theorem. At the end ofChapter 12 we prove Theorem 8.4(a). At that point it is only a matter of ombining theintermediate results from Chapters 11 and 12. This is done in Theorem 12.20, and 8.4(a)is the �rst part of that theorem.Certain types of boundary points have to be treated di�erently than others. Thesetypes are de�ned below.



168 M. Rubin and Y. YomdinDefinition 8.10. If in part (b) of De�nition 8.1, A is a losed subspae of E and
dim(A) = 1, or dim(E) = 2 and A is a half spae of E, then we say that bd(X) is
1-dimensional at x.If in part (b) of De�nition 8.1, A is a losed subspae of E and o-dim(A) = 1, or Ais a half spae of E, then we say that bd(X) has o-dimension 1 at x.If in part (b) of 8.1, A is a losed subspae of E with o-dimension 1, then wesay that X is two-sided at x. Hene Rng(ψ) ∩ X has two onneted omponents. Let
u, v ∈ Rng(ψ) ∩ X. We say that u, v ∈ X are on the same side of bd(X) with respetto 〈ψ,A, r〉 if u, v are in the same onneted omponent of Rng(ψ) ∩ X. We say that
u, v ∈ X are on di�erent sides of bd(X) with respet to 〈ψ,A, r〉 if u, v are in di�erentonneted omponents of Rng(ψ) ∩X.If in part (b) of 8.1, (i) dim(E) > 2, and (ii) A is a losed subspae of E of dimension
> 1 or A is a losed half spae of E, then we say that X is α-simply-linearly-bordered
(α-SLIN-bordered) at x. �Let x ∈ bd(X). Note that if bd(X) is 1-dimensional at x, and 〈ψ,A, r〉 is any boundaryhart element for x, then either (i) A is a 1-dimensional subspae, or (ii) dim(E) = 2 and
A is a losed half spae. Similarly, if X is two-sided at x, and 〈ψ,A, r〉 is any boundaryhart element for x, then A is a losed subspae with o-dimension 1.Question 8.11. A subset A ⊆ E is alled a losed half subspae of E if there is a losedsubspae F of E suh that F 6= {0} and A is a half spae of F . Let BCDE(A, r) be aboundary hart domain. We all BCDE(A, r) an almost linear boundary hart domainif either it is a linear boundary hart domain, or A is a losed half subspae of E. Let
Γ ⊆ MC. De�ne the notion �X is loally Γ -almost-linearly-bordered� (loally Γ -ALIN-bordered) in analogy with De�nition 8.1().Are Theorems 8.8 and 8.9 true for loally ALIN-bordered sets?In order to prove the analogues of 8.8 and 8.9 for loally ALIN-bordered sets, onlyLemma 9.13 needs to be generalized. All other ingredients in the proof remain essentiallythe same. �Some ALIN-bordered sets are desribed below. Take an open subset U of Rn whoseboundary is a smooth submanifold. Let K1, . . . ,Kn be pairwise disjoint subsets of U ,and assume that for every i, Ki is a ompat manifold with a boundary whih is nota singleton, and Ki is smoothly embedded in Rn. Then U − ⋃n

i=1Ki is Γ
LIP-ALIN-bordered.



9. The Uniform Continuity Constant9.1. Preliminary lemmas about the existene of ertain onstants. In preparingthe ground for the proof of Theorem 8.8, we need to haraterize the pairs of onvergentsequenes ~x, ~y in X for whih there is an α-biontinuous homeomorphism g ∈ H(X) andsubsequenes ~x′, ~y′ of ~x and ~y suh that g(~x′) = ~y′. Stated more preisely, let z ∈ bd(X)and lim ~x = lim ~y = z, and assume that for every n ∈ N,(1) ‖xn − z‖ ≤ α(‖yn − z‖) and ‖yn − z‖ ≤ α(‖xn − z‖),(2) d(xn, bd(X)) ≤ α(d(yn, bd(X))) and d(yn, bd(X)) ≤ α(d(xn, bd(X))).We shall prove that there are g ∈ H(X) and subsequenes ~x′ and ~y′ of ~x and ~y respe-tively suh that g(~x′) = ~y′ and g is N · α ◦α ◦α ◦α-biontinuous. In fat, this is only anapproximation of what we really prove. The exat statement to be proved is the equiv-alene between the onjuntion of (1) and (2) above and the fat that ~x ∼Nα
4

~y. Therelation ∼α is de�ned in 11.1(), and in Proposition 11.3(a) we prove this equivalene.The Uniform Continuity Constant Lemma 9.13 is the main fat needed in the proofof the above. It says that there is K > 0 for whih A ⇒ B, where A and B are thefollowing statements.
(A) E is a normed vetor spae, F is a losed subspae of E with dimension > 1,

α ∈ MBC, x, y ∈ E − F , ‖x‖ ≤ ‖y‖ ≤ α(‖x‖) and α−1(d(x, F )) ≤ d(y, F ) ≤ α(d(x, F )).
(B) There is an K ·α ◦α-biontinuous homeomorphism g suh that: g(x) = y, g(F ) =

F and supp(g) ⊆ B(0, 2‖y‖) −B(0, ‖x‖/2).This hapter is devoted to the proof of this lemma. The geometri ontent of thelemma is simple, but a detailed proof seems to require muh work. When the laim ofthe lemma is restrited to pre-Hilbert spaes and not to general normed spaes, the proofis easier.We shall also need a statement analogous to A ⇒ B for subspaes F of E with
dim(F ) = 1. In this ase statements A and B need to be slightly modi�ed. Chapter 10deals with this situation.Before turning to the proof of the Uniform Continuity Constant Lemma we quotesome well-known basi fats from funtional analysis, and we also establish the existeneof various types of homeomorphisms whih will be used in the proof of 9.13. Thesepreparations are arried out in 9.1�9.10. We start with some notation.Notations 9.1. (a) For K ≥ 1 and a, b ≥ 0 let a ≈K b mean that a/K ≤ b ≤ Ka. If
‖ ‖1, ‖ ‖2 are norms on a vetor spae E, then ‖ ‖1 ≈K ‖ ‖2 means that ‖u‖1 ≈K ‖u‖2for every u ∈ E. [169℄



170 M. Rubin and Y. Yomdin(b) The notation E = L⊕algS means that L+S = E and L∩S = {0}. If E = L⊕algS,then (x)L,S , (x)S,L denote the omponents of x in L and S respetively. In what followswe sometimes abbreviate (x)L,S by (x)L and (x)S,L by (x)S. Suppose that E = L⊕alg S.We de�ne ‖u‖L,S = ‖(u)S‖+ ‖(u)L‖. The notation E = L⊕S means that E = L⊕alg S,and that for some K ≥ 1, ‖ ‖L,S ≈K ‖ ‖. In suh a ase S is alled a omplement of Lin E.() Let L be a linear subspae of E. Then o-dimE(L) denotes the o-dimension of Lin E. This is abbreviated by o-dim(L).(d) Let F and H be linear subspaes of a normed spae E and M ≥ 1. We de�ne
H ⊥M F if d(h, F ) ≥ ‖h‖/M for every h ∈ H.(e) Let E = F ⊕alg H. Then ProjF,H denotes the funtion u 7→ (u)F,H , u ∈ E.(f) Let X be a metri spae, x ∈ X and 0 < r < s. The ring with enter at x andwith radii r, s is de�ned as

B(x; r, s) = {y ∈ X | r < d(x, y) < s}.We quote without proof some basi and well-known fats from funtional analysis.Proposition 9.2. (a) For every n > 0 there is M = Maoc(n) ≥ 1 suh that for everynormed spae E and an n-dimensional subspae L of E there is a omplement S of L in
E suh that M‖x‖ ≥ ‖(x)L,S‖ + ‖(x)S,L‖ for every x ∈ E. A subspae S satisfying theabove is alled an almost orthogonal omplement of L.(b) For every n > 0 there is M = M thn(n) ≥ 1 suh that for every normed n-dimensional spae E there is a Hilbert norm ‖ ‖H on E suh that ‖x‖ ≤ ‖x‖H ≤ M‖x‖for every x ∈ E. The norm ‖ ‖H is alled a tight Hilbert norm on E. We denote M thn(2)by M thn.() For every n > 0 there is M = Mhlb(n) ≥ 1 suh that for every normed spae Eand an n-dimensional linear subspae L of E there are a Eulidean norm ‖ ‖H on L anda omplement S of L suh that for every x ∈ E,

‖(x)L,S‖H + ‖(x)S,L‖ ≈M ‖x‖.Also, if m < n, then Mhlb(m) ≤Mhlb(n). A pair 〈‖ ‖H, S 〉 satisfying the above is alleda tight Hilbert omplementation for L. We denote Mhlb(2) by Mhlb.(d) Let E = F ⊕H and M ≥ 1. Then H ⊥M F i� ‖ProjH,F ‖ ≤M .(e) Let E = F ⊕H and suppose that H ⊥M F . Then F ⊥M+1 H.(f) Let E = F ⊕H and suppose that H ⊥M F . Then ‖ ‖F,H ≈2M+1 ‖ ‖.(g) Let E = F ⊕H and suppose that ‖ ‖F,H ≈M ‖ ‖. Then H ⊥M F .(h) Let T : E → E be a bounded linear projetion with a losed range. Then
ker(T ) ⊥‖T‖+1 Rng(T ).(i) Let x, y ∈ E −{0} be suh that ‖x‖ ≤ ‖y‖. Let z = ‖x‖

‖y‖y. Then ‖y− z‖ ≤ ‖y− x‖and ‖x− z‖ ≤ 2‖y − x‖.Proposition 9.3. Let F be a losed subspae of a normed vetor spae E, x, y ∈ E − Fand ε > 0. Then there is a losed subspae H of E suh that F ⊆ H, span(H∪{x, y}) = E,
d(x,H) ≥ 1

1+εd(x, F ) and d(y,H) ≥ 1
1+εd(y, F ).



Reonstrution of manifolds from subgroups of homeomorphism groups 171Proof. Let ∆ = 1+ε and x̂ ∈ F be suh that ‖x− x̂‖ ≤ ∆d(x, F ). Write x⊥ = x− x̂. Let
ψ be the linear funtional on span(F ∪ {x}) de�ned by ψ(x

⊥
) = ‖x⊥‖ and ψ(F ) = {0}.We hek that ‖ψ‖ ≤ ∆. Let z ∈ span(F ∪ {x}). If z ∈ F , then |ψ(z)| = 0 ≤ ∆‖z‖.Suppose that z = u+ λx

⊥, where u ∈ F and λ 6= 0. We may assume that λ = 1. Then
|ψ(z)| = ‖x⊥‖ ≤ ∆d(x, F ) ≤ ∆‖(u− x̂) + x‖ = ∆‖u+ x

⊥‖ = ∆‖z‖.Let ϕ ∈ E∗ extend ψ and ‖ϕ‖ = ‖ψ‖. Let H1 = ker(ϕ). So F ⊆ H1. Sine x = x̂ + x
⊥and x̂ ∈ H1, d(x,H1) = d(x

⊥
, H1). Let u ∈ H1. Then

‖x⊥ − u‖ ≥ |ϕ(x
⊥ − u)|
∆

=
‖x⊥‖

∆
≥ d(x, F )

∆
.Hene d(x,H1) = d(x

⊥
, H1) ≥ d(x,F )

1+ε .Similarly, there is a losed linear subspaeH2 with o-dimension 1 suh that d(y,H2) ≥
d(y,F )
1+ε . Let H = H1 ∩H2. Then H is as required.The next proposition ontains some additional basi and well-known fats from fun-tional analysis. The proofs are again omitted.Proposition 9.4. (a) For every n ∈ N there isMprj(n) suh that for every normed spae
E and a losed linear subspae F ⊆ E: if o-dimE(F ) = n, then there is a projetion
T : E → F suh that ‖T‖ ≤Mprj(n).(b) For every n ∈ N there is M = Mort(n) suh that for every normed spae E and alosed linear subspae F ⊆ E: if o-dimE(F ) ≤ n, then there is a losed linear subspae
H ⊆ E suh that F ⊕H = E and H ⊥M F . One an take Mort(n) to be 2n − 1 + ε forany ε > 0. We denote Mort(2) by Mort.() Let M fdn(n) = (1+M thn(n)) ·Mort(n)+1. Let E be a normed spae, F ⊆ E be alosed subspae with o-dimension ≤ n and H be suh that F⊕H = E and H ⊥M

ort
(n) F .Let ‖ ‖H be a Hilbert norm on H suh that ‖ ‖H ≈M

thn
(n) ‖ ‖↾H. De�ne a new norm on

E by ‖u‖N = ‖(u)F‖+ ‖(u)H‖H. Then ‖ ‖N ≈M
fdn

(n) ‖ ‖. We denote M fdn(2) by M fdn.Definition 9.5. (a) Let H be a 2-dimensional Hilbert spae and θ ∈ R. Then RotHθdenotes the rotation by an angle of θ in H. Let E = F ⊕H be normed spaes. Supposethat H is a 2-dimensional Hilbert spae. For θ ∈ R let RotF,Hθ ∈ H(E) be de�ned by
RotF,Hθ (u) = (u)F + RotHθ ((u)H), u ∈ E.(b) Let h = RadEη,z be a radial homeomorphism. (See De�nition 3.17(b).) We saythat h is pieewise linearly radial if η is pieewise linear. �Part (a) of the following proposition is a variant of Lemma 2.14().Proposition 9.6. (a) There is M seg > 1 suh that for every normed spae E, x, y ∈ Eand r > 0, there is h ∈ H(E) suh that(1) supp(h) ⊆ B([x, y], r),(2) h(x) = y,(3) h is M seg · (‖x− y‖/r + 1)-bilipshitz.(b) For every t > 0 there is Marc(t) > 1 suh that for every normed spae E, areti�able ar L ⊆ E with endpoints x, y and r > 0 there is h ∈ H(E) suh that



172 M. Rubin and Y. Yomdin(1) supp(h) ⊆ B(L, r),(2) h(x) = y,(3) h is Marc(lngth(L)/r)-bilipshitz.() There is M rot ≥ 1 suh that the following holds. Let E = F ⊕ H be normedspaes. Suppose that H is a 2-dimensional Hilbert spae, and that for every u ∈ E,
‖u‖ = ‖(u)F ‖ + ‖(u)H‖. Let S be a losed subset of E, η : [0,∞) → R, and K, r > 0be suh that : (i) S ⊆ B̄(0, r); (ii) for every u ∈ S and θ ∈ R, RotF,Hθ (u) ∈ S; (iii) ηis K-Lipshitz ; (iv) η(s) = 0 for every s ≥ r. Let g : E → E be de�ned by g(u) =

RotF,Hη(d(u,S))(u). Then g ∈ H(E) and g is (M rotKr + 1)-bilipshitz.(d) Suppose that F,H are normed spaes , E = F ⊕H, and ‖u + v‖ = ‖u‖ + ‖v‖ forevery u ∈ F and v ∈ H. Let x̂ ∈ F , x ∈ H, a > 1, x′ = x̂ + x and x′′ = x̂ + ax. Thenthere is g ∈ H(E) suh that(1) g(x′) = x′′,(2) g↾F = Id,(3) for every u ∈ F we have supp(g) ⊆ B(u; s, t), where s = ‖x′ − u‖/2 and
t = 3‖x′′ − u‖/2.(4) g is 2M sega-bilipshitz.Proof. (a) Set x̄ = x/‖x‖ and a = ‖x− y‖. We may plae the origin in suh a way that

x = (r/2) · x̄ and y = (r/2+ a) · x̄. We may assume that r < a. Write M = Maoc(1). Let
L = span({x}) and S be a omplement of L suh that M‖u‖ ≥ ‖(u)L,S‖ + ‖(u)S,L‖ forevery u ∈ E. So for every u ∈ S, ‖u‖ ≤ M · d(u, L). Write (u)L,S = û and (u)S,L = u

⊥.For every u ∈ E let λu be suh that û = λux̄. So u = λux̄+ u
⊥.Let g(s, t) = gs(t), s ≥ 0, t ∈ R, be de�ned as follows. For every s ≥ 0, gs(t) is apieewise linear funtion satisfying the following.(1) The breakpoints of gs(t) are 0, r/2 and a+ r.(2) If s ∈ [0, r/2M ], then gs(r/2) = r/2M−s

r/2M · (a + r/2), and if s ≥ r/2M , then
gs(r/2) = r/2.(3) If t ≤ 0 or t ≥ a+ r, then gs(t) = t.So g0(r/2) = a+ r/2 and gs = Id for every s ≥ r/2M . De�ne

h(u) = u
⊥

+ gd(u,L)(λu) · x̄.Clearly, h(x) = y. Let u ∈ E − B([x, y], r), and we prove that h(u) = u. If d(u, L) ≥
r/2M , then gd(u,L) = Id. So h(u) = u

⊥
+ λux̄ = u. Assume that d(u, L) < r/2M . If

λu ≤ 0, then for every s, gs(λu) = λu and hene h(u) = u. Assume that λu > 0. Sine
d(u, L) < r/2M , it follows that ‖u⊥‖ < r/2. Hene

|λu − (a+ r/2)| = ‖û− y‖ ≥ ‖u− y‖ − ‖u⊥‖ > r − r/2 = r/2.That is, either (i) λu − (a + r/2) > r/2 or (ii) λu − (a + r/2) < −r/2. Suppose byontradition that (ii) happens. Then 0 < λu < a. If λu ≥ r/2, then û = λux̄ ∈ [x, y],and hene d(u, [x, y]) ≤ ‖u − û‖ = ‖u⊥‖ < r/2. So u ∈ B([x, y], r), a ontradition. If
λu < r/2, then d(u, [x, y]) ≤ ‖x−u‖ ≤ ‖x−û‖+‖u⊥‖ < r/2+r/2 = r. So u ∈ B([x, y], r).



Reonstrution of manifolds from subgroups of homeomorphism groups 173A ontradition. Hene λu − (a + r/2) > r/2. So λu > a + r, and hene for every s,
gs(λu) = λu. So h(u) = u. We have shown that h↾(E −B([x, y], r)) = Id.For every s ≥ 0 let fs = g−1

s , and let f(s, t) = fs(t). Note that for every u ∈ E, u⊥ =

(h(u))
⊥, and hene d(h(u), L) = d(u, L). So if w = h(u), then u = w

⊥
+ fd(w,L)(λw) · x̄.Hene h−1 exists and is ontinuous, and so h ∈ H(E).We show that h and h−1 are Lipshitz. Note that for every s, the three slopes of gsare ≤ a+r/2

r/2 . Also, for every s1, s2 ≥ 0 and t ∈ R,
|gs1(t) − gs2(t)| ≤

a

r/2M
· |s1 − s2|.For fs, the maximal slope is again a+r/2

r/2 and
|fs1(t) − fs2(t)| ≤

a

r/2M
· |s1 − s2|.Now

h(u) − h(v) = u
⊥ − v

⊥
+ (gd(u,L)(λu) − gd(u,L)(λv))x̄+ (gd(u,L)(λv) − gd(v,L)(λv))x̄.Write w = u− v. So

‖h(u) − h(v)‖ ≤ ‖u⊥ − v
⊥‖ + |gd(u,L)(λu) − gd(u,L)(λv)| + |gd(u,L)(λv) − gd(v,L)(λv)|

≤ ‖w⊥‖ +
a+ r/2

r/2
‖û− v̂‖ +

a

r/2M
· (d(u, L) − d(v, L))

≤ ‖w⊥‖ + (2a/r + 1) · ‖ŵ‖ + ‖u− v‖

≤M‖u− v‖ + (2a/r + 1)M‖u− v‖ + ‖u− v‖ ≤ (3M + 1)(a/r + 1)‖u− v‖.An idential omputation shows that h−1 is (3M + 1)(a/r + 1)-Lipshitz. So M seg =

3M + 1.(b) Let E be a normed spae, L ⊆ E be a reti�able ar with endpoints x, y and
r > 0. Set ℓ = lngth(L) and n = [ℓ/r] + 1. There are xi ∈ L, i = 0, . . . , n, suh that
x0 = x, xn = y and for every i < n, ‖xi − xi+1‖ ≤ r. For i < n let Li = [xi, xi+1]. Then
B(Li, r/2) ⊆ B(L, r). By (a), there is gi ∈ H(E) suh that(1) supp(gi) ⊆ B(Li, r/2),(2) gi(xi) = xi+1,(3) gi is M seg · ( ‖xi−xi+1‖

r/2 + 1)-bilipshitz.Sine ‖xi − xi+1‖ ≤ r and by (3), gi is 3M seg-bilipshitz. Let Marc(t) = (3M seg)[t]+1.De�ne g = g0 ◦ · · · ◦ gn−1. It is easily seen that g(x) = y, supp(g) ⊆ B(L, r) and g is
Marc(ℓ/r)-bilipshitz.() Suppose that some funtion f : E → E has the property that for some a > 0,
‖f(u)−f(v)‖ ≤M‖u−v‖ for every u, v ∈ E suh that ‖u−v‖ ≤ a. Then f isM -Lipshitz.For the funtion g we take a to be r. Let u, v ∈ E be suh that ‖u−v‖ ≤ r. If v 6∈ B(0, 3r),then u 6∈ B(0, 2r). So g(u) = u and g(v) = v. We may thus assume that ‖v‖ < 3r. Denote
(u)H , (u)F , (v)H , (v)F by u1, u2, v1, v2 respetively and θ(w) := η(d(w, S)). Then
g(v) − g(u) = (RotHθ(v)(v1) − RotHθ(u)(v1)) + (RotHθ(u)(v1) − RotHθ(u)(u1)) + (v2 − u2).



174 M. Rubin and Y. YomdinSo
‖g(v) − g(u)‖ ≤ ‖(RotHθ(v)(v1) − RotHθ(u)(v1))‖

+ ‖(RotHθ(u)(v1) − RotHθ(u)(u1)) + (v2 − u2)‖
= ‖(RotHθ(v)(v1) − RotHθ(u)(v1))‖ + ‖v − u‖.We estimate the �rst summand in the last expression:

‖(RotHθ(v)(v1) − RotHθ(u)(v1))‖ ≤ |θ(v) − θ(u)| · ‖v1‖ ≤ |θ(v) − θ(u)| · ‖v‖
= |η(d(v, S)) − η(d(u, S))| · ‖v‖ ≤ K · |d(v, S) − d(u, S)| · ‖v‖

≤ K · ‖v − u‖ · ‖v‖ ≤ 3Kr · ‖v − u‖.It follows that ‖g(v) − g(u)‖ ≤ (3Kr + 1) · ‖v − u‖.Note that g−1(u) = RotF,H−η(d(u,S))(u). Sine (iii) and (iv) of () hold for −η, we also�nd that g−1 is (3Kr + 1)-Lipshitz. So M rot = 3.(d) Let E,F,H, x̂, x, a be as in (d). It su�es to prove (d) for x̂ = 0, sine if gsatis�es the requirements of (d) for E,F, 0, x, a, then gtrx̂ satis�es those requirements for
E,F, x̂, x, a. So x′ = x and x′′ = ax. Let L = [x, ax] and r = ‖x‖/2. So

lngth(L)

r
+ 1 ≤ (a− 1)‖x‖

‖x‖/2 + 1 = 2(a− 1) + 1 ≤ 2a.It follows from (a) that there is g ∈ H(E) suh that supp(g) ⊆ B(L, r), g(x) = ax and gis 2aM seg-bilipshitz. A trivial omputation shows that g ful�lls (d)(2) and (d)(3).Proposition 9.7. For every K ≥ 1 there is Mbnd(K) ≥ 1 suh that the following holds.Suppose that E is a normed spae and F is a losed linear subspae of E. Let x ∈ E−Fbe suh that d(x, F ) > ‖x‖/K and y ∈ F − {0}. Then there is g ∈ H(E) and a, b > 0suh that(1) g(x) = ax+ by,(2) ‖g(x)‖ = ‖x‖,(3) d(g(x), F ) = ‖g(x)‖/K,(4) g↾F = Id,(5) supp(g) ⊆ B(0; ‖x‖/2, 3‖x‖/2),(6) g is Mbnd(K)-bilipshitz.Proof. Let x, y be as in the proposition. We may assume that ‖y‖ = ‖x‖. Let L1 =

[x, y]. We �nd D(K) suh that d(L1, 0) ≥ D(K)‖x‖. Let E1 = span({x, y}) and F1 =

span({y}). So ‖x‖ ≤ Kd(x, F1). Set M = M thn(2), and let ‖ ‖H be a Hilbert norm on
E1 suh that ‖u‖ ≤ ‖u‖H ≤ M‖u‖ for every u ∈ E1, Hene ‖x‖H/M ≤ KdH(x,E1).Also, ‖x‖H, ‖y‖H ≥ ‖x‖/M . Let α be the angle between x and F1. Hene sin(α) =

dH(x,E1)/‖x‖H ≥ 1/MK. It follows that
d(0, L1) ≥

dH(0, L1)

M
=

sin(α/2)‖x‖H
M

≥ sin(α)

2M
‖x‖ ≥ ‖x‖

2M2K
.So D(K) = 1/2M2K.Sine d(x, F )/‖x‖ > 1/K and d(y, F )/‖y‖ = 0 < 1/K, there is z0 ∈ [x, y] suh that

d(z0, F )/‖z0‖ = 1/K. Obviously, ‖z0‖ ≤ ‖x‖. Let z = (‖x‖/‖z0‖) · z0. So ‖z‖ = ‖x‖and d(z, F )/‖z‖ = 1/K. Obviously, for some a, b > 0, z = ax + by. Let L = [x, z]. For



Reonstrution of manifolds from subgroups of homeomorphism groups 175some λ ≥ 1, z = λz0. This implies that for every u ∈ L there are v ∈ [x, z0] and µ ≥ 1suh that u = µv. It follows that d(L, 0) ≥ d([x, z0], 0), and sine [x, z0] ⊆ L1, we have
d(L, 0) ≥ d(L1, 0) ≥ ‖x‖/2M2K.Obviously, ‖x − z‖ ≤ 2‖x‖. Let r = ‖x‖/4M2K. By Proposition 9.6(a), there is
h ∈ H(E) suh that h(x) = z, supp(h) ⊆ B(L, r) and h is M seg · (‖x − z‖/r + 1)-bilipshitz. By the above,

‖x− z‖
r

+ 1 ≤ 2‖x‖
‖x‖/4M2K

+ 1 = 8M2K + 1 ≤ 9M2K.So h is 9M segM2K-bilipshitz.Reall that d(z, F ) = ‖z‖/K, d(x, F ) > ‖x‖/K and for some u ∈ F and c > 0,
x = u+ cz. This implies that d(L,F ) = ‖z‖/K. Hene

d(B(L, r), F ) =
‖x‖
K

− r =
‖x‖
K

− ‖x‖
4M2K

> 0.So h↾F = Id.From the fat that ‖z‖ = ‖x‖, it follows that L ⊆ B(0, ‖x‖). Therefore B(L, r) ⊆
B(0, ‖x‖ + r). Hene supp(h) ⊆ B(0, (1 + 1/4M2K)‖x‖). But 1 + 1/4M2K < 3/2, so
supp(h) ⊆ B(0, 3

2‖x‖). Clearly, h↾B(0, d(L, 0)−r) = Id. Hene h↾B(0, ‖x‖/4M2K) = Id.Let η ∈ H([0,∞)) be the pieewise linear funtion suh that: (i) the breakpoints of
η are ‖x‖/4M2K and ‖x‖; (ii) η(‖x‖/4M2K) = ‖x‖/2, and η(t) = t for every t ≥ ‖x‖.The slopes of the piees of η are 2M2K, 4M2K/2(4M2K − 1) and 1. So η is 2M2K-bilipshitz.Let k be the radial homeomorphism based on η. Then by Proposition 3.18, k is 6M2K-bilipshitz. Also, k(B(0, ‖x‖/4M2K)) = B(0, ‖x‖/2), k(B(0, 3‖x‖/2)) = B(0, 3‖x‖/2),
k(F ) = F , k(x) = x and k(z) = z.Let g = hk. Then g(x) = z, supp(g) ⊆ B(0; ‖x‖/2, 3‖x‖/2), g↾F = Id, and g hasbilipshitz onstant (6M2K)2 · 9M segM2K. So Mbnd(K) = 324M segM6K3.Proposition 9.8. There is M cmp ≥ 1 suh that the following holds. Suppose that E =

F⊕H, dim(H) ≤ 2 and H ⊥M
ort

F . Let x ∈ E−F , x = x̂+x
⊥, x̂ ∈ F , ‖x⊥‖ ≤ 4

3d(x, F )and d(x, F ) ≤ 1
16‖x‖. Then there is g ∈ H(E) suh that(1) g is M cmp-bilipshitz ,(2) g(x) = x̂+ (x)H ,(3) g↾F = Id,(4) supp(g) ⊆ B(0; ‖x‖/2, 3‖x‖/2).Proof. Note that x̂ + x

⊥
= x = (x)F + (x)H . So (x)H − x

⊥
= x̂ − (x)F ∈ F . Hene

d(x+λ((x)H−x⊥), F ) = d(x, F ) for every λ ∈ R. Consider the interval L = [x, x̂+(x)H ].Then L = {x+ λ((x)H − x
⊥
) | λ ∈ [0, 1]} and so d(L,F ) = d(x, F ). It follows that

lngth(L) = ‖(x)H−x⊥‖ ≤ ‖(x)H‖+‖x⊥‖ ≤Mort ·d(x, F )+ 4
3d(x, F ) = (Mort+ 4

3 )d(x, F )and hene lngth(L)/d(x, F )+1 ≤Mort+4/3+1 ≤Mort+3.We shall now �nd minu∈L ‖u‖and maxu∈L ‖u‖. Let u ∈ L. Then for some λ ∈ [0, 1], u = x+λ((x)H −x⊥). Reall that
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d((x)H , F ) ≥ ‖(x)H‖/Mort. So

‖u‖ ≥ ‖x‖ − ‖x⊥‖ − ‖(x)H‖ ≥ ‖x‖ − 4

3
d(x, F ) −Mort · d((x)H , F )

= ‖x‖ − 4

3
d(x, F ) −Mort · d(x, F ) = ‖x‖ −

(
Mort +

4

3

)
d(x, F )

≥ ‖x‖ −
(
Mort +

4

3

)‖x‖
16

≥ 9

16
‖x‖.For the maximum of ‖u‖ we have

‖u‖ ≤ ‖x‖ + ‖x⊥‖ + ‖(x)H‖ ≤ ‖x‖ +
4/3

16
‖x‖ +

Mort
16

‖x‖ < 1
7

16
‖x‖.It follows that B(L, d(x, F )) ⊆ B(L, ‖x‖/16) ⊆ B(0; ‖x‖/2, 3‖x‖/2). So by Proposition9.6(a), there is g ∈ H(E) suh that supp(g) ⊆ B(L, d(x, F )), g(x) = x̂ + (x)H and gis M seg · (Mort + 3)-bilipshitz. It follows that g satis�es requirements (3)�(4) of theproposition. So we may de�ne M cmp = M seg(Mort + 3).Definition 9.9. (a) Let α ∈ MBC and s, t ∈ [0,∞). Then s ≈α t means that t ≤ α(s)and s ≤ α(t).(b) Let α ∈ MBC, n ∈ N and ̺ : [0,∞) → [0,∞) be ontinuous. We say that ̺ is

(n, α)-ontinuous if there are 0 = a0 < · · · < an−1 < an = ∞ suh that
̺i(t) := ̺(t+ ai−1), t ∈ [0, ai − ai−1),is α-ontinuous for every 0 < i ≤ n. �The four parts of the next proposition are trivial. Their proofs are omitted.Proposition 9.10. (a) Let α ∈ MBC, n ∈ N and ̺ : [0,∞) → [0,∞). If ̺ is (n, α)-ontinuous , then ̺ is n · α-ontinuous.(b) Let ̺ : [0,∞) → [0,∞) and a > 0. De�ne η(s, t) as follows. If s ≥ a, then

η(s, t) = t; and if s ∈ [0, a], then η(s, t) = (1 − s/a)̺(t) + (s/a)t. Suppose that β ∈ MCand ̺ is β-ontinuous. Then ηs(t) := η(s, t) is β-ontinuous for every s ∈ [0,∞). Wedenote η(s, t) by η(̺,a)(s, t).() Let β ∈ MC, a > 0 and 0 < m ≤ β(a)/a. Then the funtion f(t) = mt, t ∈ [0, a],is β-ontinuous.(d) If β ∈ MC, M ≥ 1, and γ is the funtion de�ned by γ(t) = β(Mt), then γ ≤Mβ.9.2. The main onstrutionDefinition 9.11. (a) Let 0 < a < 1 and b,M > 1. We say that M is a UniformContinuity onstant for 〈a, b 〉 (M is UC-onstant for 〈a, b 〉) if the following holds.Suppose that E,F, α, x, y satisfy the following assumptions.A1 E is a normed spae, F is a losed linear proper subspae of E, dim(F ) > 1,
α ∈ MBC and x, y ∈ E − F ,A2 ‖x‖ ≤ ‖y‖ and ‖x‖ ≈α ‖y‖,A3 d(x, F ) ≈α d(y, F ),A4 if o-dimE(F ) = 1, then x, y are on the same side of F .Then there are g1,g2 ∈ H(E) suh that



Reonstrution of manifolds from subgroups of homeomorphism groups 177B1 g1,g2 are Mα-biontinuous,B2 g2 ◦g1(x) = y,B3 g1(F ) = F and g2(F ) = F ,B4 for every i = 1, 2, supp(gi) ⊆ B(0; a‖x‖, b‖y‖).(b) We de�ne a relation R(u, v, g;α, a, b, F ). Let F be a losed linear subspae of anormed spae E, u, v ∈ E −F , g ∈ H(E), 0 < a < 1, b > 1 and α ∈ MBC. The notation
R(u, v, g;α, a, b, F ) means thatR1 g(u) = v,R2 g is α-biontinuous,R3 g(F ) = F ,R4 g↾B(0; a‖u‖, b‖v‖) = Id.Let M ≥ 1. Then R(u, v, g;M,a, b, F ) means that R(u, v, g;M · Id[0,∞), a, b, F ) holds. �The trivial proof of part (b) in the next proposition is omitted.Proposition 9.12.(a) (R(u, v, g;α, a, b, F ) ∧R(v, w, h;β, c, d, F )) ⇒ R(u,w, h ◦ g;β ◦α, ac, bd, F ).(b) R(u, v, g;M,a, b, F ) ⇒ R(v, u, g−1;M,a/M,Mb, F ).Proof. (a) It is obvious that h ◦ g is β ◦α-biontinuous, h ◦ g(u) = w and h ◦ g(F ) = F .If v = u, then ca‖u‖ < c‖u‖ = c‖v‖. So h↾B(0, ca‖u‖) = Id. If v 6= u, then v ∈
supp(g). This implies that ‖v‖ > a‖u‖ and hene c‖v‖ > ca‖u‖. So h↾B(0, ca‖u‖) = Id.Clearly, ca‖u‖ < a‖u‖. So g↾B(0, ca‖u‖) = Id. It follows that h ◦ g↾B(0, ac‖u‖) = Id.If v = w, then bd‖w‖ = bd‖v‖ > b‖v‖. So supp(g) ⊆ B(0,bd‖w‖). If v 6= w, then
v ∈ supp(g) ⊆ B(0,d‖w‖). This implies that ‖v‖ < d‖w‖ and hene b‖v‖ < bd‖w‖. So
supp(g)⊆B(0,b‖v‖)⊆B(0,bd‖w‖). It follows that supp(g)⊆B(0,bd‖w‖). From the fatthat bd>d it follows that supp(h)⊆B(0,bd‖w‖). So supp(h ◦ g)⊆B(0,bd‖w‖). We haveshown that supp(h ◦ g⊆B(0;ac‖u‖,bd‖w‖). So R(u,w,h ◦ g;β ◦α,ac,bd,F ) holds.Lemma 9.13 (The Uniform Continuity Constant Lemma).(a) There are 0 < a < 1, b > 1 and M > 1 suh that M is a UC-onstant for 〈a, b 〉.(b) For every 0 < a < 1, b > 1 there is M > 1 suh that M is a UC-onstant for
〈a, b 〉.Proof. (a) The proof is long and has many steps. The survey below may help guide thereader through the proof.Plan of the proof. Let E, F , α, x0, y0 satisfy onditions A1�A4 in the de�nition of aUC-onstant. We onstrut two bilipshitz homeomorphisms e and h. Set e(x0) = x and
y = h

−1(y0). Next we onstrut N · α-biontinuous homeomorphisms f1, f2 and v ∈ Esuh that f1(x) = v and f2(v) = y. Here N is a �xed number independent of E, F , α, x0and , y0. So we have
e(x0) = x, f1(x) = v, f2(v) = y, h(y) = y0.The homeomorphisms g1 := f1 ◦e and g2 := h ◦ f2 are the ones required in the de�nitionof a UC-onstant. To explain what eah homeomorphism does, we take the simpler



178 M. Rubin and Y. Yomdinsituation in whih E is a pre-Hilbert spae. Let F be a losed linear subspae of E.For any z ∈ E, denote (z)F,F⊥ by ẑ and (z)F⊥,F by z⊥. The homeomorphism e is aomposition of four ations. So e = e4 ◦ · · · ◦e1. Similarly, h is a omposition of twoations. We shall de�ne homeomorphisms h1 and h2, and h will be h
−1
1 ◦h−1

2 .The �rst ation e1 is needed only if d(x0, F ) > ‖x0‖/3. Otherwise, e1 = Id. If theformer happens, then e1(x0) = x1, where d(x1, F ) = ‖x1‖/3 and ‖x1‖ = ‖x0‖. A similaration is performed by the homeomorphism h1 on y0, and we denote h1(y0) by y1. Wenow have the points x1 and y1 with the properties ‖x1‖ = ‖x0‖, d(x1, F ) ≤ ‖x1‖/3,
‖y1‖ = ‖y0‖ and d(y1, F ) ≤ ‖y1‖/3.Now, e2 takes x1 to λŷ1 + x

⊥

1 , where λ > 0 and ‖λŷ1‖ = ‖x̂1‖. The ation of e2an be roughly desribed as a rotation in the plane F1 generated by x̂1 and ŷ1 and theidentity on F⊥
1 . It is at this stage that we need F to be of dimension ≥ 2. Denote e2(x1)by x2.The homeomorphism e3 takes x2 to a vetor x3 of the form ax̂2 +bx

⊥

2 , where a, b > 0,
‖x3‖ = ‖x2‖, d(x3, F ) ≤ ‖x3‖/∆, and ∆ is a �xed number > 1 independent of E, F , α,
x0 and y0. Similarly, h2 takes y1 to a vetor y of the form cŷ1 + dy

⊥

1 , where c, d > 0,
‖y‖ = ‖y1‖ and d(y, F ) ≤ ‖y‖/∆. Denote y by y2.Note that the subspae K := span(x

⊥

3 , y
⊥
) is orthogonal to F . (This is not truewhen E is a general normed spae.) Set x∨∨ = (‖x⊥3‖/‖y⊥‖)y

⊥ and de�ne x = x̂3 + x∨∨.Clearly, x⊥ = x∨∨. The homeomorphism e4 takes x3 to x. The ation of e4 an be roughlydesribed as a rotation in the plane x̂3 +K and the identity on K⊥. De�ne x4 = x.We have the following situation: x = x̂ + x
⊥, y = ŷ + y

⊥, x̂, ŷ ∈ F and for some
λ, µ > 0, ŷ = λx̂ and y

⊥
= µx

⊥. If ‖ŷ‖ ≥ ‖x̂‖ de�ne v = ŷ + x
⊥, and if ‖ŷ‖ < ‖x̂‖de�ne v = λx. We shall de�ne f1 suh that f1(x) = v and f1 is N · α-biontinuous forsome �xed N . If v = ŷ + x

⊥, then f1 has the form f1(z) = z + a(z) · x̂, and a(z) tendsto zero as d(z, [x, v]) tends to λ. In the ase that v = λx, f1 is a pieewise linearlyradial homeomorphism and f1 is N -bilipshitz. This of ourse implies that f1 is N · α-biontinuous.Now we have v = ŷ + v
⊥ and y = ŷ + y

⊥, where for some ν > 0, y
⊥

= νv
⊥. Weshall de�ne f2 whih takes v to y. The homeomorphism f2 will have the form f2(z) =

z + a(z) · v⊥, and it will be N · α-biontinuous.Along the onstrution desribed above, but independently of the partiular hoie of
E, F , α, x0, y0, we shall de�ne numbers

M1,i, a1,i, b1,i for i = 1, . . . , 4;
M2,i, a2,i, b2,i for i = 1, 2;
M3,i, a3,i, b3,i for i = 1, 2.These numbers satisfy the following onditions.C1 for every i = 1, . . . , 4, R(xi−1, xi, ei;M1,i, a1,i, b1,i, F );C2 for every i = 1, 2, R(yi−1, yi,hi;M2,i, a2,i, b2,i, F );C3 R(x4, v, f1;M3,1 · α, a3,1, b3,1, F );C4 R(v, y2, f2;M3,2 · α, a3,2, b3,2, F ).



Reonstrution of manifolds from subgroups of homeomorphism groups 179We thus have the following onlusion. There are Mi,j , ai,j , bi,j suh that for every
E, F , α, x0, y0 satisfying onditions A1�A4 in the de�nition of a UC-onstant, there are
ei ∈ H(E), xi, i = 1, . . . , 4; hi ∈ H(E), yi, i = 1, 2; f1, f2 ∈ H(E) and v suh that C1�C4hold.We now �nd a, b,M suh that M is a UC-onstant for 〈a, b 〉. Let E, F , α, x0, y0 ful�llonditions A1�A4 in the de�nition of a UC-onstant. Then there are ei's, fi's, hi, et.whih satisfy C1�C4. De�ne e = e4 ◦ · · · ◦e1, h = h

−1
1 ◦h−1

2 , g1 = f1 ◦e and g2 = h ◦ f2.Let M1 =
∏4
i=1 M1,i, A1 =

∏4
i=1 a1,i and B1 =

∏4
i=1 b1,i. Then by Proposi-tion 9.12(a), R(x0, x4, e;M1,A1,B1, F ) holds. By 9.12(b), R(y1, y0,h

−1
1 ;M2,1, a2,1/M2,1,

M2,1b2,1, F ) and R(y2, y1,h
−1
2 ;M2,2, a2,2/M2,2,M2,2b2,2, F ) hold. Let A2 = (a2,2/M2,2)

(a2,1/M2,1), B2 = M2,2b2,2M2,1b2,1 and M2 = M2,2M2,1. Then by Proposition 9.12(a),
R(y2, y0,h;M2,A2,B2, F ) holds. Let M

′ = M1M3,1, A
′ = A1a3,1 and B

′ = B1b3,1.Note that if α ∈ MC and M ≥ 1, then α(Mt) ≤Mα. So by Proposition 9.12(a),
(1) R(x0, v,g1;M

′ · α,A′,B′, F ) holds.Let M
′′ = M3,2M2, A′′ = a3,2A2 and B

′′′ = b3,2B2. Then by Proposition 9.12(a),
(2) R(v, y0,g2;M

′′ · α,A′′,B′′, F ) holds.Let M = max(M′,M′′), a = A
′
A

′′ and b = B
′
B

′′. Then (1) and (2) imply that B1�B4of De�nition 9.11(a) hold. So M is a UC-onstant for 〈a, b 〉.C1 is the onjuntion of four requirements. Denote them by C1.1, . . . ,C1.4. Similarly,denote the two onjunts of C2 by C2.1 and C2.2.The onstrutionPart 1: The onstrution of e1 and h1. Let E,F, α, x0, y0 satisfy onditions A1�A4 inthe de�nition of a UC-onstant. Write x = x0 and y = y0. If d(x, F ) ≤ ‖x‖/3, let
e1 = Id. Otherwise let u ∈ F − {0} and e1 ∈ H(E) be suh that(1) e1(x) ∈ span({x, u}),(2) ‖e1(x)‖ = ‖x‖,(3) d(e1(x), F ) = ‖e1(x)‖/3,(4) e1↾F = Id;(5) supp(e1) ⊆ B(0; ‖x‖/2, 3‖x‖/2),(6) e1 is Mbnd(3) bilipshitz.The existene of e1 is ensured by Proposition 9.7. Let x1 = f(x), M1,1 = Mbnd(3),
a1,1 = 1/2 and b1,1 = 3/2. Reall that x0 = x. By (1)�(6), R(x0, x1, e1;M1,1, a1,1, b1,1, F )holds. So C1.1 is ful�lled.Let h1 ∈ H(E) have the same role for y as e1 had for x. Let y1 = h1(y), M2,1 =

Mbnd(3), a2,1 = 1/2 and b2,1 = 3/2. Reall that y0 = y. Then R(y0, y1,h1;M2,1, a2,1,

b2,1, F ) holds. So C2.1 is ful�lled.Part 2: The onstrution of e2. Sine ‖e1(x)‖ = ‖x‖ and ‖h1(y)‖ = ‖y‖, ‖e1(x)‖ ≈α
‖h1(y)‖. We hek that

d(e1(x), F ) ≈α d(h1(y), F ).



180 M. Rubin and Y. YomdinIf e1 = h1 = Id, then there is nothing to hek. Suppose that e1 6= Id 6= h1. Then
d(e1(x), F ) = ‖x‖/3 and d(h1(y), F ) = ‖y‖/3. So

d(h1(y), F )

d(e1(x), F )
=

‖y‖
‖x‖ ≤ α(‖x‖)

‖x‖ ≤ α(‖x‖/3)

‖x‖/3 =
α(d(e1(x), F ))

d(e1(x), F )
.Hene d(h1(y), F ) ≤ α(d(e1(x), F )). Sine ‖x‖ ≤ ‖y‖, d(h1(x), F ) ≤ d(e1(y), F ) ≤

α(d(e1(y), F )).Suppose that e1 6= Id = h1. Then d(h1(y), F ) ≤ ‖y‖/3 and d(e1(x), F ) = ‖x‖/3.So d(h1(y), F ) ≤ α(‖x‖)/3 ≤ α(‖x‖/3) = α(d(e1(x), F )). Also, d(e1(x), F ) ≤ d(x, F ) ≤
α(d(y, F )) = α(d(h1(y), F )). The argument in the ase e1 = Id 6= h1 is idential.Let e1(x) take the role of x and h1(y) take the role of y. That is, e1(x),h1(y) arerenamed and are now denoted by x and y. Hene d(x, F ) ≤ ‖x‖/3 and d(y, F ) ≤ ‖y‖/3.Let x̂, ŷ ∈ F be suh that ‖x− x̂‖ ≤ (1 + ε)d(x, F ) and ‖y − ŷ‖ ≤ (1 + ε)d(y, F ). ε willbe determined later. Let x⊥ = x− x̂ and y⊥ = y − ŷ. Then e2 will take x to a vetor ofthe form λŷ + x

⊥, where λ > 0. It is in this part that F needs to be of dimension > 1.We may assume that:2.1 x = x̂+ x
⊥ and y = ŷ + y

⊥,2.2 x̂, ŷ ∈ F ,2.3 ‖x⊥‖ ≤ (1 + ε)d(x, F ) and and ‖y⊥‖ ≤ (1 + ε)d(y, F ),2.4 d(x, F ) ≤ ‖x‖/3 and d(y, F ) ≤ ‖y‖/3,2.5 ‖x‖ ≈α ‖y‖ and d(x, F ) ≈α d(y, F ),2.6 if o-dimE(F ) = 1, then x and y are on the same side of F .We de�ne a funtional ψ on span(F ∪ {x⊥}): ψ(x
⊥
) = ‖x⊥‖, and ψ(u) = 0 for every

u ∈ F . Let ϕ ∈ E∗ extend ψ and ‖ϕ‖ = ‖ψ‖. Let L = span({x⊥}) and H = ker(ϕ). So
F ⊆ H. For every u ∈ F ,

|ψ(u+ x
⊥
)| = ‖x⊥‖ ≤ (1 + ε)d(x, F ) = (1 + ε)d(x

⊥
, F ) ≤ (1 + ε)‖u+ x

⊥‖.So ‖ϕ‖ = ‖ψ‖ ≤ 1 + ε.Let u ∈ E. De�ne v = u − ϕ(u)x
⊥
/‖x⊥‖. Then (u)H = v and (u)L = ϕ(u)x

⊥
/‖x⊥‖.So

‖(u)H‖ = ‖v‖ =

∥∥∥∥u− ϕ(u)
x
⊥

‖x⊥‖

∥∥∥∥ ≤ ‖u‖ + |ϕ(u)|
∥∥∥∥
x
⊥

‖x⊥‖

∥∥∥∥ = ‖u‖ + |ϕ(u)|

≤ ‖u‖ + ‖ϕ‖‖u‖ ≤ (2 + ε)‖u‖and ‖(u)L‖ = ‖ϕ(u) x
⊥

‖x⊥‖‖ = |ϕ(u)| ≤ ‖ϕ‖‖u‖ ≤ (1 + ε)‖u‖. So
‖(u)H‖ + ‖(u)L‖ ≤ (3 + 2ε)‖u‖.Let F1 be a 2-dimensional subspae of F suh that x̂, ŷ ∈ F1. Suh a subspae existssine F is not 1-dimensional. Let H1 be an almost orthogonal omplement of F1 in H.That is, H1 ⊕ F1 = H, and for every u ∈ H, ‖(u)F1

‖ + ‖(u)H1
‖ ≤ Maoc(2) · ‖u‖. Let

‖ ‖H be a tight Hilbert norm on F1. So ‖ ‖H ≈M
thn

‖ ‖F1 .We de�ne an equivalent norm ‖ ‖N on E. Let u ∈ E and suppose that u = u1+u2+u3,where u1 ∈ F1, u2 ∈ H1 and u3 ∈ L. De�ne ‖u‖N := ‖u1‖H + ‖u2‖ + ‖u3‖. Then
‖u‖ ≈3+2ε ‖u1 + u2‖ + ‖u3‖ and ‖u1 + u2‖ ≈M

hlb
‖u1‖H + ‖u2‖. Note that if E =
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E1 ⊕ E2, for ℓ, i = 1, 2, ‖ ‖ℓ,i is a norm on Eℓ and ‖ ‖ℓ,1 ≈Mℓ ‖ ‖ℓ,2, then for every
u ∈ E, ‖(u)E1

‖1,1 + ‖(u)E2
‖2,1 ≈max(M1,M2) ‖(u)E1

‖1,2 + ‖(u)E2
‖2,2. So ‖u1 + u2‖ +

‖u3‖ ≈max(M
hlb

,1) ‖u1‖H +‖u2‖+‖u3‖. That is, ‖u1 +u2‖+‖u3‖ ≈M
hlb

‖u1‖H +‖u2‖+

‖u3‖. Let M sp = (3 + 2ε)Mhlb. Then ‖u‖ ≈M
sp

‖u1‖H + ‖u2‖ + ‖u3‖ = ‖u‖N. Let dNdenote the metri on E obtained from ‖ ‖N.Let ẑ = (‖x̂‖H/‖ŷ‖H)ŷ. Then ‖ẑ‖H = ‖x̂‖H. The homeomorphism e2 will take x to
ẑ + x

⊥. Let r = ‖x̂‖H, S1 = SH(0, r) and S = {u + µ · (x)⊥ | u ∈ S1 and 0 ≤ µ ≤ 1}.Let θ0 be the angle from x̂ to ŷ. That is, RotF1

θ0
(x̂) = ẑ.Let E1 = H1 + L. Then F1 ⊕ E1 = E. We �rst de�ne a funtion η : [0,∞) → [0, θ0],and the homeomorphism e2 will be de�ned by means of η as follows:

e2(u) = RotF1

η(dN(u,S))
((u)F1

) + (u)E1
.De�ne η to be the pieewise linear funtion with one breakpoint at r/2 suh that η(0) = θ0and η(s) = 0 for every s ≥ r/2.Note that x̂ ∈ F1, x⊥ ∈ L and x = x̂ + x

⊥. So (x)F1
= x̂ and (x)E1

= x
⊥. Also,

x ∈ S. It follows that e2(x) = ẑ+x
⊥. Hene for some λ > 0, e2(x) = λŷ+x

⊥. Obviously,
e2(F1) = F1. We verify that(2.1) e2(F ) = F.Suppose that u ∈ F . So u = (u)F1

+ (u)E1
. Hene (u)E1

∈ F . For some angle β,
e2(u) = RotF1

β ((u)F1
) + (u)E1

. Sine F1 ⊆ F , RotF1

β ((u)F1
) ∈ F . So e2(u) ∈ F .Note that dN(BN(u, s), S) = r/2. Hene e2↾B

N(0, r/2) = Id. By 2.3 and 2.4,
r = ‖x̂‖N ≥ ‖x̂‖

M sp ≥ 1

M sp (‖x‖ − ‖x⊥‖) ≥ 1

M sp (‖x‖ − (1 + ε)d(x, F ))

≥ 1

M sp (
‖x‖ − (1 + ε)

‖x‖
3

)
=

1

M sp(
2

3
− ε

)
‖x‖ > 1

2M sp ‖x‖The last inequality holds when ε is su�iently small. So e2↾B
N(0, 1

4Msp ‖x‖) = Id.Reall that ‖ ‖E ≈M
sp

‖ ‖N. So B(0, s/M sp) ⊆ BN(0, s) for every s. It follows that
e2↾B(0, 1

4(Msp)2
‖x‖) = Id. Let a1 = 1/4(M sp)2. We have shown that(2.2) e2↾B(0, a1‖x‖) = Id.Now, supp(e2) ⊆ BN(0, ‖x‖N + r/2) ⊆ B(0,M sp(‖x‖N + r/2)) and r/2 = ‖x̂‖N/2 ≤

M sp‖x̂‖/2 ≤ M sp · 4
3‖x‖/2 = 2

3M
sp‖x‖. So supp(e2) ⊆ B(0, 2(M sp)2‖x‖). De�ne

b1 = 2(M sp)2. Then(2.3) e2↾(E −B(0, b1‖x‖)) = Id.We next show that there isM1 > 0 whih is independent of x, F and θ0 suh that e2 is
M1-bilipshitz. Indeed, we shall �nd M ′

1 suh that for every u, v ∈ E: if ‖u− v‖N ≤ r/2,then ‖e2(u)− e2(v)‖N ≤M ′
1 · ‖u− v‖N. This fat implies that e2 is M ′

1-Lipshitz in themetri dN.Obviously, |η(t) − η(s)| ≤ θ0
r/2 |t − s| ≤ 2π

r |t − s| for every s, t ∈ [0,∞). De�ne
θ(u) = η(dN(u, S)). So |θ(u) − θ(v)| = |η(dN(u, S)) − η(dN(v, S))| ≤ 2π

r ‖u− v‖N.



182 M. Rubin and Y. YomdinClearly, ‖x⊥‖ < ‖x‖/2. So ‖x‖ < 2‖x̂‖. Hene ‖x⊥‖ < ‖x̂‖. It follows that ‖x⊥‖N <

(M sp)2‖x̂‖N. Hene max({‖u‖N | u ∈ S}) ≤ (1 + (M sp)2) · ‖x̂‖N = 2(1 + (M sp)2) · r.Let u, v ∈ E be suh that ‖u − v‖N ≤ r/2. If ‖u‖N > 2(1 + (M sp)2) · r + r,then ‖v‖N > 2(1 + (M sp)2) · r + r/2. So e2(u) = u and e2(v) = v. Suppose that
‖u‖N ≤ 2(1 + (M sp)2) · r+ r. De�ne M sp1 = 4 + 2(M sp)2. Then ‖u‖N, ‖v‖N < M sp1 · r.We have

e2(v) − e2(u) = (RotF1

θ(v)((v)F1
) − RotF1

θ(u)((v)F1
))

+ (RotF1

θ(u)((v)F1
) − RotF1

θ(u)((u)F1
)) + ((v)E1

− (u)E1
).So

‖e2(v) − e2(u)‖N ≤ ‖RotF1

θ(v)((v)F1
) − RotF1

θ(u)((v)F1
)‖N

+ ‖(RotF1

θ(u)((v)F1
) − RotF1

θ(u)((u)F1
)) + ((v)E1

− (u)E1
)‖N

= ‖RotF1

θ(v)((v)F1
) − RotF1

θ(u)((v)F1
)‖N + ‖v − u‖N.We deal with the �rst summand in the last expression:

‖RotF1

θ(v)((v)F1
) − RotF1

θ(u)((v)F1
)‖N ≤ |θ(v) − θ(u)| · ‖v‖N ≤ 2π

r
‖v − u‖N · ‖v‖N

≤ 2π

r
‖v − u‖N ·M sp1 · r = 2π‖v − u‖N ·M sp1.It follows that for every u, v ∈ E, ‖e2(v) − e2(u)‖N ≤ (2πM sp1 + 1) · ‖v − u‖N.Obviously, for every u ∈ E, e−1

2 (u) = RotF1

−η(dN(u,S))
((u)F1

) + (u)E1
. So

‖e−1
2 (v) − e−1

2 (u)‖N ≤ (2πM sp1 + 1) · ‖v − u‖N.Let M1 = (2πM sp1 + 1) · (M sp)2. Then(2.4) e2 is M1-bilipshitz in the norm ‖ ‖E .Set x2 = e2(x) and reall that x1 = x. Hene by (2.1)�(2.4), R(x1, x2, e2;M1, a1, b1, F )holds. That is, C1.2 is ful�lled with M1,2 = M1, a1,2 = a1 and b1,2 = b1.Sine e2 is M1-bilipshitz and e2(0) = 0, it follows that ‖e2(x)‖ ≈M1 ‖x‖. From thefat that e2(F ) = F , it follows that d(e2(x), F ) ≈M1 d(x, F ). So(2.5) ‖e2(x)‖ ≈M1·α ‖y‖ and d(e2(x), F ) ≈M1·α d(y, F ).Part 3: The onstrution of e3, h2 and e4. Reall that x2 has the form λŷ+x
⊥. Rename

x2 and all it x, and denote λŷ by x̂. We now have:3.1∗ x = x̂+ x
⊥ and y = ŷ + y

⊥,3.2∗ x̂, ŷ ∈ F and for some λ > 0, x̂ = λŷ,3.3∗ ‖x⊥‖ ≤ (1 + ε)d(x, F ) and ‖y⊥‖ ≤ (1 + ε)d(y, F ),3.5∗ ‖x‖ ≈M1·α ‖y‖ and d(x, F ) ≈M1·α d(y, F ),3.6∗ if o-dimE(F ) = 1, then x and y are on the same side of F .Property 3.4 whih is analogous to 2.4 is missing. Only after applying e3 to x and h2to y, we shall retain this property.For the next step in the onstrution we hoose some ∆ > 1. The value of ∆ will bedetermined later, and it will be independent of E,F, α, x0 and y0. The de�nition of e3and h2 depends on ∆.



Reonstrution of manifolds from subgroups of homeomorphism groups 183We �rst de�ne e3. If d(x, F ) ≤ ‖x‖/∆, then de�ne e3 = Id. Suppose that d(x, F ) >

‖x‖/∆. Then there are e3 ∈ H(E) and a, b > 0 suh that(1) e3(x) = ax̂+ bx,(2) ‖e3(x)‖ = ‖x‖,(3) d(e3(x), F ) = ‖e3(x)‖/∆,(4) e3↾F = Id,(5) supp(e3) ⊆ B(0; ‖x‖/2, 3‖x‖/2),(6) e3 is Mbnd(∆)-bilipshitz.The existene of e3 follows from Proposition 9.7.Reall that x2 = x and de�ne x3 = e3(x). Then R(x2, x3, e3;M
bnd(∆), 1/2, 3/2, F )holds. That is, C1.3 is ful�lled with M1,3 = Mbnd(∆), a1,3 = 1/2 and b1,3 = 3/2.There is h2 ∈ H(E) whih ats on y in the way that e3 ats on x. That is, if

d(y, F ) ≤ ‖y‖/∆, then h2 = Id, and if d(y, F ) > ‖y‖/∆, then there are c, d > 0 suhthat (1)�(6) above hold when y,h2, c, d replae x, e3, a, b. Reall that y1 = y and de�ne
y2 = h2(y). Then R(y1, y2,h2;M

bnd(∆), 1/2, 3/2, F ) holds. That is, C2.2 is ful�lledwith M2,2 = Mbnd(∆), a2,2 = 1/2 and b2,2 = 3/2.Suppose that e3 6= Id. Then (⋆) e3(x) = aλŷ + b(λŷ + x
⊥
) = (a + b)λŷ + bx

⊥. By3.1∗�3.3∗, ‖x⊥‖ ≤ (1+ε)d(x
⊥
, F ). So from (⋆) it follows that ‖bx⊥‖ ≤ (1+ε)d(e3(x), F ).Denote (a+ b)λŷ by x̂3 and bx⊥ by x

⊥

3 . In 3.1∗�3.3∗ and in 3.6∗ replae x, x̂ and x⊥ by
x3, x̂3 and x

⊥

3 , and denote the resulting statements by 3.1∗(x3, y) et. Then 3.1∗(x3, y)�3.3∗(x3, y) and 3.6∗(x3, y) hold. Also,(†) d(x3, F ) ≤ ‖x3‖/∆.If e3 = Id and we de�ne x̂3 to be x̂ and x
⊥

3 to be x⊥, then again (†) holds.Applying the same argument to y2 and de�ning ŷ2 and y
⊥

2 in analogy with x̂3 and
x
⊥

3 we onlude that 3.1∗(x, y2)�3.3∗(x, y2) and 3.6∗(x, y2) hold. Also, (†) holds for y2.From 3.5∗ and from (6) applied to e3 and h2 it follows that
‖x3‖ ≈M

bnd
(∆) ‖x‖ ≈M1·α ‖y‖ ≈M

bnd
(∆) ‖y2‖and so (††) ‖x3‖ ≈M1(M

bnd
(∆))2·α ‖y‖. Similarly, (†††) d(x3, F ) ≈M1(M

bnd
(∆))2·α d(y2, F ).We now rename x3, x̂3, x

⊥

3 , y2, ŷ2, y
⊥

2 as x, x̂, x⊥, y, ŷ, y⊥. We also denoteM1(M
bnd(∆))2 ·

α by α1. From the above we onlude that3.1 x = x̂+ x
⊥ and y = ŷ + y

⊥,3.2 x̂, ŷ ∈ F and for some λ > 0, x̂ = λŷ,3.3 ‖x⊥‖ ≤ (1 + ε)d(x, F ) and ‖y⊥‖ ≤ (1 + ε)d(y, F ),3.4 d(x, F ) ≤ ‖x‖/∆ and d(y, F ) ≤ ‖y‖/∆,3.5 ‖x‖ ≈α1 ‖y‖ and d(x, F ) ≈α1 d(y, F ),3.6 if o-dimE(F ) = 1, then x and y are on the same side of F .Property 3.1 follows from 3.1∗(x3, y) and 3.1∗(x, y2), and the same is true for Properties 3.2,3.3 and 3.6. Property 3.4 is the onjuntion of (†) applied to x3 and to y2 and 3.6 is theonjuntion of (††) and (†††).



184 M. Rubin and Y. YomdinSet z⊥ = ‖x⊥‖ · y
⊥

‖y⊥‖ and z = x̂+ z
⊥. We next de�ne e4. It will take x to z. So afterapplying e4 we shall reah the following situation: x4 = x̂4 +x

⊥

4 , y2 = ŷ2 +y
⊥

2 , x̂4 = λŷ2for some λ > 0 and x
⊥

4 = µy
⊥

2 for some µ > 0.There are two ases: o-dimE(F ) = 1 and o-dimE(F ) > 1.Case 1: o-dimE(F ) = 1. Sine x and y are on the same side of F , there are ν > 0and u ∈ F suh that z⊥ = u + νx
⊥. Let L = [x, x̂ + z

⊥
]. We may assume that in 3.3,

ε ≤ 1/2. We show that lngth(L)/d(L,F ) + 1 ≤ 19. Clearly, lngth(L) = ‖x̂ + z
⊥ − x‖ =

‖z⊥ − x
⊥‖ ≤ 2‖x⊥‖. So(3.1) lngth(L) ≤ 2‖x⊥‖.Sine for some t, z⊥ = ty

⊥, we have ‖z⊥‖ ≤ (1 + ε)d(z
⊥
, F ). So

‖x⊥‖ = ‖z⊥‖ ≤ (1 + ε)d(u+ νx
⊥
, F ) = (1 + ε)νd(x

⊥
, F ) ≤ (1 + ε)ν‖x⊥‖.Hene 1 ≤ (1 + ε)ν. In the above argument we interhange the roles of x⊥ and z

⊥.That is, for some u′ ∈ F , x⊥ = u′ + 1
ν z
⊥, and hene 1 ≤ (1 + ε) 1

ν . We onlude that
1

1+ε ≤ ν ≤ 1 + ε. Let v ∈ L. Then for some t ∈ [0, 1], v = x̂ + x
⊥

+ t(z
⊥ − x

⊥
) =

x̂+ x
⊥

+ t((u+ νx
⊥ − x

⊥
). So

d(v, F ) = d((1 + t(ν − 1))x
⊥
, F ) = |1 + t(ν − 1)| · d(x⊥, F ) ≥ (1 − t|ν − 1|) · d(x⊥, F )

≥ (1 − |ν − 1|) · d(x⊥, F ) ≥
(

1 −
(

1 + ε− 1

1 + ε

))
· d(x⊥, F )

=

(
1

1 + ε
− ε

)
d(x

⊥
, F ) ≥ 1

6
d(x

⊥
, F ) ≥ 1

6(1 + ε)
‖x⊥‖ ≥ 1

9
‖x⊥‖.Hene(3.2) d(L,F ) ≥ ‖x⊥‖/9.It follows from (3.1) and (3.2) that lngth(L)/d(L,F ) + 1 ≤ 19.Set ∆ = 8. Then d(L,F ) ≤ d(x, F ) ≤ ‖x‖/8. Hene ‖x⊥‖ ≤ 3

2d(x, F ) ≤ 3
16‖x‖. So

lngth(L) ≤ 3
8‖x‖. Let B = B(L, d(L,F )). Then(3.3) min

v∈B
‖v‖ ≥ ‖x‖ − lngth(L) − d(L,F ) ≥ ‖x‖/2.Similarly,(3.4) max

v∈B
‖v‖ ≤ ‖x‖ + lngth(L) + d(L,F ) ≤ 3‖x‖/2.The endpoints of L are x and x̂+ z

⊥, so by Proposition 9.6(a), there is e4 ∈ H(E) suhthat(3.5) supp(e4) ⊆ B(L, d(L,F )),(3.6) e4(x) = x̂+ z
⊥,(3.7) e4 is 19M seg-bilipshitz.By (3.5), e4↾F = Id. By (3.3), (3.4) and (3.5), supp(e4) ⊆ B(0; ‖x‖/2, 3‖x‖/2). Reallthat x3 = x and de�ne x4 = e4(x). It follows that R(x3, x4, e4; 19M seg, 1/2, 3/2, F )holds.



Reonstrution of manifolds from subgroups of homeomorphism groups 185Case 2: o-dimE(F ) > 1. Let Υ > 1. By Proposition 9.3, there is a losed subspae
F1 of E suh that F ⊆ F1, span(F1 ∪ {x, y}) = E, d(x, F1) ≥ 1

Υ
d(x, F ) and d(y, F1) ≥

1
Υ
d(y, F ). Obviously, either o-dimE(F1) = 1 or o-dimE(F1) = 2. If o-dimE(F1) = 1,let F ⊆ F2 ⊆ F1 be a losed subspae suh that o-dimE(F2) = 2. Otherwise let F2 = F1.It follows that o-dimE(F2) = 2, d(x, F2) ≥ 1

Υ
d(x, F ) and d(y, F2) ≥ 1

Υ
d(y, F ).In 3.4, hoose ∆ = 24. Hene d(x, F2) ≤ d(x, F ) ≤ ‖x‖/24. In 3.3, hoose ε = 1/9, andhoose Υ = 1 1

9 . So ‖x⊥‖ ≤ (1+ε)d(x, F ) ≤ Υ(1+ε)d(x, F2) ≤ (1 1
9 )2d(x, F2) ≤ 4

3d(x, F2).In summary,(3.8) ‖x⊥‖ ≤ 4d(x, F2)/3 and d(x, F2) ≤ ‖x‖/24.Reall that z⊥ = (‖x⊥‖/‖y⊥‖)y⊥ and z = x̂+ z
⊥. We have ‖y⊥‖ ≤ 4

3d(y, F2). This isshown in the same way as the analogous fat for x. Obviously, d(y, F2) = d(y
⊥
, F2). So

‖y⊥‖ ≤ 4
3d(y

⊥
, F2). Sine z⊥ is a multiple of y⊥, ‖z⊥‖ ≤ 4

3d(z
⊥
, F2). Also, d(z, F2) =

d(z
⊥
, F2). So ‖z⊥‖ ≤ 4

3d(z, F2).Note that z = x − x
⊥

+ z
⊥. So ‖z‖ ≥ ‖x‖ − ‖x⊥‖ − ‖z⊥‖ = ‖x‖ − 2‖x⊥‖. Also,

‖x⊥‖ ≤ 4
3d(x, F2) ≤ 4

3 · 1
24‖x‖ = 1

18‖x‖. Hene
d(z, F2)

‖z‖ ≤ ‖z⊥‖
‖z‖ ≤ ‖x⊥‖

‖x‖ − 2‖x⊥‖
≤ ‖x‖/18

‖x‖ − ‖x‖/9 =
1

16
.In summary,(3.9) ‖z⊥‖ ≤ 4d(z, F2)/3 and d(z, F2) ≤ ‖z‖/16.Let H be suh that E = F2 ⊕ H and H ⊥M

ort
F2. We apply Proposition 9.8 to

x and to z. Note that by (3.8) and (3.9), x and z satisfy the assumptions of 9.8. Sothere is f1 ∈ H(E) suh that: f1 is M cmp-bilipshitz, f1(x) = x̂ + (x)H , f1↾F2 = Idand supp(f1) ⊆ B(0; ‖x‖/2, 3‖x‖/2). Similarly, there is h1 ∈ H(E) suh that: h1 is
M cmp-bilipshitz, h1(z) = x̂+ (z)H , h1↾F2 = Id and supp(h1) ⊆ B(0; ‖z‖/2, 3‖z‖/2).We now translate what we have obtained for f1 and h1 to statements of the form
R(., ., f1; . . .) and R(., ., h1; . . .). Sine f1 is M cmp-bilipshitz f1(x) = x̂+ (x)H and f1(0)

= 0, it follows that ‖x‖ ≤M cmp‖x̂+(x)H‖. So supp(f1) ⊆ B(0; 1
2‖x‖, 3Mcmp

2 ‖x̂+(x)H‖).This implies that(3.10) R(x, x̂+ (x)H , f1;M
cmp, 1/2, 3M cmp/2, F ) holds.Similarly,(3.11) R(z, x̂+ (z)H , h1;M
cmp, 1/2, 3M cmp/2, F ) holds.Let ‖ ‖H be a tight equivalent Hilbert norm on H, and de�ne a new norm on E by

‖u‖N = ‖(u)F2
‖ + ‖(u)H‖H. So ‖ ‖ ≈M

fdn
‖ ‖N. This follows from Proposition 9.4().Let dN denote the metri indued by ‖ ‖N on E.Set x∗ = (x)H , z∗ = (z)H and z# = (‖x∗‖N/‖z∗‖N)z∗. We de�ne a homeomorphism

g2,1 whih takes x̂ + x∗ to x̂ + z#. A seond homeomorphism g2,2 will take x̂ + z# to
x̂+ z∗. So

x = x̂+ x
⊥ f1→ x̂+ (x)H

g2,1→ x̂+ z# g2,2→ x̂+ (z)H
h−1
1→ x̂+ z

⊥
= z.Finally, we shall de�ne e4 := h−1

1
◦ g2,2 ◦ g2,1 ◦ f1.



186 M. Rubin and Y. YomdinLet θ be the angle from x∗ to z#. That is, θ ∈ [0, π] and RotHθ (x∗) = z#. Let η :

[0,∞) → [0, θ] be the pieewise linear funtion with one breakpoint at s0 = ‖x∗‖N/2M thnsuh that η(0) = θ and η(s) = 0 for every s ≥ s0. Let S0 be the irle in 〈H, ‖ ‖H 〉 withenter at 0 and radius ‖x∗‖H, and let S = x̂ + S0. Let g2,1 be de�ned as follows. For
u ∈ E set u1 = (u)H and u2 = (u)F2

. De�ne
g2,1(u) = u2 + RotHη(dN(u,S))(u1).Sine for every u ∈ E, dN(u, S) = dN(g2,1(u), S), it follows that g2,1 ∈ H(E). Clearly,

g2,1(x̂+ x∗) = x̂+ z#.Also, supp(g2,1) ⊆ BN(S, s0). If u ∈ F2 then dN(u, S) = ‖u − x̂‖ + ‖x∗‖H > s0 and so
g2,1(u) = u. That is, g2,1↾F2 = Id. Sine F ⊆ F2,

g2,1↾F = Id.Note that s0 = ‖x∗‖N/2M thn ≤ ‖x∗‖/2. So supp(g2,1) ⊆ BN(S, ‖x∗‖/2).Let u ∈ BN(0, ‖x̂‖ − ‖x∗‖/2). So ‖u2‖ ≤ ‖x̂‖ − ‖x∗‖/2. Then
dN(u, S) = ‖u2 − x̂‖ + dN(u1, S0) ≥ ‖u2 − x̂‖ ≥ ‖x̂‖ − ‖u2‖

≥ ‖x̂‖ − (‖x̂‖ − ‖x∗‖/2) = ‖x∗‖/2.It follows that g2,1↾BN(0, ‖x̂‖ − ‖x∗‖/2) = Id.Let r = ‖x̂‖ + 2‖x∗‖N. Suppose that u ∈ E − BN(0, r). Either ‖u1‖ ≥ 3‖x∗‖N/2 or
‖u2‖ ≥ ‖x̂‖+‖x∗‖N/2. If v ∈ S then v = x̂+w, where w ∈ H and ‖w‖N = ‖x∗‖N. Hene
‖u− v‖N = ‖u1 − w‖N + ‖u2 − x̂‖. If ‖u1‖ ≥ 3‖x∗‖N/2, then ‖u− v‖N ≥ ‖u1 −w‖N ≥
3‖x∗‖N/2 − ‖x∗‖N = ‖x∗‖N/2. So u 6∈ supp(g2,1). If ‖u2‖ ≥ ‖x̂‖ + ‖x∗‖N/2, then
‖u − v‖N ≥ ‖u2 − x̂‖ ≥ ‖x̂‖ + ‖x∗‖N/2 − ‖x̂‖ = ‖x∗‖N/2. So u 6∈ supp(g2,1). It followsthat supp(g2,1) ⊆ BN(0, r).By (3.8), ‖x⊥‖ ≤ 1

18‖x‖, and sine x = x̂ + x
⊥, we have 17

18‖x‖ ≤ ‖x̂‖ ≤ 19
18‖x‖.Sine H ⊥Mort

F2, ‖x∗‖ ≤ Mortd(x∗, F2). Also, Mort < 4. By the above and (3.8),
‖x∗‖ ≤ Mortd(x∗, F2) = Mortd(x, F2) ≤ 4

24‖x‖. Hene ‖x̂‖ − ‖x∗‖/2 ≥ 17−2
24 ‖x‖ and

r = ‖x̂‖ + 2‖x∗‖N ≤ (1 +M thn/3)‖x‖. It follows that
supp(g2,1) ⊆ B(0; ‖x‖/2, 2M thn‖x‖).Next we �nd a Lipshitz onstant for g2,1. By its de�nition, η is θ

‖x∗‖N/2Mthn -Lipshitz.So η is 2πM thn/‖x∗‖N-Lipshitz. Obviously, S ⊆ x̂ + B̄N(0, ‖x∗‖N). By 9.6(), g2,1 is
(M rot · 2πM

thn
‖x∗‖N ·‖x∗‖N+1)-Lipshitz in the norm ‖ ‖N. That is, g2,1 is (2πM rot ·M thn+1)-Lipshitz in the norm ‖ ‖N. The same is true for g−1

2,1. So g2,1 is (2πM rot ·M thn + 1)-bilipshitz in the norm ‖ ‖N. Reall that ‖ ‖ ≈M
fdn

‖ ‖N. Write M̂2,1 = (M fdn)2(2πM rot ·
M thn + 1). Then g2,1 is M̂2,1-bilipshitz.We may now write an R(. . .) statement for g2,1. Sine f1 isM cmp-bilipshitz, f1(x) =

x̂+ (x)H and f1(0) = 0, it follows that ‖x‖ ≥ ‖x̂+ (x)H‖/M cmp. Similarly, g1,2 ◦ f1(x) =

x̂ + z#, g1,2 ◦ f1(0) = 0 and g2,1 ◦ f1 is M̂2,1M
cmp-bilipshitz. Consequently, ‖x‖ ≤
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M̂2,1M

cmp‖x̂+ z#‖. It follows that
supp(g2,1) ⊆ B

(
0;

1

2M cmp
‖x̂+ (x)H‖, 2M thnM̂2,1M

cmp‖x̂+ z#‖
)
.Hene(3.12) R(x̂+ (z)H , x̂+ z#, g2,1; M̂2,1, 1/2M

cmp, 2M thnM̂2,1M
cmp, F ) holds.Our next goal is to de�ne g2,2. Reall that f1(x̂) = x̂ and f1(x̂ + x

⊥
) = x̂ + x∗.Also, f1 is M cmp-bilipshitz. So ‖x∗‖ ≈M

mp
‖x⊥‖. Similarly, ‖z∗‖ ≈M

mp
‖z⊥‖. Also,

‖x⊥‖ = ‖z⊥‖. LetM2,1 = (M cmp)2 andM2,2 = M2,1 ·(M fdn)2. It follows that ‖x∗‖ ≈M2,1

‖z∗‖. By Proposition 9.4(), ‖ ‖ ≈M
fdn

‖ ‖N, and hene ‖x∗‖N ≈M2,2 ‖z∗‖N. Sine
‖z#‖N = ‖x∗‖N, ‖z#‖N ≈M2,2 ‖z∗‖N. Let a = ‖z∗‖N/‖x∗‖N. So(i) z∗ = az#,(ii) E = F2 ⊕H and ‖u+ v‖N = ‖u‖ + ‖v‖H for every u ∈ F2 and v ∈ H,(iii) x̂ ∈ F2 and z# ∈ H,(iv) 1/M2,2 ≤ a ≤M2,2.Assume �rst that a ≥ 1. Let x̂, z#, a, 0 take the roles of x̂, x, a and u in Proposi-tion 9.6(d). By (i)�(iii), the assumptions of 9.6(d) are ful�lled. So relying also on (iv),we onlude that there is g2,2 ∈ H(E) suh that (1) g2,2(x̂+z#) = x̂+z∗; (2) g2,2↾F2 = Id;(3) supp(g2,2) ⊆ BN(0; ‖x̂ + z#‖N/2, 3‖x̂ + z∗‖N/2); (4) g2,2 is 2M seg ·M2,2-bilipshitzin the norm ‖ ‖N.If a < 1 then we apply 9.6(d) to x̂, z∗, 1/a and 0, thus obtaining a homeomorphism
g′2,2 ∈ H(E) suh that g′2,2(x̂ + z∗) = x̂ + z#. De�ne g2,2 = (g′2,2)

−1. Then (1), (2)and (4) remain true. Instead of (3) we now have supp(g2,2) ⊆ BN(0; ‖x̂ + z∗‖N/2,
3‖x̂ + z#‖N/2). Note that by (i)�(iv), ‖x̂ + z#‖N ≤ M2,2‖x̂ + z∗‖N. So supp(g2,2) ⊆
BN(0; ‖x̂ + z#‖N/2M2,2, 3M2,2‖x̂ + z∗‖N/2). Reall that z∗ = (z)H . What we haveshown implies that(3.13) R(

x̂+ z#, x̂+ (z)H , g2,2; 2(M fdn)2M segM2,2,
1

2M fdnM2,2
, 2M fdnM2,2, F

) holds.Note that in deduing (3.13) we used the fat that ‖ ‖N ≈M fdn ‖ ‖. This onludes theonstrution of g2,2.De�ne e4 = h−1
1

◦ g2,2 ◦ g2,1 ◦ f1 and x4 = z. Reall that x3 = x. So x4 = z =

e4(x3). We now apply Proposition 9.12(a) and (b). It follows from (3.10)�(3.13) andfrom 9.12 that there are M ′
2, A

′
2, B

′
2 whih do not depend on E,F, α, x0, y0 suh that

R(x3, x4, e4;M
′
2, A

′
2, B

′
2, F ) holds.In Case 1 too, we found M ′

1, A
′
1, B

′
1 suh that R(x3, x4, e4;M

′
1, A

′
1, B

′
1, F ) holds.De�ne M1,4 = max(M ′

1,M
′
2), a1,4 = min(A′

1, A
′
2) and b1,4 = max(B′

1, B
′
2). Then

M1,4, a1,4, b1,4 ful�ll C1.4 in both Case 1 and Case 2.Part 4: The onstrution of f1. We have shown that for i = 1, . . . , 4 there is M1,iwhih does not depend on E,F, α, x0, y0 suh that ei is M1,i-bilipshitz. We de�ne
e = e4 ◦ · · · ◦e1. Then e(x0) = x4 = z and e(0) = 0. Let M3,1 =

∏4
i=1 M1,i. So e is

M3,1-bilipshitz. It follows that ‖z‖ ≈M3,1 ‖x0‖. Similarly, for i = 1, 2 there is M2,i suh



188 M. Rubin and Y. Yomdinthat hi is M2,i-bilipshitz. We de�ne h = h2 ◦h1. Then h(y0) = y2 = y and h(0) = 0.Let M3,2 = M2,1M2,2. So h is M3,2-bilipshitz. Let M3,0 = M3,1M3,2. Then4.1 ‖z‖ ≈M3,0 ‖x0‖.Sine e(F ) = F , we have d(z, F ) ≈M3,1 d(x0, F ). Similarly, d(y, F ) ≈M3,2 d(y0, F ).Hene4.2 ‖z‖ ≈M3,0·α ‖y‖ and d(z, F ) ≈M3,0·α d(y, F ).The onstrution also implies that4.3 z = ẑ + z
⊥, y = ŷ + y

⊥, where ẑ, ŷ ∈ F , and for some λ, µ > 0, ŷ = λẑ and
y
⊥

= µz
⊥.If Case 1 of Part 3 happens, let F̂ = F . Suppose that Case 2 of Part 3 happens. Let

F2 be as de�ned in Case 2 of Part 3. So by (3.9), ‖z⊥‖ ≤ 4
3d(z, F2). By Proposition 9.3applied to F2 and taking x and y to be z⊥, there is a losed subspae F̂ suh that

‖z⊥‖ ≤ 3
2d(z

⊥
, F̂ ), F2 ⊆ F̂ and span(E ∪ {z⊥}) = E. In both ases we have4.4 F ⊆ F̂ , F̂ ⊕ span({z⊥}) = E and ‖z⊥‖ ≤ 1 1

2d(z
⊥
, F̂ ).Case 1: ‖ŷ‖ ≥ ‖ẑ‖. In this ase λ ≥ 1. Let v = ŷ + z

⊥. We shall onstrut ahomeomorphism f1 suh that f1(z) = v. (Reall that z = x4.) Denote v by v. So
v = λẑ + z

⊥. If λ = 1 let f1 = Id. Assume that λ > 1.Let H = span({ŷ, y⊥}), H1 = span({ŷ}) and H2 = span({y⊥}). Let F3 be a subspaeof F̂ suh that for some ϕ ∈ F̂ ∗, ‖ϕ‖ = 1, ϕ(ẑ) = ‖ẑ‖ and F3 = ker(ϕ). It follows that
H1 ⊕ F3 = F̂ , F̂ ⊕H2 = E and F̂ = H1 ⊕H2 ⊕ F3. Clearly, ‖ProjH1,F3

‖ = ‖ϕ‖ = 1. Soby Proposition 9.2(d), H1 ⊥1 F3.Let S = {aẑ + bz
⊥ | a ∈ R, b ∈ [0, 1]}. We de�ne η : [0,∞) × [0,∞) → [0,∞). Forevery s, ηs(t) := η(s, t) is a pieewise linear funtion of t. For s ≥ (λ− 1)‖ẑ‖, ηs = Id. If

s < (λ− 1)‖ẑ‖, then ηs(t) has breakpoints at ‖ẑ‖/2, ‖ẑ‖ and 2λ‖ẑ‖; ηs(t) = t for every
t ∈ [0, ‖ẑ‖/2) ∪ [2λ‖ẑ‖,∞); and

ηs(‖ẑ‖) =

(
1 − s

(λ− 1)‖ẑ‖

)
· λ‖ẑ‖ +

s

(λ− 1)‖ẑ‖ · ‖ẑ‖.Denote (λ− 1)‖ẑ‖ by a. Then in partiular, η0(‖ẑ‖) = λ‖ẑ‖ and ηa(‖ẑ‖) = ‖ẑ‖.For u ∈ E we denote (u)H1
, (u)H2

, (u)F3
by (u)1, (u)2 and (u)3 respetively, and weabbreviate (u)i by ui when the notation (u)i is too umbersome. Set E+ = {tẑ + w |

t ≥ 0, w ∈ H2 ⊕ F3}. Let f1 be de�ned by
f1(u) =




η(d(u, S), ‖u1‖)

ẑ

‖ẑ‖ + u2 + u3, u ∈ E+,

u, u ∈ E − E+.Note that f1↾H2⊕F3 = Id, so f1 ∈ H(E). We shall de�ne the onstants mentioned in C3and show that C3 holds. Reall that C3 ≡ R(x4, v, f1;M3,1 · α, a3,1, b3,1, F ). We verifyR1�R4 in the de�nition of R(. . .).R1: Clearly, f1(x4) = f1(z) = v = v.



Reonstrution of manifolds from subgroups of homeomorphism groups 189R3: We verify that f1(F ) = F . For every u ∈ E and in partiular for every u ∈ F ,
f1(u)−u ∈ H1 = span({ŷ}) ⊆ F . So f1(u) = u+ (f1(u)−u) ∈ F . An idential argumentshows that f

−1
1 (F ) ⊆ F . Hene R3 holds.R2: We �nd M3,1 and prove that f1 is M3,1 ·α-biontinuous. Note that if g ∈ H(E),

K ⊆ E is losed, supp(g) ⊆ K and g↾K is β-ontinuous, then g is 2β-ontinuous. Sine
supp(f1) ⊆ E+, we may onsider only points whih belong to E+. Let u,w ∈ E+. Then

‖f1(w) − f1(u)‖ ≤ |η(d(w, S), ‖w1‖) − η(d(u, S), ‖u1‖)| + ‖(w − u)2‖ + ‖(w − u)3‖
≤ |η(d(w, S), ‖w1‖) − η(d(u, S), ‖w1‖)| + |η(d(u, S), ‖w1‖) − η(d(u, S), ‖u1‖)|

+ ‖(w − u)2‖ + ‖(w − u)3‖.That is,
(4.1) ‖f1(w) − f1(u)‖ ≤ |η(d(w, S), ‖w1‖) − η(d(u, S), ‖w1‖)|

+ |η(d(u, S), ‖w1‖) − η(d(u, S), ‖u1‖)| + ‖(w − u)2‖ + ‖(w − u)3‖.The �rst summand on the right hand side of (4.1) has the form |η(s1, t) − η(s2, t)|. If
s1, s2 ∈ [0, (λ− 1)‖ẑ‖], then

|η(s1, t) − η(s2, t)| =
|s1 − s2|

(λ− 1)‖ẑ‖ · (η(0, t) − η((λ− 1)‖ẑ‖, t))

≤ λ‖ẑ‖ − ‖ẑ‖
(λ− 1)‖ẑ‖ · |s1 − s2| = |s1 − s2|.The inequality between the �rst and last expression above is true for every s1, s2 ∈ [0,∞).So |η(d(w, S), ‖w1‖) − η(d(u, S), ‖w1‖)| ≤ |d(w, S) − d(u, S)| ≤ ‖w − u‖. That is,(4.2) |η(d(w, S), ‖w1‖) − η(d(u, S), ‖w1‖)| ≤ |d(w, S) − d(u, S)| ≤ ‖w − u‖.The next omputations are needed in order to estimate the seond summand on theright hand side of (4.1). We �nd A,B,C suh thatA‖z‖ ≤ ‖ẑ‖ ≤ B‖z‖ and ‖z⊥‖ ≤ C‖z‖.There are di�erent omputations orresponding to Cases 1 and 2 of Part 3.In Case 1 of Part 3, ∆ = 8 and ε = 1/2. So d(x, F ) ≤ ‖x‖/8 and ‖x⊥‖ ≤ 1 1

2d(x, F ).Hene ‖z⊥‖ = ‖x⊥‖ ≤ 3
2 · 1

8‖x‖ = 3
16‖x‖. We have z = x − x

⊥
+ z

⊥. Hene ‖z‖ ≥
‖x‖ − ‖x⊥‖ − ‖z⊥‖ = ‖x‖ − 2‖x⊥‖. Hene ‖z‖ ≥ ‖x‖ − 3

8‖x‖ = 5
8‖x‖. It follows that

‖z⊥‖ ≤ 3
16 · 8

5‖z‖. That is,(4.4.1) ‖z⊥‖ ≤ 3
10‖z‖.From the fat that ẑ = z − z

⊥, we onlude(4.5.1) 7
10‖z‖ ≤ ‖ẑ‖ ≤ 13

10‖z‖.Reall that in Case 2 of Part 3, ∆ = 24 and ε = 1/9. We arry out a omputationsimilar to the one in Case 1. So d(x, F ) ≤ ‖x‖/24 and ‖x⊥‖ ≤ 1 1
9d(x, F ). So ‖z⊥‖ =

‖x⊥‖ ≤ 10
9·24‖x‖ = 5

108‖x‖. We have ‖z‖ ≥ ‖x‖ − 2‖x⊥‖ ≥ ‖x‖ − 5
54‖x‖ = 49

54‖x‖ andhene ‖z⊥‖ ≤ 5
108 · 54

49‖z‖. That is,(4.4.2) ‖z⊥‖ ≤ 5
98‖z‖and hene(4.5.2) 93

98‖z‖ ≤ ‖ẑ‖ ≤ 103
98 ‖z‖.



190 M. Rubin and Y. YomdinBy (4.4.1) and (4.4.2),(4.4) ‖z⊥‖ ≤ 3
10‖z‖,and by (4.5.1) and (4.5.2),(4.5) 7

10‖z‖ ≤ ‖ẑ‖ ≤ 13
10‖z‖.Sine y also obeys 3.3, 3.4, in Case 1 of Part 3 we obtain 13

16‖y‖ ≤ ‖ŷ‖ ≤ 19
16‖y‖ and inCase 2, 103

108‖y‖ ≤ ‖ŷ‖ ≤ 113
108‖y‖. The following is thus true in both ases:(4.6) 13

16‖y‖ ≤ ‖ŷ‖ ≤ 19
16‖y‖.By 4.3, (4.6), 4.2, (4.5), the monotoniity of α and the fat that α(At) ≤ Aα(t) for

A ≥ 1,
λ‖ẑ‖ = ‖ŷ‖ ≤ 19

16‖y‖ ≤ 19
16M3,0 · α(‖z‖) ≤ 19

16M3,0 · α( 10
7 ‖ẑ‖)

≤ 10
7 · 19

16M3,0 · α(‖ẑ‖) ≤ 2M3,0 · α(‖ẑ‖).So(4.7) λ‖ẑ‖ ≤ 2M3,0 · α(‖ẑ‖).Let ̺ = η0. So ̺ is the pieewise linear funtion with breakpoints at ‖ẑ‖/2, ‖ẑ‖and 2λ‖ẑ‖; ̺(t) = t for every t ∈ [0, ‖ẑ‖/2) ∪ [2λ‖ẑ‖,∞); and ̺(‖ẑ‖) = λ‖ẑ‖. Clearly,
̺ ∈ H([0,∞)). Using the notations of Proposition 9.10(b), η = η(̺,(λ−1)·‖ẑ‖).We show that ̺ is 16M3,0 · α-ontinuous. The linear piees of ̺ have the slopes: 1,
λ‖ẑ‖−‖ẑ‖/2

‖ẑ‖/2 , 2λ‖ẑ‖−λ‖ẑ‖
2λ‖ẑ‖−‖ẑ‖ and 1. That is, the slopes of the linear piees of ̺ are 1, 2λ − 1and λ

2λ−1 . We use the notations of De�nition 9.9(b). Let a0, . . . , a4 denote 0, ‖ẑ‖/2, ‖ẑ‖,
2λ‖ẑ‖ and ∞. Then ̺1, . . . , ̺4 are the funtions

Id↾[0, ‖ẑ‖/2],

y = (2λ− 1)t+ ‖ẑ‖/2, t ∈ [0, ‖ẑ‖/2],

y =
λ

2λ− 1
t+ λ‖ẑ‖, t ∈ [0, (2λ− 1)‖ẑ‖],

y = t+ 2λ‖ẑ‖, t ∈ [0,∞).For i = 1, 3, 4, for every t1, t2, |̺i(t1)− ̺i(t2)| ≤ |t1 − t2| ≤ 4M3,0 · α(|t1 − t2|). Hene ̺iis 4M3,0 · α-ontinuous. We deal with ̺2. By (4.7), 2λ − 1 ≤ 2λ ≤ 4M3,0 · α(‖ẑ‖)/‖ẑ‖.So (2λ− 1)/4M3,0 ≤ α(‖ẑ‖)/‖ẑ‖. Let ̺∗2(t) be the funtion
y =

2λ− 1

4M3,0
t, t ∈ [0, ‖ẑ‖].Then by Proposition 9.10(), ̺∗2(t) is α-ontinuous. Clearly, ̺2(t) = 4M3,0 ·̺∗2(t)+‖ẑ‖/2.So ̺2 is 4M3,0 · α-ontinuous. We have shown that ̺ is (4, 4M3,0 · α)-ontinuous. ByProposition 9.10(a), ̺ is 16M3,0 · α-ontinuous. De�ne γ = 16M3,0 · α.We next deal with the seond summand on the right hand side of inequality (4.1).It has the form |η(s, t1) − η(s, t2)|. Reall that η = η(̺,(λ−1)·‖ẑ‖). Then by Proposi-tion 9.10(b), for every s ∈ [0,∞), ηs is γ-ontinuous. So

|η(d(u, S), ‖w1‖) − η(d(u, S), ‖u1‖)| ≤ γ(|‖w1‖ − ‖u1‖|) = γ(‖(w − u)1‖).



Reonstrution of manifolds from subgroups of homeomorphism groups 191That is,
(4.8) |η(d(u, S), ‖w1‖) − η(d(u, S), ‖u1‖)| ≤ γ(‖(w − u)1‖).We shall now bound the expressions ‖(w − u)i‖ appearing in (4.1) and (4.8) by amultiple of ‖w−u)‖. For ū ∈ E let ū1,3 = ū1 + ū3. Reall that H2 = span({y⊥}). By 4.4,
‖y⊥‖ ≤ 3

2d(y
⊥
, F̂ ). Hene ‖ū2‖ ≤ 3

2d(ū2, F̂ ) ≤ 3
2‖ū‖. From the fat that ū1,3 = ū − ū2,it follows that ‖ū1,3‖ ≤ ‖ū‖ + ‖ū2‖ ≤ 5

2‖ū‖. So we have(⋆) ‖ū1,3‖ ≤ 5
2‖ū‖.From the fat that H1 ⊥1 F3, it follows that ‖ū1‖ ≤ ‖ū1,3‖, and this implies that

‖ū3‖ ≤ 2‖ū1,3‖. It follows that(4.9) ‖ū1‖ ≤ 5
2‖ū‖, ‖ū2‖ ≤ 3

2‖ū‖, ‖ū3‖ ≤ 5‖ū‖.Substituting (4.2) and (4.8) into (4.1), we obtain(4.10) ‖f1(w) − f1(u)‖ ≤ ‖w − u‖ + γ(‖(w − u)1‖) + ‖(w − u)2‖ + ‖(w − u)3‖.We substitute (4.9) into (4.10) and use Proposition 9.10(d). So
‖f1(w) − f1(u)‖ ≤ 7 1

2‖w − u‖ + 2 1
2γ(‖w − u‖).This means that f1↾E

+ is (40M3,0 · α + 7 1
2 Id)-ontinuous. Hene f1↾E

+ is 50M3,0 · α-ontinuous. It follows that f1 is 100M3,0 · α-ontinuous.The omputation whih shows that for some M , f−1
1 is M ·α-ontinuous is analogous.However, for f

−1
1 there is M whih does not depend on E,F, α, x0, y0 suh that f

−1
1 iseven M -Lipshitz. For this M it is also true that f

−1
1 is M ·α-ontinuous. We now arryout the omputation for f

−1
1 . For s ∈ [0,∞) let θs = η−1

s . Write θ(s, t) = θs(t). Notethat for every u ∈ E, d(f1(u), S) = d(u, S). This implies that
f
−1
1 (u) = θd(u,S)(‖u1‖)

u1

‖u1‖
+ u2 + u3.The analogues (4.1∗) of (4.1) and (4.2∗) of (4.2) obtained by replaing η by θ are stilltrue. Let µ = θ0. So µ = ̺−1 and θ = η(µ,(λ−1)·‖ẑ‖). The slopes of the linear piees of

µ are the inverses of the slopes of the linear piees of ̺. Hene the slopes of the linearpiees of µ are: 1, 1
2λ−1 and 2λ−1

λ . Clearly, 1, 1
2λ−1 ,

2λ−1
λ ≤ 2. So µ is 2-Lipshitz. ByProposition 9.10(b), for every s ∈ [0,∞), θs is 2-Lipshitz. Hene

|θ(d(u, S), ‖w1‖) − θ(d(u, S), ‖u1‖)| ≤ 2 · |‖w1‖ − ‖u1‖| = 2 · ‖(w − u)1‖.So (4.8) is replaed by(4.11) |θ(d(u, S), ‖w1‖) − θ(d(u, S), ‖u1‖)| ≤ 2 · ‖(w − u)1‖.Substituting (4.9) into (4.11) we get(4.12) |θ(d(u, S), ‖w1‖) − θ(d(u, S), ‖u1‖)| ≤ 5‖w − u‖.Replae the �rst summand of the right hand side of (4.1∗) by (4.2∗) and the seondsummand by (4.12). Use (4.9) to estimate the last two summands of (4.1∗). So
‖f−1

1 (w) − f
−1
1 (u)‖ ≤ ‖w − u‖ + 5‖w − u‖ + 3

2‖w − u‖ + 5‖w − u‖.
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1 (w) − f

−1
1 (u)‖ ≤ 12 1

2‖w − u‖. From the fat that α ≥ Id, it follows that
f
−1
1 ↾E+ is 12 1

2 · α-ontinuous. It follows that f
−1
1 is 25 · α-ontinuous. Hene f1 is

100M3,0 · α-biontinuous. So M3,1 = 100M3,0.R4: We next �nd a3,1 suh that f1↾B(0, a3,1‖z‖) = Id. For every t ≤ ‖ẑ‖/2 and forevery s, η(s, t) = t. So for every u ∈ E, if ‖u1‖ ≤ ‖ẑ‖/2, then f1(u) = u. By (4.9) andthe above, if ‖u‖ ≤ 1
5‖ẑ‖, then f1(u) = u. By (4.5), 7

10‖z‖ ≤ ‖ẑ‖. So if ‖u‖ ≤ 7
50‖z‖,then f1(u) = u. Let a3,1 = 7

50 , then f1↾B(0, a3,1‖z‖) = Id.We now �nd b3,1 suh that supp(f1) ⊆ B(0, b3,1‖v‖). We shall �nd Ai, i = 1, 2, 3,suh that for every u ∈ E: if ‖ui‖ ≥ Ai, then f1(u) = u. For every t ≥ 2λẑ and every s,
η(s, t) = t. So(4.13) If ‖u1‖ ≥ 2λ‖ẑ‖, then f1(u) = u.For every s ≥ (λ − 1)‖ẑ‖, ηs = Id. So for every u ∈ E, if d(u, S) ≥ (λ − 1)‖ẑ‖, then
f1(u) = u. Let u ∈ E. By the seond part of (4.9), ‖u‖ ≥ 2

3‖u2‖. Let a > 0. If
‖u2‖ ≥ a+ ‖z⊥‖, then for every w ∈ S, ‖(u− w)2‖ ≥ a. Hene ‖u − w‖ ≥ 2

3‖(u− w)2‖
≥ 2

3a. Take a = 3
2 (λ − 1)‖ẑ‖. So if ‖u2‖ ≥ 3

2 (λ − 1)‖ẑ‖ + ‖z⊥‖, then for every w ∈ S,
‖u−w‖ ≥ (λ− 1)‖ẑ‖. That is, if ‖u2‖ ≥ 3

2 (λ− 1)‖ẑ‖+ ‖z⊥‖, then d(u, S) ≥ (λ− 1)‖ẑ‖.Hene(4.14) If ‖u2‖ ≥ 3
2 (λ− 1)‖ẑ‖ + ‖z⊥‖, then f1(u) = u.The third part of (4.9) says that ‖ū‖ ≥ 1

5‖ū3‖ for every ū ∈ E. Let u ∈ E be suh that
‖u3‖ ≥ 5(λ − 1)‖ẑ‖. For every w ∈ S, (u − w)3 = u3. So ‖(u − w)‖ ≥ 1

5‖(u − w)3‖ =
1
5‖u3‖ ≥ (λ− 1)‖ẑ‖. That is, d(u, S) ≥ (λ− 1)‖ẑ‖. Hene(4.15) If ‖u3‖ ≥ 5(λ− 1)‖ẑ‖, then f1(u) = u.Combining (4.13)�(4.15) we onlude that(4.16) If ‖u1‖ + ‖u2‖ + ‖u3‖ ≥ (8 1

2λ− 6 1
2 )‖ẑ‖ + ‖z⊥‖, then f1(u) = u.By 4.4, ‖z⊥‖ ≤ 1 1

2d(z
⊥
, F̂ ) = 1 1

2d(z, F̂ ) ≤ 1 1
2‖z‖, and by (4.5), ‖ẑ‖ ≤ 13

10‖z‖. So(4.17) (8 1
2λ− 6 1

2 )‖ẑ‖ + ‖z⊥‖ ≤ ( 13
10 · (8 1

2λ− 6 1
2 ) + 1 1

2 )‖z‖ ≤ 10λ‖z‖.Note that z = ẑ + z
⊥

= 1
λv − 1

λz
⊥

+ z
⊥

= 1
λv + (1 − 1

λ)z
⊥. Hene ‖z‖ ≤ 1

λ‖v‖ + ‖z⊥‖.By (4.4), ‖z‖ ≤ 1
λ‖v‖ + 3

10‖z‖. So(4.18) ‖z‖ ≤ 10
7λ‖v‖.From (4.16), (4.17) and (4.18) we onlude that(4.19) If ‖u‖ ≥ 100

7 · ‖v‖, then f1(u) = u.That is, supp(f1) ⊆ B(0, 100
7 · ‖v‖). So b3,1 := 100

7 is as required in R4.Case 2: ‖ŷ‖ < ‖ẑ‖. So λ < 1. Let v = v = λz, and we onstrut f1 suh that f1(z) = v.By (4.6), ‖ŷ‖ ≥ 13
16‖y‖, and by (4.5), ‖ẑ‖ ≤ 13

10‖z‖. So (i) λ = ‖ŷ‖/‖ẑ‖ ≥ 5
8‖y‖/‖z‖. Bythe onstrution of h1 and h2, (ii) ‖y‖ = ‖y0‖. By 4.1, (iii) ‖z‖ ≈M3,0 ‖x0‖. Sine x0, y0satisfy onditions A1�A4 appearing in the de�nition of a UC-onstant, (iv) ‖y0‖ ≥ ‖x0‖.
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8

‖y0‖
M3,0‖x0‖

≥ 1

2M3,0
.Let η : [0,∞) → [0,∞) be a pieewise linear funtion with breakpoints at λ‖z‖/2, ‖z‖and 2‖z‖ suh that η |̀([0, λ‖z‖/2] ∪ [2‖z‖,∞)) = Id and η(‖z‖) = λ‖z‖. De�ne f1 to bethe pieewise linearly radial homeomorphism based on η. (See De�nition 9.5(b).) Reallthat z = x4, v = v. We shall de�ne M ′

1,3, a′1,3 and b′1,3 suh that R(x4, v, f1,M
′
1,3 ·

α, a′1,3, b
′
1,3, F ) holds.R1 and R3: Obviously, f1(x4) = v and f1(F ) = F .R2: The slopes of the linear piees of η are 1, 1

2
λ‖z‖

‖z‖− 1
2
λ‖z‖ , and 2‖z‖−λ‖z‖

‖z‖ . Thatis, they are 1, λ
2−λ and 2 − λ. Now, λ

2−λ ≤ 1 and by (4.20), 1
4M3,0

≤ λ
2−λ . That is,

1
4M3,0

≤ λ
2−λ ≤ 1. Also, 1 ≤ 2 − λ ≤ 2. Hene the slopes of all linear piees of η and

η−1 are ≤ 4M3,0. So η is 4M3,0-bilipshitz. By Proposition 3.18, f1 is 12M3,0-bilipshitz.Sine α ≥ Id, f1 is 12M3,0 · α-biontinuous. We may thus de�ne M ′
3,1 = 12M3,0.R4: Obviously, supp(f1) ⊆ B(0; λ‖z‖2 , 2‖z‖). By (4.20), B(0, 1

4M3,0
‖z‖) ⊆ B(0, λ‖z‖2 ).So we may de�ne a′3,1 = 1

4M3,0
. Reall that v = λz. So by (4.20), ‖v‖ = λ‖z‖ ≥ 1

2M3,0
‖z‖.Hene 2‖z‖ ≤ 4M3,0‖v‖. It follows that B(0, 2‖z‖) ⊆ B(0, 4M3,0‖v‖). So we may take

b′3,1 = 4M3,0.We have shown that R(x4, v, f1,M
′
1,3 ·α, a′1,3, b′1,3, F ) holds. Taking in aount Case 1and Case 2, we de�ne M

′′
3,1 = max(M3,1,M

′
3,1), a′′3,1 = min(a3,1, a

′
3,1) and b′′3,1 =

max(b3,1, b
′
3,1). Then M

′′
3,1, a

′′
3,1, b

′′
3,1 are as required in C3.Part 5: The onstrution of f2. Let v be as in Part 4. Remember that v was de�nedin two di�erent ways. In the ase that ‖ẑ‖ ≤ ‖ŷ‖, v = ŷ + z

⊥, and in the ase that
‖ẑ‖ > ‖ŷ‖, v = λz. De�ne v⊥ = v − ŷ. The following holds:5.1 y = ŷ + y

⊥, v = ŷ + v
⊥, y⊥ = νv

⊥, ŷ ∈ F and ν > 0.If ν = 1 let f2 = Id. Assume that ν 6= 1. The vetor y⊥ is as in Part 4, and in bothCases 1 and 2 of Part 4, v⊥ is a multiple of y⊥. So the analogue of lause 4.4 in Part 4holds for y⊥ and v⊥. That is,5.2 F ⊆ F̂ , F̂ ⊕ span({y⊥}) = E and ‖y⊥‖ ≤ 1 1
2d(y

⊥
, F̂ ) and equivalently ‖v⊥‖ ≤

1 1
2d(v

⊥
, F̂ ).Reall that g1 = f1 ◦e. We shall next show that there is N1 whih does not depend on

E,F, α, x0, y0 suh that(♣) for every u ∈ E, d(g1(u), F ) ≈N1 d(u, F ). In partiular, d(v, F ) ≈N1 d(x0, F ),Reall that M3,1 =
∏4
i=1 M1,i. Then by C1, d(e(u), F ) ≈M3,1 d(u, F ) for every u ∈ E.In Case 1 of Part 4, f1(u) − u ∈ F for every u ∈ E, so d(f1(u), F ) = d(u, F ). So in Case1 of Part 4, d(g1(u), F ) ≈N1 d(u, F ) for every u ∈ E.In Case 2 of Part 4, f1 is the pieewise linearly radial homeomorphism based on η,and for any slope a of a piee of η, 1/4M3,0 ≤ a ≤ 2 ≤ 4M3,0. So for every u ∈ E,

d(u, F ) ≈4M3,0 d(f1(u), F ). Now, de�ne N1 = 4M3,1M3,0. Then in both Case 1 and



194 M. Rubin and Y. YomdinCase 2 of Part 4, d(g1(u), F ) ≈N1 d(u, F ) for every u ∈ E. The fat d(v, F ) ≈N1 d(x0, F )is a speial ase of the above, sine v = g1(x0).It is given that d(x0, F ) ≈α d(y0, F ). Let N2 = M2,1M2,2. Then from C2 it followsthat d(y0, F ) ≈N2 d(y, F ). So(♣♣) d(x0, F ) ≈N2·α d(y, F ).Let N = N1N2 and β = N · α. It follows from (♣) and (♣♣) that d(v, F ) ≈β d(y, F ).By 5.1, d(v, F ) = d(v
⊥
, F ) and d(y, F ) = d(y

⊥
, F ). Hene

d(y
⊥
, F ) ≈β d(v⊥, F ).Clause 3.3 in Part 3 says that ‖y⊥‖ ≤ (1 + ε)d(y, F ). In Cases 1 and 2 of Part 3, ε wastaken to be 1/2 and 1/9 respetively. So ‖y⊥‖ ≤ 3

2d(y
⊥
, F ). Hene

‖y⊥‖ ≤ 3
2 · β(d(v

⊥
, F )) ≤ 3

2 · β(‖v⊥‖).Sine v⊥ is a multiple of y⊥, it follows that ‖v⊥‖ ≤ 3
2d(v

⊥
, F ). So

‖v⊥‖ ≤ 3
2 · β(d(v

⊥
, F )) ≤ 3

2 · β(d(y
⊥
, F )) ≤ 3

2 · β(‖y⊥‖).Let γ = 3β/2. Hene(5.1) ‖y⊥‖ ≈γ ‖v⊥‖.From the fat that y⊥ = νv
⊥ and (5.1), it follows that(5.2) If ν > 1, then ν · ‖v⊥‖ ≤ γ(‖v⊥‖); and if ν < 1, then 1

ν · ‖y⊥‖ ≤ γ(‖y⊥‖).Let L = {ŷ + ty
⊥ | t ∈ R}. So L is the straight line onneting y and v. Reall that

H2 = span({y⊥}). By 5.2, H2 ⊥1 1
2 F̂ . So by Proposition 9.2(f), ‖ ‖F̂ ,H2 ≈2 1

2 ‖ ‖. By 5.1and 5.2, ŷ ∈ F̂ . So for every t ∈ R, ‖ŷ + ty
⊥‖ ≥ 2

5 · (‖ŷ‖ + |t|‖y⊥‖) ≥ 2
5 · ‖ŷ‖. That is,(5.3) d(L, 0) ≥ 2

5 · ‖ŷ‖.We show that(5.4) ‖v⊥‖ ≤ 3
7‖ŷ‖.Let ŷ, ẑ be as in Part 4. Suppose �rst that ‖ŷ‖ ≥ ‖ẑ‖. In this ase v⊥ = z

⊥. By (4.4),
‖z⊥‖ ≤ 3

10‖z‖. Sine z = ẑ + z
⊥, ‖z⊥‖ ≤ 3

7‖ẑ‖, and sine ‖ŷ‖ ≥ ‖ẑ‖, ‖z⊥‖ ≤ 3
7‖ŷ‖.That is, if ‖ŷ‖ ≥ ‖ẑ‖, then ‖v⊥‖ ≤ 3

7‖ŷ‖. Next suppose that ‖ŷ‖ < ‖ẑ‖. In this ase
ŷ + v

⊥
= v = λz = λ(ẑ + z

⊥
) = ŷ + λz

⊥. That is, v⊥ = λz
⊥ and ŷ = λẑ. Hene

‖v⊥‖/‖ŷ‖ = ‖z⊥‖/‖ẑ‖. By (4.4), ‖v⊥‖/‖ŷ‖ = ‖z⊥‖/‖ẑ‖ ≤ 3
7 . So, if ‖ŷ‖ < ‖ẑ‖, then

‖v⊥‖ ≤ 3
7‖ŷ‖. We onlude that (5.4) holds in both ases.Sine v = ŷ + v

⊥, it follows that ‖v‖ ≤ ‖ŷ‖ + ‖v⊥‖. So by (5.4), ‖v‖ ≤ 10
7 ‖ŷ‖.Similarly, ‖ŷ‖ ≤ ‖v‖ + ‖v⊥‖ ≤ ‖v‖ + 3

7‖ŷ‖. So 4
7‖ŷ‖ ≤ ‖v‖. Hene(5.5) 7

10‖v‖ ≤ ‖ŷ‖ ≤ 7
4‖v‖.Fat (5.3) and the �rst inequality in (5.5) imply that(5.6) d(L, 0) ≥ 14

50‖v‖.In Case 1 of Part 3 we hose ε = 1
2 and ∆ = 8. So by 3.3 and 3.4, ‖y⊥‖ ≤ 3

2d(y, F ) ≤
3
2 · 1

8‖y‖. That is, ‖y⊥‖ ≤ 3
16‖y‖. Sine y = ŷ + y

⊥, ‖ŷ‖ ≥ 13
16‖y‖. Hene in Case 1,
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‖y⊥‖ ≤ 3

13‖ŷ‖. In Case 2 of Part 3 we follow the same omputation with ε = 1
9 and

∆ = 1
24 . We obtain ‖y⊥‖ ≤ 10

108‖y‖ and hene ‖y⊥‖ ≤ 10
98‖ŷ‖. So in both ases(5.7) ‖y⊥‖ ≤ 3

13‖ŷ‖.We shall next de�ne g4. The required f2 will be either g4 or g−1
4 . Reall that F̂ and

H2 were de�ned in Part 4, and that ν was de�ned in 5.1. For u ∈ E set u1 := (u)F̂ and
u2 := (u)H2

.If ν > 1 let
ν̄ = ν, v̄

⊥
= v

⊥
, ȳ

⊥
= y

⊥
, v̄ = v, ȳ = y,and if ν < 1 let

ν̄ =
1

ν
, v̄

⊥
= y

⊥
, ȳ

⊥
= v

⊥
, v̄ = y, ȳ = v.So ν̄ > 0, ȳ⊥ = ν̄ · v̄⊥ and by (5.2),(5.8) ν̄ ≤ γ(‖v̄⊥‖)

‖v̄⊥‖
.Let ̺ ∈ H([0,∞)) be the pieewise linear funtion with breakpoints at ‖v̄⊥‖/2, ‖v̄⊥‖and 2ν̄‖v̄⊥‖ suh that ̺↾([0, ‖v̄⊥‖/2] ∪ [2ν̄‖v̄⊥‖,∞)) = Id and ̺(‖v̄⊥‖) = ν̄‖v̄⊥‖. De�ne

η(s, t) to be the funtion
η(s, t) =





(
1 − s

‖ŷ‖/5

)
̺(t) +

s

‖ŷ‖/5 t, s ∈ [0, ‖ŷ‖/5],

t, s ≥ ‖ŷ‖/5.So η = η(̺,‖ŷ‖/5) as de�ned in Proposition 9.10(b). Let Eˆ = {u ∈ E | u2 ≥ 0}. De�ne
g4(u) =




u1 + η(d(u, L), ‖u2‖) ·

v̄
⊥

‖v̄⊥‖
, u ∈ Eˆ,

u, u ∈ E − Eˆ.If u2 = 0 then g4(u) = u, so g↾F̂ = Id. and hene g4 ∈ H(E). Note that if ν > 1,then g4(v) = y, and if ν < 1, then g−1
4 (v) = y. Next we �nd M3,2, a3,2, b3,2 indepen-dent of E,F, α, x0, y0 suh that R(v, y, g4;M3,2 ·α, a3,2, b3,2, F ) holds or R(y, v, g4;M3,2 ·

α, a3,2, b3,2, F ) holds.R3: Clearly, g4↾F = Id and hene g4(F ) = g−1
4 (F ) = F .R2: We shall next �nd M3,2 suh that g4 is M3,2 · α-biontinuous. The slopes ofthe linear piees of ̺ are: 1, ν̄‖v̄⊥‖−‖v̄⊥‖/2

‖v̄⊥‖−‖v̄⊥‖/2
, 2ν̄‖v̄⊥‖−ν̄‖v̄⊥‖

2ν̄‖v̄⊥‖−‖v̄⊥‖
and 1. That is, the fourslopes of ̺ are 1, 2ν̄ − 1, ν̄

2ν̄−1 and 1. We apply Proposition 9.10(a) to ̺ taking a0to be 0, a1, a2, a3 to be the breakpoints of ̺, and a4 to be ∞. Using the notation ofDe�nition 9.9(b), the funtions ̺1, ̺3 and ̺4 are linear funtion with slopes 1, ν̄
2ν̄−1 and

1 respetively. So they are 1-Lipshitz. Clearly, ̺2(t) = (2ν̄ − 1)t + c, t ∈ [0, ‖v̄⊥‖/2).By (5.8) and Proposition 9.10(), ̺2 is 2 · γ-ontinuous, and so ̺ is (4, 2 · γ)-ontinuous.By Proposition 9.10(a),(5.9) ̺ is 8 · γ-ontinuous.



196 M. Rubin and Y. YomdinLet u,w ∈ Eˆ. Then
‖g4(w) − g4(u)‖ ≤ ‖(w − u)1‖ + |η(d(w,L), ‖w2‖) − η(d(u, L), ‖w2‖)|(5.10)

+ |η(d(u, L), ‖w2‖) − η(d(u, L), ‖u2‖)|.Denote the three summands on the right hand of inequality (5.10) by D1, D2 and D3. If
d(w,L), d(u, L) ∈ [0, ‖ŷ‖/5), then

D2 ≤ |d(w,L) − d(u, L)|
‖ŷ‖/5 · (̺(‖w2‖) − ‖w2‖) ≤

‖w − u‖
‖ŷ‖/5 · (̺(‖w2‖) − ‖w2‖)

≤ ‖w − u‖
‖ŷ‖/5 · (ν̄ − 1)‖v̄⊥‖ ≤ ‖w − u‖

‖ŷ‖/5 · ν̄ · ‖v̄⊥‖ := D′
2.The above is true for every u,w ∈ Eˆ. Sine ν̄ · v̄⊥ = v

⊥ or ν̄ · v̄⊥ = y
⊥, by (5.4) and(5.7), ν̄ · ‖v̄⊥‖/‖ŷ‖ ≤ 3

7 . Hene, D′
2 ≤ 15

7 · ‖w − u‖. That is,(5.11) |η(d(w,L), ‖w2‖) − η(d(u, L), ‖w2‖)| ≤ 15
7 · ‖w − u‖.By (5.9) and Proposition 9.10(b), D3 ≤ 8 · γ(|‖w2‖ − ‖u2‖|) ≤ 8 · γ(‖(w − u)2‖) := D′

3,and by the seond inequality in (4.9) and Proposition 9.10(d), D′
3 ≤ 3

2 · 8 · γ(‖w − u‖.Hene(5.12) |η(d(u, L), ‖w2‖) − η(d(u, L), ‖u2‖)| ≤ 12 · γ(‖w − u‖).Note that for every ū ∈ E, ū1 of Part 5 is ū1 + ū3 of Part 4. So by the �rst and thirdinequalities in (4.9),(5.13) ‖(w − u)1‖ ≤ 7 1
2‖w − u‖.Substitute into (5.10) inequalities (5.13), (5.11) and (5.12). We obtain the inequality

‖g4(w) − g4(u)‖ ≤ 9 9
14‖w − u‖ + 12 · γ(‖w − u‖). Reall that γ = 3

2β and that β = Nα.Hene, sine α ≥ Id,
g4↾Eˆ is (18N + 10) · α-ontinuous.The omputation whih shows that for some M independent of E,F, α, x0, y0,

g−1
4 ↾Eˆ is M · α-ontinuous is analogous. But for g−1

4 there is M whih does not de-pend on E,F, α, x0, y0 suh that g−1
4 ↾Eˆ is M -Lipshitz. So we onlude that g−1

4 ↾Eˆ is
M · α-ontinuous. This omputation is analogous to the proof that f

−1
1 is Lipshitz.For s ∈ [0,∞) let θs = η−1

s . Write θ(s, t) = θs(t). As in Part 4, for every u ∈ E,
g−1
4 (u) = u1 + θd(u,S)(‖u2‖)

v̄
⊥

‖v̄⊥‖
.The analogues (5.10∗) of (5.10) and (5.11∗) of (5.11) obtained by replaing η by θ aretrue. Let µ = θ0. So µ = ̺−1 and θ = η(µ,‖ŷ‖/5). The slopes of the linear piees of µ arethe inverses of the slopes of the linear piees of ̺. Hene the slopes are 1, 1

2ν̄−1 and 2ν̄−1
ν̄ .The �rst two slopes are ≤ 1 and the third is ≤ 2. So µ is 2-Lipshitz. By Proposition9.10(b), for every s ∈ [0,∞), θs is 2-Lipshitz. Hene

|θ(d(u, L), ‖w2‖) − θ(d(u, L), ‖u2‖)| ≤ 2 · |‖w2‖ − ‖u2‖| = 2 · ‖(w − u)2‖.Applying the seond inequality in (4.9) we onlude that(5.14) |θ(d(u, L), ‖w2‖) − θ(d(u, L), ‖u2‖)| ≤ 3‖w − u‖.



Reonstrution of manifolds from subgroups of homeomorphism groups 197Substituting (5.13), (5.11∗) and (5.14) into (5.10∗) we onlude that
‖g−1

4 (w) − g−1
4 (u)‖ ≤ (7 1

2 + 15
7 + 3)‖w − u‖ ≤ 13‖w − u‖.Sine 13 · Id ≤ (18N + 10) · α, g−1

4 ↾Eˆ is (18N + 10) · α-ontinuous. Hene g4↾Eˆ is
(18N+ 10) ·α-biontinuous and so g4 is 2(18N+ 10) ·α-biontinuous. So M3,2 := 60N isas required. That is, g and g−1 are M3,2 · α-biontinuous.R4: We shall �nd a′ and b′ independent of E,F, α, x0 and y0 suh that supp(g4) ⊆
B(0; a′‖ŷ‖, b′‖ŷ‖). Let u ∈ B(0, ‖ŷ‖/5). By (5.3), d(u, L) > ‖ŷ‖/5. So for every t ∈
[0,∞), η(d(u, L), t) = t. In partiular, η(d(u, L), ‖u2‖) = ‖u2‖. Hene

g4(u) = u1 + η(d(u, L), ‖u2‖) ·
v̄
⊥

‖v̄⊥‖
= u1 + u2 = u.That is, g4↾B(0, ‖ŷ‖/5) = Id and hene a′ = 1/5.Let u ∈ E. If d(u, L) ≥ ‖ŷ‖/5 or ‖u2‖ ≥ 2ν̄‖v̄⊥‖, then η(d(u, L), ‖u2‖) = ‖u2‖ andhene g4(u) = u. Reall that ν̄ · v̄⊥ = v

⊥ or ν̄ · v̄⊥ = y
⊥. So if ‖u2‖ ≥ 2‖v̄⊥‖ and

‖u2‖ ≥ 2‖ȳ⊥‖, then g4(u) = u. So by (5.4) and (5.7),(5.15) If ‖u2‖ ≥ 6
7‖ŷ‖, then g4(u) = u.Fat (⋆) in Part 4 (whih preedes (4.9)) says that ū1,3 ≤ 2 1

2 ū for every ū ∈ E. But
ū1,3 of Part 4 is ū1 of Part 5. So ‖ū1‖ ≤ 5

2‖ū‖ for every ū ∈ E. We show that(5.16) If ‖u1‖ ≥ 1 1
2‖ŷ‖, then g4(u) = u.Suppose that ‖u1‖ ≥ 1 1

2‖ŷ‖ and let w ∈ L. Then (u−w)1 = u1−ŷ and hene ‖(u−w)1‖ ≥
‖u1‖−‖ŷ‖ ≥ 1

2‖ŷ‖. So ‖u−w‖ ≥ 2
5‖(u−w)1‖ ≥ 2

5 · 12‖ŷ‖ = ‖ŷ‖/5. Hene d(u, L) ≥ ‖ŷ‖/5.This implies that g4(u) = u. Suppose that ‖u‖ ≥ 3‖ŷ‖ and we show that g4(u) = u.Clearly, ‖u1‖ + ‖u2‖ ≥ ‖u‖ ≥ 3‖ŷ‖. So either ‖u1‖ ≥ 1 1
2‖ŷ‖ or ‖u2‖ ≥ 6

7‖ŷ‖. By (5.16)and (5.15), g4(u) = u. It follows that g4↾(E −B(0, 3‖ŷ‖)) = Id. So b′ := 3 is as desired.Reall that (4.6) said that ‖ŷ‖ ≤ 19
16‖y‖, and that (5.5) said that 7

10‖v‖ ≤ ‖ŷ‖. Itfollows that supp(g4) ⊆ B(0; 1
5 · 7

10‖v‖, 3 · 19
16‖y‖). That is, supp(g4) ⊆ B(0; 7

50‖v‖, 57
16‖y‖),and the same is true for g−1

4 . Let a3,2 = 7/50 and b3,2 = 57/16. Then supp(g2), supp(g−1
2 )

⊆ B(0; a3,2‖v‖, b3,2‖y‖). So R3 is proved.The de�nition of f2: If ν > 1 de�ne f2 = g4, and if ν < 1 de�ne f2 = g−1
4 .R1: Clearly, f2(v) = y, and sine v = v and y2 = y, we have f2(v) = y2.We have found Mi,j 's, ai,j 's and bi,j 's whih ful�ll C1�C4. It follows from the �rstpart of the proof of the lemma that there exist M, a, b suh that M is a UC-onstant for

〈a, b 〉.(b) Let M, a, b be as ensured by (a), and let a′ < 1 and b′ > 1. We may assumethat a′ > a and that b′ < b. Let x, y ∈ E − F be as in the de�nition of a UC-onstant.Let g1,g2 be as ensured in (a) for the numbers a and b. (See De�nition 9.11(a).) Let
η ∈ H([0,∞)) be a pieewise linear funtion with breakpoints at: a · ‖x‖, ‖x‖, ‖y‖, b ·
‖y‖, 2b · ‖y‖ and suh that: η(0) = 0; η(a · ‖x‖) = a′ · ‖x‖; η(‖x‖) = ‖x‖; η(‖y‖) = ‖y‖;
η(b · ‖y‖) = b′ · ‖y‖; η↾[2b · ‖y‖,∞) = Id. The slopes of the linear piees of η are: a′

a , 1−a′
1−a ,

1, b′−1
b−1 , 2b−b′

b and 1. These slopes depend only on a, a′, b, b′ and not on x and y. Let Lbe the maximum of all the above slopes and their inverses. So η is L-bilipshitz.



198 M. Rubin and Y. YomdinLet k be the pieewise linearly radial homeomorphism based on η. That is, for every
u ∈ E − {0}, k(u) = η(‖u‖) u

‖u‖ and k(0) = 0. By Proposition 3.18, k is 3L-bilipshitz.For i = 1, 2, let g′
i = k ◦gi ◦k

−1. Then g′
i is (3L · Id) ◦α ◦ (3L · Id)-biontinuous. So byProposition 9.10(d), g′

i is 9L2
M ·α-biontinuous. De�ne M

′ = 9L2
M. It is easy to verifythat lauses B1�B4 in the de�nition of a UC-onstant (De�nition 9.11(a)) are ful�lled by

a′, b′, g′
1, g′

2 and M
′. Hene M

′ is a UC-onstant for 〈a′, b′ 〉.



10. 1-dimensional boundariesChapter 9 dealt with the following situation. E is a normed spae, F is a losed subspaeof E with dimension ≥ 2, x, y ∈ E − F , and ‖x‖ ≈α ‖y‖ and d(x, F ) ≈α d(y, F ). It wasshown that there is an M · α ◦α-biontinuous g ∈ H(E) suh that g(x) = y, g(F ) = Fand supp(g) is ontained in the ring B(0; a‖x‖, b‖y‖). When F is 1-dimensional, suh a
g does not always exist. The reason for this is that in order to move x to y we need torotate x about an axis perpendiular to F . See the onstrution of g1 in Part 2 of theproof of Lemma 9.13(a). When F is 1-dimensional, suh a rotation does not exist.Whereas Part 2 of the proof of Lemma 9.13(a) fails for a 1-dimensional subspae,Parts 1 and 3�5 remain without hange. In these parts, the fat that dim(F ) ≥ 2 is notused. By skipping Part 2 in the proof of Lemma 9.13(a) one obtains the following lemma.Let F,K be linear subspaes of a normed spae E and u ∈ E. Then u ⊥ F denotesthe fat that ‖u‖ = d(u, F ), and K ⊥ F means that u ⊥ F for every u ∈ K.Lemma 10.1. Let M be a UC-onstant for 〈a, b 〉. Let E be a normed spae and F be a
1-dimensional linear subspae of E. Let α ∈ MBC and x, y ∈ E − F be suh that :(i) ‖x‖ ≤ ‖y‖ and ‖x‖ ≈α ‖y‖,(ii) d(x, F ) ≈α d(y, F ),(iii) x = x̂+ x

⊥, y = ŷ + y
⊥, x̂, ŷ ∈ F , x⊥, y⊥ ⊥ F , and for some λ > 0, x̂ = λŷ,(iv) if dim(E) = 2, then x, y are on the same side of F .Then there are g1, g2 ∈ H(E) suh that :(1) g1, g2 are Mα-biontinuous ,(2) g1 ◦ g2(x) = y,(3) g1(F ) = F and g2(F ) = F ,(4) for every i = 1, 2, supp(gi) ⊆ B(0; a‖x‖, b‖y‖).Proof. Parts 1, 3�5 of the proof of Lemma 9.13(a) onstitute the proof of this lemma.Definition 10.2. Let 0 < a < 1, b > 1 and M ≥ 1. We say that M is a 1-dimensionalUniform Continuity onstant for a and b (abbreviated by �M is a 1UC-onstant for

〈a, b 〉�) if the following holds. Suppose that E,F, α, x, y satisfy the following assumptions.A1 E is a normed spae and F is a proper linear subspae of E suh that dim(F ) = 1,
α ∈ MBC and x, y ∈ E − F ,A2 ‖x‖ ≤ ‖y‖ ≤ α(‖x‖),A3 d(x, F ) ≈α d(y, F ),A4 ‖x‖ ≤ α(d(x, F )) and ‖y‖ ≤ α(d(y, F )),A5 if dim(E) = 2, then x, y are on the same side of F .[199℄



200 M. Rubin and Y. YomdinThen there are g1, g2, g3 ∈ H(E) suh that:B1 for every i = 1, 2, 3, gi is M · α-biontinuous,B2 g3 ◦ g2 ◦ g1(x) = y,B3 for every i = 1, 2, 3, gi(F ) = F ,B4 for every i = 1, 2, 3, supp(gi) ⊆ B(0; a‖x‖, b‖y‖). �Remark. Note that in the de�nition of a 1UC-onstant there is an extra assumption on
x and y whih did not appear in the de�nition of a UC-onstant, namely, AssumptionA4 whih says that ‖x‖ ≤ α(d(x, F )) and ‖y‖ ≤ α(d(y, F )). �The rest of the hapter is devoted to the proof of the following lemma.Lemma 10.3. (a) There are a, b,M suh that M is a 1UC-onstant for a and b.(b) For every 0 < a < 1 and b > 1 there is M suh that M is a 1UC-onstant for aand b.Items 10.4�10.9 are needed in the proof of the above lemma.Proposition 10.4. Let F be a �nite-dimensional linear subspae of a normed spae
E and u 6∈ F . Then there is a 1-dimensional subspae L ⊆ span(F ∪ {u}) suh that
L ⊥ F .Proposition 10.5. Let X be a metri spae, α ∈ MBC, c > 0, D,K ≥ 1, g ∈ H(X),
diam(supp(g)) ≤ Dα(c) and g is K · α(c)/c-Lipshitz. Then g is (D + K + 1) · α-ontinuous.Proof. Note that if α ∈ MC, then the funtion α(t)/t is dereasing. Let x, y ∈ X.Suppose �rst that d(x, y) ≤ c. Then

d(g(x), g(y)) ≤ K
α(c)

c
d(x, y) ≤ K

α(d(x, y))

d(x, y)
d(x, y) = Kα(d(x, y))

≤ (D +K + 1) · α(d(x, y)).Next assume that d(x, y) > c. If x, y ∈ supp(g), then
d(g(x), g(y)) ≤ Dα(c) < Dα(d(x, y)) ≤ (D +K + 1) · α(d(x, y)).If x 6∈ supp(g) and y ∈ supp(g), then
d(g(x), g(y)) ≤ d(x, y) + d(y, g(y)) ≤ α(d(x, y)) +Dα(c)

< α(d(x, y)) +Dα(d(x, y)) = (D +K + 1)α(d(x, y)).The ase that x ∈ supp(g) and y 6∈ supp(g) is idential, and the ase that x, y 6∈ supp(g)is trivial.Proposition 10.6. There are b > 1, 0 < a < 1 and M > 1 suh that the following holds.Suppose that :(1) α ∈ MBC,(2) E is a normed spae, and L is a 1-dimensional linear subspae of E,(3) u ∈ E − L and ‖u‖ ≤ α(d(u, L)),(4) u = û+ u
⊥, where û ∈ L and u⊥ ⊥ L, and v = (‖u‖/‖u⊥‖)u⊥.Then there is g ∈ H(E) suh that :



Reonstrution of manifolds from subgroups of homeomorphism groups 201(1) g(u) = v,(2) g is M · α-biontinuous ,(3) supp(g) ⊆ B(0; a‖u‖, b‖u‖),(4) g(L) = L.De�ne M lift = M , alift = a and blift = b. Note that the onjuntion of lauses (1)�(4) isthe relation R(u, v, g;M · α, a, b, L) de�ned in De�nition 9.11(b).Proof. Let A = [u, v]. Clearly, d(u, L) = ‖u⊥‖. So ‖u⊥‖ ≤ ‖u‖. We �nd an upper boundfor ‖u− v‖:
‖u− v‖ ≤ ‖u− u

⊥‖ + ‖u⊥ − v‖ = ‖û‖ + (‖u‖ − d(u, L))

≤ (‖u‖ + ‖u⊥‖) + (‖u‖ − d(u, L))

= (‖u‖ + d(u, L)) + (‖u‖ − d(u, L)) = 2‖u‖ ≤ 2α(d(u, L)).We show that d(A,L) = d(u, L). For every z ∈ A there are λ ∈ [0, 1] and µ ≥ 1 suhthat z = λû + µu
⊥. So d(z, L) = µ‖u⊥‖ ≥ ‖u⊥‖ = d(u, L). Sine u ∈ A, we have

d(A,L) = d(u, L). We show that d(A, 0) ≥ ‖u‖/4. Let w = û+ v and C = [u,w]∪ [w, v].We �rst show that d(C, 0) ≥ ‖u‖/2. If z ∈ [v, w], then for some t ∈ R, z = v + tû. So
‖z‖ ≥ d(z, L) = d(v, L) = ‖v‖ = ‖u‖. Hene d([v, w], 0) = ‖u‖.Note that [u,w] = {u+ tv | 0 ≤ t ≤ 1−‖u⊥‖/‖v‖}. Let z = u+ tv ∈ [u,w]. If t ≤ 1/2,then ‖u+ tv‖ ≥ ‖u‖ − t‖v‖ ≥ ‖u‖ − ‖u‖/2 = ‖u‖/2. If t ≥ 1/2, then

‖u+ tv‖ ≥ d(u+ tv, L) = d(û+ u
⊥

+ tv, L) = d(u
⊥

+ tv, L)

= d((t+ ‖u⊥‖/‖v‖)v, L) ≥ d(tv, L) ≥ d(v, L)/2 = ‖u‖/2.Hene d([u,w], 0) ≥ ‖u‖/2. It follows that d(C, 0) ≥ ‖u‖/2.We next prove that (∗) for every x ∈ A there are z ∈ C and µ ∈ [1/2, 1] suh that
x = µz. Reall that w = û + v. The equation µw = λu + (1 − λ)v has the solution
µ = λ = ‖u‖

2‖u‖−‖u⊥‖ . So µ ∈ (0, 1). That is, there are x ∈ A, z ∈ C and µ ∈ (0, 1) suhthat x = µz, and hene for every x ∈ A there are z ∈ C and µ ∈ (0, 1) suh that x = µz.Let z ∈ [u,w]. Then z = u + t ‖u‖
‖u⊥‖u

⊥, where 0 ≤ t ≤ 1 − ‖u⊥‖
‖u‖ . The equation

µz = λu + (1 − λ)v has the solution λ = µ = 1
1+t . Sine t ∈ (0, 1), µ ∈ [1/2, 1]. Let

z ∈ [v, w]. Then z = ‖u‖
‖u⊥‖u

⊥
+t(u−u⊥), where 0 ≤ t ≤ 1. The equation µz = λu+(1−λ)vhas the solution

µ =
‖u‖

‖u‖ + t(‖u‖ − ‖u⊥‖) , λ = tµ.It follows that µ ∈ (1/2, 1]. So (∗) is proved. Hene d(A, 0) ≥ d(C, 0)/2 ≥ ‖u‖/4.Let r = d(u, L)/8. By Proposition 9.6(a), there is g ∈ H(E) suh that g(u) = v,
supp(g) ⊆ B(A, r) and g is M seg · (lngth(A)/r + 1)-bilipshitz. Hene requirement (1)holds. Moreover

M seg ·
(

lngth(A)

r
+ 1

)
≤M seg ·

(
16α(d(u, L))

d(u, L)
+ 1

)
≤M seg · 17α(d(u, L))

d(u, L)
.So g is 17M seg · α(d(u,L))

d(u,L) -bilipshitz. Also,
diam(B(A, r)) ≤ lngth(A) + 2r ≤ 2α(d(u, L)) + d(u, L)/4 ≤ 3α(d(u, L)).



202 M. Rubin and Y. YomdinWe apply Proposition 10.5 to g and to g−1 with c = d(u, L), D = 3 and K = 17M seg.It follows that g is (4 + 17M seg) · α-biontinuous. So requirement (2) holds with M =

4 + 17M seg. Sine d(A,L) = d(u, L) and r < d(u, L), it follows that d(B(A, r), L) > 0.So g↾L = Id. Requirement (4) thus holds.We �nd the a and b of requirement (3). Let r0 = d(B(A, r), 0). So g↾B(0, r0) = Id.But r0 = d(A, 0)−r ≥ ‖u‖/4−d(u, L)/8 ≥ ‖u‖/8. So a = 1/8. Let r1 = supx∈B(A,r) ‖x‖.Then supp(g) ⊆ B(0, r1). For every x ∈ A, ‖x‖ ≤ max(‖u‖, ‖v‖) = ‖u‖. So r1 ≤
‖u‖ + r < 2‖u‖. De�ne b = 2. Then supp(g) ⊆ B(0; a‖u‖, b‖u‖). So requirement (3) isful�lled with a = 1/8 and b = 2.Proposition 10.7. Let E be a 3-dimensional Hilbert spae, L be a 1-dimensional syb-spae of E, u, v ∈ E − L and M ≥ 1. Suppose that ‖u‖, ‖v‖ ≤ Md(u, L) and ‖u‖, ‖v‖ ≤
Md(v, L). Then there is a reti�able ar A onneting u and v suh that :(1) lngth(A) ≤ (4 + π)M‖u‖,(2) d(A,L) ≥ ‖u‖/M ,(3) max({‖x‖ | x ∈ A}) ≤M‖u‖.Proof. Let w1 = u⊥, w2 = v⊥ and w3 = (‖u⊥‖/‖v⊥‖)v⊥. Let S be a subar of
S(0, ‖w1‖)∩L⊥ whose endpoints are w1 and w3 and suh that lngth(S) ≤ π‖w1‖. De�ne
A = [u,w1] ∪ S ∪ [w3, w2] ∪ [w2, v]. Then d(A,L) = min(d(u, L), d(v, L)) ≥ ‖u‖/M . It isobvious that max({‖x‖ | x ∈ A}) = max(‖u‖, ‖v‖) ≤M‖u‖. Now,

lngth(A) ≤ ‖(u)L‖ + π‖u⊥‖ + |‖u⊥‖ − ‖v⊥‖| + ‖(v)L‖
≤ ‖u‖ + π‖u‖ + ‖u‖ + ‖v‖ ≤ (4 + π)M‖u‖.So A is as required.Proposition 10.8. There are M > 1, 0 < a < 1 and b > 1 suh that the following holds.Suppose that :(1) E is a normed spae, and L is a 1-dimensional linear subspae of E,(2) u, v ∈ E − L, ‖u‖ = ‖v‖, u ⊥ L and v ⊥ L,(3) if E is 2-dimensional , then u, v are on the same side of L.Then there is g ∈ H(E) suh that R(u, v, g;M,a, b, L) holds. (See De�nition 9.11(b).)We write Mperp = M , aperp = a and bperp = b.Proof. If E is 2-dimensional, then [u, v] ⊆ S(0, ‖u‖). So d([u, v], L)=‖u‖ and lngth([u, v])

≤ ‖u‖ + ‖v‖ = 2‖u‖. By Proposition 9.6(a), there is g ∈ H(E) suh that: g(u) = v,
supp(g) ⊆ B([u, v], ‖u‖/2), and g is M seg · 2‖u‖

‖u‖/2 -bilipshitz. So for 2-dimensional E's,
M,a, b an be taken to be 4M seg, 1/2 and 3/2.Suppose that dim(E) > 2. Let F be a 3-dimensional linear subspae of E ontaining
L, u and v, and let ‖ ‖H be a tight Hilbert norm on F . De�ne N = M thn(3). (SeeProposition 9.2(b).) So for every x ∈ F , ‖x‖ ≤ ‖x‖H ≤ N‖x‖. Obviously, ‖u‖H, ‖v‖H ≤
NdH(u, L), and ‖u‖H, ‖v‖H ≤ NdH(v, L). By Proposition 10.7, there is a reti�able ar
A in F onneting u and v suh that: lngthH(A) ≤ (4 + π)N‖u‖H, dH(A,L) ≥ 1

N ‖u‖Hand max({‖x‖H | x ∈ A}) ≤ N‖u‖H. So



Reonstrution of manifolds from subgroups of homeomorphism groups 203(1) lngth(A) ≤ (4 + π)N2‖u‖,(2) d(A,L) ≥ 1
N2 ‖u‖,(3) max({‖x‖ | x ∈ A}) ≤ N2‖u‖.Let r = 1

2N2 ‖u‖, By Proposition 9.6(b), there is g ∈ H(E) suh that:(4) supp(g) ⊆ B(A, r),(5) g(u) = v,(6) g is Marc( (4+π)N2‖u‖
‖u‖/(2N2) )-bilipshitz.So g is Marc(16N4)-bilipshitz.Sine d(B(A, r), L) ≥ (1/2N2)‖u‖, g↾L = Id. De�ne M = Marc(16N4), a = 1/2N2and b = N2 + 1. Then M,a, b are as required in the proposition.Proposition 10.9. There are M > 1, 0 < a < 1 and b > 1 suh that the followingholds. Suppose that E is a normed spae, u ∈ E − {0}, α ∈ MBC, 1 ≤ λ ≤ α(‖u‖)/‖u‖and v = λu. Then there is a radial homeomorphism g ∈ H(E) suh that : g(u) = v,

g is M · α-biontinuous and supp(g) ⊆ B(0; a‖u‖, b‖v‖). Note that this implies that
R(u, v, g;M · α, a, b, L) holds. Denote M,a, b by Mdlt, adlt and bdlt.Proof. Let η ∈ H([0,∞)) be the pieewise linear funtion whih is determined by thefollowing equalities: η(0) = 0, η(‖u‖/2) = ‖u‖/2, η(‖u‖) = λ‖u‖, and for every t ≥
λ‖u‖ + ‖u‖, η(t) = t. The slopes of the linear parts of η are 1, 2λ and 1/λ. Sine 1 ≤
λ ≤ α(‖u‖)/‖u‖, η is 2 ·α(‖u‖)/‖u‖-bilipshitz. Let g be the radial homeomorphism of Ebased on η. By Proposition 3.18, g is 6 ·α(‖u‖)/‖u‖-bilipshitz. Also, λ‖u‖+‖u‖ ≤ 2‖v‖,hene supp(g) ⊆ B(0, 2‖v‖). By Proposition 10.5, g is (6+2+1) ·α-biontinuous. So wemay de�ne M = 9, a = 1/2 and b = 2.Proof of Lemma 10.3. (a) Let E,F, x, y be as in the de�nition of a 1UC-onstant (Def-inition 10.2). There are x̂ and x⊥ suh that x = x̂ + x

⊥, x̂ ∈ F and x⊥ ⊥ F . Similarly,there are ŷ and y⊥ suh that y = ŷ + y
⊥, ŷ ∈ F and y⊥ ⊥ F . Let x1 = (‖x‖/‖x⊥‖)x⊥and y1 = (‖y‖/‖y⊥‖)y⊥. By Proposition 10.6, there are f1, h1 ∈ H(E) suh that

R(x, x1, f1;M
lift · α, alift, blift, F ) and R(y, y1, h1;M

lift · α, alift, blift, F ).Let y2 = (‖x1‖/‖y1‖)y1. Note that ‖x1‖ = ‖y2‖, x1 ⊥ F and y2 ⊥ F , and if E is
2-dimensional then x1, y2 are on the same side of F . By Proposition 10.8, there is
f2 ∈ H(E) suh that

R(x1, y2, f2;M
perp, aperp, bperp, F ).Sine ‖y2‖ = ‖x‖ and ‖y1‖ = ‖y‖, it follows that ‖y2‖ ≤ ‖y1‖ ≤ α(‖y2‖). So byProposition 10.9, there is g2 ∈ H(E) suh that

R(y2, y1, g2;M
dlt · α, adlt, bdlt, F ).Let g1 =f2 ◦f1 and g3 =h−1

1 . Clearly, g3 ◦ g2 ◦ g1(x)=y. Let M=max(M liftMperp,Mdlt).Note that ‖x1‖ = ‖x‖, so f2↾B(0, aperp‖x‖) = Id. Set a = min(alift, aperp, adlt) and
b = max(blift, bperp, bdlt). It is obvious that lauses B1�B4 in the de�nition of a 1UC-onstant hold for M,a, b, x, y, g1, g2, g3 and F .(b) Part (b) is dedued from (a) in the same way that part (b) of Lemma 9.13 isdedued from (a) of that lemma.



11. Extending the induing homeomorphism to the boundaryA sequene means a funtion whose domain is an in�nite subset of N. If σ ⊆ N is in�nite,then {xi | i ∈ σ} is abbreviated by ~x (σ). Suppose that ~x (σ) is a sequene in X and
g ∈ H(X,Y ). Then g(~x (σ)) denotes the sequene {g(xi) | i ∈ σ}. For n ∈ N and anin�nite σ ⊆ N let σ≥n := {k ∈ σ | k ≥ n}. For a sequene ~x let ~x≥n := ~x↾Dom(~x)≥n.Reall that if α : A → A, then α ◦n denotes α ◦ · · · ◦α, n times. Let X,Y be opensets in metri spaes E and F respetively and g : X → Y . If x ∈ Dom(gcl), then wesometimes abbreviate gcl(x) by g(x).Definition 11.1. (a) Let X,Y be open sets in metri spaes E and F respetively.Suppose that x ∈ cl(X) and g ∈ H(X,Y ). We say that g is α-ontinuous at x if there is
T ∈ Nbr(x) suh that g↾(T ∩X) is α-ontinuous.Obviously, if F is a omplete metri spae, and g is α-ontinuous at x, then x ∈
Dom(gcl). We say that g is α-biontinuous at x if g is α-ontinuous at x, x ∈ Dom(gcl)and g−1 is α-ontinuous at gcl(x). We say that g is Γ -biontinuous at x if for some α ∈ Γ ,
g is α-biontinuous at x.(b) Suppose that E is a metri spae X ⊆ E is open, b ∈ bd(X), α ∈ MBC and
x, y ∈ X. Reall that we write δX,E(x) = d(x,E−X). Supersripts E and X are omittedwhen they are understood from the ontext. The notation x ≈(α,b)

(X,E) y means that
d(x, b) ≈α d(y, b) and δX(x) ≈α δX(y).Suppose that ~x (σ) and ~y (σ) are sequenes in X. Then ~x (σ) ≈(α,b)

(X,E) ~y
(σ) means that forevery n ∈ σ, xn ≈(α,b)

(X,E) yn. We abbreviate ≈(α,b)
(X,E) by ≈(α,b). Note that the notation

~x ≈(α,b) ~y entails that Dom(~x) = Dom(~y).() Let X be a topologial spae, A ⊆ H(X), ̺ ⊆ N be in�nite and ~x (̺), ~y (̺) besequenes in X. We de�ne the relation ~x (̺) ∼A ~y (̺). The relation ~x (̺) ∼A ~y (̺) meansthat for any in�nite σ, η ⊆ ̺ there is g ∈ A suh that {i ∈ σ | g(xi) = yi} and {i ∈ η |
g(xi) = xi} are in�nite. If α ∈ MBC, then ~x (̺) ∼α ~y (̺) means that ~x (̺) ∼A ~y (̺), where
A = {g ∈ H(X) | g is α-biontinuous}.(d) Let E be a metri spae, X ⊆ E be open, α ∈ MBC and Γ be a modulus ofontinuity. A sequene ~x in X is alled an α-abiding sequene if(i) ~x is onvergent and b := lim ~x ∈ bd(X);(ii) there is n = n(~x, α) ∈ N suh that for every k ∈ Dom(~x)≥n, d(xn, b) ≤

α(δ(xn)).A sequene ~x in X is alled a Γ -evasive sequene if[204℄



Reonstrution of manifolds from subgroups of homeomorphism groups 205(i) ~x is onvergent and b := lim ~x ∈ bd(X);(ii) for every subsequene ~y of ~x and α ∈ Γ , ~y is not α-abiding.Equivalently, ~x is Γ -evasive i� (i) holds and for every α ∈ Γ there is n ∈ N suh that forevery m ∈ Dom(~x)≥n, d(xm, b) > α(δ(xm)).(e) Let X be an open subset of a normed spae E, and x ∈ bd(X). Suppose that Xis two-sided at x, and let 〈ψ,A, r〉 be a boundary hart element for x. Let U, V ∈ Nbr(x)and h ∈ EXT±(U ∩X,V ∩X) be suh that hcl(x) = x. We say that h is side preservingat x if there is U ′ ∈ Nbr(x) suh that for every u ∈ U ′ ∩ X, u and h(u) are on thesame side of bd(X) with respet to 〈ψ,A, r〉. See De�nition 8.10. We say that h is sidereversing at x if there is U ′ ∈ Nbr(x) suh that for every u ∈ U ′ ∩X, u and h(u) are ondi�erent sides of bd(X) with respet to 〈ψ,A, r〉. Note that the properties of being sidepreserving or side reversing do not depend on the hoie of 〈ψ,A, r〉.(f) Let X be an open subset of a normed spae E, and x ∈ bd(X). Suppose that
bd(X) is 1-dimensional at x, and let 〈ψ,A, r〉 be a boundary hart element for x. Let L =

bd(X)∩Rng(ψ). So L is an open ar. Let U, V ∈ Nbr(x) and h ∈ EXT±(U ∩X,V ∩X)be suh that hcl(x) = x. We say that h is order preserving at x if there is U ′ ∈ Nbr(x)suh that for every u ∈ U ′ ∩ L, u and hcl(u) are in the same onneted omponent of
L−{x}. We say that h is order reversing at x if there is U ′ ∈ Nbr(x) suh that for every
u ∈ U ′ ∩X, u and h(u) are in di�erent onneted omponents of L−{x}. Note that theproperties of being order preserving or order reversing are independent of the hoie of
〈ψ,A, r〉.Let G ≤ EXT(X). We say that bd(X) is G-order-reversible at x if there is g ∈ Gsuh that g is order reversing at x, and if X is two-sided at x, then g is side preserving.If suh a g does not exist, then we say that bd(X) is G-order-irreversible at x. �Proposition 11.2. Let E,F normed spaes. Suppose that X ⊆ E, Y ⊆ F are open,
α ∈ MBC and g ∈ EXT±(X,Y ). Let b ∈ bd(X), and suppose that g is α-biontinuousat x.(a) There is r0 > 0 suh that for every x ∈ B(b, r0) ∩X, δ(x) ≈α δ(g(x)).(b) Assume that E = F , Y = X and g(b) = b. Suppose that ~x is a sequene in Xonverging to b. Then for some n ∈ N, ~x≥n ≈(α,b) g(~x)≥n.() Assume that E = F , Y = X and g(b) = b. Suppose that X is two-sided at b.Let 〈ψ,A, r〉 be a boundary hart element for b. Then there is U ∈ Nbr(b) suh that
U, g(U) ⊆ Rng(ψ), and for every u, v ∈ U ∩X: u, v are on the same side of bd(X) withrespet to 〈ψ,A, r〉 i� g(u), g(v) are on the same side bd(X) with respet to 〈ψ,A, r〉.Proof. (a) Let r > 0 be suh that g↾(B(b, r) ∩ X) is α-ontinuous. Choose s > 0 suhthat g−1↾(B(g(b), s)∩Y ) is α-ontinuous, and let r0 be suh that r0 < r/2 and g(B(b, r0)

∩X) ⊆ B(g(b), s/2) ∩ Y . Let x ∈ B(b, r0) ∩X. Suppose that ε ∈ (0, r/2− ‖x− b‖). Let
u ∈ bd(X) be suh that ‖u− x‖ < δ(x) + ε. Sine δ(x) < ‖x− b‖ < r0, it follows that

‖u− b‖ ≤ ‖u− x‖ + ‖x− b‖ < δ(x) + r/2 − ‖x− b‖ + ‖x− b‖ ≤ r0 + r/2 < r.Hene gcl↾{x, u} is α-ontinuous. So
δ(g(x)) ≤ ‖gcl(x) − gcl(u)‖ ≤ α(‖x− u‖) < α(δ(x) + ε).



206 M. Rubin and Y. YomdinSine this argument is valid for any ε ∈ (0, r/2−‖x−b‖), it follows that δ(g(x)) ≤ α(δ(x)).We apply the analogous argument to g(x). This an be done, sine g(x) ∈ B(g(b), s/2)∩Y .So δ(g−1(g(x))) ≤ α(δ(g(x))). That is, δ(x) ≤ α(δ(g(x))). We onlude that
δ(x) ≈α δ(g(x)).(b) This follows trivially from (a).() There is s ∈ (0, r) suh that g(ψ(B(0, s))) ⊆ Rng(ψ). Let U = ψ(B(0, s)).Let u, v ∈ U ∩ X be on the same side of bd(X). Let L = [ψ−1(u), ψ−1(v)]. Then

L ⊆ B(0, r)−A and thus ψ(L) ⊆ X. So g(ψ(L)) ⊆ X. Hene ψ−1(g(ψ(L))) ⊆ B(0, r)−A.That is, there is an ar in B(0, r)−A onneting ψ−1(g(u)) and ψ−1(g(v)). So ψ−1(g(u))and ψ−1(g(v)) are on the same side of A. This means that g(u) and g(v) are on the sameside of bd(X).Proposition 11.3. (a) There is N > 1 suh that (a1) and (a2) below hold. Let α, β ∈
MBC, X be an open subset of a normed spae. Suppose that b ∈ bd(X), X is β-LIN-bordered at b, and bd(X) is not 1-dimensional at b. De�ne ᾱ = β ◦α ◦β.(a1) Let ~x, ~y be sequenes in X onverging to b. Suppose that ~x ≈(α,b) ~y. Also assumethat if X is two-sided at b, then for every n ∈ Dom(~x), xn and yn are on the same sideof bd(X). Then ~x ∼N·β ◦ ᾱ ◦4 ◦ β ~y.(a2) Let g ∈ EXT(X) be α-biontinuous at b. Suppose that g(b) = b. Suppose furtherthat if X is two-sided at b, then g is side preserving at b. Let ~x be a sequene in Xonverging to b. Then ~x ∼N·β ◦ ᾱ ◦4 ◦ β g(~x).(b) Let X be an open subset of a normed spae and β ∈ MBC. Suppose that b ∈ bd(X),
X is β-LIN-bordered at b, and X is two-sided at b. Let g ∈ EXT(X) be suh that
g(b) = b, and g is side reversing at b. Let ~x be a sequene in X onverging to b. Then
~x 6∼EXT(X) g(~x).Proof. (a) Let M be a UC-onstant for 〈1/2, 2 〉, M = M2 and N = M2. (See De�nition9.11(a).) We shall prove that N is as required in (a).(a1) Let X, b, ~x, ~y and α be as in (a1). Let 〈ψ,A, r〉 be a boundary hart elementfor b, and assume that ψ is β-biontinuous. We show that ~x ∼N·β ◦ ᾱ ◦4 ◦ β ~y. We mayassume that ~x, ~y ⊆ Rng(ψ). Set ~w = ψ−1(~x) and ~z = ψ−1(~y). Clearly, ~w ≈(ᾱ,0) ~z. Let
σ, η ⊆ N be in�nite. We may assume that either for every i ∈ σ, ‖wi‖ ≤ ‖zi‖, or for every
i ∈ σ, ‖zi‖ < ‖wi‖. Let us assume that the former happens. The ase that ‖zi‖ < ‖wi‖is dealt with in a similar way. Let {mi | i ∈ N} and {m1

i | i ∈ N} be respetively 1-1enumerations of σ and η and set ui = wmi
, vi = zmi

and u1
i = wm1

i
. So ~u ≈(ᾱ,0) ~v.We de�ne by indution in, jn ∈ N and hn ∈ H(BE(0, r)) suh that:(1) ‖vi0‖ < r/2,(2) hn(uin) = vin ,(3) hn is M · ᾱ ◦ ᾱ-biontinuous,(4) supp(hn) ⊆ B(0; 1

2‖uin‖, 2‖vin‖),(5) ‖u1
jn
‖ < ‖uin‖/2 and ‖vin+1

‖ < ‖u1
jn
‖/2,(6) hn(A) = A.



Reonstrution of manifolds from subgroups of homeomorphism groups 207That the onstrution is possible follows from Lemma 9.13(b). Fats (4) and (5) implythat supp(hm) ∩ supp(hn) = ∅ for any m 6= n. So h := ◦n hn is well de�ned.Let γ = M · ᾱ ◦ ᾱ. We verify that h is γ ◦γ-biontinuous. Let u, v ∈ BE(0, r). Thenthere are m,n ∈ N suh that u, hm(u) ∈ BE(0, r) − ⋃
k 6=m supp(hk) and v, hn(u) ∈

BE(0, r) − ⋃
k 6=n supp(hk). If m 6= n, then h(u) = hm ◦hn(u) and h(v) = hm ◦hn(v),and if m = n, then h(u) = hm(u) and h(v) = hm(v). Sine hm ◦hn and hm are γ ◦γ-ontinuous, ‖h(u) − h(v)‖ ≤ γ ◦γ(‖u − v‖). So h is γ ◦γ-ontinuous. The same argu-ment holds for h−1. It follows that h is γ ◦γ-biontinuous. Sine γ ◦γ ≤ M

2 · ᾱ ◦4,we infer that h is M
2 · ᾱ ◦4-biontinuous. By (4) and (5), h(u1

jn
) = u1

jn
for every

n ∈ N. Let g′ = ψ ◦h ◦ψ−1↾BCDE(A, r). Then Dom(g′) = Rng(ψ) ∩ X. Clearly, g′is β ◦ (M2 · ᾱ ◦4) ◦β-biontinuous, and hene g′ is M
2 · β ◦ ᾱ ◦4 ◦β-biontinuous. De�ne

g = g′ ∪ Id↾(X − Rng(ψ)). From (1) and (4) it follows that g ∈ H(X). The fatthat M
2 · β ◦ ᾱ ◦4 ◦β ∈ MBC implies that g too is M

2 · β ◦ ᾱ ◦4 ◦β-biontinuous. Clearly,
x′n := ψ(u1

jn
) ∈ {xi | i ∈ η} and h(x′n) = x′n. For every n ∈ N there is k(n) ∈ σ suhthat ψ(uin) = xk(n) and ψ(vin) = yk(n). From the fat that h(uin) = vin it follows that

g(xk(n)) = yk(n). So g ful�lls the requirements whih are needed in order to show that
~x ∼N·β ◦ ᾱ ◦4 ◦ β ~y.(a2) It follows trivially from Proposition 11.2(b) and (a1) that N is as required.(b) Suppose by ontradition that ~x ∼EXT(X) g(~x). Then (∗) there is h ∈ EXT(X)suh that {i ∈ N | h(xi) = g(xi)} and {i ∈ N | h(xi) = xi} are in�nite. Sine lim ~x = band g is side reversing, (∗) ontradits Proposition 11.2().Proposition 11.4. There is N > 1 suh that the following holds. Let α, β ∈ MBC,and X be an open subset of a normed spae E. Suppose that b ∈ bd(X), X is β-LIN-bordered at b, and bd(X) is 1-dimensional at b. De�ne ᾱ = β ◦α ◦β.(a) Let ~x, ~y be α-abiding sequenes in X onverging to b and ~x ≈(α,b) ~y. Also assumethat if X is two-sided at b, then for every n ∈ Dom(~x), xn and yn are on the same sideof bd(X). Then ~x ∼N·β ◦ ᾱ ◦6 ◦ β ~y.(b) Let g ∈ EXT(X) be α-biontinuous at b. Suppose that g(b) = b. Suppose furtherthat if X is two-sided at b, then g is side preserving at b. Let ~x be an α-abiding sequenein X onverging to b. Then ~x ∼N·β ◦ ᾱ ◦6 ◦ β g(~x).Proof. (a) The proof follows the same steps as the proof of Proposition 11.3(a1). Buthere Lemma 10.3 replaes the use of Lemma 9.13 in the proof of 11.3(a1).(b) The proof follows the same steps as the proof of Proposition 11.3(a2).Proposition 11.5. (a) There is N > 1 suh that (a1) and (a2) below hold. Let α, β ∈
MBC, and X be an open subset of a normed spae E. Suppose that b ∈ bd(X), X is
β-LIN-bordered at b, and bd(X) is 1-dimensional at b. Let 〈ψ,A, r〉 be boundary hartelement for b with ψ being β-biontinuous. If A is a subspae of E, let F = A. If
dim(E) = 2 and A is a half spae of E, let F = bd(A). (So F is a 1-dimensionalsubspae of E.) De�ne ᾱ = β ◦α ◦β.(a1) Let ~x, ~y ⊆ Rng(ψ) be sequenes whih onverge to b, and set ~u = ψ−1(~x) and
~v = ψ−1(~y). Assume that



208 M. Rubin and Y. Yomdin(i) ~x ≈(α,b) ~y,(ii) for every n ∈ Dom(~x) there are ûn, u⊥n , v̂n, v⊥n and λn suh that un = ûn+u
⊥

n ,
vn = v̂n + v

⊥

n , ûn, v̂n ∈ F , u⊥n , v⊥n ⊥ F , λn > 0 and v̂n = λnûn,(iii) if X is two-sided at b, then for every n ∈ Dom(~x), xn and yn are on thesame side of bd(X).Then ~x ∼N·β ◦ ᾱ ◦4 ◦ β ~y.(a2) Let Γ be a modulus of ontinuity , α, β ∈ Γ , and ~x be a Γ -evasive sequene in
X onverging to b. Let g ∈ EXT(X) be α-biontinuous at b, and assume that : g(b) = b,
g is order preserving at b, and if X is two-sided at b then g is side preserving at b. Then
~x ∼N·β ◦ ᾱ ◦4 ◦ β g(~x).In parts (b)�(d) below we assume that Γ is a modulus of ontinuity , β ∈ Γ ∩MBC, Xis an open subset of a normed spae E, b ∈ bd(X), X is β-LIN-bordered at b, and bd(X)is 1-dimensional at b. We also assume that G ≤ EXT±(X), and G is of boundary type Γ .(b) Let 〈ψ,A, r〉 be boundary hart element for b with ψ being β-biontinuous. If A isa subspae of E set F = A, and if dim(E) = 2 and A is a half spae of E, set F = bd(A).(So F is a 1-dimensional subspae of E.) Let ~x, ~y ⊆ Rng(ψ) be sequenes whih onvergeto b, and set ~u = ψ−1(~x) and ~v = ψ−1(~y). Assume that(i) ~x, ~y are Γ -evasive,(ii) for every n ∈ Dom(~x) there are ûn, u⊥n , v̂n, v⊥n and λn suh that un = ûn+u

⊥

n ,
vn = v̂n + v

⊥

n , ûn, v̂n ∈ F , u⊥n , v⊥n ⊥ F , λn < 0 and v̂n = λnûn.Then ~x 6∼G ~y.() Let ~x be a Γ -evasive sequene in X onverging to b. Let g ∈ G. Suppose that
g(b) = b, and g is order reversing at b. Then ~x 6∼G g(~x).(d) Let ~x be a sequene in X onverging to b. Let g ∈ G be suh that g(b) = b and
g is order preserving at b. Assume further that if X is two-sided at b, then g is sidepreserving. Then ~x ∼Γ g(~x).Proof. (a1) The proof follows the same steps as the proof of Proposition 11.3(a1). Buthere Lemma 10.1 replaes the use of Lemma 9.13 in the proof of 11.3(a1).(a2) Let 〈ψ,A, r〉 be boundary hart element for b suh that ψ is β-biontinuous. If Ais a half spae set F = bd(A). Otherwise, set F = A. Let B be an open ball with enter at
b suh that gcl↾(cl(B)∩cl(X)) is α-biontinuous, and cl(B), gcl(cl(B)∩cl(X)) ⊆ Rng(ψ).Let U = ψ−1(B ∩X) and h = (g↾(B ∩X))ψ

−1 .We may assume that ~x ⊆ B and that Dom(~x) = N. Set ~u = ψ−1(~x), and for every
n ∈ N let un = ûn + u

⊥

n , where ûn ∈ F and u
⊥

n ⊥ F . Denote h(~u) by ~v, and forevery n ∈ N let vn = v̂n + v
⊥

n , where v̂n ∈ F and v
⊥

n ⊥ F . Let s > 0 be suh that
B(0, s) ∩ (E − A) ⊆ U, h(U). We may assume that un, ûn, u⊥n , vn, v̂n, v⊥n ∈ B(0, s) forevery n ∈ N. In order to apply (a1), we need to show that v̂n = λnûn, where λn > 0.From Proposition 11.2(a) and the fats that ~x is Γ -evasive, β ∈ Γ and ψ is β-biontinuous,it follows that ~u is Γ -evasive.De�ne ᾱ = β ◦α ◦β. Then h is ᾱ-biontinuous. This implies that ~v too is Γ -evasive. So
lim d(un, F )/‖un‖ = 0 and lim d(vn, F )/‖vn‖ = 0. We may thus assume that d(un, F ) <
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‖un‖/2 and d(vn, F ) < ‖vn‖/2 for every n ∈ N. It follows that for every n, ûn 6= 0. Let λnbe suh that v̂n = λnûn. It is trivial that hcl is ᾱ-biontinuous, and that hcl↾(F ∩B(0, s))is order preserving, that is, for every u ∈ F ∩B(0, s), u and hcl(u) are on the same sideof 0. It follows that for every n there is µn > 0 suh that hcl(ûn) = µnûn. Suppose byontradition that for in�nitely many n's, λn ≤ 0. Take suh an n. Then

‖hcl(un) − hcl(ûn)‖ ≤ ᾱ(‖un − ûn‖) = ᾱ(‖u⊥n‖).But
hcl(un) − hcl(ûn) = vn − µnûn = v

⊥

n + λnûn − µnûn = v
⊥

n − (µn − λn)ûn.So
‖hcl(un) − hcl(ûn)‖ = ‖v⊥n − (µn − λn)ûn‖ ≥ (µn − λn)‖ûn‖ − ‖v⊥n ‖

≥ µn‖ûn‖ − ‖v⊥n ‖ = ‖h(ûn)‖ − ‖v⊥n ‖ ≥ ᾱ−1(‖ûn‖) − ‖v⊥n ‖ ≥ ᾱ−1(‖un‖/2) − ᾱ(‖u⊥n‖).Note that ᾱ(‖u⊥n‖) = ᾱ(‖un − ûn‖) ≥ ‖hcl(un) − hcl(ûn)‖. It follows that
ᾱ−1(‖un‖/2) − ᾱ(‖u⊥n‖) ≤ ᾱ(‖u⊥n‖).So ‖un‖ ≤ 2ᾱ ◦ ᾱ(‖u⊥n‖) + 2ᾱ(‖u⊥n‖) ≤ 4ᾱ ◦ ᾱ(‖u⊥n‖). That is, ‖un‖ ≤ 4ᾱ ◦ ᾱ(d(un, F )).Sine 4ᾱ ◦ ᾱ ∈ Γ , and sine the above holds for in�nitely many n's, ~u is not Γ -evasive.A ontradition. Hene for all but �nitely many n's, λn > 0. Reall that ~v = h(~u). So

~v = ψ−1(g(~x)). Obviously, ~x ≈(α,b) g(~x). Hene by (a), ~x ∼N·β ◦ ᾱ ◦4 ◦ β g(~x).(b) Suppose by ontradition that there are in�nite σ, η ⊆ Dom(~x) and g ∈ G suhthat for every i ∈ σ, g(xi) = yi, and for every i ∈ η, g(xi) = xi. Let h = gψ
−1 . So forsome γ ∈ Γ , h is γ-biontinuous at 0. Let Y = E −A. Then ~u is Γ -evasive with respetto Y and E. Note that for every i ∈ σ, h(ui) = vi, and for every i ∈ η, h(ui) = ui. Weabbreviate hcl by h. De�ne h(ûi) = µiûi. Assume by ontradition that for in�nitelymany i's in η, µi ≤ 0. Sine ~u is Γ -evasive, there is n suh that for every i ∈ η≥n,

‖u⊥i ‖ ≤ 1
4‖ui‖. Let i ∈ η≥n, and assume that µi ≤ 0. Then
γ(δ(ui)) = γ(‖u⊥i ‖) = γ(‖u⊥i ‖) = γ(‖ui − ûi‖) ≥ ‖h(ui) − h(ûi)‖

= ‖ui − µiûi‖ = ‖u⊥i + ûi − µiûi‖ ≥ (1 − µi)‖ûi‖ − ‖u⊥i ‖
≥ ‖ûi‖ − ‖u⊥i ‖ ≥ 3

4‖ui‖ − 1
4‖ui‖ = 1

2‖ui‖.So ~u is not Γ -evasive, a ontradition. It follows that there is i suh that µi > 0. Thisimplies that h is order preserving at 0. In partiular, for every i ∈ σ, µi > 0. We laimthat ~v is Γ -evasive.This is so, sine (i) ~v = h(~u), (ii) γ ∈ Γ , (iii) h is γ-ontinuous and (iv) ~u is Γ -evasive.Let n be suh that for every i ∈ Dom(~v)≥n, δ(vi) ≤ 1
4‖vi‖. Let i ∈ σ≥n. Then

γ ◦2(δ(vi)) ≥ γ(δ(ui)) = γ(‖ui − ûi‖) ≥ ‖h(ui) − h(ûi)‖ = ‖vi − µiûi‖
= ‖v⊥i + (λi − µi)ûi‖ ≥ |λi − µi| ‖ûi‖ − ‖v⊥i ‖ ≥ |λi| ‖ûi‖ − ‖v⊥i ‖
= ‖v̂i‖ − ‖v⊥i ‖ ≥ 3

4‖vi‖ − 1
4‖vi‖ = 1

2‖vi‖.So ~v↾σ≥n is 2 · γ ◦γ-abiding. This ontradits the fat that ~v is Γ -evasive.() Let 〈ψ,A, r〉 be a boundary hart element for b suh that ψ is β-biontinuous. Sine
g ∈ G there is α ∈ Γ and U ∈ NbrE(b) suh that g↾(U ∩X) is α-biontinuous. We may



210 M. Rubin and Y. Yomdinassume that ~x ⊆ Rng(ψ) ∩ U . Let h = gψ
−1 and γ = β ◦α ◦β. Then h is γ-biontinuous.Let ~u = ψ−1(~x) and ~v = h(~u). So ~v = ψ−1(g(~x)). Also, let ui = ûi+u

⊥

i and vi = v̂i+v
⊥

i ,where ûi, v̂i ∈ F and u⊥i , v⊥i ⊥ F . Sine ~u is Γ -evasive, and ~v = h(~u), ~v is Γ -evasive. Wemay thus assume that for every i ∈ Dom(~u), ‖u⊥i ‖ ≤ ‖ui‖/4 and ‖v⊥i ‖ ≤ ‖vi‖/4. Let λibe suh that v̂i = λûi. Suppose by ontradition that for in�nitely many i's, λi ≥ 0. Weabbreviate hcl by h. Let µi be suh that h(ûi) = µiûi. Sine g is order reversing at b,
h is order reversing at 0. So µi < 0. Let i be suh that λi ≥ 0. Then

γ(‖u⊥i ‖) ≥ ‖h(ui) − h(ûi)‖ = ‖v⊥i + λiûi − µiûi‖ ≥ (λi − µi)‖ûi‖ − ‖v⊥i ‖
≥ |µi| ‖ûi‖ − ‖v⊥i ‖ = ‖v̂i‖ − ‖v⊥i ‖ ≥ ‖vi‖/2.But ‖u⊥i ‖ = δ(ui) ≤ γ(δ(vi)). So 2 · γ ◦γ(δ(vi)) ≥ ‖vi‖. That is, ~v is not Γ -evasive, aontradition. It follows that for all but �nitely many i's, λi < 0. By (b), ~x 6∼G g(~x).(d) Let σ, η be in�nite subsets of Dom(~x). Either (i) there is an in�nite ̺ ⊆ σ and

γ ∈ Γ suh that ~x↾̺ is γ-abiding; or (ii) there is an in�nite ̺ ⊆ σ suh that ~x↾̺ is
Γ -evasive.Suppose that ase (i) happens. To get an f ∈ G suh that {i ∈ ̺ | f(xi) = g(xi)} and
{i ∈ η | f(xi) = xi} are in�nite, follow the onstrution in Proposition 11.3(a). However,Lemma 9.13 whih was used in 11.3(a) is replaed here by Lemma 10.3. In ase (ii),follow the proof of (a2) in this proposition.Reall that we deal with the setting where we have a normed spae E and an opensubset X ⊆ E. In this setting, when we write cl(A) we mean clE(A). If we wish to denotethe losure of A with respet to other sets, e.g. the losure of A with respet to X, thenwe write clX(A).Proposition 11.6. For a topologial spae X and a subgroup G ≤ H(X), we de�ne theproperty Pcmpct(~x) of sequenes ~x in X as follows.
Pcmpct(~x) ≡ For every in�nite σ ⊆ Dom(~x) and a sequene {Ui | i ∈ σ} ∈ ∏{Nbr(xi) |
i ∈ σ} onsisting of pairwise disjoint sets , there is a sequene {gi | i ∈ σ} ∈ ∏{G Ui |
i ∈ σ} suh that ◦{gi | i ∈ σ} 6∈ G.Let E be a normed spae and X ⊆ E be open. Let Γ be a ountably generated modulusof ontinuity and G ≤ EXT(X) be Γ -appropriate. (See De�nition 8.6().) Let ~x be a 1-1sequene in X. Then cl(Rng(~x)) is ompat i� Pcmpct(~x) holds.Proof. Suppose �rst that cl(Rng(~x)) is not ompat. Then there is an in�nite σ ⊆
Dom(~x) suh that either {xi | i ∈ σ} is spaed, or {xi | i ∈ σ} is a nononvergent Cauhysequene. For every i ∈ σ let ri = 1

3 inf{‖xj − xi‖ | j ∈ σ − {i}} and Ui = BX(xi, ri).Hene d(Ui, Uj) ≥ ri/3 for any i 6= j in σ. It is easily seen that {Ui | i ∈ N} is cl(X)-disrete. Let {gi | i ∈ σ} ∈ ∏{G Ui | i ∈ σ}. So {gi | i ∈ σ} is cl(X)-disrete. Sine G is
Γ -appropriate, ◦{gi | i ∈ σ} ∈ G. So ¬Pcmpct(~x) holds.Suppose that ~x is 1-1 and that cl(Rng(~x)) is ompat. Let {αi | i ∈ N} ⊆ Γ be agenerating sequene for Γ . That is, for every α ∈ Γ there is i ∈ N suh that α � αi.We also assume that for every i ∈ N, {j | αj = αi} is in�nite. Let σ ⊆ Dom(~x) bein�nite, and for every i ∈ σ let Ui ∈ NbrX(xi). Assume that for any i 6= j, Ui ∩ Uj = ∅.Sine cl(Rng(~x)) is ompat, {xi | i ∈ σ} ontains a 1-1 onvergent subsequene {xin |
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n ∈ N}. De�ne yn = xin and Vn = Uin ∩ B(yn,

1
n+1 ). For every n let gin ∈ G Vnbe suh that gin↾Vn is not αn-ontinuous. It is easy to see that suh a gin exists. For

i ∈ σ − {in | n ∈ N} let gi = Id. Let y = limn yn and g = ◦{gi | i ∈ σ}. Then there isno α ∈ Γ and U ∈ Nbr(y) suh that g↾(U ∩X) is α-ontinuous. We justify this laim.Let α ∈ Γ . Then for some i ∈ N, α � αi. Let r > 0 be suh that α↾[0, r) ≤ αi↾[0, r).There is n suh that αin = αi, diam(Vn) < r and Vn ⊆ U . There are u, v ∈ Vn suh that
‖gin(u) − gin(v)‖ > αi(‖u− v‖). Sine ‖u − v‖ < r, we have αi(‖u− v‖) ≥ α(‖u− v‖).So ‖gin(u)−gin(v)‖ > α(‖u−v‖). That is, ‖g(u)−g(v)‖ > α(‖u−v‖). Hene g↾(U ∩X)is not α-ontinuous. It follows that g 6∈ G. So Pcmpct(~x) holds.Explanation. For a topologial spae 〈X, τX 〉 and G ≤ H(X) let Ap : G × X → Xbe the appliation funtion, that is, Ap(g, x) = g(x) and let M(X,G) be the struture
〈X, τX , G;∈, ◦ ,Ap〉. Note that Pcmpct(~x) is a property of ~x whih an be expressedin M(X,G). Hene if ~x ⊆ X, Pcmpct(~x) holds and ψ : M(X,G) ∼= M(Y,H), then
Pcmpct(ψ(~x)) holds. So in the ase that X is an open subset of a normed spae E and
G is Γ -appropriate, and a similar fat holds for Y , then the property �cl(Rng(~x)) isompat� is preserved under ψ. In what follows we shall de�ne additional propertiesof ~x whih are expressible in M(X,G). So they too are preserved under isomorphismsbetween M(X,G) and M(Y,H).Definition 11.7. Let X be a topologial spae, G ≤ H(X) and ~x be a sequene in X.(a) Let Pprerep(~x) be the following property of ~x:(i) Dom(~x) = N and ~x is 1-1,(ii) no subsequene of ~x is onvergent in X,(iii) Pcmpct(~x) holds.A sequene ~x whih ful�lls Pprerep is alled a point pre-representative.(b) Let Pcnvrg(~x) and Ppnt(~x) be the following properties:

Pcnvrg(~x) ≡ For every in�nite σ ⊆ Dom(~x) and g ∈ G,if ~x↾σ ∼G g(~x)↾σ, then ~x ∼G g(~x).
Ppnt(~x) ≡ Pprerep(~x) ∧ Pcnvrg(~x). �Lemma 11.8. Let Γ be a ountably generated modulus of ontinuity. Suppose that E isa normed spae, X ⊆ E is open, X is loally Γ -LIN-bordered , and G ≤ EXT(X) is

Γ -appropriate. Let ~x be a point pre-representative in X. Then Pcnvrg(~x) holds i� ~x isonvergent , and (i), (ii), (iii), (iv) or (v) below happen. Set b = lim ~x.(i) For some β ∈ Γ , X is β-SLIN-bordered at b.(ii) For some β ∈ Γ , X is β-LIN-bordered at b, X is two-sided at b, and bd(X) isnot 1-dimensional at b.(iii) bd(X) is 1-dimensional and G-order-reversible at b, and for some α ∈ Γ , ~x is
α-abiding.(iv) bd(X) is 1-dimensional and G-order-reversible at b, and ~x is Γ -evasive.(v) bd(X) is 1-dimensional and G-order-irreversible at b.Proof. We shall use the following trivial fats.



212 M. Rubin and Y. YomdinClaim 1. If ~y ∼A ~z, then for every in�nite σ ⊆ Dom(~y), ~y↾σ ∼A ~z↾σ.Claim 2. Suppose that ~y is a sequene in X onverging to a point in bd(X). Assumefurther that bd(X) is 1-dimensional at lim ~y. Then either ~y is Γ -evasive, or for some
α ∈ Γ , ~y has an α-abiding subsequene.Claim 3. Suppose that ~y is a sequene in X onverging to a point in bd(X). Assumefurther that bd(X) is two-sided at lim ~y. Let g ∈ EXT(X) be suh that gcl(lim ~y) = lim ~y,and suppose that g is side reversing. Then g(~y) 6∼EXT(X) ~y.Proof. The laim follows trivially from Proposition 11.2().Claim 4. Let ~y be a sequene in X suh that ~y is onvergent in cl(X). Suppose that
g ∈ EXT(X) and gcl(lim ~y) 6= lim ~y. Then g(~y) 6∼EXT(X) ~y.The following fat does require a proof.Claim 5. Let ~x be a point pre-representative. If Pcnvrg(~x) holds , then ~x is onvergent.Proof. Suppose that ~x is not onvergent. Let ~y, ~z be onvergent subsequenes of ~x suhthat lim ~y 6= lim~z. Assume further that (∗) if bd(X) is 1-dimensional at lim ~y, then either
~y is Γ -evasive, or for some α ∈ Γ , ~y is α-abiding. Sine X is loally Γ -LIN-bordered,there is g ∈ G suh that(1) gcl(lim ~y) = lim ~y and gcl(lim~z) 6= lim ~z,(2) if X is two-sided at lim ~y, then g is side preserving,(3) if bd(X) is 1-dimensional at lim ~y, then g is order preserving.By Propositions 11.3(a2), 11.4(b) and 11.5(a2) and by (∗), g(~y) ∼G ~y. By Claim 4,
g(~z) 6∼G ~z, and by Claim 1, g(~x) 6∼G ~x. Hene ¬Pcnvrg(~x) holds. This proves Claim 5.Suppose that ~x satis�es lause (i) in the statement of the lemma. We show that
Pcnvrg(~x) holds. Let g ∈ G. If gcl(b) 6= b, then by Claim 4, g(~x′) 6∼G ~x′, for everysubsequene of ~x′ of ~x. If gcl(b) = b, then by Proposition 11.3(a2), g(~x) ∼G ~x. So
Pcnvrg(~x) holds.Suppose that ~x satis�es lause (ii) in the statement of the lemma. Let g ∈ G. If
gcl(b) 6= b, then by Claim 4, g(~x′) 6∼G ~x′ for every subsequene of ~x′ of ~x. Suppose that
gcl(b) = b. If g is side reversing, then by Claim 3, g(~x′) 6∼G ~x′ for every subsequene of ~x′of ~x. If g is side preserving, then by Proposition 11.3(a2), g(~x) ∼G ~x. So Pcnvrg(~x) holds.Suppose that ~x satis�es lause (iii) above. Let g ∈ G. The ase gcl(b) 6= b, istreated as in (i) and (ii). Suppose that gcl(b) = b. If X is two-sided at x and g is sidereversing, then by Claim 3, g(~x′) 6∼G ~x′, for every subsequene of ~x′ of ~x. Suppose thateither X is not two-sided at b, or X is two-sided at b and g is side preserving. Then byProposition 11.4(b), g(~x) ∼G ~x. So Pcnvrg(~x) holds.Suppose that ~x satis�es lause (iv). As above, we may assume that gcl(b) = b, andthat if X is two-sided at b, then g is side preserving. If g is order reversing at b, then byProposition 11.5(), g(~x′) 6∼G ~x′, for every subsequene of ~x′ of ~x. If g is order preservingat b, then by Proposition 11.5(a2), g(~x) ∼G ~x. So Pcnvrg(~x) holds.



Reonstrution of manifolds from subgroups of homeomorphism groups 213Suppose that ~x satis�es lause (v). We may assume that gcl(b) = b, and that if X istwo-sided at b, then g is side preserving. Sine bd(X) is G-order-irreversible at b, g mustbe order preserving at b. Then by Proposition 11.5(d), g(~x) ∼G ~x. So Pcnvrg(~x) holds.We have shown that if ~x is point pre-representative, ~x is onvergent, and ~x satis�esone of the lauses (i)�(v), then Pcnvrg(~x) holds.Let ~x be a point pre-representative, and suppose that Pcnvrg(~x) holds. By Claim 5,
~x is onvergent. Suppose by ontradition that ~x does not satisfy any of the lauses(i)�(v). Let b = lim ~x. Then bd(X) is 1-dimensional and G-order-reversible at b, and(1) ~x is not Γ -evasive; (2) there is no α ∈ Γ suh that ~x is α-abiding. There is γ ∈ Γand a subsequene ~y of ~x suh that ~y is γ-abiding. Sine Γ is ountably generated, thereis a subsequene ~z of ~x suh that ~z is Γ -evasive. Let g ∈ G be suh that g is orderreversing at b, and if X is two-sided at x, then g is side preserving. By Proposition11.5(), g(~z) 6∼G ~z. So g(~x) 6∼G ~x. By Proposition 11.4(b), g(~y) ∼G ~y. So ¬Pcnvrg(~x)holds. A ontradition.We represent points in bd(X) by sequenes ~x in X whih satisfy Ppnt(~x). Suhsequenes are alled point representatives. By the above proposition, for every x ∈ bd(X),there is ~x suh that lim ~x = x and Ppnt(~x) holds. So every point of bd(X) is represented.We shall �nd a property ϕpnteq(~x, ~y) whih for point representatives ~x, ~y expressesthe fat that lim ~x = lim ~y. Let ~x be a point representative. The weak stabilizer of ~x isde�ned as follows:

wstab(~x) = {g ∈ G | g(~x) ∼G ~x}.De�ne
Ppnteq(~x, ~y) ≡ (wstab(~x) ⊆ wstab(~y)) ∨ (wstab(~y) ⊆ wstab(~x)).For an open subset U of X de�ne opcl(U) = U ∪ (bd(X) − acccl(X)(X − U)). Then

opcl(U) is open in cl(X). Also, if V ∈ Ro(cl(X)), then V = opcl(V ∩ X). Let B =

{opcl(U) | U is open in X}. Hene Ro(cl(X)) ⊆ B, and so B is an open base for cl(X).Every open subset U of X will represent opcl(U). So the set of open subsets of cl(X)whih are represented forms an open base for cl(X).We next de�ne property Pblng(~x, U). For a point representative ~x and an open subset
U of X, Pblng(~x, U) will express the fat that lim ~x ∈ opcl(U). Let
Pblng(~x, U) ≡ For every sequene ~y: if Ppnt(~y) and Ppnteq(~x, ~y), then Rng(~y)U is �nite.Proposition 11.9. Let Γ be a ountably generated modulus of ontinuity. Suppose that
E is a normed spae, X ⊆ E is open, and X is loally Γ -LIN-bordered. Let G be a
Γ -appropriate subgroup of EXT(X).(a) Suppose that ~x, ~y are point representatives. Then lim ~x = lim ~y i� Ppnteq(~x, ~y)holds.(b) Let ~x be a point representative, and U ⊆ X be open. Then lim ~x ∈ opcl(U) i�
Pblng(~x, U) holds.Proof. (a) Let ~x, ~y be point representatives. If lim ~x 6= lim ~y, then there is g ∈ G suhthat g is the identity on some neighborhood of lim ~x and g(lim ~y) 6= lim ~y. So g ∈
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wstab(~x) − wstab(~y). Similarly, wstab(~y) 6⊆ wstab(~x). So wstab(~x) and wstab(~y) areinomparable.Suppose that lim ~x = lim ~y. De�ne b = lim ~x. If for some α ∈ Γ , bd(X) is α-SLIN-bordered at b, then by Proposition 11.3(a2), wstab(~x) = wstab(~y) = {g ∈ G | g(b) = b}.Suppose that X is two-sided at b and bd(X) is not 1-dimensional at b. Then wstab(~x)

= wstab(~y) = {g ∈ G | g(b) = b and g is side preserving at b}. This follows from Propo-sition 11.3(a2) and (b).Suppose that bd(X) is 1-dimensional at b. If bd(X) is G-order-irreversible at b, and Xis not two-sided at b, then wstab(~x) = wstab(~y) = {g ∈ G | g(b) = b}. This follows fromProposition 11.5(d). Next assume that bd(X) is G-order-irreversible at b, and X is two-sided at b. Then wstab(~x) = wstab(~y) = {g ∈ G | g(b) = b and g is side preserving at b}.This follows from Propositions 11.5(d) and 11.3(b).Suppose that G-order-reversible at b. Then by Lemma 11.8, ~x is Γ -evasive, or thereis α ∈ Γ suh that ~x is α-abiding. The same holds for ~y. If both ~x and ~y are evasiveor both are abiding, then wstab(~x) = wstab(~y). This follows from Propositions 11.4(b),11.5(a2), 11.5() and 11.3(b). Suppose that ~x is evasive and ~y is abiding. Then wstab(~x)onsists of all g ∈ G suh g(b) = b, g is order preserving at b, and if X is two-sided at
b, then g is side preserving at b. wstab(~y) onsists of all g ∈ G suh that g(b) = b, andif X is two-sided at b, then g is side preserving at b. So wstab(~x) ⊆ wstab(~y). We haveshown that if lim ~x = lim ~y, then wstab(~x) and wstab(~y) are omparable.(b) Let ~x be a point representative, U ⊆ X be open inX and b = lim ~x. If b ∈ opcl(U),then for every sequene ~y in X suh that lim ~y = b there is n suh that Rng(~y≥n) ⊆ U .So Pblng(~x, U) holds. If b 6∈ opcl(U), then there is a sequene ~y in X whih onvergesto b and suh that Rng(~y) is disjoint from U . There is a subsequene ~z of ~y suh that
Ppnt(~z) holds. So Ppnteq(~x, ~z) holds. Hene ¬Pblng(~x, U) holds.Proof of Theorem 8.8. Part (a) of 8.8 is a speial ase of (b), so we prove (b). Let
X,Y,G,H and τ be as in (b). Then τ indues an isomorphism τ̃ between M(X,G) and
M(Y,H). Clearly, properties Ppnt(~x), Ppnteq(~x) and Pblng(~x) are preserved by τ̃ . Thisimplies the bi-extendability of τ .



12. The omplete Γ -biontinuity of the induing homeomorphismIn the previous hapter we have shown that if (HCMP.LC
Γ

(X))τ = HCMP.LC
∆

(Y ), then
τ ∈ EXT±(X,Y ). Further, by Theorem 3.27, τ is loally Γ -biontinuous. In this hapterwe �nally onlude that τ is ompletely loally Γ -biontinuous. However, at this pointwe an only show this for prinipal Γ 's.12.1. Γ -ontinuity in diretions parallel to the boundary of XDefinition 12.1. (a) Let S be a set and P be a partition of S, that is, P is a pairwisedisjoint family whose union is S. Denote S by SP . For T ⊆ S let P↾T := {P∩T | P ∈ P}.Let a ∼P b mean that there is P ∈ P suh that a, b ∈ P . If X is a topologial spae, and
S ⊆ X is an open set, then P is alled an open sum partition with respet to X.In (b)�(d) assume that 〈X, d 〉, 〈Y, e 〉 are metri spaes, τ : X ∼= Y , α ∈ MC and
Γ ⊆ MC. Let P be an open sum partition with respet to X and S = SP .(b) Call τ an 〈α,P 〉-ontinuous funtion if for every P ∈ P and x1, x2 ∈ P , e(τ (x1),

τ (x2)) ≤ α(d(x1, x2)), and all τ an 〈α,P 〉-inversely-ontinuous if for every P ∈ Pand x1, x2 ∈ P , d(x1, x2) ≤ α(e(τ (x1), τ (x2))). We say that τ is 〈α,P 〉-biontinuousif for every P ∈ P and x1, x2 ∈ P , e(τ (x1), τ (x2)) ≤ α(d(x1, x2)) and d(x1, x2) ≤
α(e(τ (x1), τ (x2))).() We say that τ is 〈α,P 〉-ontinuous at x if there is T ∈ Nbr(x) suh that T ⊆ Sand τ is 〈α,P↾T 〉-ontinuous, and τ is said to be 〈Γ ,P 〉-ontinuous at x if there is α ∈ Γsuh that τ is 〈α,P 〉-ontinuous at x. The notions of 〈α,P 〉-inverse-ontinuity at x,
〈α,P 〉-biontinuity at x, 〈Γ ,P 〉-inverse-ontinuity at x and 〈Γ ,P 〉-biontinuity at x arede�ned analogously.(d) Call τ a loally 〈Γ ,P 〉-ontinuous funtion if for every x ∈ S, τ is 〈Γ ,P 〉-ontinuous at x. The notions of loal 〈Γ ,P 〉-inverse-ontinuity and loal 〈Γ ,P 〉-bi-ontinuity are de�ned analogously. �The partitions P that will be used here are of the following form. Let F be a losedlinear subspae of E. Then P is the partition of E into the osets of F .The next goal is to show that if (HCMP.LC

Γ
(X))τ ⊆ HCMP.LC

Γ
(Y ), then for every

x ∈ bd(X) there is α ∈ Γ and a neighborhood of the identity in the group of translationsparallel to the boundary of X suh that for every h in this neighborhood, hτ is α-biontinuous at τ cl(x).Reall that the notion of deayability was de�ned in De�nition 3.1(). We shall useit now again for the following situation. Let BCDE(A, r) be a linear boundary hartdomain, X = clB(0,r)(BCDE(A, r)), H = {trv | v ∈ bdE(A)} and λ be the natural ationof H on X. Then λ is deayable. [215℄



216 M. Rubin and Y. YomdinWhen dealing with partial ations, it is often the ase that we wish to perform aomposition g ◦ f , where Rng(f) 6⊆ Dom(g). Suh a omposition is onsidered to belegal. The domain of the resulting funtion is f−1(Rng(f) ∩ Dom(g)).Proposition 12.2. (a) Suppose that BCDE(A, r′) is a linear boundary hart domainand L = bdE(A). So L is a losed subspae of E. Let L′ = L ∩ B(0, r′). So L′ =

bdB(0,r′)(BCDE(A, r′)). Let X = BCDE(A, r′)∪L′ and H = {trEv | v ∈ L}. We equip Hwith the norm topology of L. Let λ be de�ned as follows :
Dom(λ) = {〈h, z 〉 | h ∈ H and z, h(z) ∈ X} and λ(h, z) = h(z).Then λ is a partial ation of H on X.(b) Let BCDE(A, r′) et. be as in (a) and α(t) = 2t. Then λ is α-deayable in X.() Let BCDE(A, r′) et. be as in (a). Then for every x ∈ L′, x is a λ-limit-point.Proof. (a) This is trivial.(b) It su�es to hek that λ is α-deayable at 0. We take r0 to be r′. For r ∈ (0, r′)we take V = V0,r to be {trEv | v ∈ BL(0, r/4}. So indeed V × B(0, ar) ⊆ Dom(λ).(Reall that a = 1/2.) It thus su�es to show that for every normed spae E, r > 0 and

v ∈ B(0, r/4) there is g ∈ H(E) suh that(i) supp(g) ⊆ B(0, r),(ii) for every x ∈ E, g(x) − x ∈ span({v}),(iii) g↾B(0, r/2) = trv↾B(0, r/2),(iv) g is 2-bilipshitz.Let k : [0,∞) → [0,∞) be the pieewise linear funtion suh that k(t) = 1 for t ∈ [0, r/2],
k(t) = 0 for t ≥ r, and k is linear in [r/2, r]. So (k↾[r/2, r])(t) = 2 − 2t/r. Let

g(x) = x+ k(‖x‖) · v.It is trivial that (i)�(iii) hold. We hek that (iv) holds. Let x, y ∈ E. If ‖x‖, ‖y‖ ≥ r or
‖x‖, ‖y‖ ≤ r/2, then ‖g(x) − g(y)‖ = ‖x− y‖. Let u = g(x) and w = g(y). Assume �rstthat ‖x‖, ‖y‖ ∈ [r/2, r]. Then u− w = (x− y) − 2

r (‖x‖ − ‖y‖) · v. So
‖u− w‖ ≤ ‖x− y‖ +

2

r
‖x− y‖ · ‖v‖ <

(
1 +

2

r
· r
4

)
‖x− y‖ =

3

2
‖x− y‖and

‖u− w‖ ≥ ‖x− y‖ − 2

r
‖x− y‖ · ‖v‖ >

(
1 − 2

r
· r
4

)
‖x− y‖ =

1

2
‖x− y‖.That is, ‖x− y‖ < 2‖u− w‖.Suppose that r/2 < ‖x‖ ≤ r and ‖y‖ < r/2. Let z ∈ [x, y] be suh that ‖z‖ = r/2.Let f ∈ {g, g−1}. Then

‖f(x) − f(y)‖ ≤ ‖f(x) − f(z)‖ + ‖f(z) − f(y)‖ ≤ 2‖x− z‖ + ‖z − y‖
< 2(‖x− z‖ + ‖z − y‖) = 2‖x− y‖.The ase that r/2 < ‖x‖ ≤ r and ‖y‖ > r is dealt with in a similar way. The ase that

‖x‖ < r/2 and ‖y‖ > r too is dealt with in a similar way.() It is trivial that every x ∈ X, and in partiular every x ∈ L′, is a λ-limit-point.



Reonstrution of manifolds from subgroups of homeomorphism groups 217Definition 12.3. Let 〈X, d 〉 be a metri spae, P be an open sum partition with S = SP ,
H be a topologial group and λ be a partial ation of H on X. Denote the unit of H by
eH , and for g ∈ H set ĝ = gλ.(a) Let x ∈ S. We say that 〈H,λ 〉 is P-translation-like at x if for everyM ∈ Nbr(eH)and U ∈ Nbr(x) there are:(i) N ∈ Nbr(eH) suh that N ⊆M ,(ii) T,B ∈ Nbr(x) suh that T ⊆ B ⊆ S ∩ U and N ×B ⊆ Dom(λ),(iii) K > 0;suh that for every P ∈ P and distint x0, x1 ∈ P ∩ T there are n ≤ K/d(x0, x1) and
g1, . . . , gn ∈ N whih satisfy:(1) g1 = eH ,(2) for every i = 1, . . . , n− 1, ĝi(x1) = ĝi+1(x0),(3) ĝn(x1) 6∈ B.(b) Let L ⊆ S. We say that 〈H,λ 〉 is P-translation-like in L if for every x ∈ L, 〈H,λ 〉is P-translation-like at x. �The notion of a P-translation-like ation will be used in the following setting. Let
BCDE(A, r) be a linear boundary hart domain, X = clB(0,r)(BCDE(A, r)) and H =

{trv | v ∈ bdE(A)}. The natural partial ation of H on X is translation-like.Proposition 12.4. Let BCDE(A, r) be a linear boundary hart domain, L = bdE(A).So L is a losed subspae of E. Let L′ = L ∩ B(0, r). So L′ = bdB(0,r)(BCDE(A, r)).Let X = BCDE(A, r)∪L′, P = {X ∩ (v+L) | v ∈ X} and H = {trEv | v ∈ L}. We equip
H with the norm topology of L. Let λ be the following partial ation of H on X:

Dom(λ) = {〈h, z 〉 | h ∈ H and z, h(z) ∈ X} and λ(h, z) = h(z).Then λ is P-translation-like in X.Proof. The proof is trivial.The following lemma will be applied to the group of translations in a diretion parallelto the boundary of a linear boundary hart domain. This lemma aptures the mainargument in the proof of Lemma 12.6.Lemma 12.5. Let 〈X, dX 〉 and 〈Y, dY 〉 be metri spaes , and τ : X ∼= Y . Let Γ be aountably generated modulus of ontinuity , and let α ∈ MBC. Let S ⊆ X be open, and
P be a partition of S. Let H be a topologial group and λ be a partial ation of H on X.Let x ∈ S. Assume that :(i) S ⊆ Fld(λ),(ii) λ is P-translation-like at x,(iii) λ is α-deayable in S,(iv) x is a λ-limit-point ,(v) there is U ∈ Nbr(x) suh that for every g ∈ H(X), if supp(g) ⊆ U and g is

α ◦α-biontinuous , then gτ is Γ -biontinuous at τ (x).Then τ is inversely 〈Γ ,P 〉-ontinuous at x.



218 M. Rubin and Y. YomdinProof. Suppose by ontradition that τ is not inversely 〈Γ ,P 〉-ontinuous at x. Theonditions of Lemma 3.11 hold for x, aording to the following orrespondene. Thegroup G of 3.11 is H(X) here, and N of 3.11 is S here. Also, sine x is a λ-limit-point,
κ := min({κ(x, Vλ(x)) | V ∈ Nbr(eH)}) ≥ ℵ0. Hene Γ is (≤κ)-generated. It follows from3.11 that there are V ∈ Nbr(x), M ∈ Nbr(eH) and γ ∈ Γ suh that M × V ⊆ Dom(λ),and (i) for every h ∈M , (hλ)

τ ↾τ (V ) is γ-biontinuous.For g ∈ H denote ĝ = gλ. Sine λ is P-translation-like at x, there are:(ii) N ∈ Nbr(eH) suh that N ⊆M ,(iii) T,B ∈ Nbr(x) suh that T ⊆ B ⊆ S ∩ V ,(iv) K > 0,suh that for every P ∈ P and distint x0, x1 ∈ P ∩ T there are n ≤ K/d(x0, x1) and
eH = g1, . . . , gn ∈ N whih satisfy: ĝi(x1) = ĝi+1(x0) for every i = 1, . . . , n − 1, and
ĝn(x1) 6∈ B.Let C = τ (B) and y = τ (x). Sine C is a neighborhood of y, d := d(y, Y − C) > 0.Let t > 0 be suh that τ (B(x, t)) ⊆ B(y, d/2) and B(x, t) ⊆ T . Set K∗ = 2K/d. Bylause M2 in De�nition 1.9, K∗ · γ ∈ Γ . We have assumed that τ−1 is not 〈Γ , τ (P) 〉-ontinuous at y. Hene there are P ∈ P and y0, y1 ∈ τ (B(x, t) ∩ P ) suh that

d(τ−1(y0), τ
−1(y1)) > K∗γ(d(y0, y1)).For ℓ = 0, 1 let xℓ = τ−1(yℓ), hene x0, x1 ∈ B(x, t) ⊆ T . So there are n ≤ K/d(x0, x1)and eH = g1, . . . , gn ∈ N suh that for every i = 1, . . . , n − 1, gi(x1) = gi+1(x0) and

gn(x1) 6∈ B. For i = 2, . . . , n let xi = gi(x1) and yi = τ (xi). Sine y0 ∈ τ (B(x, t)) ⊆
B(y, d/2), we have d(y0, y) < d/2. Note that(1) For every i = 1, . . . , n, gτi (y0) = yi−1 and gτi (y1) = yi,and reall that(2) y0, y1 ∈ τ (B(x, t)) ⊆ τ (V ),(3) g1, . . . , gn ∈ N ⊆M .So by (i) and (1)�(3), d(yi−1, yi) ≤ γ(d(y0, y1)) for every i = 1, . . . , n. Reall that
d(x0, x1) > K∗γ(d(y0, y1)). Also, xn 6∈ B and hene yn 6∈ C. So

d(y, Y − C) ≤ d(y, yn) ≤ d(y, y0) +
n∑

1=1

d(yi−1, yi) < d/2 + nγ(d(y0, y1))

≤ d/2 +
K

d(x0, x1)
· γ(d(y0, y1))

< d/2 +
K

K∗γ(d(y0, y1))
· γ(d(y0, y1))

= d/2 +
K

2K
d γ(d(y0, y1))

· γ(d(y0, y1)) = d.But d(y, Y − C) = d, a ontradition.



Reonstrution of manifolds from subgroups of homeomorphism groups 219Lemma 12.6. Assume the following situation.(1) Γ ,∆ are ountably generated moduli of ontinuity.(2) X ⊆ E and Y ⊆ F are open subsets of the normed spaes E and F , X is Γ -LIN-bordered and Y is ∆-LIN-bordered.(3) τ ∈ EXT±(X,Y ), G is a Γ -appropriate subgroup of EXT(X), H is a ∆-appro-priate subgroup of EXT(Y ) and Gτ = H.(4) x ∈ bd(X), 〈ϕ,A, r〉 is a boundary hart element for x, γ ∈ Γ and ϕ is γ-biontinuous.(5) y ∈ bd(Y ), 〈ψ,B, s〉 is a boundary hart element for y, δ ∈ ∆ and ψ is δ-biontinuous.(6) τ cl(x) = y and τ (ϕ(BCDE(A, r))) ⊆ ψ(BCDF (B, s)).(7) Set L = bd(A), X̂ = BCDE(A, r)∪ (L∩B(0, r)), τ̂ = ψ−1 ◦ τ cl ◦ϕ, Ŷ = τ̂(X̂) and
P = {(v + L) ∩ X̂ | v ∈ X̂}.Then τ̂ is inversely 〈∆,P 〉-ontinuous at 0.Proof. We may assume that X − Rng(ϕ) 6= ∅. From the fat that G has boundary type

Γ it follows that there is Z ∈ NbrE(x) suh that G Z ∩X ⊇ HCMP.LC
Γ

(X) Z ∩X . Wemay also assume that ϕ(BCDE(A, r)) ⊆ Z.We wish to apply Lemma 12.5 to X̂, Ŷ and τ̂ . More spei�ally, the roles of theobjets mentioned in 12.5 are taken by the following objets here. The role of Γ in 12.5is taken by ∆ here, the spaes X,Y in 12.5 are X̂, Ŷ here, τ of 12.5 is τ̂ , α of 12.5 is thefuntion y = 2x, S is X̂ and P of 12.5 is P here. The topologial group H appearing in12.5 is {trEv | v ∈ L} equipped with the norm topology of L, and λ is the natural partialation of {trEv | v ∈ L} on X̂.Our next goal is to de�ne the open set U appearing in lause (v) of 12.5. We �rsthek that ϕ(X̂) = cl(X) ∩ Rng(ϕ) and that ϕ(X̂) is open in cl(X). Clearly, X̂ ⊆
clE(BCDE(A, r)). So if u ∈ X̂, then by the ontinuity of ϕ, ϕ(u) ∈ clE(ϕ(BCDE(A, r))) ⊆
cl(X). That is, ϕ(X̂) ⊆ cl(X). Now, X̂ is losed in B(0, r) and so B(0, r)− X̂ is open in
B(0, r). So B(0, r)−X̂ is open in E. Sine ϕ takes open subsets of E to open subsets of E,
ϕ(B(0, r)−X̂) is open in E. Also, ϕ(B(0, r)−X̂)∩X = ∅. So ϕ(B(0, r)−X̂)∩cl(X) = ∅.It follows that Rng(ϕ)∩cl(X) = ϕ(X̂). From the fat that Rng(ϕ) is open in E it followsthat ϕ(X̂) is open in cl(X).Sine x = ϕ(0) and 0 ∈ X̂, it follows that ϕ(X̂) ∈ Nbrcl(X)(x). So d(x, cl(X) −
ϕ(X̂)) > 0. Let r′ ∈ (0, r) be suh that diam(ϕ(X̂ ∩ B(0, r′))) < d(x, cl(X) − ϕ(X̂))/2.The open set U appearing in lause (v) of 12.5 is X̂ ∩BE(0, r′).We have to show that lauses (i)�(v) of 12.5 hold. It follows from Proposition 12.2(b)that λ is α-deayable in X̂, and from Proposition 12.2() that 0 is a λ-limit-point. Itfollows from Proposition 12.4 that λ is P-translation-like at 0.We hek that U satis�es lause (v) of 12.5. Note that X̂ = clB(0,r)(BCDE(A, r)).We shall also use the fat that if clE(A) ⊆ Dom(ϕ), then clE(ϕ(A)) = ϕ(clE(A)). Thisfollows from the fat that ϕ takes losed subsets of E to losed subsets of E.Let β = α ◦α. So β(t) = 4t. Let g ∈ H(X̂) be β-biontinuous and supp(g) ⊆ U . Inorder to prove that lause (v) is ful�lled, it has to be shown that gτ̂ is ∆-biontinuous at



220 M. Rubin and Y. Yomdin
τ̂(0E). Reall that τ̂ = ψ−1 ◦ τ cl ◦ϕ. So gτ̂ = ((gϕ)τ

cl

)ψ
−1 . Set ĥ = gϕ and ̺ = γ ◦β ◦γ.Sine g is β-biontinuous and ϕ is γ-biontinuous, it follows that ĥ is ̺-biontinuous.Also, β ∈ Γ

LIP ⊆ Γ and γ ∈ Γ , so ̺ ∈ Γ .Note that Dom(g) = X̂ ⊆ Dom(ϕ). So Dom(ĥ) = ϕ(X̂) and hene Dom(ĥ) is openin cl(X). It follows trivially from the de�nitions of X̂ and U that clE(U) ⊆ X̂. Hene
clE(supp(g)) ⊆ X̂ ⊆ Dom(ϕ) and so clE(ϕ(supp(g))) = ϕ(clE(supp(g))). So

clE(supp(ĥ)) = clE(ϕ(supp(g))) = ϕ(clE(supp(g))) ⊆ ϕ(clE(U) ⊆ ϕ(X̂) = Dom(ĥ).Let h̄ = ĥ ∪ Id↾(cl(X) − Dom(ĥ)). We show that h̄ ∈ HΓ (cl(X)). That is, h̄ ∈ H(cl(X))and h̄ is Γ -biontinuous. Let u ∈ cl(X). If u ∈ Dom(ĥ), then sine Dom(ĥ) is openin cl(X) and ĥ is ontinuous, we infer that h̄ is ontinuous at u. If u 6∈ Dom(ĥ), thensine clE(supp(ĥ)) ⊆ Dom(ĥ), it follows that u ∈ cl(X) − clE(supp(ĥ)). So there is
V ∈ Nbrcl(X)(u) suh that h̄↾V = Id. Hene h̄ is ontinuous at u. The same argumentapplies to h̄−1. So h̄ ∈ H(cl(X)).We now show that h̄ is Γ -biontinuous. Reall that X − Rng(ϕ) 6= ∅ and hene
X −Dom(ĥ) 6= ∅. Sine ϕ is γ-ontinuous, it follows that Dom(ĥ) and hene supp(ĥ) arebounded. Set c = d(supp(ĥ), cl(X) − Dom(ĥ)) and e = diam(supp(ĥ)). Clearly, e < ∞.We show that c > 0. Reall that supp(g) ⊆ U , and hene supp(ĥ) = ϕ(supp(g)) ⊆ ϕ(U).Also, x = ϕ(0) ∈ ϕ(U). So

c = d(supp(ĥ), cl(X) − Dom(ĥ)) ≥ d(ϕ(U), cl(X) − ϕ(X̂))

≥ d(x, cl(X) − ϕ(X̂)) − diam(ϕ(U))

≥ d(x, cl(X) − ϕ(X̂)) − d(x, cl(X) − X̂)/2 = d(x, cl(X) − X̂)/2 > 0.Let u, v ∈ cl(X). If u, v ∈ supp(ĥ), then ‖h̄(u) − h̄(v)‖ ≤ ̺(‖u − v‖). If u, v ∈
cl(X)−supp(ĥ), then ‖h̄(u)−h̄(v)‖ = ‖u−v‖. Suppose that u ∈ supp(ĥ) and v 6∈ supp(ĥ).If v ∈ Dom(ĥ), then ‖h̄(u) − h̄(v)‖ ≤ ̺(‖u− v‖). Otherwise,

‖h̄(u) − h̄(v)‖ ≤ ‖h̄(u) − u‖ + ‖u− v‖ ≤ e+ ‖u− v‖

=
e

c
· c+ ‖u− v‖ ≤ e

c
· ‖u− v‖ + ‖u− v‖ =

e+ c

c
· ‖u− v‖.It follows that h̄ is (1+ e/c) · ̺-ontinuous. The same argument applies to h̄−1. Sine

(1 + e/c) · ̺ ∈ Γ , it follows that h̄ is Γ -biontinuous.Let h = h̄↾X. Then supp(h) ⊆ Z∩X. Hene h ∈ HCMP.LC
Γ

(X) Z ∩X . It follows that
h ∈ G. By assumption (3) in the statement of the lemma, hτ ∈ H. So hτ ∈ EXT(Y ) and
hτ is ∆-biontinuous at y. That is, for some ν ∈ ∆, hτ is ν-biontinuous at y. So (hτ )clis ν-biontinuous at y. Now, h̄ = hcl, hene h̄τcl

= (hτ )cl and so h̄τcl is ν-biontinuousat y. Reall that ψ is δ-biontinuous, where δ ∈ ∆. Also, ψ−1(y) = 0F . It followsthat (h̄τ
cl

)ψ
−1 is δ ◦ν ◦ δ-biontinuous at 0F . That is, (h̄τ

cl

)ψ
−1 is ∆-biontinuous at 0F .Finally, gϕ = ĥ ⊆ h̄ and y ∈ Dom((gϕ)τ

cl

). So ((gϕ)τ
cl

)ψ
−1 is ∆-biontinuous at 0F .That is, gτ̂ is ∆-biontinuous at τ̂(0E).We have heked that the onditions of Lemma 12.5 hold. So τ̂ is inversely 〈∆,P 〉-ontinuous at 0.



Reonstrution of manifolds from subgroups of homeomorphism groups 22112.2. Γ -ontinuity for submerged pairs and the star operation. The next in-termediate goal is to show that in the above setting, τ̂ is inversely ∆-ontinuous at 0E(Lemma 12.17(b)). Unfortunately, we are able to prove this only under additional asump-tions on Γ and ∆. The assumptions Γ = ∆ and Γ prinipal su�e. (See lause M6 inDe�nition 1.9.) The exat extra assumptions use the notion of star-losedness whih isde�ned in De�nition 12.11(d). They are: Γ ⊆ ∆ and ∆ is Γ -star-losed.Proposition 12.7. Reall that for ̺ ∈ H([0,∞)) and a normed spae E, the homeomor-phism RadE̺ ∈ H(E) was de�ned as follows : for u 6= 0, RadE̺ (u) = ̺(‖u‖) · u/‖u‖ and
RadE̺ (0) = 0. If α ∈ MC and ̺ is α-ontinuous , then RadE̺ is 5 · α-ontinuous.Proof. Let x, y ∈ E and y 6= 0. De�ne z = ‖x‖ · y/‖y‖. Then ‖y − z‖ = |‖y‖ − ‖x‖| ≤
‖y−x‖. So ‖x− z‖ ≤ ‖x− y‖+ ‖y− z‖ ≤ 2‖y−x‖. Let h = RadE̺ . Suppose that x 6= z.Then
‖h(y) − h(x)‖ ≤ ‖h(y) − h(z)‖ + ‖h(z) − h(x)‖ ≤ α(‖y − z‖) +

̺(‖x‖)
‖x‖ · ‖x− z‖

≤ α(‖y − x‖) +
α(‖x‖)
‖x‖ · ‖x− z‖ ≤ α(‖y − x‖) +

α(‖x−z2 ‖)
‖x−z2 ‖ · ‖x− z‖

= α(‖y− x‖) + 2α

(∥∥∥∥
x− z

2

∥∥∥∥
)
≤ α(‖y− x‖) + 2α(‖x− z‖) ≤ α(‖y− x‖) + 2α(2‖y− x‖)

≤ α(‖y − x‖) + 4α(‖y − x‖) = 5α(‖y − x‖).If x = z, then ‖h(y) − h(x)‖ ≤ α(‖y − x‖). So RadE̺ is 5 · α-ontinuous.Proposition 12.8. There isM rtn suh that the following holds. Let α ∈ MBC and a > 0.Let E be a normed spae, x, y ∈ E and ‖x‖ = ‖y‖ = α(a). Then there is g ∈ H(E) suhthat g(0) = 0, g(x) = y, supp(g) ⊆ B(0, α(a) + a/2), and g is M rtn · α ◦α-biontinuous.Proof. Let b = α(a), c = α(a) + a/2 and N = Mhlb. (See Proposition 9.2().) Let
̺ ∈ H([0,∞)) be the pieewise linear funtion with breakpoints at b and c suh that
̺(b) = b/2N and ̺(t) = t for every t ≥ c. The slope of ̺ on [0, α(a)] is 1/2N < 1. Theslope of ̺ on [α(a), α(a) + a/2] is

c− b/2N

α(a)/2
=

2α(a) + a− α(a)/N

a
≤ 3α(a)

a
.The slope of ̺ on [α(a) + α/2,∞) is 1. So ̺ is (3, 3α)-ontinuous. (See De�nition9.9(b).) By Proposition 9.10(a), ̺ is 9α-ontinuous. By Proposition 12.7, RadE̺ is 45 ·α-ontinuous. Clearly, (RadE̺ )−1 = RadE̺−1 . The slope of ̺−1 on [0, α(a)/2N ] is 2N . Theslope of ̺−1 on [α(a)/2N,α(a) + α/2] is ≤ a/α(a) ≤ 1. So ̺−1 is (3, 2Nα)-ontinuous.It follows that (RadE̺ )−1 is 30N · α-ontinuous. Let M1 = max(30N, 45). Then RadE̺ is

M1 · α-biontinuous. Let h = RadE̺ . Then(1) supp(h) ⊆ B(0, α(a) + a/2),(2) h(x) = x/2N ,(3) h is M1 · α-biontinuous.



222 M. Rubin and Y. YomdinLet L = span({x, y}). By Proposition 9.2(), there are a Eulidean norm ‖ ‖H on Land a omplement S of L suh that for every u ∈ E, ‖(u)L‖H+‖(u)S‖ ≈M
hlb

‖u‖. De�ne
u = ‖(u)L‖H +‖(u)S‖. We shall apply Proposition 9.6(). Let x̂ = x/2N , ŷ = x̂ / y y,and θ be the angle from x̂ to ŷ in 〈L, ‖ ‖H 〉. So ŷ = x̂ . Let S = B̄L(0, x̂ ). Let η bethe pieewise linear funtion with breakpoint at x̂ suh that η(0) = θ and η( x̂ ) = 0.So η is θ/ x̂ -Lipshitz. Hene the onditions of Proposition 9.2() hold with r = x̂and K = θ/ x̂ . Let d̄ denote the distane funtion obtained from . Let g1 be de�nedby g1(u) = RotF,H

η(d̄(u,S))
(u). Then g1 ∈ H(E) and g1 is (M rot ·Kr + 1)-bilipshitz withrespet to d̄. Note that Kr = θ ≤ π. So g1 is M rot(π + 1)-bilipshitz with respet to d̄.Write M2 = (Mhlb)2M rot(π + 1). Hene(4) g1 is M2-bilipshitz in 〈E, ‖ ‖ 〉.Let u ∈ E − B(0, ‖x‖). Then u ≥ ‖u‖/Mhlb ≥ ‖x‖/N . So d̄(u, S) ≥ x̂ . Hene

g1(u) = u. That is,(5) supp(g1) ⊆ B(0, ‖x‖).It is also obvious that(6) g1(x̂) = ŷ.Let ȳ = y/2N . Then ‖ȳ‖ = ‖x̂‖. Reall that ŷ = x̂ . Sine x̂ ≈M
hlb

‖x̂‖,
‖ŷ‖ ≈M

hlb
‖ȳ‖. That is, (1/Mhlb) · ‖ŷ‖ ≤ ‖ȳ‖ ≤ Mhlb · ‖ŷ‖. We onstrut g2 whihtakes ŷ to ȳ. Let ̺ : [0,∞) → [0,∞) be the pieewise linear funtion with breakpoints

‖ŷ‖ and ‖x‖ suh that ̺(0) = 0, ̺(‖ŷ‖) = ‖ȳ‖ and ̺(t) = t for every t ≥ ‖x‖. Sine
‖ŷ‖, ‖ȳ‖ < ‖x‖, ̺ ∈ H([0,∞)). The slopes of ̺ are ‖ȳ‖

‖ŷ‖ , ‖x‖−‖ȳ‖
‖x‖−‖ŷ‖ and 1, and the slopesof ̺−1 are ‖ŷ‖

‖ȳ‖ , ‖x‖−‖ŷ‖
‖x‖−‖ȳ‖ and 1. Clearly, ‖ȳ‖/‖ŷ‖ ≤ Mhlb = N . Note that ‖ŷ‖ ≤ ‖ŷ‖H =

ŷ = x̂ ≤Mhlb · ‖x̂‖ = N · ‖x‖
2N = ‖x‖/2. So

‖x‖ − ‖ȳ‖
‖x‖ − ‖ŷ‖ =

(1 − 1/2N)‖x‖
‖x‖ − ‖ŷ‖ ≤ ‖x‖

‖x‖ − ‖x‖/2 = 2.Hene ̺ is max(N, 2)-Lipshitz.As to the slopes of ̺−1, learly, ‖ŷ‖/‖ȳ‖ ≤ N and
‖x‖ − ‖ŷ‖
‖x‖ − ‖ȳ‖ ≤ ‖x‖

(1 − 1/2N)‖x‖ ≤ 2.So ̺−1 is max(N, 2)-Lipshitz. Let M3 = 3 max(N, 2) and g2 = RadE̺ . By Proposition3.18,(7) g2 is M3-bilipshitz.It follows trivially from the de�nitions of ̺ and g2 that(8) g2(ŷ) = ȳ,(9) supp(g2) ⊆ B(0, ‖x‖).Let g = h−1 ◦ g2 ◦ g1 ◦h. Note that(10) h−1(ȳ) = h−1(y/2N) = y.



Reonstrution of manifolds from subgroups of homeomorphism groups 223It follows from (1)�(10) that g is M2
1M2M3 · α ◦α-biontinuous, g(x) = y and supp(g) ⊆

B(0, α(a) + a/2). De�ne M rtn = M2
1M2M3. Then M rtn is as required.Definition 12.9. (a) Let E be a metri spae, x, y ∈ X ⊆ E and α ∈ MC. We say that

〈x, y 〉 is α-submerged in X with respet to E if δX(x) ≥ ‖x− y‖ + α−1(‖x− y‖).(b) Let X ⊆ E, Y ⊆ F be open subsets of the metri spaes E,F , V ⊆ X, x ∈
bd(X), α, β ∈ MC, Γ ,∆ ⊆ MC and τ ∈ EXT±(X,Y ). We say that τ is β-ontinuousfor α-submerged pairs in V if for every α-submerged pair 〈y, z 〉 in V , dY (τ (y), τ (z)) ≤
β(dX(y, z)).We say that τ is β-ontinuous for α-submerged pairs at x (τ is (β;α)-ontinuous at x)if there is U ∈ NbrE(x) suh that τ is β-ontinuous for α-submerged pairs in U ∩X. Wesay that τ is ∆-ontinuous for Γ -submerged pairs at x (τ is (∆;Γ )-ontinuous at x) if forany α ∈ Γ there is β ∈ ∆ suh that τ is (β;α)-ontinuous at x.() Let X ⊆ E, Y ⊆ F be open subsets of the metri spaes E,F , V ⊆ X, α, β ∈ MCand τ ∈ EXT±(X,Y ). We say that τ is almost β-ontinuous for α-submerged pairs in V(τ is (β;α)-almost-ontinuous in V ) if for any α-submerged pairs 〈y, z1 〉, 〈y, z2 〉 in V : if
d(y, z1) = d(y, z2), then dY (τ (y), τ (z2)) ≤ β(dY (τ (y), τ (z1))). �Under assumptions similar to Lemma 12.6, we prove the submerged ontinuity of τ−1.Lemma 12.10. Assume the following fats.(1) Γ ,Σ are ountably generated moduli of ontinuity , and Ω is the modulus of on-tinuity generated by Γ ∪ Σ .(2) X ⊆ E and Y ⊆ F are open subsets of the normed spaes E and F , X is Γ -LIN-bordered and Y is Σ -LIN-bordered.(3) τ ∈ EXT±(X,Y ), G is a Γ -appropriate subgroup of EXT(X), H is a ∆-appro-priate subgroup of EXT(Y ) and Gτ = H.(4) x ∈ bd(X), 〈ϕ,A, r〉 is a boundary hart element for x, γ ∈ Γ and ϕ is γ-biontinuous.(5) y ∈ bd(Y ), 〈ψ,B, s〉 is a boundary hart element for y, σ ∈ Σ and ψ is σ-biontinuous.(6) τ cl(x) = y and τ (ϕ(BCDE(A, r))) ⊆ ψ(BCDF (B, s)).(7) Set X̃ = BCDE(A, r), τ̃ = ψ−1 ◦ τ ◦ϕ and Ỹ = τ̃(X̃).Then τ̃−1 is (Ω ;Σ )-ontinuous at τ̃(0).Proof. There is Z ∈ NbrF (y) suh that H Z ∩ Y ⊇ HCMP.LC

Σ
(Y ) Z ∩ Y , and we mayassume that ψ(BCDF (B, s)) ⊆ Z. Set L = bd(A), X̂ = BCDE(A, r) ∪ (L ∩ BE(0, r)),

τ̂ = ψ−1 ◦ τ cl ◦ϕ, Ŷ = τ̂(X̂) and P = {(v+L)∩X̂ | v ∈ X̂}. Note that τ̂ = τ̃ cl
BE(0,r),BF (0,s).By Lemma 12.6, τ̂ is inversely 〈Σ ,P 〉-ontinuous at 0. Let r0 ∈ (0, r) and σ ∈ Σ besuh that τ̂↾(BE(0, r0)∩ X̂) is inversely 〈σ,P 〉-ontinuous. Let L0 ⊆ L be any ray whoseendpoint is 0. For every u ∈ B(0, r0) ∩ X̂ let xu be the intersetion point of the ray

u+ L0 with the sphere S(0, r0). Clearly, limu→0 xu = x0E . So limu→0 d
F (τ̂(u), τ̂(xu)) =

dF (τ̂(0E), τ̂(x0E )) > 0. Also, limỸ
u→0 δ

Ỹ (τ̃(u)) = 0. Hene there is r1 ∈ (0, r0) suhthat for every u ∈ B(0, r1) ∩ X̃, dF (τ̃(u), τ̃(xu)) > δỸ (τ̂(u)). Let V = τ̃(B(0, r1) ∩ X̃).So for every v ∈ V and t ∈ [0, δỸ (v)] there is y(v, t) ∈ τ̃([τ̃−1(v), xτ̃−1(v)]) suh that



224 M. Rubin and Y. Yomdin
dF (y(v, t), v) = t. Denote τ̃−1 by η̃. By the inverse 〈σ,P 〉-biontinuity of τ̂ , for every vand t as above dE(η̃(y(v, t)), η̃(v)) ≤ σ(dF (y(v, t), v)).Claim 1. Let α ∈ Σ ∩ MBC. Then there are W ∈ NbrF (0) and γ ∈ Γ suh that η̃ is
(γ;α)-almost-ontinuous in W ∩ Ỹ .Proof. Suppose by ontradition this is not so. Let {γi | i ∈ N} be a generatingset for Γ , and assume that for every i, {j | γj = γi} is in�nite. There is a se-quene {〈yi, ui, vi〉 | i ∈ N} suh that: (i) for every i, 〈yi, ui 〉 is α-submerged in Ỹand ‖ui − yi‖ = ‖vi − yi‖; (ii) limi yi = 0F ; (iii) δỸ (yi+1) < α−1(‖yi − ui‖)/4; (iv)
‖η̃(vi) − η̃(yi)‖ > γi(‖η̂(ui) − η̂(yi)‖). Let ri = ‖ui − yi‖ + α−1(‖ui − yi‖)/2. Note thatfrom (iii) and the fat that 〈yi, ui 〉 is α-submerged it follows that B(yi, ri)∩B(yi, rj) = ∅for any i 6= j. By Proposition 12.8, there is gi ∈ H(Ỹ ) suh that gi(yi) = yi, g(ui) = vi,
supp(gi) ⊆ B(yi, ri), and gi is M rtn · α ◦α-biontinuous. Sine supp(gi) ∩ supp(gj) = ∅for any i 6= j, we infer that g̃ = ◦i gi is well-de�ned, and g̃ is (M rtn)2 ·α ◦4-biontinuous.We shall reah a ontradition by showing that g̃ is Σ -biontinuous at 0F , whereas g̃τ̃−1is not Γ -biontinuous at 0E .De�ne h̃ = g̃ψ and h = h̃ ∪ Id↾(Y − ψ(Ỹ )). We shall show that h ∈ H. Reall that
y = ψ(0F ) and set hi = gψi . Then h̃ = ◦i∈N hi. Reall that supp(gi) ⊆ BF (yi, ri) andnote that limi∈N B

F (yi, ri) = 0F . Sine {0F } ∪ ⋃
i∈N

BF (yi, ri) ⊆ Dom(ψ), it followsthat limi∈N ψ(BF (yi, ri)) = y. Also, supp(hi) = ψ(supp(gi)). Hene cl(supp(hi)) =

ψ(cl(supp(gi))) ⊆ ψ(BF (yi, ri)) and so limi∈N cl(supp(hi)) = y. We thus onlude that:(1) cl(supp(h̃)) = {y}∪⋃
i∈N

cl(supp(hi)). It also follows that: (2) if ~z ⊆ Y and lim ~z = y,then limh(~z) = y. Note that: (3) for every i ∈ N, cl(supp(hi)) ⊆ ψ(BF (yi, ri)) ⊆ ψ(Ỹ ).Let z ∈ cl(Y ). If z 6∈ cl(supp(h)), then h ∪ {〈z, z 〉} is ontinuous. If z ∈ cl(supp(h)),then z ∈ cl(supp(h̃)). So by (1) and (3), either z = y or z ∈ ψ(Ỹ ). If z = y, then by (2),
h∪{〈z, z 〉} is ontinuous. If z ∈ ψ(Ỹ ), then h(z) = h̃(z). From the fats: h̃ is ontinuous,
h↾Ỹ = h̃ and ψ(Ỹ ) is open in F , it follows that h is ontinuous at z. We have shownthat h is extendible in F . The same argument applies to h−1, so h ∈ EXT(Y ). Clearly,
supp(h) = supp(h̃) ⊆ ψ(Ỹ ) ⊆ ψ(BCDF (B, s)) ⊆ Z. That is, (4) supp(h) ⊆ Z.We now show that h ∈ HCMP.LC

Σ
(Y ). Write ᾱ = (M rtn)2 ·α ◦4 and β = σ ◦ ᾱ ◦σ. Then

β ∈ Σ . We have seen that g̃ is ᾱ-biontinuous. So sine ψ is σ-biontinuous, it followsthat h̃ is β-biontinuous. This implies that h̃cl is β-biontinuous. We show that for every
z ∈ cl(Y ), h is β-biontinuous at z. This is ertainly true if z 6∈ cl(supp(h)). So supposethat z ∈ cl(supp(h)). Then z ∈ cl(supp(h̃)). By (1) and (3), either z ∈ ψ(Ỹ ) or z = y. If
z ∈ ψ(Ỹ ), then ψ(Ỹ ) ∈ NbrF (z) and h↾ψ(Ỹ ) = h̃↾ψ(Ỹ ). So h is β-biontinuous at z.Assume that z = y. Reall that x = ϕ(0E) and y = ψ(0F ) and de�ne X0 = X ∪ {x}and Y0 = Y ∪ {y}. Note that ψ(Ỹ ) = τ (ϕ(BCDE(A, r))). Sine ϕ(BCDE(A, r)) =

ϕ(BE(0, r)) ∩ X and ϕ(BE(0, r)) is open in E, it follows that ϕ(BCDE(A, r)) ∪ {x} ∈
NbrX0(x). From the fat that τ ∈ EXT±(X,Y ) it follows that τ (ϕ(BCDE(A, r)))∪{y} ∈
NbrY0(y). That is, ψ(Ỹ )∪{y} ∈ NbrY0(y). So there is W ∈ NbrF (y) suh that W ∩Y =

ψ(Ỹ ). Thus h↾W = h̃↾W . It follows that h is β-biontinuous at y. So h ∈ HCMP.LC
Σ

(Y ).By (4), h ∈ HCMP.LC
Σ

(Y ) Z ∩ Y . Also reall that H Z ∩ Y ⊇ HCMP.LC
Σ

(Y ) Z ∩ Y . So
h ∈ H.



Reonstrution of manifolds from subgroups of homeomorphism groups 225We onlude that hτ−1 ∈ G. Now, G is of boundary type Γ , so hτ−1 is Γ -biontinuousat x. Sine ϕ is Γ -biontinuous and ϕ(0E) = x, we see that (hτ
−1

)ϕ
−1 is Γ -biontinuousat 0E . The following steps show that (hτ

−1

)ϕ
−1

= g̃η̃:
hτ

−1

= (h̃∪ Id↾(Y −Dom(h̃)))τ
−1

= (g̃ψ∪ Id↾(Y −ψ(Ỹ )))τ
−1

= (g̃ψ)τ
−1 ∪ Id↾(X−ϕ(X̃)).Sine Rng(ϕ) is disjoint from X − ϕ(X̃),

((g̃ψ)τ
−1 ∪ Id↾(X − ϕ(X̃)))ϕ

−1

= ((g̃ψ)τ
−1

)ϕ
−1

.That is,
(hτ

−1

)ϕ
−1

= ((g̃ψ)τ
−1

)ϕ
−1

= g̃η̃.We onlude that g̃η̃ is Γ -biontinuous at 0E .We shall now show that g̃η̃ is not Γ -ontinuous at 0E , thus reahing a ontradition.Let T ∈ NbrE(0) and γ′ ∈ Γ . Then there are i ∈ N and a > 0 suh that γ′↾[0, a] ≤
γi↾[0, a], η̃(ui), η̃(yi) ∈ T and ‖η̃(ui) − η̃(yi)‖ ≤ a. So
‖gη̃(η̃(ui)) − gη̃(η̃(yi))‖ = ‖η̃(vi) − η̃(yi)‖ > γi(‖η̃(ui) − η̃(yi)‖) ≥ γ′(‖η̃(ui) − η̃(yi)‖).This shows that gη̃ is not Γ -ontinuous at 0E . A ontradition, so Claim 1 is proved.Let W and γ be as in Claim 1. We may assume that W ⊆ V . There is U ∈ NbrF (0)suh that for every u, v ∈ U ∩ Ỹ : if 〈u, v 〉 is α-submerged in Ỹ , then B(u, ‖v− u‖) ⊆W .Let u, v ∈ U ∩ Ỹ be suh that 〈u, v 〉 is α-submerged in Ỹ . Let w = y(u, ‖v − u‖). Then
w ∈ U . Hene

‖η̃(v) − η̃(u)‖ ≤ γ(‖η̃(w) − η̃(u)‖) ≤ γ ◦σ(‖w − u‖) = γ ◦σ(‖v − u‖).Clearly, γ ◦σ ∈ Ω , and we have just shown that η̃ is (γ ◦σ;α)-ontinuous at 0F .Definition 12.11. (a) Let α ∈ H([0,∞)). For every t ∈ [0,∞) we de�ne a sequene
~t = {tn | n ∈ N}. De�ne t0 = t and for every n ∈ N, let tn+1 satisfy the equation

tn+1 + α(tn+1) = tnand de�ne
pα,n(t) = tn and qα,n(t) = tn − tn+1.Note that pα,0 = Id.(b) Let α, β ∈ H([0,∞)). We de�ne the funtion β ⋆α : [0,∞) → [0,∞) ∪ {∞} by

β ⋆α(t) =

∞∑

n=0

β(qα,n(t)).() For α ∈ MC let Γα = cl�({α ◦n | n ∈ N}).(d) Let Γ ⊆ MC and α ∈ MC. We say that Γ is α-star-losed if for every β ∈ Γ thereis γ ∈ Γ suh that β ⋆α � γ. Let ∆ ⊆ MC. We say that Γ is ∆-star-losed if there is
δ ∈ ∆ suh that Γ is δ-star-losed. �The next proposition ontains some trivial observations about the operation � ⋆�. Forthe ontinuation of the proof of the main theorems we need only parts (a)�() of theproposition. The other parts are mentioned in order to familiarize the reader with thisoperation. Part (a) was proved by Wiesªaw Kubis.



226 M. Rubin and Y. YomdinProposition 12.12. Let α, β, γ ∈ H([0,∞)).(a) For every n ∈ N, α ◦n ⋆α ≤ nα ◦n + Id.(b) If γ � β, then γ ⋆α � β ⋆α.() For every n ∈ N, qα,n and pα,n+1 are stritly inreasing funtions.(d) If s < t, then β ⋆α(s) ≤ β ⋆α(t).(e) Either β ⋆α↾(0,∞) is the onstant funtion f(t) = ∞, or β ⋆α ∈ H([0,∞)).Proof. (a) Let t ∈ [0,∞). De�ne pα,n(t) = pn and qα,n(t) = qn. Hene qn = α(pn) and
pn + qn = pn−1. Let k ≥ n ≥ 1. Then
α ◦n(qk) ≤ α ◦n(pk−1) = α ◦(n−1)(qk−1) ≤ · · · ≤ α ◦(n−(n−1))(pk−n)) = α(pk−n) = qk−n.Note that ∑∞

i=0 qi = t. Let n ≥ 1. Then
α ◦n ⋆α(t) =

∞∑

k=0

α ◦n(qk) =
∑

k<n

α ◦n(qk) +
∑

k≥n
α ◦n(qk)

≤
∑

k<n

α ◦n(t) +
∑

k≥n
qk−n = nα ◦n(t) + t.(b) This is immediate.() Note that pα,n+1 + qα,n = pα,n. This equality together with the fats that α isstritly inreasing and pα,0 = Id implies by indution that qα,n and pα,n+1 are stritlyinreasing for every n ∈ N.(d) This follows from the fats that qα,n and β are inreasing funtions.(e) Note that qα,k(pα,n(t)) = qα,k+n(t). Hene β ⋆α(pα,n(t)) is a tail of β ⋆α(t). Sofor every n, β ⋆α(pα,n(t)) <∞ i� β ⋆α(t) <∞. Note also that limn pα,n(t) = 0. Supposethat for some t, β ⋆α(t) = ∞ and let s > 0. Then there is n suh that pα,n(t) < s. So

∞ = β ⋆α(pα,n(t)) ≤ β ⋆α(s). Hene β ⋆α↾(0,∞) is the onstant funtion with value ∞.Suppose that β ⋆α↾(0,∞) is not the onstant ∞. So Rng(β ⋆α) ⊆ [0,∞). Note that
qα,0 = α ◦pα,0 = α ◦ (Id+α)−1. So limt→∞ qα,0(t) = ∞. For β we have limt→∞ β(t) = ∞.It follows that limt→∞ β ⋆α(t) ≥ limt→∞ β(qα,0(t)) = ∞.The strit inreasingness of β and all the qα,n's together with the fat that β ⋆α(t) <∞for every t, implies that β ⋆α is stritly inreasing.It remains to show that β ⋆α is ontinuous. Let a ∈ (0,∞), and we show that∑
n β(qα,n(t)) is uniformly onvergent in [0, a]. Let ε > 0. There is n suh that∑
k≥n β(qα,k(a)) < ε. From the inreasingness of β and all the qα,n's it follows that∑
k≥n β(qα,k(t)) < ε for all t ∈ [0, a]. So ∑

n β(qα,n(t)) is uniformly onvergent in [0, a].Hene β ⋆α is ontinuous.Question 12.13. (a) Let α, β ∈ MC. Is it true that either β ⋆α↾(0,∞) is the onstantfuntion ∞, or β ⋆α belongs to MC?(b) Let α1, α2, β ∈ MC. Is the following statement true: if α1 � α2, then β ⋆α2 �
β ⋆α1?() Let α ∈ MC. Is there β ∈ MC − Γα suh that Γβ is α-star-losed? �Proposition 12.14. Let K > 0, r ∈ (0, 1), α(t) = Kt and β(t) = tr. Then there is Csuh that β ⋆α = C · β.



Reonstrution of manifolds from subgroups of homeomorphism groups 227Proof. Abbreviate qα,n(t) by qn. Let t ≥ 0. Then
qn =

(
1

(1 +K)n
− 1

(1 +K)n+1

)
· t =

1

(1 +K)n
· Kt

1 +Kand hene
β ⋆α =

∞∑

n=0

1

(1 +Kr)n
·
(

Kt

1 +K

)r
=

(1 +K)r

(1 +K)r − 1
· Kr

(1 +K)r
· tr =

Kr

(1 +K)r − 1
· β(t).So C = Kr/((1 +K)r − 1).Lemma 12.17(b) is our next main step. It is preeded by two propositions. Part (a) of12.17 is also a step in the proof of 12.17(b). For α ∈ MC, a normed spae E and x, y ∈ Elet prtα(x, y) be the point z in the line segment [x, y] suh that α(‖z − y‖) = ‖x− z‖.Proposition 12.15. Let α ∈ MC and a > 0. Then there is ε = εα,a suh that thefollowing holds. If F is a normed spae, M is a losed subspae of F or a losed halfspae of F , x ∈ F −M and d(x,M) = a, then for every y ∈ bd(M): if d(x, y) < a + ε,then 〈x, prtα(x, y) 〉 is 2α-submerged in F −M .Proof. Let q(t) = qα,0(t) and f(t) = q(t)+(2α)−1(q(t)). Then f(t) = q(t)+α−1( 1

2q(t)) <

q(t) + α−1(q(t)). In partiular, f(a) < q(a) + α−1(q(a)) = a. So there is ε > 0 suhthat for every t: if |t − a| < ε, then f(t) < (f(a) + a)/2. Let y ∈ bd(M) be suh that
d(x, y) < a+ ε. Then

‖x− prtα(x, y)‖ + (2α)−1(‖x− prtα(x, y)‖) = q(‖x− y‖) + (2α)−1(q(‖x− y‖))

= f(‖x− y‖) < f(a) + a

2
< a = δF−M (x).So 〈x, prtα(x, y) 〉 is 2α-submerged in F −M .Proposition 12.16. Let α ∈ MC, F be a normed spae, M be a losed subspae of F ora losed half spae of F , x ∈ F −M and y ∈ M . Then there is a sequene {xi | i ∈ N}suh that :(i) x0 = x,(ii) for every i ∈ N, 〈xi, xi+1 〉 is 2α-submerged in F −M ,(iii) for every i ∈ N, ‖xi − xi+1‖ ≤ qα,i(‖x− y‖),(iv) limi xi exists and limi xi ∈ bd(M),(v) ‖ limi xi − y‖ ≤ 2‖x− y‖.Note that the onvergene of {xi | i ∈ N} follows from (iii), and need not be required.Proof. Write pα,i = pi and qα,i = qi. Note that p1 ◦pi = pi+1 and that q0 ◦pi = qi. Let

x0 = x and y0 = y. We de�ne by indution xi ∈ F −M and yi ∈ bd(M). Suppose that
xi, yi have been de�ned. Let yi+1 ∈ bd(M) be suh that ‖xi − yi+1‖ ≤ ‖xi − yi‖ and
〈xi, prtα(xi, yi+1) 〉 is 2α-submerged in F −M . The existene of suh yi+1 is ensured byProposition 12.15. Let xi+1 = prtα(xi, yi+1). (Note that if for some ȳ ∈ M , d(x,M) =

‖x− ȳ‖, then yi an be hosen to be ȳ for every i ≥ 1.)By the de�nitions, lauses (i) and (ii) hold. We prove (iii). We prove by indutionon i that ‖xi − xi+1‖ ≤ qi(‖x− y‖) and ‖xi+1 − yi+1‖ ≤ pi+1(‖x− y‖). It is trivial that



228 M. Rubin and Y. Yomdinthe indution hypotheses hold for i = 0. Suppose that the indution hypotheses hold for
i− 1. Then

‖xi − xi+1‖ = q0(‖xi − yi+1‖) ≤ q0(‖xi − yi‖) ≤ q0(pi(‖x− y‖)) = qi(‖x− y‖),
‖xi+1 − yi+1‖ = p1(‖xi − yi+1‖) ≤ p1(‖xi − yi‖) ≤ p1(pi(‖x− y‖)) = pi+1(‖x− y‖).So (iii) holds.We prove (iv). Obviously, ∑∞

i=0 qi(‖x−y‖) = ‖x−y‖. Sine ‖xi−xi+1‖ ≤ qi(‖x−y‖),it follows that ∑∞
i=0 ‖xi − xi+1‖ is onvergent. So {xi | i ∈ N} is onvergent. Let

x̄ = limi xi. The fats limi pi(‖x − y‖) = 0 and ‖xi − yi‖ ≤ pi(‖x − y‖) imply that
limi ‖xi − yi‖ = 0. Sine yi ∈ bd(M), it follows that x̄ ∈ bd(M).We prove (v):

‖x̄− x‖ ≤
∞∑

i=0

‖xi − xi+1‖ ≤
∞∑

i=0

qi(‖x− y‖) = ‖x− y‖.So ‖x̄− y‖ ≤ ‖x̄− x‖ + ‖x− y)‖ ≤ 2‖x− y‖.Lemma 12.17. Assume that lauses (1)�(7) of Lemma 12.10 hold. That is ,(1) Γ ,Σ are ountably generated moduli of ontinuity , and Ω is the modulus of on-tinuity generated by Γ ∪ Σ .(2) X ⊆ E and Y ⊆ F are open subsets of the normed spaes E and F , X is Γ -LIN-bordered and Y is Σ -LIN-bordered.(3) τ ∈ EXT±(X,Y ), G is a Γ -appropriate subgroup of EXT(X), H is a ∆-appro-priate subgroup of EXT(Y ) and Gτ = H.(4) x ∈ bd(X), 〈ϕ,A, r〉 is a boundary hart element for x, γ ∈ Γ and ϕ is γ-biontinuous.(5) y ∈ bd(Y ), 〈ψ,B, s〉 is a boundary hart element for y, σ ∈ Σ and ψ is σ-biontinuous.(6) τ cl(x) = y and τ (ϕ(BCDE(A, r))) ⊆ ψ(BCDF (B, s)).(7) Set L = bd(A), X̂ = BCDE(A, r) ∪ (L ∩ B(0, r)), τ̂ = ψ−1 ◦ τ cl ◦ϕ, Ŷ = τ̂(X̂),
Ỹ = τ̂(BCDE(A, r)) and P = {(v + L) ∩ X̂ | v ∈ X̂}.Assume further that(8) Ω is Σ -star-losed.The the following hold :(a) Let M = bd(B). Then there is W ∈ NbrF (0) and ω ∈ Ω suh that for every
x ∈ (Ŷ −M) ∩W and y ∈ Ŷ ∩M ∩W , ‖τ̂−1(x) − τ̂−1(y)‖ ≤ ω(‖x− y‖).(b) τ̂−1 is Ω-ontinuous at τ̂ (0).Proof. (a) Let α ∈ Σ be suh that Ω is α-star-losed. It is easy to see that α maybe hosen to be in MBC. Note that Ỹ = Ŷ − M . Let η̂ = τ̂−1. By Lemma 12.10,there are ̺ ∈ Ω and W1 ∈ NbrF (0F ) suh that for every u, v ∈ W1 ∩ Ỹ : if 〈u, v 〉 is

2α-submerged in Ỹ , then ‖η̂(u)− η̂(v)‖ ≤ ̺(‖u− v‖). Let ν ∈ Ω and a > 0 be suh that
̺⋆α↾[0, a] ≤ ν↾[0, a].



Reonstrution of manifolds from subgroups of homeomorphism groups 229Let P = {(v + L) ∩ X̂ | v ∈ X̂}. By Lemma 12.6, τ̂ is inversely 〈∆,P 〉-ontinuousat 0E . Note that τ̂(L ∩ X̂) = M ∩ Ŷ , that is, M ∩ Ŷ ∈ τ̂(P). So there are σ ∈ Σ and
W2 ∈ NbrF (0F ) suh that for every u, v ∈ W2 ∩M ∩ Ŷ , ‖η̂(u) − η̂(v)‖ ≤ σ(‖u − v‖).Choose s0 ∈ (0, a/2) suh that B(0F , 6s0) ∩ BCDF (B, s) ⊆ Ŷ ∩ W1 ∩ W2 and let
W = B(0F , s0).Let x ∈ (Ŷ −M) ∩W and y ∈ Ŷ ∩M ∩W . Let {xi | i ∈ N} be the sequene ensuredby Proposition 12.16 and x̄ = limi xi. Note that by (iii) of 12.16, ∑

i∈N
‖xi − xi+1‖

≤ ‖x − y‖ < 2s0. So ‖xn‖ ≤ ‖x‖ +
∑n−1

i=0 ‖xi − xi+1‖ < 3s0 for every n ∈ N. Similarly,
‖x̄‖ < 3s0. Hene {xi | i ∈ N} ⊆ W1 ⊆ Dom(η̂) and x̄ ∈ W2 ⊆ Dom(η̂). We onludethat

‖η̂(x) − η̂(y)‖ ≤
∞∑

i=0

‖η̂(xi) − η̂(xi+1)‖ + ‖η̂(x̄) − η̂(y)‖ := A.Sine x̄, y ∈W2 ∩M ∩ Ŷ , we have ‖η̂(x̄) − η̂(y)‖ ≤ σ(‖x̄− y‖).By (ii) of 12.16, 〈xi, xi+1 〉 is 2α-submerged in F − M . Using the fats that xi ∈
B(0, 3s0) and that B(0F , 6s0)∩BCDF (B, s) ⊆ Ŷ , it is easily seen that δỸ (xi) = δF−M (xi)for every i ∈ N. So 〈xi, xi+1 〉 is 2α-submerged in Ỹ . This, together with the fat that
xi, xi+1 ∈W1, implies that ‖η̂(xi) − η̂(xi+1)‖ ≤ ̺(‖xi − xi+1‖). Hene

A ≤
∞∑

i=0

̺(‖xi − xi+1‖) + σ(‖x̄− y‖) := B.By the inreasingness of qα,i and lause (iii) in Proposition 12.16,
∞∑

i=0

̺(‖xi − xi+1‖) ≤
∞∑

i=0

̺(qα,i(‖x− y‖)) = ̺⋆α(‖x− y‖).Clause (v) in 12.16 implies that σ(‖x̄− y‖) ≤ σ(2‖x− y‖). Hene
B ≤ ̺⋆α(‖x− y‖) + σ ◦ (2 · Id)(‖x− y‖).Reall that ν ∈ Ω , ̺⋆α↾[0, a] ≤ ν↾[0, a] and s0 < a/2. Let ω = ν + σ ◦ (2 · Id). It followsfrom the above that ω ∈ Ω and ‖η̂(x) − η̂(y)‖ ≤ ω(‖x− y‖). This proves (a).(b) We use the notations of (a). Let x, y ∈W ∩ Ŷ . If x, y ∈M , then ‖η̂(x)− η̂(y)‖ ≤

σ(‖x−y‖). If x 6∈M and y ∈M or vie versa, then ‖η̂(x)− η̂(y)‖ ≤ ω(‖x−y‖). Supposethat x, y 6∈M and write β = 2α. If 〈x, y 〉 is β-submerged in Ỹ or 〈y, x 〉 is β-submergedin Ỹ , then ‖η̂(x) − η̂(y)‖ ≤ ̺(‖x− y‖).Suppose that neither 〈x, y 〉 nor 〈y, x 〉 are β-submerged in Ỹ . Sine x, y ∈ B(0, s0)and B(0, 6s0) ∩ BCDF (B, s) ⊆ Ŷ , δF−M (x) = δỸ (x) and δF−M (y) = δỸ (y). So by thenon-submergedness of 〈x, y 〉 and 〈y, x 〉, δF−M (x), δF−M (y) < ‖x − y‖ + β−1(‖x − y‖).Sine β ∈ MBC, β−1(t) ≤ t for every t. So δF−M (x), δF−M (y) < 2‖x− y‖.Let x̄, ȳ ∈ M be suh that ‖x − x̄‖ < 2δF−M (x) and ‖y − ȳ‖ < 2δF−M (y). Clearly,
‖x̄‖ < 3‖x‖ < 3s0. Hene x̄ ∈W2 ∩M ∩ Ŷ . Similarly, ȳ ∈W2 ∩M ∩ Ŷ . We also have
‖x̄− ȳ‖ ≤ ‖x̄− x‖ + ‖x− y‖ + ‖y − ȳ‖ ≤ 2δF−M (x) + ‖x− y‖ + 2δF−M (y) ≤ 9‖x− y‖and ‖x− x̄‖, ‖y − ȳ‖ < 4‖x− y‖. The �nal estimate is
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‖η̂(x) − η̂(y)‖ ≤ ‖η̂(x) − η̂(x̄)‖ + ‖η̂(x̄) − η̂(ȳ)‖ + ‖η̂(ȳ) − η̂(y)‖

≤ ω(‖x− x̄‖) + σ(‖x̄− ȳ‖) + ω(‖ȳ − y‖)

≤ ω(4‖x− y‖) + σ(9‖x− y‖) + ω(4‖x− y‖) ≤ 8ω(‖x− y‖) + 9σ(‖x− y‖).Clearly, γ := 8ω+9σ ∈ Ω . Obviously, σ, ω, ̺ ≤ γ. We have thus shown that for every
x, y ∈W ∩ Ŷ , ‖η̂(x) − η̂(y)‖ ≤ γ(‖x− y‖). So η̂ is Ω -ontinuous at 0F .We make a last trivial observation before proving the main theorem.Proposition 12.18. (a) Let Γ be a modulus of ontinuity and α ∈ MBC− Γ . Let X bean open subset of a normed spae E and x ∈ bd(X). Then there is g ∈ H(E)X suhthat g is 9 · α ◦α-biontinuous and g is not Γ -biontinuous at x.(b) Let Γ ,∆ be moduli of ontinuity , E,F be normed spaes , X  E be an open
Γ -LIN-bordered set , Y ⊆ F be an open ∆-LIN-bordered set , G ≤ EXT(X) and H ≤
EXT(Y ) be respetively Γ -appropriate and ∆-appropriate, τ ∈ (HBDR.LC

∆
)±(X,Y ) and

Gτ = H. Then Γ = ∆.Proof. (a) For r > 0 de�ne gr : E ∼= E as follows: gr(0) = 0,
gr(z) =

r

α(r)
· α(‖z‖) · z

‖z‖ if ‖z‖ ∈ (0, r),and gr(z) = z if ‖z‖ ≥ r. Obviously, supp(gr) = B(0, r), and it is left to the reader tohek that gr is 3r
α(r) ·α-biontinuous, and that if γ ∈ MC is suh that gr is γ-biontinuous,then γ↾[0, r] ≥ r
α(r) · α↾[0, r]. For y ∈ E de�ne gy,r = g

try
r . Let {B(xi, ri) | i ∈ N} be asequene of pairwise disjoint balls suh that for every i, B(xi, ri) ⊆ X and limi xi = x,and let g = ◦i gxi,ri

↾X. Then g is as required.(b) First we show that ∆ ⊆ Γ . Suppose otherwise. Let x ∈ bd(X) and y = τ cl(x).So y ∈ bd(Y ). There are W ∈ Nbr(y) and β ∈ ∆ suh that τ−1↾(W ∩ Y ) is β-biontinuous. Let V ∈ Nbr(y) suh that V ⊆ W and HCMP.LC
∆

(Y ) V ∩ Y ⊆ H. Choose
α ∈ ∆∩MBC−Γ and de�ne ᾱ = 9 ·α ◦α and δ = β ◦ ᾱ ◦β. Let U = τ−1(V ∩ Y ). Hene
x ∈ bd(U).Let X ′ be an open subset of U ∩X suh that cl(X ′) ∩ bd(X) = {x}. By (a), thereis g′ ∈ H(E)X ′ suh that g′ is ᾱ-biontinuous, and g′ is not Γ -biontinuous at x. Let
g = g′↾X and h = gτ . Sine g is E-biextendible and τ is (E,F )-biextendible, h is F -biextendible. From the fat that τ↾(U ∩X) is β-biontinuous, it follows that h↾(V ∩ Y )is δ-biontinuous. We wish to onlude that h is δ-biontinuous. Indeed, this followsfrom the fats: clF (supp(h)) ⊆ (V ∩ Y ) ∪ {y} and y ∈ cl(V ∩ Y ). (The same argumentappears in the proof 12.10, where it is proved that h ∈ HCMP.LC

Σ
(Y ).) Obviously, δ ∈ ∆,so h ∈ HCMP.LC

∆
(Y ) V ∩ Y ⊆ H. Reall that Gτ = H, hene g = hτ

−1 ∈ G. But gis not Γ -biontinuous at x. This ontradits the fat that G is Γ -appropriate. Hene
∆ ⊆ Γ .It follows that τ ∈ (HBDR.LC

Γ
)±(X,Y ) and hene τ−1 ∈ (HBDR.LC

Γ
)±(Y,X). We nowrepeat the above argument for τ−1. So the roles of Γ and ∆ are interhanged, and weonlude that Γ ⊆ ∆.



Reonstrution of manifolds from subgroups of homeomorphism groups 23112.3. Final resultsTheorem 12.19 (Main Theorem of Chapter 12). Assume that(1) Γ ,∆ are ountably generated moduli of ontinuity , Γ ⊆ ∆ and ∆ is Γ -star-losed.(Or assume the speial ases : (i) Γ is prinipal and ∆ = Γ , or (ii) Γ = Γ
LIP and

∆ = Γ
HLD.)(2) X $ E and Y ⊆ F are open subsets of the normed spaes E and F , X is Γ -LIN-bordered , and Y is ∆-LIN-bordered.(3) G ≤ EXT(X) is Γ -appropriate, and H ≤ EXT(Y ) is ∆-appropriate.(4) τ ∈ EXT±(X,Y ) and Gτ = H.Then Γ = ∆ and τ ∈ (HBDR.LC

Γ
)±(X,Y ).Proof. That (i) is a speial ase of (1) follows from Proposition 12.12(a) and (b), andthat (ii) is a speial ase follows from Proposition 12.14.Sine Γ ⊆ ∆, the modulus of ontinuity Ω whih is generated by Γ ∪∆ is ∆, and sine

∆ is Γ -star-losed and Γ ⊆ ∆, we see that ∆ is ∆-star-losed. So Ω is ∆-star-losed. Let
x ∈ bd(X). There are a boundary hart element for x, 〈ϕ,A, r〉, and γ ∈ Γ suh that ϕis γ-biontinuous. Let y = τ cl(x). Choose a boundary hart element for y, 〈ψ,B, s〉, and
σ ∈ Σ suh that ψ is σ-biontinuous. Also assume τ (ϕ(BCDE(A, r))) ⊆ ψ(BCDF (B, s)).Set L = bd(A), X̂ = BCDE(A, r) ∪ (L ∩B(0, r)), τ̂ = ψ−1 ◦ τ cl ◦ϕ and Ŷ = τ̂(X̂).By Theorem 12.17(b), τ̂−1 is Ω -ontinuous at 0F . That is, τ̂−1 is ∆-ontinuous at 0F .Sine ϕ, ψ are ∆-biontinuous at 0E and 0F respetively, ϕ ◦ τ̂−1 ◦ψ−1 is ∆-ontinuousat y. Note that there is V ∈ NbrF (y) suh that Dom(ϕ ◦ τ̂−1 ◦ψ−1) ⊇ V ∩ Y . Also,
ϕ ◦ τ̂−1 ◦ψ−1↾(V ∩ Y ) = τ−1↾(V ∩ Y ). Hene τ−1 is ∆-ontinuous at y. Sine it is alsogiven that τ ∈ EXT±(X,Y ), it follows that τ−1 ∈ HBDR.LC

∆
(Y,X).We now reverse the roles of X and Y . Let η = τ−1. So η : Y ∼= X, Hη = G and themodulus of ontinuity Ω generated by ∆ ∪ Γ is again ∆. So Ω is Γ -star-losed.Let y ∈ bd(Y ) and x = η(y). We hoose ψ and ϕ and de�ne η̂ in the same waythat ϕ, ψ and τ̂ were de�ned in the preeding argument. We thus onlude that η̂−1 is

Ω -ontinuous at x. That is, η̂−1 is ∆-ontinuous at x. There is U ∈ NbrE(x) suh that
ψ ◦ η̂ ◦ϕ−1↾(U ∩X) = τ↾(U ∩X). Hene τ is ∆-ontinuous at x. We also need to knowthat τ ∈ EXT±(X,Y ), and this is indeed given. Hene τ ∈ HBDR.LC

∆
(X,Y ). We provedthat τ ∈ (HBDR.LC

∆
)±(X,Y ). By Proposition 12.18(b), Γ = ∆.Proof of Theorem 8.9. If X = E then Y = F and hene HCMP.LC

Γ
(X) = HLC

Γ
(X), andthe same holds for Y . So in this ase the laim of 8.9 is implied by Theorem 3.27.Assume that X 6= E. We apply Theorem 12.19 to the speial ase that Γ = ∆and Γ is prinipal, and take G,H to be HCMP.LC

Γ
(X) and HCMP.LC

∆
(Y ) respetively.So τ ∈ (HBDR.LC

Γ
)±(X,Y ). By Theorem 3.27, τ is loally Γ -biontinuous. Hene τ ∈

(HCMP.LC
Γ

)±(X,Y ).The �nal reonstrution theorems of Chapters 8�12. Combining the results of the pre-vious setions in di�erent ways, one obtains various reonstrution theorems. Parts (a)and (b) of the following theorem are suh orollaries. Part (a) is a restatement of Theo-rem 8.4(a). Indeed, the speial ase of (a) in whih Γ = ΓLIP motivated the whole workpresented in Chapters 8�12.



232 M. Rubin and Y. YomdinThe reonstrution theorem for the group HBDR.LC
Γ

(X) whih appears in (b) is abyprodut of the proof of the main result. We thought it was worth mentioning.In () we tried to apture the essene of the argument. Part () an be furtherstrengthened. But it seems to be a natural stopping point.Theorem 12.20. Let Γ ,∆ be moduli of ontinuity , E and F be normed spaes and
X ⊆ E, Y ⊆ F be open. Suppose that X is loally Γ -LIN-bordered , and Y is loally
∆-LIN-bordered.(a) Suppose that Γ is prinipal. If ϕ : HCMP.LC

Γ
(X) ∼= HCMP.LC

∆
(Y ). Then Γ = ∆and there is τ ∈ (HCMP.LC

Γ
)±(X,Y ) suh that ϕ(g) = gτ for every g ∈ HCMP.LC

Γ
(X).(b) Suppose that Γ is prinipal. If ϕ : HBDR.LC

Γ
(X) ∼= HBDR.LC

Γ
(Y ). Then there is

τ ∈ (HBDR.LC
Γ

)±(X,Y ) suh that ϕ(g) = gτ for every g ∈ HBDR.LC
Γ

(X).() Suppose that Γ and ∆ are ountably generated , Γ ⊆ ∆ and ∆ is Γ -star-losed.Let G ≤ EXT(X) be Γ -appropriate and H ≤ EXT(Y ) be ∆-appropriate. Assume furtherthat LIPLC(X) ≤ G and LIPLC(Y ) ≤ H, and suppose that ϕ : G ∼= H. Then Γ = ∆, andthere is τ ∈ (HBDR.LC
Γ

)±(X,Y ) suh that ϕ(g) = gτ for every g ∈ G.Proof. (a) By Theorem 2.8(b), there is τ ∈ H(X,Y ) suh that τ indues ϕ. By Theo-rem 3.27, Γ = ∆ and τ ∈ (HLC
Γ

)±(X,Y ). By Theorem 8.8(a), τ ∈ EXT±(X,Y ). ByTheorem 8.9, τ ∈ (HCMP.LC
Γ

)±(X,Y ).(b) The proof is similar to the proof of (a). However, we use Theorem 8.8(b) and not8.8(a).() By Theorem 2.8(b), there is τ ∈ H(X,Y ) whih indues ϕ. By Theorem 8.8(b),
τ ∈ EXT±(X,Y ). By Theorem 12.19, Γ = ∆ and τ ∈ (HBDR.LC

Γ
)±(X,Y ).Proof of Theorem 8.4(a). Theorem 8.4(a) is restated as part (a) of 12.20 above.
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Γ (X). The group of loally Γ -biontinuous homeomorphisms of X 59
HLC

Γ (X,S) = HLC
Γ (X) S 59

HLC
Γ (X;F ) = {h ∈ HLC
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UC(X;S, F ) = UC(X) S ∩ UC(X;F ) 80
UC(X;S, F, x) = {h ∈ UC(X;S, F ) | h(x) = x} 80
UC(X;S,F). The subgroup of H(X) generated by ⋃

{UC(X;S, FS) | S ∈ S} 80
UC(X,S). The subgroup of H(X) generated by ⋃

{UC(X) S | S ∈ S} 80
UC0(X) = {f ∈ UC(X) ∩ EXT(X) | f cl↾bd(X) = Id} 90
UC00(X) = {f ∈ UC(X) | supp(f) is a BPD set} 103
UCeni

0 (X) = {f eni | f ∈ UC0(X)} 144
UCe(X) = {h ∈ UC(X) | h is strongly extendible} 152
WFD.LIPLC(X;S,F) 45
WFD.LIP(X) 45
WFD.LIP(X;S,F) 45
WFD(X) 45

Index of de�nitions(in alphabetial order)abiding sequene. α-abiding sequene 205a�ne-like partial ation 64a�ne-like partial ation at x 64almost α-ontinuous 70almost α-ontinuous at x 70almost β-ontinuous for α-submerged pairs. Abbreviation: (β;α)-almost-ontinuous 224almost Γ -ontinuous at x 70almost linear boundary hart domain 169almost orthogonal omplement 171appropriate. A Γ -appropriate group 168Banah manifold 43BD.AC. Abbreviation of boundedly arwise onneted 123BD.CW.AC. Abbreviation of boundedly omponent-wise arwise onneted 135BDD.P funtion. A funtion whih takes bounded sets to bounded sets 90BDR.UC funtion 91biontinuous. α-biontinuous at x 47biontinuous. α-biontinuous at x ∈ cl(X)) 205biontinuous. α-biontinuous homeomorphism 47biontinuous. Γ -biontinuous at x 47biontinuous. Γ -biontinuous at x ∈ cl(X) 205biontinuous. Γ -biontinuous. h is Γ -biontinuous if (∃γ ∈ Γ )(h, h−1 are γ-ontinuous) 14biontinuous. 〈K,P 〉-biontinuous 216bilipshitz homeomorphism 10bilipshitz homeomorphism between loally Lipshitz normed manifolds 78bi-UC. Abbreviation of bi-uniformly-ontinuous 79bi-UC at x. Abbreviation of bi-uniformly-ontinuous at x 79BI.UC funtion 91



242 M. Rubin and Y. Yomdinbi-uniformly-ontinuous 79bi-uniformly-ontinuous at x 79BNO-system 29boundary hart domain based on E and A with radius r. A set of the form BCDE(A, r) 166boundary hart element 166boundary type. A group of boundary type Γ 168boundedly arwise onneted. Abbreviated by BD.AC 123boundedly omponent-wise arwise onneted 135boundedly Γ -ontinuous 20boundedly UC funtion. A funtion whih is uniformly ontinuous on every bounded set 90boundedly uniformly-in-diameter arwise-onneted 98boundedness preserving funtion. A funtion whih takes bounded sets to bounded sets 90bounded positive distane UC funtion 91BPD.AC. Abbreviation of BPD-arwise-onneted 103BPD-arwise-onneted 103BPD.P funtion. A funtion whih takes BPD sets to BPD sets 90BPD sequene. A sequene ~x suh that Rng(~x) is a BPD set 90BPD set. A bounded subset of X whose distane from the boundary of X is positive 90BPD.UC funtion. A funtion whih is uniformly ontinuous on every BPD set 91BR.CW.LC.AC. Abbreviation of omponent-wise loally arwise onneted atthe boundary 135BR.IS.MV. Abbreviation of isotopially movable at the boundary 140BR.LC.AC. Abbreviation of loally arwise onneted at the boundary 115BR.LUC funtion 91BUC funtion. A funtion whih is uniformly ontinuous on every bounded set 90BUD.AC. Abbreviation of boundedly uniformly-in-diameter arwise-onneted 98losed half spae. A set of the form {x ∈ E | ϕ(x) ≥ 0}, where ϕ ∈ E∗ 166losed half subspae of a normed spae 169losed under E-disrete omposition 168CMP.LUC funtion. An extendible funtion whih is UC at every x ∈ cl(X) 91o-dimension 1 at x. bd(X) has o-dimension 1 at x 169ompatible. λ is ompatible with G 61ompatible. λ is ompatible with G at x 61omplete over. U is a omplete over of X if ⋃
{int(U) | U ∈ U} = int(X) 40ompletely disrete family of sets. A set A of pairwise disjoint sets suh that

∀B((∀A ∈ A)(|B ∩ A| ≤ 1) → acc(B) = ∅) 123ompletely disrete sequene 123ompletely disrete set 123ompletely disrete trak system 153ompletely loally Γ -biontinuous 166ompletely loally Γ -ontinuous 166ompletely LUC funtion 91omponent-wise loally arwise onneted at the boundary 135omponent-wise loally arwise onneted at x 135



Reonstrution of manifolds from subgroups of homeomorphism groups 243omponent-wise wide 135ontinuous. α-ontinuous at x ∈ cl(X) 205ontinuous. α-ontinuous at x. There is U ∈ Nbr(x) suh that f↾U is α-ontinuous 47ontinuous. α-ontinuous. f is α-ontinuous if for every x, y, d(f(x), f(y)) ≤ α(d(x, y)) 12ontinuous. β-ontinuous for α-submerged pairs. Abbreviation: (β;α)-ontinuous 224ontinuous. ∆-ontinuous for Γ -submerged pairs. Abbreviation: (∆;Γ )-ontinuous 224ontinuous. Γ -ontinuous at x. There is α ∈ Γ suh that f is α-ontinuous at x 47ontinuous. 〈α,P 〉-ontinuous 216ontinuous. 〈α,P 〉-ontinuous at x 216ontinuous. 〈Γ ,P 〉-ontinuous at x 216ontinuous. (r, α)-ontinuous 79ontinuous. ̺ is (n, α)-ontinuous 177ountably generated. Γ is ountably generated if for some ountable Γ0 ⊆ Γ ,
Γ ⊆ {α ∈ MC | (∃γ ∈ Γ0)(α � γ)} 12CP1. X is CP1 at x 68CP1 spae 68deayable ation. α-deayable at x. This means (1/2, α,H(X))-deayable at x 48deayable ation. λ is an (a, α,G)-deayable ation 47deayable ation. λ is an (a, α,G)-deayable ation at x 47deayable ation. λ is an (a, α,G)-deayable ation in A 47deayable ation. λ is an (a,Γ , G)-deayable ation 47deayable ation. (α,G)-deayable at x. This means (1/2, α,G)-deayable at x 48determined lass. P-determined lass of topologial spaes 14determining ategory 7dimension 1 at x. bd(X) is 1-dimensional at x 169disrete path property for BPD sets 102disrete path property for large distanes 80disrete subset. E-disrete subset of EXTE(X) 167distinguishable ategories 7double boundary point 135DPT. A metri spae is DPT 68DPT. A metri spae X is DPT at x ∈ X 68e-trak. 〈α, η 〉-e-trak 152e-trak system 153evasive sequene. Γ -evasive sequene 205extendible funtion. A funtion from X to Y that an be extended to a ontinuousfuntion from cl(X) to cl(Y ) 91extendible homeomorphism 9faithful lass of spae-group pairs 7faithful lass of topologial spaes 7�llable. G-�llable 113�lling. G-�lling 113�nite-dimensional di�erene homeomorphism 45generated. Γ is (≤κ)-generated. This means ∃Γ0 (|Γ0| ≤ κ and Γ = cl�(Γ0)) 52



244 M. Rubin and Y. Yomdingenerates. Γ0 generates Γ . This means Γ = cl�(Γ0) 52good semiover. V -good semiover 35in�nitely-losed. α-in�nitely-losed at x 52internally extendible in E. A homeomorphism of X ⊆ E whih extends to aontinuous funtion on int
E

(X) 40inversely 〈K,P 〉-ontinuous 216isotopially movable at the boundary 140isotopially movable with respet to X 140JN.AC. Abbreviation of jointly arwise onneted 124JN.ETC 153JN.TC 153joining system 124jointly arwise onneted 124legal parametrization 153limit-point. λ-limit-point 48LIN-bordered. α-LIN-bordered at x 166linear boundary hart domain. A set of the form BCDE(A, r), where A is a losedsubspae of E di�erent from {0} or a losed half spae of E 166Lipshitz funtion between loally Lipshitz normed manifolds 78Lipshitz homeomorphism 10loally almost Γ -ontinuous 70loally arwise onneted at a boundary point 115loally arwise onneted at the boundary. Abbreviated by BR.LC.AC 115loally bilipshitz homeomorphism 10loally bi-UC. Abbreviation of loally bi-uniformly-ontinuous 79loally bi-uniformly-ontinuous 79loally Γ -biontinuous 12loally Γ -biontinuous with respet to Φ and Ψ 78loally Γ -ontinuous 12loally Γ -ontinuous with respet to Φ and Ψ 78loally-LIN-bordered. Loally Γ -LIN-bordered 166loally Lipshitz homeomorphism 10loally Lipshitz normed manifold 77loally movable at the multiple boundary 135loally moving subgroup of H(X) 25loally 〈α,P 〉-ontinuous 216loally UC. Abbreviation of loally uniformly ontinuous 79loally uniformly ontinuous 79LUC on bd(X) funtion 91manageable ball B based on S 31manageable ball (with respet to a BNO-system) 31metrially dense subset 64modulus of ontinuity 12multiple boundary point 135



Reonstrution of manifolds from subgroups of homeomorphism groups 245nearly Γ -ontinuous on BPD sets 102nearly open set. Z is nearly open if Z ⊆ cl(int(Z)) 147normed Lipshitz manifold 149normed manifold 43on di�erent sides. u, v are on di�erent sides of bd(X) with respet to 〈ψ,A, r〉 169on the same side. u, v are on the same side of bd(X) with respet to 〈ψ,A, r〉 169open sum partition with respet to X 216order-irreversible. bd(X) is G-order-irreversible at x 206order preserving at x 206order-reversible. bd(X) is G-order-reversible at x 206order reversing at x 206pairwise disjoint family. A set of pairwise disjoint sets 123partial ation of a topologial group on a topologial spae 47PD.P funtion. A funtion whih takes PD sets to PD sets 90PD set. A subset of X whose distane from the boundary of X is > 0 90PD.UC funtion. A funtion whih is uniformly ontinuous on every PD set 91pieewise linearly radial. A radial homeomorphism RadE
η in whih η is pieewise linear 172point pre-representative 212pointwise Γ -ontinuous 20positive distane UC funtion 91positively distaned set. A subset of X whose distane from the boundary of X is > 0 90priniipal. Γ is prinipal if for some α ∈ Γ , Γ ⊆ cl�({α ◦n | n ∈ N}) 12Property MV1 99radial homeomorphism based on η. RadE

η . 59radial homeomorphism. RadE
η,z. The radial homeomorphism based on η, z 59RBM. A regional Banah manifold 43regional Banah manifold (RBM) 43regionally Γ -ontinuous 20regionally normed manifold (RNM) 43regionally translation-like ation 63regionally translation-like at x 62regional normed atlas for X 43regular open. A set is regular open if it is equal to the interior of its losure 25restrited topologial ategory 7RNM. A regionally normed manifold 43side preserving at x 206side reversing at x 206simple boundary point 115SLIN-bordered. α-simply-linearly-bordered at x (α-SLIN-bordered at x) 169small semiover. V -small semiover 35small set 31somewhere dense set. A set whose losure ontains a nonempty open set 26spaed set of sets. r-spaed set of sets 51spaed subset of X. A ⊆ X is spaed if (∃r > 0)(∀x, y ∈ A)((x 6= y) → (d(x, y) ≥ r)) 51



246 M. Rubin and Y. Yomdinspaed trak system 153spae-group pair. 〈X,G 〉 is a spae-group pair if X is a topologial spae and G ≤ H(X) 7star-losed. Γ is α-star-losed 226star-losed. Γ is ∆-star-losed 226strongly extendible 152strongly separated. U is strongly separated from V if ∃W (U ≺W and W ∩ V = ∅) 31strongly small set 31submerged. 〈x, y 〉 is α-submerged in X. This means δX(x) ≥ ‖x− y‖ + α−1(‖x− y‖) 224subspae hoie 28subspae hoie for 〈X,Φ 〉 43subspae hoie system 28tight Hilbert omplementation 171tight Hilbert norm 171topologial loal movement system 25trak. 〈α, η 〉-trak 152trak system 153translation-like. 〈H,λ 〉 is P-translation-like at x 218translation-like. 〈H,λ 〉 is P-translation-like in L 218translation-like partial ation 57translation-like partial ation at x 57two-sided. X is two-sided at x 169UC around bd(X) 91UC at x. Abbreviation of uniformly ontinuous at x 79UC-onstant. M is a 1UC-onstant for 〈a, b 〉 200UC-onstant. M is a UC-onstant for 〈a, b 〉 177UC. Abbreviation of uniformly ontinuous 79UD.AC. Abbreviation of uniformly-in-diameter arwise-onneted 89uniformly ontinuous 79uniformly ontinuous at x 79uniformly ontinuous for all distanes 79uniformly-in-diameter arwise-onneted 89weakly ��nite-dimensional di�erene� homeomorphism 45weakly Γ -biontinuous funtion 102weakly Γ -ontinuous funtion 102weakly Γ -ontinuous on BPD sets 102wide set 123


