
IntrodutionThe title of this dissertation ontains two terms: stability analysis and vetor optimization.Stability analysis is the study of how the output of a model varies as a funtion of inputdata and the model parameters. It is a prerequisite for the orret model building in ageneral setting (f. e.g. Babu²ka, Hlavá£ek and Chleboun [13℄, Eslami [58℄, Frank [62℄,Wierzbiki [152℄). Stability analysis is investigated for phenomena modelled by ordinaryor partial di�erential equations (f. e.g. Malanowski [107℄, Sokoªowski and Zolesio [142℄,Sokoªowski and �ohowski [141℄). Stability analysis is extensively studied in salar opti-mization (f. e.g. Bonnans and Shapiro [39℄, Donthev and Zolezzi [57℄, Pallashke andRolewiz [118℄). For the lassial problems of linear algebra, e.g. stability of solutions tosystems of linear equations and the eigenvalue problem was investigated e.g. by Lewis[102℄ and Roussellet and Chenais [138℄.From the mathematial viewpoint, stability analysis relies on investigation of onti-nuity or/and Lipshitz (Hölder) ontinuity properties of solutions. Traditionally, inves-tigation of di�erentiability properties of solutions is alled sensitivity analysis (f. e.g.Fiao [61℄). In optimization, sensitivity analysis onstitutes a natural soure of non-smooth mappings suh as optimal value funtions and optimal solution mappings whihare of interest in nonsmooth analysis (f. e.g. Kiwiel [89℄).Vetor optimization or multiple objetive optimization is gaining momentum in de-velopment of its theory and appliations. It has its origin primarily in eonomis, inequilibrium and welfare theories. The most ommon and natural neessity to optimizemultiple objetives arises in soial setting when individuals are trying to maximize theirbene�t, whih often leads to ompetition. Nowadays, vetor optimization is exploited alsoin solving engineering problems.The underlying onept in vetor optimization is the onept of e�ient (or nondom-inated) point. Let Y be a topologial vetor spae with a losed onvex pointed one
K ⊂ Y . Let C ⊂ Y be a subset of Y . An element y ∈ C is e�ient, written y ∈ E(C)(also EK(C)), if (y −K) ∩ C = {y}.Let X be a topologial spae. Let f : X → Y be a mapping and A be a subset of X.The vetor optimization problem

(P )
minK f(x)subjet to x ∈ Aonsists in �nding the set E(f, A) = E(f(A)) alled the e�ient (or nondominated) pointset of (P ) and the solution set S(f, A) = {x ∈ A : f(x) ∈ E(f, A)}. In the following we[5℄



6 Introdutionoften refer to problem (P ) as the original problem or the unperturbed problem. The spae
X is alled the deision spae and Y is alled the outome spae.Let U be a topologial spae. We embed problem (P ) into a family (Pu) of vetoroptimization problems parametrized by a parameter u ∈ U ,

(Pu)
minK f(u, x)subjet to x ∈ A(u)where f : U × X → Y is the parametrized objetive funtion and A(u) ⊂ X is theparametrized feasible subset of X. The sets A(u) give rise to the feasible set-valuedmapping A : U →→ X, A(u) = A(u), A(u0) = A. Problem (P ) orresponds to a givenparameter value u0 ∈ U .The performane set-valued mapping P : U →→ Y is de�ned as P(u) = E(f(u, ·), A(u)),

P(u0) = E(f, A), and the solution set-valued mapping S : U →→ X is de�ned as
S(u) = S(f(u, ·), A(u)) and S(u0) = S(f, A).Our aim is to perform a systemati study of stability properties of the performanemapping P and the solution mapping S. We fous on onditions ensuring Hausdor�,Lipshitz and Hölder behaviour of P and S with respet to the parameter u. To enlargethe appliability of the results we do not assume any partiular form of the feasible setand we tend to avoid as muh as possible ompatness assumptions whih are frequentlyover-used (see e.g. [148℄).Convergene and rates of onvergene of solutions to perturbed optimization problemsare one of ruial topis of stability analysis in optimization both from the theoretialand numerial viewpoints. For salar optimization these topis were investigated by manyauthors (see e.g., [2, 56, 86, 103, 112, 113, 118, 132, 153, 154℄ and many others). Anexhaustive survey of the urrent state of researh is given in the books by Bonnansand Shapiro [39℄, Donthev and Zolezzi [57℄, Pallashke and Rolewiz [118℄. In vetoroptimization the results on Lipshitz ontinuity of solutions are sarse and refer only tosome lasses of problems (f. e.g. [47℄, [48℄, [49℄ for the linear ase and [37℄, [50℄ for theonvex ase).A harateristi feature of vetor optimization problems is that the outome spaesare equipped with partial orderings whih are not linear in general. These partial or-ders are generated by ones whose properties play an important role in existene resultsand optimality onditions. To derive stability results we make use of two new oneptspertaining to sets and ones in the outome spae, namely the ontainment property,introdued in [21℄, and the strit e�ieny, introdued in [17℄.The ontainment property (CP) is used to study upper semiontinuities (in the senseof Hausdor�, Lipshitz, or Hölder) of e�ient points (f. [16, 21℄) under perturbation ofa set. This property an be viewed as a variant of the domination property (DP) appearingfrequently in the ontext of stability of solutions to �nite-dimensional parametri vetoroptimization problems. To study upper Hölder ontinuity of e�ient points and solutionsto (P ) we introdue the ontainment rate of a set with respet to a one, whih is a real-valued funtion of a salar argument and haraterizes the ontainment property (CP).Strit e�ieny is introdued in [31, 18℄ to study lower (Hausdor�, Hölder) semion-tinuities of e�ient points. In normed spaes, strit e�ieny is implied by the super



Introdution 7e�ieny in the sense of Borwein and Zhuang [42℄. To study lower Hölder ontinuity ofe�ient points and solutions to (P ) we de�ne the modulus of strit e�ieny ([18℄). Invetor optimization the onept of strit e�ieny leads to the notion of sharp and weaksharp solutions (loal and global) ([27℄). Both sharp and weak sharp solutions an beviewed as vetor ounterparts of sharp (and weak sharp) minimality and growth ondi-tions appearing in salar optimization (f. [39℄, [38℄, [43℄).The organization of the book is as follows. In Chapter 2 we investigate the strite�ieny and the modulus of strit e�ieny. Speial attention is paid to strit e�ienyin the �nite-dimensional ase.In Chapter 3 we derive su�ient onditions for lower Hausdor� semiontinuity ofthe e�ient point set-valued mapping E , E(u) = E(C(u)), where C : U →→ Y is a givenset-valued mapping.In Chapter 4 we formulate onditions for lower Hölder ontinuity and lower-pseudo-Hölder ontinuity of E .In Chapter 5, the ontainment property (CP) and the ontainment rate are inves-tigated. Speial attention is paid to the �nite-dimensional linear and onvex ases. InChapter 6, by using the ontainment property we prove su�ient onditions for upperHausdor� ontinuity of e�ient points and in Chapter 7 the ontainment rate is used toinvestigate upper Hölder ontinuity and upper pseudo-Hölder behaviour of E . We applythe results obtained to formulate su�ient onditions for the Hölder ontinuity of theperformane set-valued mapping P for parametri problems (Pu).In Chapter 8 we de�ne φ-sharp and weak φ-sharp solutions to (P ). When applied tosalar optimization problems the notions of φ-sharp and weak φ-sharp solutions redueto the notions of sharp and weak sharp minima, respetively, introdued by Studniarskiand Ward [147℄, Burke and Ferris [44℄. Sharp and weak sharp minima were used e.g. byAttouh and Wets [7℄, Bonnans and Shapiro [39℄ to derive stability results for parametriproblems.In Chapter 9, basing on properties of ε-solutions to vetor optimization problems wede�ne well-posedness of (P ). We investigate relationships between well-posedness of (P )and sharpness or weak sharpness of solutions. In lasses of well-posed problems we in-vestigate upper Hausdor� semiontinuity and upper Lipshitz (Hölder) ontinuity of thesolution mapping S, S(u) = S(f, A(u)). By exploiting the notions of loal sharp and loalweak sharp solutions we prove Hölder almness of S.
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1. PRELIMINARIESThe general framework of our developments are Hausdor� topologial vetor spaes(t.v.s.) over the �eld R of real numbers. A linear spae Y is a topologial vetor spae if
Y is equipped with a topology ompatible with the linear spae struture, that is, bothlinear spae operations (y1, y2) → y1 + y2, y1, y2 ∈ Y, and (r, y) → ry, r ∈ R, y ∈ Y, areontinuous on their domains, Y × Y and R × Y, respetively. It is a onsequene of theontinuity of the linear spae operations that the topologial struture of Y is determinedby a base of neighbourhoods of the origin.If V is a base of neighbourhoods of the origin, then for eah V ∈ V ,(i) V is absorbing, i.e., for any y ∈ Y there is some λ > 0 suh that λy ∈ V for any

0 ≤ λ ≤ λ,(ii) there exists a balaned neighbourhood V ⊂ V , i.e., for all v ∈ V , λv ∈ Vwhenever |λ| ≤ 1,(iii) there exists W ∈ V suh that W + W ⊂ V .A topologial spae is Hausdor� (or separated) if any two distint points have disjointneighbourhoods. If V is a base of neighbourhoods in a topologial vetor spae Y , then
Y is a Hausdor� spae if and only if ⋂

V ∈V V = {0}. We use the standard notations cl(·),
int(·), and ∂(·) for losure, interior, and boundary, respetively.Let C be a subset of Y . We say that C is onvex if λx + (1− λ)y ∈ C for all x, y ∈ Cand 0 ≤ λ ≤ 1. The (linear) segment [a, b] with end-points a ∈ Y and b ∈ Y is given as

[a, b] = {z ∈ Y : z = λx + (1 − λ)y, 0 ≤ λ ≤ 1}.For any nonempty subsets C and D of Y the algebrai sum of C and D is de�ned as
C + D = {c + d : c ∈ C, d ∈ D}and the algebrai di�erene of C and D is de�ned as
C − D = {c − d : c ∈ C, d ∈ D}.Moreover, the algebrai sum and di�erene are empty if any of the sets C and D is empty.For any subset C of Y and λ ∈ R,

λC = {λy : y ∈ C}.By a loally onvex spae we mean a topologial vetor spae with a base of onvexneighbourhoods of the origin. A loally onvex spae Y has a base V of neighbourhoodsof the origin with the following properties: [9℄



10 1. Preliminaries(i) if V ∈ V and λ 6= 0, then λV ∈ V ,(ii) eah V ∈ V is absolutely onvex (i.e., balaned and onvex).Let Y ∗ be the topologial dual of Y , i.e., the spae of all ontinuous funtionals de�nedon Y . If Y is a Hausdor� loally onvex spae, then Y ∗ separates points, i.e., for anytwo di�erent points y1, y2 ∈ Y there exists f ∈ Y ∗ suh that f(y1) 6= f(y2) (see e.g.Holmes [78, Cor. 11.E℄).
1.1. Cones in topologial vetor spaesIn this setion we ollet basi fats about ones. A subset K of a vetor spae Y is aone if

y ∈ K and λ ≥ 0 ⇒ λy ∈ K.By de�nition, eah nonempty one ontains the origin and {0} is the trivial one. A onvexone is a one whih is a onvex subset of Y . A one K is pointed if K ∩ (−K) = {0}.Definition 1.1.1. Let {0} 6= K ⊂ Y be a onvex one. A nonempty onvex subset Θ of
K is a base of K if 0 6∈ cl Θ and K =

⋃{λΘ : λ ≥ 0}.A based one is neessarily pointed and onvex. The example below shows that Def-inition 1.1.1 does not ensure the uniqueness of the representation of elements of K viaelements of a base.Example 1.1.1. Let Y = R
2, K = R

2
+. The set

Θ = K ∩ {(y1, y2) : −y1 + 2 ≤ y2 ≤ −y1 + 4}is a base of K. Eah 0 6= k ∈ K an be represented as (k1, k2) = λ(y1, y2), where λ > 0and (y1, y2) ∈ Θ. It is enough to take any λ satisfying (k1 + k2)/4 ≤ λ ≤ (k1 + k2)/2.Conditions ensuring uniqueness of representation are given in the following proposi-tion.Proposition 1.1.1 (Peressini [122℄, Jahn [82℄). Let Y be a vetor spae. Let K be aonvex one in Y and let Θ be a nonempty onvex subset of K. The following onditionsare equivalent:(i) eah nonzero element y ∈ K has a unique representation of the form y = λθ,where λ > 0, θ ∈ Θ,(ii) K =
⋃{λΘ : λ ≥ 0} and the smallest linear manifold in Y ontaining Θ does notontain 0.Proof. If (i) holds, then K =

⋃{λΘ : λ ≥ 0}. The smallest linear manifold ontaining Θis L = {µθ + (1− µ)θ′ : θ, θ′ ∈ Θ, µ ∈ R}. If 0 ∈ L, there would be µ0 > 1 and θ0, θ
′
0 ∈ Θsuh that µ0θ0 = (µ0 − 1)θ′0, ontrary to (i).To show uniqueness in (i), suppose on the ontrary that λθ = λ′θ′ for θ, θ′ ∈ Θ, andpositive reals λ, λ′, λ 6= λ′. Then

0 =
1

λ − λ′
{λθ − λ′θ′} ∈ Lontrary to (ii).



1.1. Cones in topologial vetor spaes 11In some textbooks the base of a one is de�ned as a nonempty onvex subset of theone satisfying ondition (i) of Proposition 1.1.1 (see e.g. [82, 83, 85, 122℄). If Θ satis�esthat ondition, then 0 6∈ Θ.In loally onvex spaes, any based onvex one has a base satisfying ondition (i) ofProposition 1.1.1.Proposition 1.1.2. Let Y be a loally onvex Hausdor� topologial vetor spae and let
K be a onvex one in Y with a base Θ. There exists another base Θ1 of K suh that
Θ1 = f−1(1)∩K, where f is a ontinuous linear funtional on Y satisfying ondition (i)of Proposition 1.1.1.Proof. Sine 0 6∈ cl Θ, there exists a onvex 0-neighbourhood V in Y suh that V ∩
clΘ = ∅. By separation arguments (see e.g. Holmes [78, Th. 11.E, 12.F℄), there exists aontinuous linear funtional f on Y suh that f(θ) > 0 for θ ∈ Θ. Hene, Θ1 = f−1(1)∩Kis a base of K whih satis�es ondition (i) of Proposition 1.1.1.We say that a subset C of Y is K-losed if C +K is losed, and C is K-onvex if C +Kis onvex.For any one K ⊂ Y, its dual K∗ ⊂ Y ∗ of Y ∗ is de�ned as

K∗ = {f ∈ Y ∗ : f(y) ≥ 0 for all y ∈ K}.The dual one K∗ is nonempty and weak∗ losed. To see the latter suppose that fω is anet of funtionals from K∗ onverging weak∗ to f . Then fω(y) onverges to f(y) for all
y ∈ Y , in partiular, fω(k) onverges to f(k) for any k ∈ K. This entails f(k) ≥ 0 for all
k ∈ K sine fω(k) ≥ 0 for all ω and all k ∈ K.For any subset C of a topologial vetor spae Y the polar C◦ ⊂ Y ∗ of C is de�nedas

C◦ = {f ∈ Y ∗ : f(y) ≤ 1 for all y ∈ C}.The polar is nonempty sine 0 ∈ C◦, and weak∗ losed. We have K∗ = −K◦. In the sameway, for any subset C ⊂ Y ∗, we de�ne the polar C◦ ⊂ Y as
C◦ = {y ∈ Y : f(y) ≤ 1 for all f ∈ C}.The bipolar C◦◦ ⊂ Y of a subset C ⊂ Y is

C◦◦ = {y ∈ Y : f(y) ≤ 1 for all f ∈ C◦}.If C is a subset of a loally onvex spae Y, then
C◦◦ = cl((conv{0 ∪ C}),where onv stands for onvex hull (f. Holmes [78, Th. 12.C℄). Hene, the bidual one

K∗∗,
K∗∗ = {y ∈ Y : f(y) ≥ 0 for f ∈ K∗},is onvex and weakly losed, and in loally onvex spaes K = K∗∗ if and only if K isonvex and weakly losed (in normed spaes f. Kuryusz [98, Lemma 8.6℄).A topologial linear spae Y is said to be a Makey spae (f. e.g. [85℄) if B◦ ⊂ Y isa 0-neighbourhood in Y whenever B ⊂ Y ∗ is a onvex and weak∗ ompat subset of Y .



12 1. PreliminariesTheorem 1.1.1 (Jameson [85, Th. 3.8.6℄). Let K be a onvex one in a loally onvextopologial spae Y . Then(i) if K has an interior point, then K∗ has a weak∗ ompat base,(ii) if Y is a Makey spae, K is losed and K∗ has a weak∗ ompat base, then Khas an interior point.Proof. (i) Let e ∈ intK and let Θ = {f ∈ K∗ : f(e) = 1}. Then Θ is a base of K∗. Now
K− e is a 0-neighbourhood in Y and hene (K− e)∗ is weak∗ ompat. The result followssine Θ is a weak∗ losed subset of (K − e)∗.(ii) Suppose that Θ is a weak∗ ompat base of K∗. There is an element y0 of Y suhthat f(y0) ≥ 1 for f ∈ Θ. Sine Y is a Makey spae, Θ◦ is a 0-neighbourhood in Y. For
y ∈ Θ◦ and f ∈ Θ, f(y0 + y) ≥ 0, so y0 + y ∈ K∗∗ = K. Hene, y0 + Θ◦ ⊂ K.Below we give an example of a one with empty interior suh that K∗ has a boundedand losed base in the norm topology.Example 1.1.2 (Jameson [85, p. 123℄). Let Y = c0 be the spae of real sequenes on-verging to zero with the usual one c+

0 of nonnegative elements. Then c+
0 has no interiorpoints, and (c+

0 )∗ is the usual nonnegative one ℓ+1 in ℓ1. The set of sequenes {ξn} ⊂ (c+
0 )∗suh that ∑

ξn = 1 is a base for (c+
0 )∗ that is bounded and losed in the norm topology.The set

K∗i = {f ∈ K∗ : f(y) > 0 for all y ∈ K \ {0}}is alled the quasi-interior of K∗. Note that K∗i may be empty. The set
Ki = {y ∈ Y : f(y) > 0 for all f ∈ K∗ \ {0}}is alled the quasi-interior of K (f. e.g. [140, 122℄). In loally onvex spaes, Ki ⊂ K\{0},and if intK 6= ∅, then intK = Ki. Moreover, by Lemma 5.5 of [46℄,

K = {y ∈ Y : f(y) ≥ 0 for all f ∈ K∗i}.Indeed, suppose that y 6∈ K. Sine Y is loally onvex, there exists f ∈ K∗ suh that
f(y) < 0. Let g ∈ K∗i. By hoosing α > 0 suh that f(y) + αg(y) < 0 we get h =

f + α · g ∈ K∗i and h(y) < 0.Example 1.1.3 (Peressini [122, Ex. 3.7b, p. 27℄). Let Y = B[a, b] be the set of allbounded, real-valued funtions on the interval 〈a, b〉 and
K = {f ∈ B[a, b] : f(y) ≥ 0 for all y ∈ [a, b]}.The quasi-interior K∗i of K is empty.Neessary and su�ient onditions for K∗i to be nonempty were given by Dauer andGallagher in [46℄.Proposition 1.1.3 (Dauer and Gallagher [46℄). Let Y be a topologial vetor spae andlet K be a onvex one in Y . Then K∗i is nonempty if and only if there exists an openonvex subset Q in Y satisfying(i) 0 6∈ Q,(ii) K ⊂ cone(Q) =

⋃{λQ : λ ≥ 0}.



1.1. Cones in topologial vetor spaes 13Proof. If K∗i 6= ∅, then the set Q = {y ∈ Y : f(y) > 0}, f ∈ K∗i, satis�es (i) and (ii).Let Q be a subset of Y satisfying (i) and (ii). Sine 0 6∈ Q, by separation arguments(see [139, p. 58℄), there exists f ∈ Y ∗ suh that f(0) < f(q) for q ∈ Q. Thus, f(q) > 0for all q ∈ Q. From (ii) it follows that f ∈ K∗i.By Proposition 1.1.3, for any onvex one K in a loally onvex spae Y , K∗i isnonempty if and only if K is based. If Y is separable and K is losed onvex and pointed,then K∗i is nonempty (see [94, Thm. 2.1℄).Let C be a subset of a linear spae Y . The set
coreC = {z ∈ C : ∀y ∈ Y ∃λ > 0 with z + λy ∈ C for 0 ≤ λ ≤ λ}is alled the algebrai interior or the ore of C. For any one K in a linear vetor spae Y ,the fat that coreK 6= ∅ implies that K is reproduing, i.e., K −K = Y (see Lemma 1.13of [82℄ and [83℄).Theorem 1.1.2 (Jahn [82, Lemmas 1.25, 1.26℄). Let K be a losed onvex one in atopologial vetor spae Y with K∗ 6= {0}. Then(i) coreK ⊂ Ki,(ii) if Y ∗ separates points of Y and K∗i 6= ∅, then coreK∗ ⊂ K∗i.Proof. (i) Let k ∈ coreK. Thus, k ∈ K and for any y ∈ Y there exists λ > 0 with

k + λy ∈ K for 0 ≤ λ ≤ λ. Hene, for any f ∈ K∗ \ {0}, f(k + λy) ≥ 0 for any 0 ≤ λ ≤ λ.Sine f ∈ K∗ \ {0}, there exists y0 ∈ Y with f(y0) < 0 and we get f(k) ≥ −λf(y0) > 0.Hene, f(k) > 0.(ii) Let f ∈ coreK∗. Thus, f ∈ K∗ and for any g ∈ Y ∗ there exists λ > 0 with
f + λg ∈ K∗ for 0 ≤ λ ≤ λ. Hene, (f + λg)y ≥ 0 for any y ∈ K and any 0 ≤ λ ≤ λ. Bytaking any g0 ∈ Y ∗ with g0(y) < 0 we get f(y) ≥ −λg0(y) > 0. Hene, f(y) > 0.When K∗ = {0} Theorem 1.1.2 is not true; to see this it is enough to take K = Y . Asshown in [82, Lemma 1.27℄, in any linear vetor spae Y , the one K∗ is pointed whenever
coreK 6= ∅. Then, by Theorem 1.1.2, K∗ is based. Moreover, if coreK∗ 6= ∅, then K isbased (see [78, Theorem I.5C℄).Proposition 1.1.4. Let Y be a loally onvex topologial vetor spae and let K be alosed onvex one in Y . If Ki 6= ∅, and K∗ is nontrivial, then K∗ has a base.Proof. Let y0 ∈ Ki. Then the set(1.1) Θ∗ = {θ∗ ∈ K∗ : θ∗(y0) = 1}is a base of K∗. It is onvex, weak∗ losed, 0 6∈ w∗-lΘ∗, where w∗-l stands for the weak∗losure. Moreover, for any 0 6= f ∈ K∗, we have f(y0) = λf 6= 0, and f/λf ∈ Θ∗.In the following we refer to any base of the form (1.1) as a standard base. By Theorem1.1.2, coreK ⊂ Ki, and by Proposition 1.1.4, if coreK 6= ∅ and K∗ 6= {0}, then K∗ isbased. By similar arguments, K∗i is always based.



14 1. Preliminaries1.2. Basi onepts of e�ienyLet Y be a topologial vetor spae and let K be a losed onvex one in Y. The orderingrelation � (we write also �K) in Y assoiated with K is de�ned as
y1 �K y2 ⇔ y1 − y2 ∈ K.The relation �K is re�exive and transitive, and it is antisymmetri if and only if K ispointed, i.e., K ∩ (−K) = {0}. Let C be a subset of Y . An element y ∈ C is e�ient (ornondominated) for C with respet to K, written y ∈ E(C) (or y ∈ EK(C)), if C∩(y−K) ⊂

K. WhenK is pointed, an element y ∈ C is e�ient if C∩(y−K) = {y}. When intK 6= ∅ wesay that an element y ∈ C is weakly e�ient, and we write y ∈ WE(C) (or y ∈ WEK(C)),if C ∩ (y − intK) = ∅. Clearly, E(C) ⊂ WE(C).An element y ∈ C is loally e�ient (or loally nondominated) in C with respet to
K, and we write y ∈ LE(C) (or y ∈ LEK(C)), if there exists a 0-neighbourhood V in Ysuh that y ∈ EK(C ∩ (y + V )). If C ⊂ Y is a onvex subset of Y , then(1.2) EK(C) = LEK(C).To see this, suppose that y0 6∈ EK(C). There exists y1 ∈ C suh that y1 − y0 ∈ −K.By onvexity, λy0 + (1 − λ)y1 ⊂ C ∩ (y0 − K), 0 ≤ λ ≤ 1, and λy0 + (1 − λ)y1 ∈ V for
0 ≤ λ ≤ λ ≤ 1. Hene, y0 6∈ EK(C ∩ V ).A well-known fat is that the ompatness of C implies that E(C) 6= ∅. Numerousattempts have been made to weaken the ompatness requirement (see e.g. [145℄, [40℄,[36℄, [149℄).We will use the following fundamental existene theorem.Theorem 1.2.1 ([83, Th.6.5℄). Let C be a nonempty subset of a real loally onvexspae Y . If C is weakly ompat, then for every losed onvex one K in Y the set Chas at least one e�ient point with respet to the partial ordering indued by K.

1.3. Vetor optimization problemsLet X and Y be Hausdor� topologial vetor spaes. Let K be a losed onvex one in
Y . We onsider the vetor optimization problem

(P )
minK f(x)subjet to x ∈ A,where f : X → Y is a mapping and A is a subset of X.The set E(f, A) of (global) e�ient points to (P ) (we write also EK(f, A)) is de�nedas E(f, A) := E(f(A)). The set

S(f, A) := {x ∈ A : f(x) ∈ E(f, A)}(we write also SK(f, A)) is the set of (global) solutions to (P ) (see Jahn [82, 83℄, Lu[105℄). Clearly, S(f, A) = A ∩ f−1(E(f, A)).An element x ∈ A is a loal solution to (P ), x ∈ LS(f, A) (we write also x ∈
LSK(f, A)), if there exists a 0-neighbourhood Q in X suh that x ∈ A∩f−1(E(f(A∩Q))).



1.3. Vetor optimization problems 15An element y ∈ f(A) is a loally e�ient point for (P ), y ∈ LE(f, A) (we write also
y ∈ LEK(f, A)), if there exists a 0-neighbourhood W suh that y ∈ EK(f(A) ∩ W ). Ingeneral, LS(f, A) di�ers from A ∩ f−1(LE(f, A)).Proposition 1.3.1. Let X and Y be Hausdor� topologial vetor spaes and let K be alosed onvex one in Y . Let A be a subset of X and f : X → Y be ontinuous on A.Then

A ∩ f−1(LEK(f, A)) ⊂ LSK(f, A).Proof. Let x0 ∈ A ∩ f−1(LEK(f, A)). Then f(x0) ∈ LEK(f(A)) and there exists a 0-neighbourhood W in Y suh that (f(A) ∩ (f(x0) + W ) − f(x0)) ∩ (−K) ⊂ K. By theontinuity of f, there exists a 0-neighbourhood Q in X suh that f(x0 +Q) ⊂ f(x0)+W .Hene, f((x0 + Q) ∩ A) ⊂ f(x0 + Q) ∩ f(A) ⊂ (f(x0) + W ) ∩ f(A), and
(f((x0) + Q) ∩ A) − f(x0)) ∩ (−K) ⊂ K,whih means that x0 ∈ LSK(f, A).The opposite inlusion to that of Proposition 1.3.1 does not hold in general.If Y = R

m and A ⊂ R
n is given as the solution set to a �nite system of equationsand/or inequalities and the mapping f : R

n → R
m is given as

f = (f1, . . . , fm),where fi : R
n → R, 1 ≤ i ≤ m, are (salar) riteria (objetives), problem (P ) takes theform of a multiriteria optimization problem

(MOP )

minK (f1, . . . , fm)subjet to
x ∈ A = {x ∈ R

n : gi(x) ≤ bi, i ∈ I, hj(x) = dj , j ∈ J},where I and J are �nite systems of indies, gi : R
n → R and bi ∈ R for i ∈ I, hj : R

n → Rand dj ∈ R for j ∈ J .In the literature there exist a number of de�nitions of properly e�ient points (andsolutions) for (P ) and (MOP ). Properly e�ient points are e�ient points whih sat-isfy additional onditions in order to eliminate some undesirable behaviour (e.g. the un-bounded growth of trade-o� oe�ients). The de�nitions of properly e�ient points wereoriginally proposed by Geo�rion [65℄ and Kuhn and Tuker [96℄. In the �nite-dimensionalsetting properly e�ient points were also investigated by Benson [34℄, Hartley [71℄ andHenig [73℄. The de�nition of proper e�ieny proposed by Henig in [73℄ an be naturallygeneralized to the in�nite-dimensional setting. The de�nitions of proper e�ieny in in-�nite dimensions were also proposed by Borwein [40, 41℄ and Borwein and Zhuang [42℄.The relationships between di�erent notions of proper e�ieny were eluidated in [70℄.Dual problems to (P ) and (MOP ) were proposed by many authors. For a surveyof the existing approahes and generalizations we refer to Song [143℄ and the referenestherein.Parametri problems related to (P ) were investigated on di�erent levels of generality.Convergene of sequenes of e�ient point sets E(Cn) was investigated by Mighlierinaand Molho [110, 111℄. The onstrution of polarities was exploited in proving di�erenttype of onvergene of e�ient point sets by Doleki [53, 54℄, Doleki and Malivert [55℄,



16 1. PreliminariesMalivert [108℄. K-semiontinuities of e�ient sets were investigated by Sterna-Karwat[144℄ and Sterna-Karwat and Penot [120, 121℄.Bibliographial note. Classi textbooks on topologial vetor spaes are e.g. Alexie-wiz [1℄, Shaefer [140℄, Robertson and Robertson [127℄. The books by Peressini [122℄ andJameson [85℄ are devoted to ordered topologial vetor spaes. Presentations of di�erentaspets of the theory of set-valued mappings an be found e.g. in books by Berge [35℄,Aubin and Frankowska [11℄, Kuratowski [97℄. The theory of vetor optimization in topo-logial vetor spaes with numerous extensions is presented in the books by Jahn [82, 83℄,Lu [105℄, Hyers, Isa and Rassias [79℄, Gopfert, Riahi, Tammer and Zalinesu [68℄.



2. STRICT EFFICIENCYIn this hapter we introdue the onept of strit e�ieny and the modulus of strite�ieny. These onepts onstitute main ingredients of su�ient onditions for the lowersemiontinuity and lower Hölder (and lower pseudo-Hölder) ontinuity of e�ient pointsformulated in Chapters 3 and 4. Strit e�ieny an be viewed as a kind of propere�ieny (f. e.g. [42, 73℄). We show that strit e�ieny is weaker than the propere�ieny in the sense of Henig [73℄ and weaker than the super e�ieny as de�ned byBorwein and Zhuang [42℄. The question of density of proper e�ient points in the set ofall e�ient points was addressed by many authors (f. e.g. [3, 32, 42, 46, 63, 67℄). Basedon those results we get density results for stritly e�ient points.In Setion 2.1 we de�ne strong proper e�ieny whih is stronger than Henig propere�ieny. In Setion 2.2 we introdue the notion of strit e�ieny; we investigate prop-erties of stritly e�ient points and we provide a haraterization of strit e�ieny interms of nets. In Setion 2.3 we investigate strit e�ieny for onvex sets. In Setion 2.4we de�ne the modulus of strit e�ieny and we prove haraterizations of strit e�ienyin terms of properties of the modulus of strit e�ieny.2.1. Strong proper e�ienyLet Y be a Hausdor� topologial vetor spae and let K be a losed onvex pointed onein Y. Let C be a subset of Y .Definition 2.1.1. A point y0 ∈ C is strongly properly e�ient (see [16℄), y0 ∈ SPE(C),if there exists a losed onvex one K0, K0 6= Y, intK0 6= ∅, K \ {0} ⊂ intK0, suh thatfor eah 0-neighbourhood W there exists a 0-neighbourhood O suh that(2.1) (K \ W ) + O ⊂ K0,and y0 ∈ EK0
(C).Reall that a one K has a base Θ if Θ is onvex, 0 6∈ cl Θ, where cl stands for losure,and K = cone(Θ). For any 0-neighbourhood V we put

Kd(V ) = cone(Θ + V ).Proposition 2.1.1. Let K ⊂ Y be a losed onvex one with a base Θ and let K0 be alosed onvex one, K0 6= Y, intK0 6= ∅, K \ {0} ⊂ intK0. If K0 satis�es (2.1), then(2.2) Kd(V ) ⊂ K0for some 0-neighbourhood V. [17℄



18 2. Strit e�ienyProof. Sine 0 6∈ clΘ, there exists a 0-neighbourhood W suh that Θ ∩W = ∅. By (2.1),there exists a 0-neighbourhood O suh that Θ+O ⊂ K0, or Kd(O) = cone(Θ+O) ⊂ K0.Proposition 2.1.2. Let K be a losed onvex one in Y with a topologially boundedbase Θ. For any 0-neighbourhood V, the one Kd(V ) satis�es ondition (2.1), i.e., foreah 0-neighbourhood W there exists a 0-neighbourhood O suh that(2.3) (K \ W ) + O ⊂ Kd(V ).Proof. Let W be a 0-neighbourhood. Sine Θ is topologially bounded, there exists λ > 0suh that λΘ ⊂ W for 0 ≤ λ ≤ λ and for x ∈ K \ W we have x = λxθx, where λx > λ.Moreover, there exists a 0-neighbourhood O suh that O ⊂ λV. Hene
x + O ⊂ λxθx + λV = λx

(
θx +

λ

λx
V

)
⊂ cone(Θ + V ).In Proposition 2.1.2, the boundedness of Θ is important as shown by the examplebelow.Example 2.1.1. Let Y = ℓ∞, and K = ℓ∞+ . The funtional f(x) =

∑∞
n=1 xn/2n has theproperty that f(x) > 0 for x ∈ K \ {0}. Hene, the set

Θ = {x ∈ K : f(x) = 1}is a base of K. It is unbounded sine the sequene (xk) ⊂ Θ,

xk = (0, . . . , 0, 2k
︸︷︷︸

kth position, 0, . . .),is unbounded and the ondition (2.3) is not satis�ed. To see this take a sequene (yk) ⊂
K \ W, W = {x ∈ ℓ∞ : supn |xn| < 1} and (qk), where

yk =
1

k
xk, and qk =

(
0, . . . , 0,

1

k︸︷︷︸
kth position, 0, . . .

)
.

Now, yk + qk 6∈ cone(Θ + V ) for any 0-neighbourhood V ontained in V = {x ∈ ℓ∞ :

supn |xn| < 1}, sine
zk = yk + qk =

1

k
xk + qk =

1

k
[xk + pk],where pk = (0, . . . , 0, 1︸︷︷︸

kth position, 0, . . .). The main feature here is that yk has the represen-tation yk = λkθk with (λk) tending to zero.Corollary 2.1.1. Let K be a losed onvex one with a topologially bounded base Θin a loally onvex spae Y and let C be a subset of Y. The following onditions areequivalent:(i) y ∈ SPE(C),(ii) y ∈ EclKd(V )(C), where V is a onvex 0-neighbourhood.Proof. (ii)⇒(i). If y ∈ EclKd(V )(C), by Proposition 2.1.2, clKd(V ) satis�es ondition(2.1), and hene y ∈ SPE(C).



2.2. Strit e�ieny 19(i)⇒(ii). Let y ∈ SPE(C). Then y ∈ EK0
(C), where K0 satis�es (2.1). By Propo-sition 2.1.1, there exists a 0-neighbourhood V suh that (2.2) holds, and hene y ∈

EclKd(V )(C).Let us note that in any loally onvex spae, for all su�iently small neighbourhoods
V, Kd(V ) is pointed, whih may not be the ase for clKd(V ).

2.2. Strit e�ienyLet K be a losed onvex pointed one in a Hausdor� topologial vetor spae Y . Let Cbe a subset of Y .Definition 2.2.1 ([17, 18℄). A point y0 ∈ C is stritly e�ient, y0 ∈ StE(C) (we writealso StEK(C)), if for any 0-neighbourhood W there exists a 0-neighbourhood O suhthat(2.4) ((C \ (y0 + W )) + O) ∩ (y0 −K) = ∅.Equivalently(2.5) (C − y0) ∩ (O −K) ⊂ W.Eah stritly e�ient point is e�ient,
StE(C) ⊂ E(C).Indeed, if y0 6∈ E(C), there exists y ∈ C, y 6= y0, suh that y ∈ (C − y0) ∩ (−K). On theother hand, there exists a 0-neighbourhood W suh that y 6∈ y0+W . Hene y0 6∈ StE(C).If K1 ⊂ K for a losed onvex one K1, then StEK(C) ⊂ StEK1

(C).The following proposition establishes the relationship between strongly properly e�-ient points and stritly e�ient points.Proposition 2.2.1. For any subset C of Y we have
SPE(C) ⊂ StE(C).Proof. Let y0 ∈ SPE(C) and let W be a 0-neighbourhood. By (2.1), there exists a 0-neighbourhood O suh that (K \ W ) + O ⊂ K0. Let W1 be a 0-neighbourhood suh that

W1 + W1 ⊂ W. By O1 we denote a 0-neighbourhood suh that (K \ W1) + O1 ⊂ K0.We laim that (C − y0) ∩ (O1 ∩W1 −K) ⊂ W. Indeed, take any z ∈ (C − y0) ∩ (O1 ∩
W1 −K). Hene,

z = y − y0 = q − k, where y ∈ C, q ∈ O1 ∩ W1, k ∈ K.If z 6∈ W , we would have k ∈ K \ W1 and by (2.1), −k − q = y − y0 ∈ −K0, whih wouldontradit the strong proper e�ieny of y0. This proves that y0 ∈ StE(C).Strit e�ieny an be haraterized via upper Hausdor� semiontinuity (for thede�nition see the beginning of Chapter 3) of the setion mapping SecC : Y →→ Y ,
SecC(y) = Cy = C ∩ (y −K) (f. also Th. 2 and Corollaries 1 and 2 of [31℄).



20 2. Strit e�ienyProposition 2.2.2. Let K be a losed onvex pointed one in a Hausdor� topologialvetor spae Y . Let C be a subset of Y . An element y0 ∈ E(C) is stritly e�ient if andonly if SecC is upper Hausdor� semiontinuous at y0.Proof. It is enough to note that Secc(y0) = {y0}. Then the strit e�ieny of y0 an beequivalently rewritten as
SecC(y) ⊂ SecC(y0) + W for any y ∈ y0 + O,whih amounts to the upper Hausdor� semiontinuity of SecC at y0.Reall that a one K is normal in a topologial vetor spae Y if there exists a basis

V of neighbourhoods of Y suh that (O + K) ∩ (O −K) = O for any O ∈ V .Proposition 2.2.3. If K is normal, then 0 ∈ StE(K).Proof. Sine K is normal, for eah 0-neighbourhood W , there exists a 0-neighbourhood
O suh that (O + K) ∩ (O −K) ⊂ W and hene K ∩ (O −K) ⊂ W.The following proposition gives a haraterization of strit e�ieny in terms of nets.Proposition 2.2.4. Let C be a subset of the spae Y and y0 ∈ E(C). The following areequivalent:(i) y0 ∈ StE(C),(ii) for any nets (xα), (yα) suh that (xα) ⊂ C, yα ∈ xα + K and yα → y0, we have

xα → y0.Proof. Suppose on the ontrary that there exist two nets (xα), (yα) suh that (xα) ⊂ C,

yα → y0, xα �K yα, and xα does not tend to y0. This means that there exists a 0-neighbourhood W suh that for a ertain subnet (xβ) ⊂ (xα) we have xβ − y0 6∈ W. Onthe other hand, yβ = xβ + cβ for some cβ ∈ K, or
xβ − y0 = yβ − y0 − cβ.Sine (yβ) tends to y0, for eah 0-neighbourhood V we have yβ − y0 ∈ V for β ≥ βv.Hene, (xβv

) forms a subnet of (xβ) and xβv
−y0 ∈ (C−y0)∩ (V −K), but xβv

−y0 6∈ W ,whih ontradits the strit e�ieny of y0.Suppose now that y0 6∈ StE(C). There exists a 0-neighbourhood W suh that for eah
0-neighbourhood V one an �nd xv ∈ C, qv ∈ V, cv ∈ K suh that

xv − y0 = qv − cv,where qv tends to zero and xv − y0 6∈ W. Moreover, xv + cv = qv + y0, i.e., xv �K yv =

qv + y0, and {yv} tends to y0 but {xv} does not. This ontradits (ii).By Propositions 2.2.3, 2.2.4 and Proposition 1.3 of [122℄ we get the following orollary.Corollary 2.2.1. K is normal if and only if 0 ∈ StE(K).Below we determine StE(C) for C in some �nite-dimensional and in�nite-dimensionalspaes.Example 2.2.1. 1. Let Y = R
2 and K = R

2
+. Let

C = {(y1, y2) : y2 ≥ ey1} ∪ {(y1, y2) : y2 ≥ y1}.



2.2. Strit e�ieny 21Clearly, E(C) = {(y1, y2) : y2 ≥ y1, y1 ≥ 0} and StE(C) = E(C). For
C = {(y1, y2) : y2 ≥ ey1} ∪ R

2
+we get E(C) = {0} and StE(C) = ∅.2. Let Y = ℓ∞, and K = ℓ∞+ be the natural ordering one, K = {x = (xn) ∈ ℓ∞ :

xn ≥ 0, n ≥ 1}. Let
C = {x ∈ ℓ∞ : ‖x‖∞ ≤ 1}.We have y0 = (−1,−1 . . . ,−1, . . .) ∈ E(C) and y0 ∈ StE(C). To see the latter we needto show that for every ε > 0 there exists δ > 0 suh that for all y ∈ (C − y0) ∩ (Q −K),where Q = {q ∈ ℓ∞ : ‖q‖∞ < δ}, we have ‖y‖∞ < ε. Indeed, let y − y0 = q − k, where

y ∈ C, q ∈ Q, k ∈ K. Sine ‖y0 + q − k‖∞ ≤ 1 we have kn � qn for all n ≥ 1 andonsequently
|qn − kn| ≤ qn + kn ≤ 2qn,whih means that it is enough to take δ = ε/2.3. As previously, let Y = ℓ∞ and K = ℓ∞+ . Let
C = {x ∈ ℓ∞ : f(x) = 0}where f is the ontinuous linear funtional f(x) =

∑∞
n=1 xn/2n. The set C is a subspae,

E(C) = C and StE(C) = ∅. First we show that 0 6∈ StE(C). Consider the sequene
(yk) ⊂ C de�ned as

yk = (1/k, 0, . . . 0, −2k−1/k︸ ︷︷ ︸
kth position, 0, . . .).

We have yk = qk − ck, where
qk = (1/k, 0, . . .), ck = (0, . . . , 0, 2k−1/k︸ ︷︷ ︸

kth position, 0, . . .) ∈ K,

and ‖qk‖∞ = 1/k, ‖yk‖∞ = 2k−1/k ≥ 1. Aording to Proposition 2.2.4, 0 6∈ StE(C). Tosee that y 6∈ StE(C) for any y ∈ C, onsider the sequene (zk) ⊂ C, zk = yk + y. It isenough to observe that zk − y = qk − ck and to apply Proposition 2.2.4.The following theorem provides onditions for the inlusion E(C) ⊂ StE(C) to hold.Theorem 2.2.1. Let Y be a loally onvex spae and let K be a losed onvex pointedone in Y . If C is a weakly ompat subset in Y , then
E(C) ⊂ StE(C).Proof. Let y0 6∈StE(C). There exists a 0-neighbourhood W suh that for any 0-neighbour-hood Q one an �nd zq ∈ C, zq − y0 6∈ W suh that

zq − y0 = q − kq, where q ∈ Q, kq ∈ K.Sine C is weakly ompat, (zq) ontains a weakly onvergent subnet with limit point
z0 ∈ C, z0 6= y0. Sine K is weakly losed, the orresponding subnet of (kq) onverges toa nonzero k0 ∈ K and z0 − y0 = −k0, whih proves that y0 6∈ E(C).



22 2. Strit e�ienyWhen Y = (Y, ‖ · ‖) is a normed spae with open unit ball BY , the strit e�ienyan be rewritten as follows: y0 ∈ C is stritly e�ient if for any ε > 0 there exists δ > 0suh that
(C − y0) ∩ (δBY −K) ⊂ εBY .

Fig. 2.1 Strit e�ieny of y ∈ CNow we establish the relationship between strit e�ieny and proper Henig e�ieny.We say that y0 ∈ C is proper Henig e�ient, [72℄, y0 ∈ HE(C), if there exists a losedonvex one Ω ⊂ Y , Ω 6= Y , K \ {0} ⊂ int Ω suh that y0 ∈ EΩ(C).Theorem 2.2.2. Let Y = (Y, ‖ · ‖) be a normed spae and let K be a losed onvex andpointed one in Y . For any subset C of Y ,
HE(C) ⊂ StE(C).Proof. Suppose that y0 6∈ StE(C). There exists ε0 > 0 and sequenes (yn) ⊂ C, (kn) ⊂ K,

(bn) ⊂ BY suh that for all n ≥ 1,
yn − y0 =

1

n
bn − kn, ‖yn − y0‖ > ε0.Hene, d(yn − y0,−K) → 0. Consequently, y0 6∈ EΩ(C) for any one Ω ⊂ Y with K \ {0}

⊂ int Ω, whih proves that y0 6∈ HE(C).In general, the inlusion StE(C) ⊂ HE(C) does not hold as shown by the followingexample.Example 2.2.2. Let Y = R
2 and K = R

2
+. For the set C = clBY we have

E(C) = {(y1, y2) : −1 ≤ y1 ≤ 1, y2 = −
√

1 − y2
1},

E(C) = StE(C) and HE(C) = E(C) \ {(−1, 0), (0,−1)}.We say that y0 ∈ C is super e�ient [42℄, y0 ∈ SE(C), if there exists a number M > 0suh that
cl cone(C − y0) ∩ (BY −K) ⊂ MBY .



2.2. Strit e�ieny 23Theorem 2.2.3. For any subset C of a normed spae (Y, ‖ · ‖),
SE(C) ⊂ StE(C).Proof. Suppose that y0 6∈ StE(C). There exists ε0 > 0 suh that for eah n ≥ 1,

((C − y0) \ ε0BY ) ∩
(

1

n
BY −K

)
6= ∅,and one an hoose yn ∈ C suh that

yn − y0 =
1

n
(bn − kn), ‖yn − y0‖ > ε0,where bn ∈ BY , kn ∈ K. Consequently,

n(yn − y0) = bn − kn and ‖n(yn − y0)‖ → ∞,whih proves that y0 6∈ SE(C).Theorem 2.2.4. Let (Y, ‖ · ‖) be a normed spae and let K be a losed onvex pointedone in Y with a bounded base Θ. For any subset C of Y ,
SPE(C) = SE(C).Proof. If y0 ∈ SPE(C), by Proposition 2.1.1, there exists ε > 0 suh that

(C − y0) ∩ (−Kd(ε)) = {0},where, as previously, Kd(ε) = cone(Θ +εBY ). Thus, cone(C−y0)∩ (εBY −Θ) = ∅. Now,by the same arguments as those used in the proof of Proposition 3.4 of [42℄, we onludethat y0 ∈ StE(C).Suppose now that y0 6∈ SPE(C). By Proposition 2.1.1, for any ε > 0,
(C − y0) ∩ [− cone(Θ + εBY )] 6= ∅.Equivalently, cone(C − y0) ∩ (−Θ + εBY ) 6= ∅. By the same arguments as those used inthe proof of Theorem 4.1 of [70℄, y0 6∈ StE(C), whih ompletes the proof.Now we introdue loal strit e�ieny. Let C ⊂ Y be a subset of a Hausdor� topo-logial vetor spae Y .Definition 2.2.2. An element y0 ∈ C is a loal stritly e�ient point, y0 ∈ LStE(C), ifthere exists a 0-neighbourhood V in Y suh that y0 ∈ StE(C ∩ (y0 + V )), i.e., for eah

0-neighbourhood W there exists a 0-neighbourhood O suh that
(C ∩ (y0 + V ) \ (y0 + W )) ∩ ((y0 + O) −K) = ∅.Equivalently,

(C − y0) ∩ V ∩ (O −K) ⊂ W.For instane, if
C = {(y1, y2) : y2 ≥ ey1} ∪ R

2
+as in Example 2.2.1, then E(C) = {0} and 0 is a loal stritly e�ient point.Clearly,

StE(C) ⊂ LStE(C) ⊂ LE(C).



24 2. Strit e�ienyFor the set C ⊂ R
2
+,
C = {(y1, y2) : 0 < y1 ≤ 1, 0 ≤ y2 ≤ 1} ∪ {(0, 1)},and K = R

2
+, we have LE(C) = E(C) = {(0, 1)}, LStE(C) = StE(C) = ∅.

2.3. Strit e�ieny for onvex setsExample 2.2.1 shows that StE(C) may di�er from E(C). In some instanes we an provethe equality E(C) = StE(C) for onvex sets C.Theorem 2.3.1. Let (Y, ‖·‖) be a normed spae and let K ⊂ Y be a losed onvex pointedone with a weakly ompat base Θ. Let C be a losed onvex subset of Y . Then
E(C) ⊂ StE(C).Proof. Suppose that y0 6∈ StE(C). There exist ε0 > 0 and a sequene (yn) ⊂ C suh that(2.6) yn = y0 +

1

n
bn − αnθn, ‖yn − y0‖ > ε0 for n ≥ 1,where bn ∈ BY , θn ∈ Θ, and αn > 0. Sine Θ is bounded we have
‖θ‖ ≤ ε0/2 for any θ ∈ Θ.Moreover, αn ≥ 1 for all n su�iently large sine

ε0 ≤ ‖yn − y0‖ ≤ 1

n
‖bn‖ + αn

ε0

2
≤ ε0

2
(1 + αn)for all n su�iently large.In view of the onvexity of C, for 0 < λn = 1/αn ≤ 1 we get

zn = λnyn + (1 − λn)y0 = y0 + λn 1/n bn − θn ∈ C.Without loosing generality we an assume that (θn) weakly onverges to 0 6= θ0 ∈ Θ andonsequently, (zn) weakly onverges to z0 = y0 − θ0 ∈ C, whih ontradits the e�ienyof y0.In the in�nite-dimensional ase, weak ompatness of the base Θ is a restritive as-sumption. We an relax this assumption by imposing more restritions on C.We say that a losed onvex subset C of a normed spae Y is uniformly rotund (f.e.g. Holmes [78, p. 162℄) if there exists a nondereasing funtion φ : R+ → R+, φ(0) = 0,
φ(t) > 0 for t > 0 suh that for any y1, y2 ∈ C we have

1

2
(y1 + y2) + φ(‖y1 − y2‖)BY ⊂ C.Then we an prove the following theorem.Theorem 2.3.2 (f. [110℄). Let K be a losed onvex pointed one in a normed spae Y .Let C be a uniformly rotund subset of Y . Then

E(C) ⊂ StE(C).



2.3. Strit e�ieny for onvex sets 25Proof. By ontradition, suppose that there exists y0 ∈ E(C) \ StE(C). There exist
ε0 > 0 and a sequene (yn) ⊂ C suh that for n ≥ 1,

yn = y0 + qn − kn,where (qn) ⊂ Y , qn → 0, (kn) ⊂ K, ‖qn − kn‖ > ε0. Then
d

(
1

2
(yn − y0),−K

)
→ 0and

d

(
1

2
(yn − y0), Y \ C

)
→ 0,sine y0 ∈ E(C), whih ontradits the uniform rotundity of C.As a onsequene of Theorem 2.3.2, in the spaes Lp, p ∈ (1,∞), we have

E(clBLp) = StE(clBLp).Corollary 2.3.1. Let C be a losed onvex subset of R
m and let K be a losed onvexpointed one in R

m. Then E(C) = StE(C).Proof. Follows from Proposition 2.3.1 sine in �nite-dimensional spaes any losed onvexpointed one has a ompat base.It is known that E(C) is losed for losed onvex subsets C of R
2 and K = R

2
+. Thisis no longer true in R

3. Hene, by Corollary 2.3.1, we dedue that StE(C) may not belosed even when C is a losed and onvex subset of R
3.Example 2.3.1 ([3℄). Let Y = R

3, K = R
3
+ and let D ⊂ R

3,
D = {(x, y, 1) : (x − 1)2 + (y − 1)2 = 1, 0 ≤ x, y ≤ 1}.Let C = conv(D ∪ {(1, 0, 0)}). The point (1, 0, 1) is not e�ient but (1, 0, 1) ∈ clE(C).

Fig. 2.2 The set C from Example 2.3.1



26 2. Strit e�ienyWe lose this setion by showing that for onvex sets C, the equality LStE(C) =

StE(C) holds.Proposition 2.3.1. Let Y = (Y, ‖ · ‖) be a normed spae with a losed onvex pointedone K. If C is a onvex subset of Y , then
LStE(C) = StE(C).Proof. We need to show that LStE(C) ⊂ StE(C). Take any y0 6∈ StE(C). By de�nition,there exist an ε0 > 0 and (yn) ⊂ C suh that

yn − y0 ∈ 1

n
BY −K, ‖yn − y0‖ > ε0 for n ≥ 1.Sine C is onvex, zn = y0 + λ(yn − y0) ∈ C for any 0 ≤ λ ≤ 1.For any 0 ≤ λ ≤ 1,

zn − y0 =
λε0

‖yn − y0‖
(yn − y0) ∈

λε0

n
BY −K.Moreover, for any 0-neighbourhood V we get zn − y0 = λ(yn − y0) ∈ (C − y0) ∩ V for

λ > 0 small enough, whih proves that y0 6∈ LStE(C).
2.4. Modulus of strit e�ienyIn this setion Y = (Y, ‖ · ‖) is a normed spae with open unit ball BY and K is a losedonvex pointed one in Y.Let C be a subset of Y . Reall that y0 ∈ StE(C) if for eah ε > 0 there exists δ > 0suh that
(C \ (y0 + εBY )) ∩ ((y0 + δBY ) −K) = ∅.For any y ∈ Y put

‖y‖− = d(y,−K),where for any y ∈ Y and any subset D of Y , d(y, D) = inf{‖y − d‖ : d ∈ D}. For any
r > 0,

‖y‖− ≥ r ⇔ (y + rBY ) ∩ (−K) = ∅.Definition 2.4.1. Let C be a subset of Y and y0 ∈ C. The funtion ν : R+ → R+de�ned as
ν(ε) = inf{‖z − y0‖− : z ∈ C \ (y0 + εBY )}.is alled the modulus of strit e�ieny of y0 with respet to C and K.A funtion φ : R+ → R+ is admissible if φ is nondereasing, φ(t) > 0 for t > 0 and

φ(0) = 0.Proposition 2.4.1 (f. also [155℄). Let K be a losed onvex pointed one in a normedspae Y = (Y, ‖ · ‖). Let C be a subset of Y and let y0 ∈ C be a nonisolated point of C.Then y0 ∈ StE(C) if and only if
ν(‖y − y0‖) ≤ ‖y − y0‖− for y ∈ C,



2.4. Modulus of strit e�ieny 27where ν : R+ → R+ is an admissible funtion of the form
ν(ε) = inf{‖z − y0‖− : z ∈ C \ (y0 + εBY )}.Proof. Clearly, ν is nondereasing and ν(0) = 0. Take any y ∈ C, y 6= y0. Hene,

y ∈ C \ (y0 + εBY ) for some ε > 0. By the strit e�ieny of y0, there exists δ > 0 suhthat y − y0 6∈ δBY −K. Hene,
0 < δ ≤ ν(ε) ≤ ν(‖y − y0‖) ≤ ‖y − y0‖−.On the other hand, take any ε > 0 and y ∈ C \ (y0 + εBY ). Hene,
0 < δ := ν(ε) ≤ ν(‖y − y0‖) ≤ ‖y − y0‖−,whih proves that y0 ∈ StE(C).In what follows we shall onsider stritly e�ient points with some spei� forms of ν.To stress the role of ν we say that y0 ∈ C is ν-stritly e�ient and we write y0 ∈ StEν(C).Hene, equivalently, y0 ∈ StEν(C) if

(y − y0) ∩ (ν(‖y − y0‖)BY −K) = ∅ for y ∈ C, y 6= y0.In partiular, an element y0 ∈ C is stritly e�ient of order q > 0, y0 ∈ StEq(C), if thereexists a onstant β > 0 suh that ν(·) = β(·)q.In De�nition 2.2.2 we de�ned loal stritly e�ient points y0 ∈ LStE(C). Equiva-lently, y0 is a loal ν-stritly e�ient point of C, y0 ∈ LStEν(C), if and only if thereexists a onstant ts > 0 suh that
ν(‖y − y0‖) ≤ ‖y − y0‖− for y ∈ C ∩ (y0 + tsBY ).Or

y − y0 6∈ ν(‖y − y0‖)BY −K for y ∈ C ∩ (y0 + tsBY ), y 6= y0.Similarly, y0 ∈ C is a loal stritly e�ient point of order q, y0 ∈ LStEq(C), if
y0 ∈ LStEν(C) with ν(·) = β(·)q for some β > 0.A y0 ∈ C is a loal proper Henig e�ient point, y0 ∈ LHE(C), if there exists a losedonvex one Ω, K \ {0} ⊂ int Ω, suh that y0 ∈ LEΩ(C).Below we show that under some assumptions, loal proper Henig e�ient points o-inide with loal stritly e�ient points of order 1.Reall that a vetor d ∈ Y is tangent to the set C at y0 ∈ cl C if there exist a sequene
(dn) ⊂ Y , dn → d, and a sequene (tn) ⊂ R, tn ↓ 0, suh that y0 + tndn ∈ C. The one
TC(y0) of all tangent vetors to C at y0 is alled the Bouligand tangent one.We start with the following haraterization of loal proper Henig e�ient points.Proposition 2.4.2. Let Y be a normed spae and let K be a losed onvex pointed onein Y with a ompat base Θ. Let C be a subset of Y and y0 ∈ C. Then y0 ∈ LHE(C) ifand only if

TC(y0) ∩ (−K) = {0}.Proof. Suppose that there exists a nonzero vetor d ∈ TC(y0) ∩ (−K). There exist se-quenes (dn) ⊂ Y , dn → d, and (tn) ⊂ R+, tn ↓ 0, suh that
y0 + tndn = yn ∈ C.



28 2. Strit e�ienyHene, for any 0-neighbourhood V in Y and any losed onvex one Ω ⊂ Y with K\{0} ⊂
int Ω, we get tndn ∈ Ω for all n su�iently large and

yn ∈ (y0 − Ω) ∩ (C ∩ (y0 + V )) for all n su�iently large.Conversely, suppose that y0 6∈ LHE(C). For the losed onvex one Ωn = cl cone(Θ +
1
nBY ), n ≥ 1, there exists yn ∈ C suh that yn − y0 ∈ 1

nBY and yn ∈ y0 − Ωn. Hene,
yn = y0 − λn

(
θn +

1

n
bn

)
, where θn ∈ Θn, bn ∈ BY , λn > 0.Sine yn → y0, we must have λn → 0 and

1

λn
(yn − y0) = −θn − 1

n
bn.Without loss of generality we an assume that θn → θ ∈ Θ, θ 6= 0. Consequently,

1

λn
(yn − y0) = −θn − 1

n
bn → −θand −θ ∈ TC(y0) ∩ (−K), whih is a ontradition.Now we are in a position to prove the following theorem.Theorem 2.4.1. Let K be a losed onvex pointed one in a normed spae Y with aompat base Θ. For any subset C ⊂ Y we have

LHE(C) = LStE1(C).Proof. By Proposition 2.4.2, it is enough to show that y0 ∈ LStE1(C) if and only if
TC(y0) ∩ (−K) = {0}.By ontradition, suppose that there exists d ∈ TC(y0)∩ (−K), ‖d‖ = 1. There existsa sequene (yn) ⊂ C, yn → y0, suh that

yn − y0

‖yn − y0‖
→ dand hene, for any c > 0,

yn − y0

‖yn − y0‖
∈ d + cBY for all n su�iently large.In other words,

yn − y0 ∈ ‖yn − y0‖d + c‖yn − y0‖BY , where d ∈ −K,i.e. ‖yn − y0‖− < c‖yn − y0‖, whih means that y0 6∈ LStE1(C).Suppose now that y0 6∈ LStE1(C). For eah n ≥ 1 there exists yn ∈ C ∩ (y0 + 1
nBY ),

yn 6= y0, suh that
yn − y0 =

1

n
‖yn − y0‖bn − dn, where bn ∈ BY , dn ∈ K.Moreover, for any n ≥ 1 we have dn = λnθn with λn > 0 and θn ∈ Θ. Clearly, λn → 0.The sequene (λn/‖yn − y0‖) is bounded sine
yn − y0

‖yn − y0‖
=

1

n
bn − λn

‖yn − y0‖
θn



2.4. Modulus of strit e�ieny 29and without loosing generality we an assume that (
λn

‖yn−y0‖
θn

)
→ d ∈ K, d 6= 0. Hene,

yn − y0

‖yn − y0‖
→ −d ∈ TC(y0) ∩ (−K).As a orollary from Theorem 2.4.1 we obtain the following haraterization of loalstrit e�ieny of order 1.Corollary 2.4.1. Let Y be a normed spae and let K be a losed onvex pointed onein Y with a ompat base Θ. Let C be a subset of Y and y0 ∈ C. Then y0 ∈ LStE1(C)if and only if

TC(y0) ∩ (−K) = {0}.In �nite-dimensional spaes, Corollary 2.4.1 takes the following form.Corollary 2.4.2. Let K be a losed onvex pointed one in R
m. Let C be a subset of

R
m and y0 ∈ C. Then y0 ∈ LStE1(C) if and only if

TC(y0) ∩ (−K) = {0}.In the example below we alulate moduli of strit e�ieny for e�ient points forthe losed unit ball in R
2.Example 2.4.1. Let Y = R

2 with the Eulidean norm, K = R
2
+ and C = cl BY . ByTheorem 2.3.1, E(C) = StE(C). For η = (−1, 0) ∈ E(C) and any y = (y1, y2) ∈ C,

y 6= y0 we have
d(y − η,−K) = ‖y − η‖− =

{‖y − η‖ for y2 ≥ 0,

1 + y2 for y2 ≤ 0.Hene, y0 = (−1, 0) ∈ LStE2(C) sine for y ∈ y0 + BY ,
1 + y1 =

1

2
(2 + 2y1) ≥

1

2
((1 + y2

1)2 + y2
2) =

1

2
‖y − (−1, 0)‖2,and

d(y − y0,−K) ≥ min

{
‖y − y0‖,

1

2
‖y − y0‖2‖

}
=

1

2
‖y − y0‖2.Analogously, (0,−1) ∈ LStE2(C). For other η = (η1, η2) ∈ E(C), η 6= (−1, 0), η 6= (0,−1)by Theorem 2.4.1, η ∈ LStE1(C). Indeed, put f(x) := −

√
1 − x2 for 0 < x < 1. For any

z = (z1, z2) ∈ C,
d(z − η,−K) ≥ 1√

1 + (f ′(η1))2
‖z − η‖ for z1 ≥ η1, z2 ≤ η2and

d(z − η,−K) ≥ 1√
1 + (f ′(η2))2

‖z − η‖ for z1 ≤ η1, z2 ≥ η2.Thus, d(z − η,−K) ≥ β‖z − η‖ for η 6= (−1, 0), η 6= (0,−1) with β =

1/
√

1 + max{(f ′(η1))2, (f ′(η2))2}.



3. LOWER CONTINUITY OF EFFICIENT POINTS UNDERPERTURBATIONS OF A SETThe questions of lower semiontinuity of e�ient points arise in many problems, forinstane, in investigation of the solvability of vetor variational inequalities and in dualitytheory. The results obtained in this hapter an be diretly applied to stability of vetoroptimization problems.In in�nite-dimensional spaes, lower semiontinuity of e�ient points was investigatedby several authors, e.g., by Attouh and Riahi [5℄, Penot and Sterna-Karwat [121℄, thepresent author [18℄, and in �nite-dimensional spaes by Gorokhovik and Rahkovski [69℄,Tanino, Nakayama and Sawaragi [148℄.In �nite-dimensional spaes, the key requirement whih allows us to prove lower semi-ontinuity of e�ient points under perturbations is the density of properly e�ient pointsin the set of e�ient points (see e.g. [69℄). Under some additional assumptions, e.g. underonvexity of the original set C, the density of properly (stritly) e�ient points in the setof all e�ient points is not needed for the lower semiontinuity of e�ient points underperturbations (see the results below and e.g. [109℄).In Setion 3.1 we prove our main results (Theorems 3.1.1 and 3.1.2) providing su�-ient onditions for lower semiontinuity of e�ient points under perturbations. The keyrequirement is the density of stritly e�ient points de�ned in Chapter 2 in the set E(C).In Theorem 3.1.4 we get rid of the above density requirement by assuming that 0 is astritly e�ient point of K. In Setion 3.2 we prove several variants of our main resultsfor set-valued mappings taking values in normed spaes (Theorems 3.2.3, 3.2.2, 3.2.6).There exist many ways of dealing with perturbations whenever they appear. We ex-press perturbations by set-valued mapping C : U →→ Y de�ned on a spae of perturbations
U . For any set-valued mapping we de�ne its domain and graph as follows:

dom C = {u ∈ U : C(u) 6= ∅}, graph C = {(u, y) ∈ U × Y : y ∈ C(u)}.A set-valued mapping C : U →→ Y is:
• upper Hausdor� semiontinuous at u0 if for every 0-neighbourhood W in Y thereexists a neighbourhood U0 of u0 suh that C(u) ⊂ C(u0) + W for u ∈ U0,
• lower semiontinuous at (u0, y0) ∈ graph C if for any 0-neighbourhood W thereexists a neighbourhood U0 of u0 suh that (y0 + W ) ∩ C(u) 6= ∅ for all u ∈ U0,
• lower uniformly semiontinuous on a subset X0 ⊂ C(u0) if for any 0-neighbourhood

W there exists a neighbourhood U0 of u0 suh that for every x0 ∈ X0 we have
(x0 + W ) ∩ C(u) 6= ∅ for all u ∈ U0, [30℄



3.1. Su�ient onditions for lower semiontinuity of e�ient points 31
• lower semiontinuous at u0 if for any 0-neighbourhood W and any y0 ∈ C(u0) thereexists a neighbourhood U0 of u0 suh that (y0 + W ) ∩ C(u) 6= ∅ for all u ∈ U0,
• lower Hausdor� semiontinuous at u0 if it is uniformly lower ontinuous on C(u0),i.e., for any 0-neighbourhood W there exists a neighbourhood U0 of u0 suh that
C(u) ⊂ C(u0) + W for all u ∈ U0,

• Hausdor� ontinuous at u0 if it is lower and upper Hausdor� ontinuous at u0.Following Nikodem [117℄ we de�ne K-Hausdor� semiontinuities. Let CK : U →→ Y be aset-valued mapping de�ned as
CK(u) = C(u) + K, u ∈ U.We say that C : U →→ Y is:

• K-upper Hausdor� semiontinuous at u0 if CK is upper Hausdor� semiontinuousat u0, i.e., for every 0-neighbourhood W there exists a neighbourhood U0 of u0 suhthat C(u) ⊂ C(u0) + W + K for u ∈ U0,
• K-lower Hausdor� semiontinuous at u0 if CK is lower Hausdor� semiontinuous at

u0, i.e., for every 0-neighbourhood W there exists a neighbourhood U0 of u0 suhthat C(u0) ⊂ C(u) + W + K for u ∈ U0,
• K-lower semiontinuous at u0 (f. [120℄) if CK is lower semiontinuous at u0, i.e.,for every y0 ∈ C(u0) and every 0-neighbourhood W there exists a neighbourhood

U0 of u0 suh that C(u) ∩ (y0 + W −K) 6= ∅ for u ∈ U0.Here we adopt the standard de�nitions of lower and upper semiontinuities as de�nedby Kuratowski [97℄. In the ontext of vetor optimization K-semiontinuities of e�ientpoints (C) under perturbation of C were investigated in [144℄, [120℄, [121℄.Let X be a topologial spae. A funtion f : X → Y is K-lower ontinuous at x0 iffor eah 0-neighbourhood W in Y there exists a neighbourhood O of x0 in X suh that
f(x) ∈ f(x0) + W + K for all x ∈ O. Analogously, f : X → Y is K-upper ontinuous at
x0 if for eah 0-neighbourhood W in Y there exists a neighbourhood O of x0 in X suhthat f(x) ∈ f(x0) + W −K for all x ∈ O (see also [72℄, [106℄).

3.1. Su�ient onditions for lower semiontinuityof e�ient pointsIn this setion we give su�ient onditions for the lower semiontinuity of the e�ientpoint set E(C) when C is subjeted to perturbations. We study properties of the e�ientpoint set-valued mapping E : U →→ Y de�ned as
E(u) = EK(C(u)),where perturbations of C are de�ned by a set-valued mapping C : U →→ Y , C(u) = C(u),

C(u0) = C. For parametri vetor optimization problems
(Pu)

minK f(u, x)subjet to x ∈ A(u),



32 3. Lower ontinuity of e�ient points under perturbations of a setthe performane set-valued mapping P de�ned in Introdution is the e�ient point set-valued mapping E with C(u) = f(u, A(u)). Reall that the domination property (DP)holds for C (f. [105℄) if
C ⊂ E(C) + K.In Chapter 5 we will disuss the domination property and its variants in a more detailedway.Theorem 3.1.1. Let Y be a Hausdor� topologial vetor spae and let K ⊂ Y be a losedonvex pointed one in Y . Let u0 ∈ dom C and let y0 ∈ E(C). If(i)(3.1) y0 ∈ cl StE(C),(ii) (DP) holds for all C(u) in a ertain neighbourhood U0 of u0,(iii) C is K-lower semiontinuous and upper Hausdor� semiontinuous at u0 ∈ dom C,then E is lower semiontinuous at (u0, y0) ∈ graph E .Proof. Note �rst that u0 ∈ int dom E . Indeed, sine C 6= ∅ and C is K-lower semiontin-uous at u0 ∈ dom C we must have C(u) 6= ∅ for u in some neighbourhood U1 of u0 andhene by (DP), E(C(u)) 6= ∅ for u ∈ U1 ∩ U0.Let W be a 0-neighbourhood, and let W1, W2 be 0-neighbourhoods suh that W1 +

W1 ⊂ W and W2 + W2 ⊂ W1. By (3.1), there exists y ∈ StE(C), y ∈ y0 + W2. By strite�ieny of y, there exists a 0-neighbourhood O suh that ((C\(y+W2))+O)∩(y−K) = ∅.Therefore,(3.2) ((C \ (y + W2)) + O1) ∩ (y + O1 −K) = ∅for any 0-neighbourhood O1 suh that O1 + O1 ⊂ O.Let u ∈ U0∩U1. By the K-lower semiontinuity of C, for eah u ∈ U1 there is z ∈ C(u)satisfying
z ∈ (y + O1 ∩ W2 −K) ∩ C(u).Consequently, z −K ⊂ y + O1 ∩ W2 −K and in view of (3.2),

(z −K) ∩ ((C \ (y + W2)) + O1) = ∅.By the upper Hausdor� semiontinuity of C,
C(u) ⊂ C + O1 ∩ W2 ⊂ ((C \ (y + W2)) + O1 ∩ W2) ∪ (y + W1).Consequently,

(z −K) ∩ C(u) ⊂ y + W1 ⊂ y0 + W.By (DP), there exists η ∈ E(C(u)) suh that
η ∈ (z −K) ∩ C(u) ⊂ y0 + W,whih ompletes the proof.Note that in the proof we use K-lower semiontinuity of C only in the viinity of y0.Moreover, (ii) an be replaed by a slightly weaker ondition

(ii)′ C(u) ⊂ clE(C(u)) + K for all u ∈ U0.



3.1. Su�ient onditions for lower semiontinuity of e�ient points 33Theorem 3.1.2. Let K be a losed onvex pointed one in Y and u0 ∈ dom C. Assumethat(3.3) E(C) ⊂ cl StE(C),and (DP) holds for all C(u) in a ertain neighbourhood U0 of u0. If C is K-lower semion-tinuous at u0 and upper Hausdor� semiontinuous at u0, then E is lower semiontinuousat u0 ∈ dom E .In view of Proposition 2.2.1, by Theorem 3.1.2, we obtain the following result whihgeneralizes Theorem 3.1 of [16℄.Theorem 3.1.3. Let K be a losed onvex pointed one in Y and u0 ∈ dom C. If(3.4) E(C) ⊂ cl SPE(C),

C is upper Hausdor� semiontinuous at u0 and K-lower semiontinuous at u0 and (DP)holds for all C(u) in some neighbourhood of u0, then E is lower semiontinuous at u0 ∈
dom E .Su�ient onditions for lower semiontinuity of e�ient points an also be given byassuming that 0 is a stritly e�ient point of K, whih, by Corollary 2.2.1, amounts tosaying that K is normal. We have the following result.Theorem 3.1.4. Let K ⊂ Y be a losed onvex normal one in Y. Assume that C islosed, cl E(C) is ompat, and (DP) holds for all C(u) in a ertain neighbourhood U0 of
u0 ∈ dom C. If C is K-lower semiontinuous and upper Hausdor� semiontinuous at u0,then E is lower semiontinuous at u0 ∈ dom E .Proof. Let y0 ∈ E(C). We start by showing that, under our assumptions, for any 0-neighbourhood W there exists a 0-neighbourhood V suh that(3.5) (((E(C) + K) \ (y0 + W )) + V ) ∩ (y0 −K) = ∅.To see this, suppose on the ontrary that there exists a 0-neighbourhood W suh thatfor any 0-neighbourhood V there exists v ∈ V suh that

y0 − kv = ηv + k1
v + qv = zv + qv,where kv, k1

v ∈ K, ηv ∈ E(C), zv = ηv + k1
v 6∈ y0 + W, and the net (qv) tends to 0. Sine

clE(C) is ompat, the net (ηv) ontains a onvergent subnet. Without loss of generalitywe may assume that the net itself onverges to a ertain η ∈ C(u). Consequently,(3.6) y0 − η = lim
v

(kv + k1
v),and, sine K is losed, y0−η ∈ K, whih implies that y0 = η. By (3.6), limv(kv +k1

v) = 0,and, sine K is normal, by Proposition 1.3, p. 62 of [122℄, (kv) and (k1
v) both tend tozero. By taking any 0-neighbourhood W1 suh that W1 + W1 ⊂ W, one an �nd a 0-neighbourhood V0 suh that for all V ⊂ V0 we have ηv + k1

v ⊂ η + W1 + W1 ⊂ y0 + W,whih ontradits the assumption that ηv + k1
v 6∈ y0 + W. This proves (3.5).Let W1 be a 0-neighbourhood suh that W1 + W1 ⊂ W. By (3.5), there exists a

0-neighbourhood V1 suh that for any 0-neighbourhood V2, V2 + V2 ⊂ V1, we have
(((E(C) + K) \ (y0 + W1)) + V2) ∩ ((y0 + V2) −K) = ∅.



34 3. Lower ontinuity of e�ient pointsOn the other hand, sine (DP) holds for C,

C + V2 ∩ W1 ⊂ (((E(C) + K) \ (y0 + W1)) + V2 ∩ W1) ∪ (y0 + W ).There exists a neighbourhood U1 of u0 suh that(3.7) C(u) ⊂ (((E(C) + K) \ (y0 + W1)) + V2 ∩ W1) ∪ (y0 + W )for u ∈ U1. Moreover, there exists a neighbourhood U2 of u0 suh that
(y0 + V2 ∩ W1 −K) ∩ C(u) 6= ∅,for u ∈ U2. Hene, for u ∈ U2 there exists yu ∈ C(u) ∩ (y0 + V2 ∩ W1 −K) and

yu −K ⊂ y0 + V2 ∩ W1 −K.Sine yu ∈ V2 ∩ W1 ⊂ V2, by (3.5),
(yu −K) ∩ [((E(C) + K) \ (y0 + W1)) + V2 ∩ W1] = ∅.By (3.7) and by (DP), for u ∈ U0 ∩ U1 ∩ U2 there exists ηu ∈ E(C(u)) suh that(3.8) ηu ∈ (yu −K) ∩ C(u) ⊂ (y0 + W ).This ompletes the proof.In view of Theorems 1.2.1 and 2.2.1 we obtain the following variant of Theorem 3.1.2.Theorem 3.1.5. Let Y be a loally onvex spae and let K be a losed onvex pointedone in Y . Assume that there exists a neighbourhood U0 of u0 suh that all C(u) arenonempty and weakly ompat for u ∈ U0. If C is upper Hausdor� semiontinuous and

K-lower semiontinuous at u0 ∈ dom C, then E is lower semiontinuous at u0 ∈ dom E .Proof. It is enough to note that by Theorem 1.2.1, (DP) holds for all C(u), u ∈ U0.
3.2. Lower semiontinuity of e�ient points in normed spaesLet Y = (Y, ‖ · ‖) be a real normed linear spae with open unit ball BY .Definition 3.2.1 ([92℄, [93℄). We say that a one K ⊂ Y allows plastering K0, where K0is another losed onvex pointed one, if there exists a onstant δ > 0 suh that for eah

k ∈ K,
k + δ‖k‖BY ⊂ K0.Proposition 3.2.1. Let K be a losed onvex pointed one in Y . The following areequivalent:(i) there exists a losed onvex pointed one K0 satisfying ondition (2.1),(ii) K allows plastering K0,(iii) K has a bounded base.Proof. (i)⇔(ii). If K allows plastering K0, then intK0 6= ∅, K \ {0} ⊂ intK0. For any

ε > 0 and any k ∈ K with ‖k‖ ≥ ε we have k+δεBY ⊂ K0 and K0 satis�es ondition (2.1).Suppose now that K0 satis�es ondition (2.1). There exists δ > 0 suh that for k ∈ K,

‖k‖ ≥ 1, we have
k + δBY ⊂ K0.



3.2. Lower semiontinuity of e�ient points in normed spaes 35Hene, for any k ∈ K, k/‖k‖ + δBY ⊂ K0 and onsequently, k + b‖k‖BY ⊂ K0, whihmeans that K allows plastering K0.(ii)⇒(iii). Suppose that K allows plastering K0. This means that there exists a on-tinuous linear funtional f ∈ K+
0 whih is stritly uniformly positive on K, i.e. there exists

δ > 0 suh that
f(x) ≥ δ‖x‖ for x ∈ K.The set Θ = {x ∈ K : f(x) = 1} is learly bounded, losed and onvex, 0 6∈ Θ, and

K = cone(Θ).(iii)⇒(ii). For the proof of this part see Krasnosel'ski�� [92℄.Let Kα be a Bishop�Phelps one, i.e.,
Kα = {y ∈ Y : f(y) ≥ α‖y‖‖f‖},where f is a ontinuous linear funtional on Y and 0 < α < 1. This is a losed onvexpointed one. If it is nontrivial, then Kα has a bounded base

Θ = {z ∈ K : f(z) = 1}.The following holds true.Proposition 3.2.2. Let Y be a normed spae, C a nonempty subset of Y and y0 ∈
EKα

(C). If there exists β < α suh that y0 ∈ EKβ
(C), then y0 ∈ SPEKα

(C).Proof. By Proposition 3.2.1, the one Kβ satis�es ondition (2.1). Moreover, for z ∈
Kα, ‖z‖ ≥ ε, and any y ∈ Y we have

f(z + y) = f(z) + f(y) ≥ α‖f‖ · ‖z‖ + f(y)

≥ α‖z + y‖ · ‖f‖ − α‖f‖ · ‖y‖ − ‖f‖ · ‖y‖

≥ ‖f‖ · ‖z + y‖
[
α − (α + 1)‖y‖

ε − ‖y‖

]
.To have α − (α + 1)‖y‖/(ε − ‖y‖) > β we hoose

‖y‖ <
(α − β)ε

2α + 1 − β
.By Proposition 3.2.2, Kα allows plastering Kβ , β < α, b = (α − β)/(2α + 1 − β).For Bishop�Phelps ones, the following well known result [125℄ gives su�ient ondi-tions for the domination property to hold.Theorem 3.2.1. Let Y be a Banah spae and C a nonempty losed subset of Y. If thereexists a funtional f on Y suh that inf f(C) > −∞, then for any y ∈ C there exists

y0 ∈ C suh that y0 ∈ y −Kα and y0 ∈ E(C).By Theorem 3.2.1 and Proposition 3.2.2 we obtain the following stability result.Theorem 3.2.2. Let Y be a Banah spae and C 6= ∅. Assume that there exists a neigh-bourhood U0 of u0 suh that all the sets C(u) are losed and infy∈C(u) f(y) > −∞. If(3.9) EKα
(C) ⊂ cl

( ⋃

β<α

EKβ
(C)

)
,



36 3. Lower ontinuity of e�ient pointsand C is Kα-lower semiontinuous and upper Hausdor� semiontinuous at u0 ∈ dom C,then E is lower semiontinuous at u0 ∈ dom E .Proof. Follows from Theorem 3.2.1, Proposition 3.2.2, and Theorem 3.1.3.Theorem 3.2.2 an be viewed as a variant of the stability result proved in [5℄.In normed spaes we have the following variant of Theorem 3.1.3.Theorem 3.2.3. Let Y be a normed spae and K a losed onvex pointed one in Y. Let
u0 ∈ dom C and y0 ∈ E(C). Suppose that(3.10) y0 ∈ cl SE(C),and (DP) holds for all C(u) in a ertain neighbourhood U0 of u0. If C is K-lower semi-ontinuous at (u0, y0) ∈ graph C and upper Hausdor� semiontinuous at u0, then E islower semiontinuous at (u0, y0) ∈ graph E .Proof. By Theorem 2.2.3, eah super e�ient point is stritly e�ient, and by Theorem3.1.1, the assertion follows.Conditions (3.1) of Theorem 3.1.1, (3.4) of Theorem 3.1.3 and (3.10) of Theorem 3.2.3are density type requirements. The density property has been investigated on di�erentlevels of generality and for di�erent notions of proper minimality (e.g., [42℄, [46℄, [123℄,[82℄). Here we make use of the result of Borwein and Zhuang [42℄.We say that a subset C of Y is K-lower bounded if there is a onstant M > 0 suhthat

C ⊂ MBY + K.A subset C ⊂ Y is K-lower bounded if either it is topologially bounded, i.e., C ⊂ MBYfor some positive onstant M > 0, or there exists an element z0 ∈ Y suh that y−z0 ∈ Kfor all y ∈ C.Theorem 3.2.4 (Borwein and Zhuang [42℄). Let Y be a Banah spae, K ⊂ Y a losedonvex pointed one and C ⊂ Y a nonempty subset. Assume that K has a losed andbounded base Θ. If either of the following onditions is satis�ed, then SE(C) is norm-dense in the nonempty set E(C):(i) C is weakly ompat,(ii) C is weakly losed and K-lower bounded while Θ is weakly ompat.For onvex sets ondition (ii) follows from the ondition
(ii)′ C is onvex and losed and K-lower bounded while Θ is weakly ompat.By Theorems 3.2.4 and 3.1.2 we obtain the following result.Theorem 3.2.5. Let Y be a Banah spae and let K be a losed onvex pointed one in Y.Assume that K has a losed and bounded base Θ. Let C be upper Hausdor� semiontinuousand K-lower semiontinuous at u0 ∈ dom C and suppose (DP) holds for all C(u) in aertain neighbourhood of u0. If either of the following onditions is satis�ed, then E islower semiontinuous at u0 ∈ dom E :(i) C is weakly ompat,(ii) C is weakly losed and K-lower bounded while Θ is weakly ompat.



3.2. Lower semiontinuity of e�ient points in normed spaes 37In view of Theorems 2.3.1 and 2.3.2, we obtain the following results.Theorem 3.2.6. Let K be a losed onvex one with a weakly ompat base in a normedspae Y . Let C be upper Hausdor� semiontinuous and K-lower semiontinuous at u0 ∈
dom C. If C is losed and onvex and (DP) holds for all C(u) in a ertain neighbourhoodof u0, then E is lower semiontinuous at u0 ∈ dom E .Theorem 3.2.7. Let K be a losed onvex pointed one in a normed spae Y . Let Cbe upper Hausdor� semiontinuous and K-lower semiontinuous at u0 ∈ dom C. If C isuniformly rotund and (DP ) holds for all C(u) in a ertain neighbourhood of u0, then Eis lower semiontinuous at u0 ∈ dom E .We lose this setion with su�ient onditions for lower Hausdor� semiontinuityof the e�ient point set-valued mapping in whih we exploit the (global) modulus ofminimality.Definition 3.2.2. The funtion mod : R+ → R+ de�ned as

mod(ε) = inf{νη(ε) : η ∈ E(C)}is alled the modulus of strit e�ieny of C.We have
mod(ε) = inf{‖z − η‖− : z ∈ C \ B(E(C), ε), η ∈ E(C)}.Theorem 3.2.8. Let Y be a normed spae and let K be a losed onvex pointed one in

Y. Assume that C : U →→ Y is a set-valued mapping de�ned on a normed spae U and
u0 ∈ dom C. If(i) modC(ε) > 0,(ii) (DP) holds for all C(u) in some neighbourhood U1 of u0,(iii) C is Hausdor� ontinuous at u0 ∈ dom C,then E is lower Hausdor� semiontinuous at u0.Proof. Fix any ε > 0, and y ∈ E(C). By Proposition 2.4.1, y ∈ StE(C), and

((C \ (y + 1
2εBY )) + mod( 1

2ε)BY ) ∩ (y −K) = ∅.Let r(ε) = min
{
mod(ε), 1

2ε
}
. Hene,(3.11) ((C \ (y + 1

2εBY )) + 1
2r( 1

2ε)BY ) ∩ (y + 1
2r( 1

2ε)BY −K) = ∅.By the upper Hausdor� semiontinuity of C, for u ∈ U0,(3.12) C(u) ⊂ C + 1
2r( 1

2ε)BY

⊂ ((C \ (y + 1
2εBY )) + 1

2r( 1
2ε)BY ) ∪ (y + ( 1

2r( 1
2ε) + 1

2ε)BY )),and by the lower Hausdor� semiontinuity of C, for u ∈ U2 there exists y1 ∈ C(u) suhthat
y1 ∈ y + 1

2r( 1
2ε)BY , y1 −K ⊂ y + 1

2r( 1
2ε)BY −K.By (3.11),

(y1 −K) ∩ ((C(u) \ (y + 1
2ε · BY )) + 1

2r( 1
2ε) · BY ) = ∅.



38 3. Lower ontinuity of e�ient pointsNow, by (3.12), for u ∈ U2,

(y1 −K) ∩ C(u) ⊂ y + ( 1
2r( 1

2ε) + 1
2ε)BY .Sine (DP) holds for C(u), for u ∈ U1 there exists η1 ∈ E(u), u ∈ U1 ∩ U2, suh that

η1 ⊂ (y1 −K) ∩ C(u) ⊂ y + ( 1
2r( 1

2ε) + 1
2ε)BY ,and sine r( 1

2ε) ≤ 1
4ε,

η1 ∈ y + 5
8εBY ⊂ y + εBY .This means that E(C) ⊂ E(u) + εBY for u ∈ U1 ∩ U2, whih ompletes the proof.



4. LOWER HÖLDER CONTINUITY OF EFFICIENT POINTSUNDER PERTURBATIONS OF A SETIn this hapter we formulate su�ient onditions for lower Hölder ontinuity and lowerpseudo-Hölder ontinuity of E at u0 ∈ dom E and at (u0, y0) ∈ graph E , respetively. Basedon an auxiliary proposition we also derive riteria for Hölder ontinuity and pseudo-Hölderontinuity of E .Reall that C : U →→ Y is a set-valued mapping, C(u0) = C and C(u) = C(u) and
E : U →→ Y is the e�ient point set-valued mapping, E(u0) = E(C) and E(u) = E(C(u)).Let U = (U, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spaes with open unit balls BU and
BY , respetively. We say that a set-valued mapping C : U →→ Y is:

• upper Hölder ontinuous of order q > 0 at u0 ∈ dom C with onstants L > 0 and
t > 0 if

C(u) ⊂ C(u0) + L‖u − u0‖qBY for u ∈ u0 + tBU ,

• lower Hölder ontinuous of order q > 0 at u0 ∈ dom C with onstants L > 0 and
t > 0 if

C(u0) ⊂ C(u) + L‖u − u0‖qBY for u ∈ u0 + tBU ,

• Hölder ontinuous of order q > 0 at u0 ∈ dom C if it is upper and lower Hölderontinuous of order q at u0,
• Hölder ontinuous of order q > 0 around u0 ∈ dom C with onstants L > 0 and

t > 0 if
C(u′) ⊂ C(u) + L‖u′ − u‖qBY for u′, u ∈ u0 + tBU ,

• upper pseudo-Hölder (or Hölder alm) of order q > 0 at (u0, y0) ∈ graph C with
0-neighbourhood V0 and positive onstants L > 0, t > 0 if

C(u) ∩ V0 ⊂ C(u0) + L‖u − u0‖qBY for u ∈ u0 + tBU ,

• lower pseudo-Hölder of order q > 0 at (u0, y0) ∈ graph C with 0-neighbourhood V0and positive onstants L > 0, t > 0 if
C(u0) ∩ V0 ⊂ C(u) + L‖u − u0‖qBY for u ∈ u0 + tBU ,

• pseudo-Hölder of order q > 0 at (u0, y0) ∈ graph C with 0-neighbourhood V0 andpositive onstants L > 0, t > 0 if it is upper and lower pseudo-Hölder (u0, y0) ∈
graph C with 0-neighbourhood V0 and positive onstants L > 0, t > 0,

• pseudo-Hölder of order q > 0 around (u0, y0) ∈ graph C with 0-neighbourhood V0and positive onstants L > 0, t > 0 if
C(u′) ∩ V0 ⊂ C(u) + L‖u′ − u‖qBY for u′, u ∈ u0 + tBU .[39℄



40 4. Lower Hölder ontinuity of e�ient points under perturbations of a setWe say that any of the above properties holds for C in the sense of Lipshitz if itholds in the sense of Hölder with q = 1. Pseudo-Lipshitzness around (u0, y0) ∈ graph Cwas introdued in [11℄. Upper Lipshizness was introdued in [128, 130, 131℄. Clearly, if
C is Hölder ontinuous around u0 ∈ dom C, then C is upper and lower Hölder ontinuousat u0. If C is pseudo-Hölder ontinuous around u0 ∈ dom C, then C is upper and lowerpseudo-Hölder ontinuous at u0. For q = 1 the upper pseudo-Hölder ontinuity reduesto almness (see [75℄, [91℄). Criteria for almness of set-valued mappings an be found,e.g., in [74℄. For instane, if S(y) = [−s(y), s(y)], where s(y) = 1 +

√
|y|, y ∈ R, then Sis not alm at (0, 1) (see [91℄), but it is Hölder alm at (0, 1) with order 1/2.The following proposition will be often used in what follows.Proposition 4.0.3. Let U = (U, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spaes. For anyset-valued mapping C : U →→ Y the following equivalenes hold true:(i) C is Hölder around u0 ∈ dom C if and only if it is uniformly upper Hölder onsome neighbourhood U0 of u0,(ii) C is Hölder around u0 ∈ dom C if and only if it is uniformly lower Hölder onsome neighbourhood U0 of u0,(iii) C is pseudo-Hölder around (u0, y0) ∈ graph C if and only if it is uniformly upperpseudo-Hölder at (u0, y0) ∈ graph C on a neighbourhood U0 of u0,(iv) C is pseudo-Hölder around (u0, y0) ∈ graph C if and only if it is uniformly lowerpseudo-Hölder at (u0, y0) ∈ graph C on some neighbourhood U0 of u0.Proof. It is enough to note that for any set-valued mapping C : U →→ Y , C is uniformlyupper (resp. lower) Hölder on a subset U0 ⊂ U if there exist Lc > 0 and tc > 0 suh thatfor any u ∈ U0,

C(u) ⊂ C(u) + Lc‖u − u‖BY for u ∈ u + tcBU ,(resp.
C(u) ⊂ C(u) + Lc‖u − u‖BY for u ∈ u + tcBU .)Let us prove (ii). Assume that there exists t > 0 suh that for u ∈ u′ + tBU we have
C(u′) ⊂ C(u) + Lc‖u − u′‖BY for u ∈ u′ + tBU .Hene, by taking u, u′ ∈ u0 + (t/2)BU we get u − u′ ∈ tBU and the onlusion follows.Moreover, C is uniformly upper (lower) pseudo-Hölder at (u0, y0) ∈ dom C on a subset

U0 ⊂ U if there exist a 0-neighbourhood V and onstants Lc > 0, tc > 0 suh that forany u ∈ U0,
C(u) ∩ (y0 + V ) ⊂ C(u) + Lc‖u − u‖BY for u ∈ u + tcBU ,(resp.
C(u) ∩ (y0 + V ) ⊂ C(u) + Lc‖u − u‖BY for u ∈ u + tcBU .)Let us prove (iv). Let y0 ∈ C(u0). Assume that C is uniformly lower pseudo-Hölderontinuous at (u0, y0) ∈ graphC. There exist a 0-neighbourhood V in Y and t > 0 suhthat for u ∈ u′ + tBU we have
C(u′) ∩ (y0 + V ) ⊂ C(u) + Lc‖u − u′‖BY for u ∈ u′ + tBU .Hene, by taking u, u′ ∈ u0 + (t/2)BU we get u− u′ ∈ tBU and the onlusion follows.



4.1. Lower Hölder ontinuity of e�ient points 414.1. Lower Hölder ontinuity of e�ient pointsThe main result of this setion provides su�ient onditions for lower Hölder ontinuityof the e�ient point set-valued mapping E .Theorem 4.1.1. Let K be a losed onvex pointed one in a normed spae Y and let Cbe a subset in Y . Assume that(i) there exist β > 0 and q ≥ 1 suh that
‖y − y‖− ≥ β‖y − y‖q for all y ∈ E(C), y ∈ C,(ii) C is Hölder ontinuous of order p ≥ 1 at u0 ∈ dom C with onstants Lc > 0 and

0 < tc < 1,(iii) (DP) holds for all C(u), u ∈ u0 + tcBU .Then E is lower Hölder ontinuous of order p/q at u0 ∈ dom E . Preisely,
E(C) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u0‖p/qBYfor u ∈ u0 + tcBU .Proof. Take any u ∈ u0 + tcBU and y0 ∈ E(C). By (ii), there exists z ∈ C(u) suh that

z − y0 ∈ Lc‖u − u0‖pBY .If z ∈ E(C(u)), the onlusion follows. If z 6∈ E(C(u)), by (iii), there exists z0 ∈ E(C(u))suh that z0 ∈ z−K. Again by (ii), there exists y ∈ C suh that z0−y ∈ Lc‖u−u0‖pBY .Therefore,
y − y0 = (y − z0) + (z0 − z) + (z − y0) ∈ 2Lc‖u − u0‖pBY −K.On the other hand, by (i),

y − y0 6∈ β‖y − y0‖qBY −K,whih entails that β‖y − y0‖q ≤ 2Lc‖u − u0‖p and therefore
‖y − y0‖ ≤ (2Lc/β)1/q‖u − u0‖p/q.Finally,

‖y0 − z0‖ ≤ ‖y − y0‖ + ‖y − z0‖ ≤ (Lc + (2Lc/β)1/q)‖u − u0‖p/q,whih ompletes the proof.In view of Proposition 4.0.3, Theorem 4.1.1 leads to the following onditions for Hölderontinuity of E around u0.Theorem 4.1.2. Let K be a losed onvex pointed one in a normed spae Y and let Cbe a subset in Y . Assume that(i) there exist 0 < t < 1, β > 0 and q ≥ 1 suh that
‖z − z‖− ≥ β‖z − z‖q for all z ∈ E(C(u)), z ∈ C(u), u ∈ u0 + tBU ,(ii) C is Hölder ontinuous of order p ≥ 1 around u0 ∈ dom C with onstants Lc > 0and t,(iii) (DP) holds for all C(u), u ∈ u0 + tBU .



42 4. Lower Hölder ontinuity of e�ient points under perturbations of a setThen E is Hölder ontinuous of order p/q around u0 ∈ dom E . Preisely,
E(C(u′)) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u′‖p/qBYfor u, u′ ∈ u0 + (t/4)BU .Proof. By Theorem 4.1.1, for any u′ ∈ u0 + (t/2)BU ,
E(C(u′)) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u′‖p/qBYfor u ∈ u′ + (t/2)BU . This means that E is uniformly lower Hölder ontinuous on

B(u0, t/2). Hene, by taking any u, u′ ∈ u0 + (t/4)BU we get u − u′ ∈ (t/2)BU andthe onlusion follows.The following orollary is an immediate onsequene of Theorem 1.2.1.Corollary 4.1.1. Let K be a losed onvex pointed one in a normed spae Y and let
C(u) be nonempty weakly ompat subsets of Y for all u in some neighbourhood of u0. If(i) there exist β > 0 and q ≥ 1 suh that

‖y − y‖− ≥ β‖y − y‖q for all y ∈ E(C), y ∈ C,(ii) C is Hölder ontinuous of order p ≥ 1 at u0 ∈ dom C with onstants Lc > 0 and
0 < tc < 1,then E is lower Hölder ontinuous of order p/q at u0 ∈ dom E .Now we apply Theorem 4.1.1 to parametri vetor optimization problems

(Pu)
minK f(u, x)subjet to x ∈ A(u).For u = u0 we obtain problem (P ),

(P )
minK f(x)subjet to x ∈ A.We formulate su�ient onditions for lower Hölder ontinuity of the performane set-valued mapping P : U →→ Y ,

P(u) = E(f(u, ·), A(u))at u0 ∈ domP.To this end we need a tehnial lemma. Let f : X → Y be a mapping from a normedspae X into a normed spae Y . We say that f is Lipshitz on a subset D ⊂ X withonstant Lf > 0 if(4.1) ‖f(x′) − f(x)‖ ≤ Lf‖x − x′‖ for x, x′ ∈ D.In partiular, f is Lipshitz around x0 if f satis�es (4.1) for D = x0+tfBX , where tf > 0.We say that f : U ×X → Y is Lipshitz around {u0}×D with onstants Lf > 0 and
tf > 0 if(4.2) ‖f(u′, x′) − f(u, x)‖ ≤ Lf (‖u′ − u‖ + ‖x′ − x‖)for all x′, x ∈ D and u′, u ∈ u0 + tfBU . In partiular, f is Lipshitz around (u0, x0) if fsatis�es (4.2) around {u0} × D, where D is a neighbourhood of x0.



4.2. Lower pseudo-Hölder ontinuity of e�ient points 43Let A : U →→ Y be a set-valued mapping, A(u) = A(u), A(u0) = A. The image of Aunder a mapping f : X → Y is de�ned asAf : U →→ Y ,Af (u) = f(A(u)),Af (u0) = f(A).Clearly, domAf = domA.Proposition 4.1.1. Let X and Y be normed spaes. Let f : X → Y be Lipshitz on Xwith onstant Lf > 0.(i) If A is lower Hölder ontinuous at u0 ∈ domA of order p > 0 with onstants
La > 0 and ta > 0, then Af is lower Hölder ontinuous at u0 ∈ domA of order
p > 0 with onstants LfLa > 0 and ta > 0.(ii) If A is upper Hölder ontinuous at u0 ∈ domA of order p > 0 with onstants
La > 0 and ta > 0, then Af is upper Hölder ontinuous at u0 ∈ domA of order
p > 0 with onstants LfLa > 0 and ta > 0.(iii) If A is Hölder ontinuous at u0 ∈ domA of order p > 0 with onstants La > 0and ta > 0, then Af is Hölder ontinuous at u0 ∈ domA of order p > 0 withonstants LfLa > 0 and ta > 0.In view of Proposition 4.1.1 and Theorem 4.1.1 we obtain the following result.Theorem 4.1.3. Let X and Y be normed spaes and let K be a losed onvex pointedone in Y . Assume that(i) there exists β > 0 and q ≥ 1 suh that

‖f(x) − f(x)‖− ≥ β‖f(x) − f(x)‖q for all x ∈ S(f, A), x ∈ A,(ii) f is Lipshitz on X with onstant Lf > 0, A is Hölder ontinuous of order p ≥ 1at u0 ∈ domA with onstants La > 0 and 0 < t < 1,(iii) (DP) holds for all f(A(u)), u ∈ u0 + tBU .Then P is lower Hölder ontinuous of order p/q at u0 ∈ domP. Preisely,
E(f, A) ⊂ E(f, A(u)) + (LfLa + (2LfLa/β)1/q)‖u − u0‖p/qBY for u ∈ B(u0, t).

4.2. Lower pseudo-Hölder ontinuity of e�ient pointsIn the present setion we give su�ient onditions for lower pseudo-Hölder ontinuity of
E at (u0, y0) ∈ graph E .Theorem 4.2.1. Let K be a losed onvex pointed one in a normed spae Y and let Cbe a subset in Y . Let y0 ∈ E(C). Assume that(i) there exist β > 0 and q ≥ 1 and a 0-neighbourhood V suh that

‖y − y‖− ≥ β‖y − y‖q for all y ∈ E(C) ∩ (y0 + V ), y ∈ C,(ii) C is lower pseudo-Hölder ontinuous of order p ≥ 1 at (u0, y0) ∈ graph C with 0-neighbourhood V and onstants Lc > 0, 0 < tc < 1 and upper Hölder ontinuousof order p ≥ 1 at u0 ∈ dom C with onstants Lc > 0, 0 < tc < 1,(iii) (DP) holds for all C(u), u ∈ u0 + tcBU .



44 4. Lower Hölder ontinuity of e�ient points under perturbations of a setThen E is lower pseudo-Hölder ontinuous of order p/q at (u0, y0) ∈ graph E . Preisely,
E(C) ∩ (y0 + V ) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u0‖p/qBYfor u ∈ u0 + tcBU .Proof. Take any u ∈ u0 + tcBU and y ∈ E(C) ∩ (y0 + V ). By (ii), there exists z ∈ C(u)suh that

z − y ∈ Lc‖u − u0‖pBY .If z ∈ E(C(u)), the onlusion follows. Otherwise, by (iii), there exists z ∈ E(C(u)) suhthat z ∈ z − K. Again by (ii), there exists y ∈ C suh that z − y ∈ Lc‖u − u0‖pBY .Therefore,
y − y = (y − z) + (z − z) + (z − y) ∈ 2LcBY −K.On the other hand, by (i),

y − y 6∈ β‖y − y‖qBY −K,whih gives that β‖y − y‖q ≤ 2Lc‖u − u0‖p and therefore
‖y − y‖ ≤ (2Lc/β)1/q‖u − u0‖p/q.Finally,

‖y − z‖ ≤ ‖y − y‖ + ‖y − z‖ ≤ (Lc + (2Lc/β)1/q)‖u − u0‖p/q,whih ompletes the proof.By ondition (i) of Theorem 4.2.1, all y ∈ E(C)∩(y0+V ) are globally stritly e�ientof order q with the same onstant β.Sine lower pseudo-Hölder ontinuity is of loal harater the question arises whetherwe an prove lower pseudo-Hölder ontinuity of E at (u0, y0) by assuming ondition (i)for loal stritly e�ient points. To this end we need the following de�nition.Let C ⊂ Y be a subset of Y .Definition 4.2.1. The loal domination property (LDP) holds for C at y0 ∈ Y if thereexists a 0-neighbourhood V suh that for any y ∈ C ∩ (y0 + V ) there exists η ∈ E(C) ∩
(y0 + V ) suh that

η ∈ y −K.

(DP) is equivalent to (LDP) with V = Y . Note that whenever (DP) holds for C, any
y ∈ C ∩ (y0 + V ) is dominated by some η ∈ E(C) but in general η 6∈ E(C) ∩ (y0 + V ).By using (LDP) we formulate the following theorem.Theorem 4.2.2. Let K be a losed onvex pointed one in a normed spae (Y, ‖ · ‖). Let
C be a subset in Y and let y0 ∈ E(C). Assume that(i) there exist onstants β > 0, q ≥ 1, ts > 0 and a 0-neighbourhood V suh that

‖y − y‖− ≥ β‖y − y‖q for all y ∈ E(C) ∩ (y0 + V ), y ∈ C ∩ (y + tsBY ),(ii) C is pseudo-Hölder ontinuous of order p ≥ 1 at (u0, y0) ∈ graph C with 0-neighbourhood V and onstants Lc > 0, 0 < tc < 1,(iii) (LDP) holds for all C(u), u ∈ u0 + tcBU at y0 with a neighbourhood V ⊂
V ∩ 1

2 tsBY .



4.3. Pseudo-Hölder ontinuity of e�ient points 45Then E is lower pseudo-Hölder ontinuous of order p/q at (u0, y0) ∈ graph E . Preisely,there exists a 0-neighbourhood Ṽ ⊂ V suh that
E(C) ∩ (y0 + Ṽ ) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u0‖p/qBYfor u ∈ u0 + tcBU .Proof. Take any u ∈ u0 + tcBU . Let Ṽ be any 0-neighbourhood satisfying Ṽ + Lctc ⊂ V .Let y ∈ E(C) ∩ (y0 + Ṽ ). By (ii), there exists z ∈ C(u) suh that

z − y ∈ Lc‖u − u0‖pBY .Clearly, z − y0 ⊂ Ṽ + LctcBY ⊂ V . By (iii), there exists z ∈ E(C(u)) ∩ (y0 + V ) suhthat z ∈ z −K. Sine z − y0 ∈ V ⊂ V , by (ii), there exists y ∈ C suh that
z − y ∈ Lc‖u − u0‖pBYand y−y0 = (y−z)+(z−y0) ∈ LctcBY +V . If y = y, the onlusion follows. So, assumethat y 6= y. We have

y − y = (y − z) + (z − z) + (z − y) ∈ 2LcBY −Kand y − y = (y − y0) + (y0 − y) ∈ LctcBY + V + Ṽ ⊂ V + V ⊂ tsBY . Hene, by (i),
y − y 6∈ β‖y − y‖qBY −K,whih yields the inequality β‖y − y‖q ≤ 2Lc‖u − u0‖p and therefore

‖y − y‖ ≤ (2Lc/β)1/q‖u − u0‖p/q.Finally,
‖y − z‖ ≤ ‖y − y‖ + ‖y − z‖ ≤ (Lc + (2Lc/β)1/q)‖u − u0‖p/q,whih ompletes the proof.
4.3. Pseudo-Hölder ontinuity of e�ient pointsIn this setion we formulate su�ient onditions for pseudo-Hölder ontinuity of e�ientpoints under perturbations of sets.Theorem 4.3.1. Let K be a losed onvex pointed one in a normed spae Y . Let C bea nonempty subset in Y and y0 ∈ E(C). Assume that(i) there exist a 0-neighbourhood V and onstants 0 < t < 1, β > 0, q ≥ 1, ts > 0suh that

‖z−z‖−≥β‖z−z‖q for z∈E(C(u))∩(y0+V ), z∈C(u)∩(z+tsBY ), u∈u0+tBU ,(ii) C is Hölder ontinuous of order p ≥ 1 around u0 ∈ dom C with onstants Lc > 0and t,(iii) (LDP) holds for all C(u) for u ∈ u0 + tBU with a 0-neighbourhood V ⊂ 1
2 tsBY .Then E is pseudo-Hölder ontinuous of order p/q at (u0, y0) ∈ graph E . Preisely, there



46 4. Lower Hölder ontinuity of e�ient points under perturbations of a setexists a 0-neighbourhood Ṽ suh that
E(C(u′)) ∩ (y0 + Ṽ ) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u′ − u‖p/qBYfor u, u′ ∈ u0 + t/4BU .Proof. It is enough to note that under the assumptions, for any u′ ∈ u0 + t/2BU ,
E(C(u′)) ∩ (y0 + Ṽ ) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u′‖p/qBYfor u ∈ u′ + t/2BU . This means that E is uniformly lower pseudo-Hölder at (u0, y0) ∈

graph E . The onlusion follows by Proposition 4.0.3.In partiular, Theorem 4.3.1 gives rise to the following onditions for upper pseudo-Hölder ontinuity of E at (u0, y0) ∈ graph E .Theorem 4.3.2. Let K be a losed onvex pointed one in a normed spae Y . Let C bea subset in Y and y0 ∈ E(C). Assume that(i) there exist a 0-neighbourhood V and onstants 0 < t < 1, β > 0, q ≥ 1, ts > 0suh that
‖z − z‖− ≥ β‖z − z‖q for z ∈ E(C(u)) ∩ (y0 + V ), z ∈ C(u) ∩ (z + tsBY ),

u ∈ u0 + tBU ,(ii) C is Hölder ontinuous of order p ≥ 1 at u0 ∈ dom C with onstants Lc > 0and t,(iii) (LDP) holds for C with a 0-neighbourhood V ⊂ 1
2 tsBY .Then E is upper pseudo-Hölder ontinuous of order p/q at (u0, y0) ∈ graph E . Preisely,there exists a 0-neighbourhood Ṽ suh that

E(C(u)) ∩ (y0 + Ṽ ) ⊂ E(C) + (Lc + (2Lc/β)1/q)‖u − u0‖p/qBYfor u ∈ u0 + tBU .



5. CONTAINMENT PROPERTYLet C be a subset of a Hausdor� topologial vetor spae Y equipped with a losedonvex pointed one K. The domination property (DP) holds for C if C ⊂ E(C) + K.Conditions ensuring the domination property an be found in [72, 106, 124, 149℄. For avetor optimization problem
(P )

minK f(x)subjet to x ∈ Athe domination property (DP) holds if f(A) ⊂ E(f, A) + K. It says that for eah x ∈ Athere exists x0 ∈ S(f, A) suh that f(x) − f(x0) ∈ K. Let us note that if f : X → R,the set ER+
(f, A) onsists of at most a single element and the domination propertyholds whenever the solution set is nonempty. This one-dimensional fat was generalizedto �nite-dimensional spaes Y = R

m by Henig [72℄ who proved that for K-onvex and
K-losed sets C the domination property (DP) is equivalent to E(C) 6= ∅.

5.1. Containment propertyLet Y be a Hausdor� topologial vetor spae and let K be a losed onvex pointed onein Y . Let C be a subset of Y . For any 0-neighbourhood W in Y , de�ne
C(W ) := C \ (E(C) + W ).Definition 5.1.1 ([16℄). We say that the ontainment property (CP) holds for C if forevery 0-neighbourhood W there exists a 0-neighbourhood O suh that(5.1) C(W ) + O ⊂ E(C) + K.Clearly, if C 6= ∅ and (CP) holds for C, then E(C) 6= ∅ and(5.2) C ⊂ cl E(C) + K,where cl(·) stands for the losure of a set. Indeed, if y ∈ C \ clE(C) there exists a 0-neighbourhood W suh that y 6∈ E(C)+W and hene, by (CP), y ∈ E(C)+K. In Setion5.1.2 we give examples of sets for whih (CP) does not hold.Proposition 5.1.1. Let intK 6= ∅ and let C be a subset of Y . If (CP) holds for C, then

WE(C) ⊂ cl E(C).Proof. On the ontrary, suppose that there is y ∈ WE(C) \ clE(C). Hene, (y− intK)∩
C = ∅ and
(∗) (y − intK) ∩ (E(C) + K) = ∅.[47℄



48 5. Containment propertySine y 6∈ cl E(C) and Y is Hausdor�, by (CP), there exists a 0-neighbourhood O in Ysuh that y + O ⊂ E(C) + K and onsequently (y − intK) ∩ (E(C) + K) 6= ∅, whihontradits (∗).If C is losed, WE(C) is losed (Theorem 1.1 of [105℄, p. 136), and hene clE(C) ⊂
WE(C). Hene, by Proposition 5.1.1 we obtain the following orollary.Corollary 5.1.1. Let C be a losed subset of Y . Assume that intK 6= ∅. If (CP) holdsfor C, then WE(C) = cl E(C). If (CP) holds for C and E(C) = WE(C), then (DP)holds for C.Proposition 5.1.2. Let intK 6= ∅ and let C be a nonempty ompat subset of Y . Thefollowing onditions are equivalent:(i) (CP) holds for C,(ii) clE(C) = WE(C).Proof. (ii)⇒(i). In view of ompatness of C, by Theorem 1 of [40℄, (DP) holds for C.Let W be a 0-neighbourhood. Take any y ∈ C(W ). Sine y 6∈ WE(C), by (DP), thereexist k1 ∈ intK, k ∈ K, and η ∈ E(C) suh that y = η + k, k = k1 + k ∈ intK. Hene,for any y ∈ C(W ) there exists a 0-neighbourhood Oy suh that y + k + Oy ⊂ E(C) +K.The family {Oy}y∈C(W ) forms a overing of C(W ). Sine C(W ) is ompat, this overingontains a �nite subovering O1, . . . , Or and by putting O =

⋂r
i=1 Or, (i) follows.(i)⇒(ii). Follows from Corollary 5.1.1.The following proposition gives a haraterization of (CP) whenever intK 6= ∅.Proposition 5.1.3. Let K be a losed onvex pointed one in Y with intK 6= ∅, and let

C be a subset of Y . The following statements are equivalent:(i) (CP) holds for C,(ii) for eah 0-neighbourhood W there exists a 0-neighbourhood O suh that:(C) for any y ∈ C(W ) there is η ∈ E(C) satisfying(5.3) (y − η) + O ⊂ K.Proof. (i)⇒(ii). For any 0-neighbourhood O de�ne
KO = {k ∈ K : k + O ⊂ K}.Clearly, intK =

⋃
O∈N KO. We show that for any 0-neighbourhood Q there exists a

0-neighbourhood O suh that(5.4) (E(C) + K)Q ⊂ E(C) + KO,where (E(C) + K)Q = {y ∈ Y : y + Q ⊂ E(C) + K}. Indeed, let c ∈ (E(C) + K)Q. Thismeans that c+Q ⊂ E(C)+K. Sine 0 ∈ cl(−K), for any 0-neighbourhood Q there existsa 0-neighbourhood O suh that Q ∩ (−KO) 6= ∅. Thus there exists q ∈ Q ∩ (−KO) suhthat c + q ∈ E(C) + K, i.e., c ∈ E(C) + KO By (i), for eah 0-neighbourhood W thereexists a 0-neighbourhood Q suh that for any y ∈ C(W ), y ∈ (E(C)+K)Q, and by (5.4),for some 0-neighbourhood O, y ∈ E(C) + KO.(ii)⇒(i). Obvious.



5.1. Containment property 49Although in De�nition 5.1.1 we do not assume expliitly that intK 6= ∅, this as-sumption is essential for the haraterization of (CP) given in Proposition 5.1.3. In turn,Proposition 5.1.3 is exploited in stability theorems of next setions. However, in someimportant spaes, the ones of nonnegative elements may have empty interiors. This isthe ase, for example, in the spae of integrable funtions Lp(Ω), 1 ≤ p < ∞, for theone KLp(Ω) of nonnegative elements
KLp(Ω) = {f ∈ Lp(Ω) : f ≥ 0 almost everywhere in Ω},as well as in the spae ℓp, 1 ≤ p < ∞, of summable sequenes s = (si) for the one

Kℓp(Ω) = {s ∈ ℓp : si ≥ 0}(see [82℄).5.1.1. Containment property in normed spaes. Let Y = (Y, ‖ · ‖) be a normedspae with open unit ball BY . For any subset C of Y , set d(y, C) = inf{‖y − c‖ :

c ∈ C}, B(C, ε) = {y ∈ Y : d(y, C) < ε}. For ε > 0 put
C(ε) := C \ B(E(C), ε).Then (CP) holds for C if for any ε > 0 there is δ > 0 suh that
C(ε) + δBY ⊂ E(C) + K.Let (Y, ‖ · ‖) be a Banah spae and let f ∈ Y ∗, ‖f‖ = 1. For any 0 < α ≤ 1 the one

Kα = {y ∈ Y : f(y) ≥ α‖y‖}is the Bishop�Phelps one (f. Setion 3.2 and De�nition 2.9 of [124℄). It is a losed onvexpointed one with nonempty interior intKα = {y ∈ Y : f(y) > α‖y‖}. Moreover, Kα hasa bounded base Θ = {k ∈ Kα : f(k) = 1}. Bishop�Phelps ones were investigated e.g.in [123℄, where it is shown that in normed spaes for any onvex one Ω with a losedbounded base there exist an equivalent norm and a funtional f suh that Ω an berepresented as a Bishop�Phelps one.Theorem 5.1.1. Let C be a onvex subset of Y . The following statements are equivalent:(i) (CP) holds for C with respet to Kα,(ii) for eah ε > 0 there exists 1 > β > α suh that C(ε) ⊂ EKα
(C) + Kβ.Proof. (i)⇒(ii). Let ε > 0. By (CP), there exists δ > 0 suh that

C(ε) + δBY ⊂ EKα
(C) + Kα.Sine C is onvex, for any y ∈ C(ε) and η ∈ EKα
(C),

z = η +
ε

‖y − η‖ (y − η) ∈ C, ‖z − η‖ = ε.By Proposition 5.1.3, there exists η ∈ EKα
(C) suh that z−η±w ⊂ Kα for any ‖w‖ < δ.Consequently, f(z − η ± w) ≥ α‖f‖ ‖z − η ± w‖ and

f(z − η) − |f(w)| ≥ αε‖f‖ − αδ‖f‖.Hene
f(z − η) ≥ αε‖f‖ − αδ‖f‖ + δ sup

w∈δBY

|f(w/δ)|,



50 5. Containment propertyand
f(z − η) ≥ αε‖f‖ − αδ‖f‖ + δ‖f‖ = ε‖f‖(α − αδ/ε + δ/ε).By taking β = α + (δ/ε)(1 − α) we obtain (ii).(ii)⇒(i). Let ε > 0. By (ii), there exists β > α suh that C(ε) ⊂ EKα

(C)+Kβ. Hene,for any y ∈ C(ε) there exists η ∈ EKα
(C) suh that

f(y − η) ≥ β‖f‖ ‖y − η‖.For any w ∈ Y, we have f(y − ηy − w) = f(y − ηy) − f(w) ≥ β‖f‖ ‖y − ηy‖ − f(w), andonsequently
f(y − η − w) ≥ β‖f‖ ‖y − η − w + w‖ − ‖f‖ ‖w‖

≥ ‖f‖ ‖y − η − w‖
[
β − β‖w‖ + ‖w‖

‖y − η − w‖

]

≥ ‖f‖ ‖y − η − w‖
[
β − β‖w‖ + ‖w‖

ε − ‖w‖

]
.By taking

‖w‖ <
ε(β − α)

2β − α + 1we obtain
‖f‖ ‖y − η − w‖

[
β − β‖w‖ + ‖w‖

ε − ‖w‖

]
≤ β − αand onsequently f(y − η − w) ≥ α‖f‖ ‖y − η − w‖, whih implies (CP).5.1.2. Containment property in �nite-dimensional spaes. Let Y = (Rm, ‖ ·‖) bethe m-dimensional spae. Let K be a losed onvex one in Y . If K is pointed it admitsa ompat base (see [123℄).

Fig. 5.1. Containment property for the set C with respet to the nonnegative one R
2
+



5.1. Containment property 51Let C ⊂ R
m. Note that E(C) need not be losed even if C is onvex and losed(f. [3℄). Hene, even for losed onvex sets of a �nite-dimensional spae, (CP) does notimply (DP). We start by investigating relationships between the two properties.Theorem 5.1.2. Let K be a losed onvex pointed one in R

m with intK 6= ∅. Let C bea losed onvex subset of R
m suh that cl E(C) is ompat. If cl E(C) = WE(C) and

(DP) holds for C, then (CP) holds for C.Proof. The set clE(C) + K is losed and onvex, sine clE(C) is ompat and C + K =

clE(C) + K.Suppose on the ontrary that (CP) does not hold for C. There exist ε0 > 0 andsequenes (zn), (yn) suh that zn ∈ C(ε0), yn ∈ B(zn, 1/n), and yn 6∈ cl E(C) + K. By
(DP), zn = ηn + kn, where ηn ∈ E(C), kn ∈ K, ‖kn‖ > ε0.Let Θ be a ompat base of K. We have M0 ≤ ‖θ‖ ≤ M for any θ ∈ Θ and some
M0, M > 0. Moreover, kn = λnθn with λn > 0 and θn ∈ Θ. Sine ε0 < ‖zn − ηn‖ =

λn‖θn‖ ≤ λnM, the sequene (βn), βn = 1/λn, is bounded. We an assume that 0 <

βn ≤ 1. By onvexity of C,
ηn + θn = βnzn + (1 − βn)ηn ∈ A.Sine cl E(C) is ompat, (ηn) ontains a onvergent subsequene with limit point η ∈

clE(C). We an assume that (ηn) onverges to η ∈ C and (θn) onverges to θ ∈ Θ. Thesequene (rn), rn = ηn + θn, tends to r = η + θ ∈ C. Clearly, r 6∈ clE(C).We must have r ∈ WE(C). Indeed, if (r− intK)∩C 6= ∅, then r = y+k, where y ∈ Cand k ∈ intK. Hene, k + ε̃BY ⊂ K for some ε̃ > 0 and
zn = r + (rn − r) + (λn − 1)θn = y + k + (rn − r) + (λn − 1)θn = y + kn,where kn ∈ k + (ε̃/2)BY ⊂ K for all n su�iently large. Consequently, yn = zn + (yn −

zn) = y + pn, pn ∈ k + (ε̃/3)BY ⊂ K for all n su�iently large, whih ontradits thehoie of yn. Hene, r ∈ WE(C) \ cl E(C), whih is impossible.One an easily give examples showing that in the above proposition the equality
clE(C) = WE(C) annot be dropped.Example 5.1.1. Let K = R

2
+ = {(y1, y2) : y1, y2 ≥ 0} and

C = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1}.Here E(C) = {(0, 0)}, WE(C) = {(y1, y2) ∈ C : y1 = 0 or y2 = 0}, (DP) holds for C and
(CP) does not.Note that onvexity and losedness of C annot be weakened respetively to K-onvexity and K-losedness. The following theorem provides a further re�nement of theabove theorem.Theorem 5.1.3 ([34, 72℄, see also [105℄). Let K be a losed onvex one in R

m. Let C bea K-onvex and K-losed subset of R
m. The following statements are equivalent:(i) (DP) holds for C,(ii) E(C) 6= ∅.As a onsequene of this result we obtain the following orollary.



52 5. Containment propertyCorollary 5.1.2. Let K be a losed onvex pointed one in R
m with intK 6= ∅. Let

C be a losed onvex subset of R
m with cl E(C) ompat. The following onditions areequivalent:(i) E(C) 6= ∅, cl E(C) = WE(C),(ii) (CP) holds for C.Proof. This follows from Theorem 5.1.2 and Corollary 3 of [72℄.Consider now the ase where C ⊂ R

m is polyhedral , i.e., C is the solution set to asystem of a �nite number of linear inequalities,(5.5) C = {y ∈ R
m : 〈bi, y〉 ≤ ci, i ∈ I}.In this ase we prove an analogue of Theorem 5.1.2 without assuming ompatness of

E(C). The reession one Rec(C) of C is given by the system of homogeneous inequalities,
Rec(C) = {y ∈ R

m : 〈bi, y〉 ≤ 0, i ∈ I},and E(C) 6= ∅ if and only if Rec(C) ∩ (−K) = {0} (Th. 3.18 of Ch. 1 of [105℄).To make the presentation self-ontained we prove losedness of E(C) and of E(C)+Kwhenever C is a polyhedral set. Usually, the losedness of E(C) is proved as a onsequeneof the salarization of linear multiple objetive optimization problems with polyhedralones. Here we prove the losedness of E(C) diretly for any losed onvex one K. Reallthat the lineality spae ℓ(K) of K is de�ned as ℓ(K) = K ∩ (−K).Proposition 5.1.4. If C is a polyhedral subset of R
m given by (5.5) and K ⊂ R

m is alosed onvex one, then E(C) is losed.Proof. Suppose on the ontrary that E(C) is not losed. There exists a sequene ofe�ient points (ηn) ⊂ E(C) whih onverges to η ∈ C and η 6∈ E(C). Hene, there is an
η ∈ C suh that η − η ∈ K \ ℓ(K).Passing to a subsequene if neessary, one an �nd a subset I1 ⊂ I suh that

〈bi, ηn〉 = ci, i ∈ I1, and 〈bi, ηn〉 < ci, i ∈ I \ I1.Hene, 〈bi, η〉 = ci and 〈bi, η〉 ≥ 〈bi, η〉 for i ∈ I1. Moreover, 〈bi, η〉 > 〈bi, η〉 for some
i ∈ I \ I1 sine otherwise 0 6= −k = η − η ∈ Rec(C). Thus, there are two index subsets
I2, I3 ⊂ I with I3 6= ∅ suh that

〈bi, η − η〉 ≤ 0, i ∈ I2 ⊃ I1, and 〈bi, η − η〉 > 0, i ∈ I3.For eah n ≥ 1 put
γn = min

i∈I3

ci − 〈bi, ηn〉
〈bi, η − η〉 > 0,and onsider wn = ηn + γn(η − η). We have wn ∈ C and wn − ηn ∈ (−K) \ ℓ(K). Thisontradits the e�ieny of ηn.Proposition 5.1.5. For any polyhedral set C ⊂ R

m given by (5.5) and any losed onvexpointed one K in R
m the set E(C) + K is losed.Proof. If E(C) = ∅, the set E(C)+K is empty, hene losed. Assume that E(C) 6= ∅ andlet Θ ⊂ K be a base of K.



5.1. Containment property 53Consider any onvergent sequene (zn) ⊂ E(C) + K, limn zn = z. We have zn =

xn + λnθn, where xn ∈ E(C), θn ∈ Θ and λn ≥ 0. In view of the ompatness of Θ,without loss of generality, we may assume that the sequene (θn) onverges to θ ∈ Θ.We start by showing that under our assumptions, (λn) ontains a bounded subse-quene. Indeed, if λn → +∞, then
1

λn
(xn + λnθn) =

1

λn
xn + θn → 0,and limn

1
λn

xn = −θ sine θn → θ 6= 0. On the other hand,
〈

bi,
1

λn
xn

〉
≤ 1

λn
ci, i ∈ I,and, by passing to the limit, 〈bi,−θ〉 ≤ 0, i.e., −θ ∈ Rec(C) ∩ (−K), whih ontraditsthe assumption that E(C) 6= ∅ (see the remark above).Consequently, (λn) ontains a onvergent subsequene (λnℓ

), λnℓ
→ λ ≥ 0. Moreover,

λnℓ
θnℓ

→ k ∈ K and xnℓ
→ x ∈ E(C) sine E(C) is losed by Proposition 5.1.4. Finally,

z = x + k ∈ E(C) + K.If E(C) = WE(C) and (DP) holds for C, then(5.6) C ⊂ WE(C) + intK ∪ {0}.Theorem 5.1.4. Let K be a losed onvex pointed one in R
m. Let C ⊂ R

m be a polyhe-dral set of the form (5.5). The following statements are equivalent:(i) (DP ) holds for C and E(C) = WE(C),(ii) (CP) holds for C.Proof. The impliation (ii)⇒(i) is immediate. To prove that (i)⇒(ii) suppose on theontrary that (CP) does not hold for C. There exist ε0 > 0 and a sequene (yn) ⊂ C(ε0)suh that B(yn, 1/n) ∩ (C + K)c 6= ∅. Consequently, one an hoose a sequene (zn) ⊂
∂(E(C) + K), where ∂(·) stands for the boundary, with limn(yn − zn) = 0. If zn ∈ Cfor at least one n ≥ 1, then zn ∈ WE(C) \ E(C), a ontradition. Hene, zn 6∈ C for all
n ≥ 1 and(5.7) (zn −K) ∩ (E(C) + K) ⊂ ∂(E(C) + K).By Proposition 5.1.5, E(C) +K is losed, and hene, zn = ηn + λnθn, where ηn ∈ E(C),
θn ∈ Θ and λn ≥ 0. Moreover, sine there exists M > 0 suh that ‖θ‖ ≤ M , we have

λnM ≥ λn‖θn‖ = ‖zn − ηn‖ > ε0and λn > ε0/M . We an assume that λn > 1.Sine zn 6∈ C, there is a subset I1 of the index set I suh that
〈bi, zn〉 > ci for i ∈ I1 and 〈bi, zn〉 ≤ ci for i ∈ I \ I1.We laim that there exist an in�nite subset N1 ⊂ N and an index i ∈ I1 suh that

〈bi, ηn〉 = ci for n ∈ N1. Indeed, if 〈bi, ηn〉 < ci for all n ≥ 1 and i ∈ I1, then
βn =

1

2
min
i∈I1

ci − 〈bi, ηn〉
〈bi, θn〉

> 0.



54 5. Containment propertyClearly, λn > (ci − 〈bi, ηn〉)/〈bi, θn〉 > βn for all i ∈ I1 and n ≥ 1. There is a subset
I2 ⊂ I suh that 〈bi, θn〉 > 0 for i ∈ I2, and 〈bi, θn〉 ≤ 0 for i ∈ I \ I2, where I1 ⊂ I2.Hene,
〈bi, zn − (λn − βn)θn〉 =





〈bi, ηn〉 + βn〈bi, θ〉 ≤ 〈bi, ηn〉 + ci−〈bi,ηn〉
〈bi,θn〉 〈bi, θn〉 = ci, i ∈ I1,

〈bi, ηn〉 + βn〈bi, θn〉 ≤ 〈bi, ηn〉 + λn〈bi, θn〉 ≤ ci, i ∈ I2 \ I1,

〈bi, ηn〉 ≤ ci, i ∈ I \ I2.This means that wn = zn − (λn − βn)θn ∈ C ∩ (zn −K), and by (5.6),
wn ∈ E(C) + intK ⊂ int(E(C) + K),ontrary to (5.7). This proves that 〈bi, ηn〉 = ci for some i ∈ I1 and n ∈ N1 ⊂ N .By letting Hi = {y ∈ R

m : 〈bi, y〉 = ci} we get
‖yn − zn‖ ≥ d(zn, Hi) =

〈bi, zn〉 − ci√
(bi)2

=
λn〈bi, θn〉√

(bi)2
,whih implies that λn → 0. This is a ontradition.Theorem 5.1.5. Let K be a losed onvex pointed one in R

m. Let C ⊂ R
m be a polyhe-dral set of the form (5.5). The following statements are equivalent:(i) Rec(C) ∩ (−K) = {0} and E(C) = WE(C),(ii) (CP) holds for C.Proof. See [31℄.

5.2. Dual ontainment propertyIn this setion we de�ne the dual ontainment property (DCP) whih in some instanesprovides a dual haraterization of (CP).Let K be a losed onvex pointed one in a loally onvex spae Y and let K∗ be itsdual with base Θ∗. Let C be a subset of Y .Definition 5.2.1. The dual ontainment property (DCP) holds for C with respet to
Θ∗ if for every 0-neighbourhood W there exists δ > 0 for whih the following onditionholds:(C1) for eah y ∈ C(W ) there exists ηy ∈ E(C) satisfying

θ∗(y − ηy) > δ for eah θ∗ ∈ Θ∗.Note that if θ∗(y − ηy) > δ for some positive δ > 0 and all θ∗ ∈ Θ∗, then y − ηy ∈ Ki,where Ki is de�ned in Setion 1.1. In the spaes ℓp, Lp(Ω), p ≥ 1, the quasi-interior Ki
+of the positive one K+,

Ki
+ = {k ∈ K+ : f(k) > 0 for f ∈ K∗

+ \ {0}}.oinides with the set of weak order units (see [122, p. 184℄), i.e., for any y0 ∈ Ki
+ and any

y ∈ K+, y 6= 0, there exists z ∈ K+, z 6= 0, suh that z � y0 and z � y. Charaterizationsof quasi-interiors of ones of nonnegative elements are given by Peressini (see [122, Ex. 4.4,p. 186℄).



5.2. Dual ontainment property 55Example 5.2.1. 1. Let Y = R
m, K ⊂ Y be a losed onvex pointed one. For any onvexset C in Y , core(C) oinides with int C. Hene, for K = {(y1, y2) : y1 ≥ 0, y1 = y2} weget K∗ = {(f1, f2) : f2 ≥ −f1} and Ki = ∅.2. For any p ∈ [1,∞) onsider the sequene spae ℓp of sequenes s = (si) with realterms,

ℓp =
{

s = (si) :

∞∑

i=1

|si|p < ∞
}

,with the natural ordering one
ℓp
+ = {s = (si) ∈ ℓp : si ≥ 0}.The ordering one ℓp

+ has empty topologial interior and empty algebrai interior, core(ℓp
+)

= ∅. But (ℓp
+)i = {s = (si) ∈ ℓp : si > 0}.3. For any p ∈ [1,∞), onsider the spae of all Lebesgue p-integrable funtions f :

Ω → R with the natural ordering one
Lp

+ = {f ∈ Lp : f(x) ≥ 0 almost everywhere on Ω}.The topologial interior int(Lp
+) and core(Lp)+ are both empty but (Lp

+)i 6= ∅. To seethis reall that
(Lp

+)i =
{
f ∈ Lp :

\
Ω

fg dµ > 0 for all g ∈ Lq
+ \ {0}

}
,

1/p + 1/q = 1, and
(Lp

+)i = {f ∈ Lp : f(x) > 0 almost everywhere on Ω}.We say that the dual ontainment property (DCP) holds for C if there exists a base
Θ∗ of K∗ suh that (DCP) holds for C with respet to Θ∗. If intK 6= ∅ and e ∈ intK,then Θ∗ = {f ∈ K∗ : f(e) = 1} (see Theorem 1.1.1 of Setion 1.1) is a base of K∗. Let
y0 ∈ Ki. Reall that the standard base of K∗ related to y0 has the form(5.8) Θ∗(y0) = {θ∗ ∈ K∗ : θ∗(y0) = 1}.We have the following proposition.Proposition 5.2.1. Let Y be a Hausdor� topologial vetor spae with a losed onvexone K ⊂ Y . Assume that (DCP) holds for C with respet to a standard base Θ∗(y0)of K∗, y0 ∈ Ki. Then(i) (DCP) holds for C with respet to any standard base Θ∗(y) of K∗, y ∈ Ki, where

y0 ∈ ̺ · y + K, ̺ > 0,(ii) if Θ∗(y0) is bounded, (DCP) holds for C with respet to any standard base Θ∗(y),
y ∈ Ki, of K∗.Proof. (i) For eah θ∗ ∈ Θ∗(y) there is θ∗0 ∈ Θ∗(y0) suh that(5.9) θ∗(k) = θ∗(y0)θ

∗
0(k) for all k ∈ K.Sine y0 = ̺·y+k0, k0 ∈ K, we get θ∗(y0) = ̺+θ∗(k0) ≥ ̺. Hene, θ∗(k) = θ∗(y0)θ

∗
0(k) ≥

̺θ∗0(k) and the onlusion follows.



56 5. Containment property(ii) By (5.9), 1 = θ∗0(y)θ∗(y0). Sine Θ∗(y0) is bounded, there exists m0 > 0 suhthat θ∗0(y) ≤ m0 and θ∗(y0) = 1/θ∗0(y) ≥ 1/m0 for some m0 > 0 and, as previously, theonlusion follows.In loally onvex spaes, if (DCP) holds for C, then(5.10) C ⊂ cl E(C) + K.Indeed, if y ∈ C \ cl E(C) there exists ε > 0 suh that y 6∈ B(E(C), ε). By (DCP),there exist η ∈ E(C) and δ > 0 suh that θ∗(y − η) > δ for eah θ∗ ∈ Θ∗ and hene
y − η ∈ Ki ⊂ K.When Y is an order omplete vetor lattie of e�ient type (see [140, Ch. V, p. 213℄),any point k ∈ Ki is proved to be a quasi-interior point of K, where k ∈ K is said to bea quasi-interior point of K if the order interval [0, k] is a total subset of Y in the sensethat its linear hull is dense in Y (see Shaefer [140, Ch. V. 8, Th. 7.7℄, and Peressini [122,Ch. 4.4℄). Moreover, eah k ∈ Ki is a weak order unit (see [122℄), i.e., for eah y ∈ K thereexists z ∈ K with z �K y and z �K k.Example 5.2.2. Let Y = (R2, ‖ · ‖) and let K = {(y1, y2) : y1 ≥ 0}. Let C = {(y1, y2) :

|y1| + |y2| ≤ 1}. We have K∗ = {(f1, f2) : f1 ≥ 0, f2 = 0} and E(C) = {(−1, 0)}.Consider Θ∗ = {(f1, f2) ∈ K∗ : f1 = 1}. Take ε > 0. For any (y1, y2) ∈ C(ε) we have
y1 ≥ −1+

√
ε/2 and hene, for any θ∗ ∈ Θ∗, we have θ∗(y1 +1, y2) = y1 +1 ≥

√
ε/2 = δand (DCP) holds.Example 5.2.3. Let Y, K, and Θ∗ be as in the previous example. Let C = {(y1, y2) :

max{|y1|, |y2|} ≤ 1} \ {(y1, y2) : y1 = 1,−1 < y2 ≤ 1}. We have E(C) = {(−1,−1)},
(DCP) does not hold for Θ∗ sine for yn = (−1+1/n, 1) ∈ C we have θ∗(yn−(−1,−1)) =

1/n → 0.Example 5.2.4. Let Y = ℓ1 and K = ℓ+1 . We have (ℓ+1 )i = {y = (yi) ∈ ℓ1 : y1 > 0}.Take y0 = (1/i2) ∈ (ℓ+1 )i. Let Θ∗ ⊂ (ℓ+1 )∗ be a base of (ℓ+1 )∗ of the form
Θ∗ = {θ ∈ K∗ : θ∗(y0) = 1}.Let y1 = 2y0 + (0, 1, 0, . . .), y2 = 3y0. Taking C = conv(y0, y1, y2), where conv stands foronvex hull, we have E(C) = {y0} and for any y ∈ C, y = λ0y0 + λ1y1 + λ2y2, λi ≥ 0,

i = 0, 1, 2, λ0 + λ1 + λ2 = 1. For any ε > 0,
C(ε) = {y ∈ C : ‖y − y0‖ > ε} = {y ∈ C : λ1π

2/6 + λ1 + 2λ2π
2/6 > ε}.For any θ∗ = (θi) ∈ Θ∗ and y ∈ C(ε) we have

θ∗(y − y0) = θ∗(λ1y0 + λ1(0, 1, 0, . . .) + 2λ2y0) = λ1 + θ2λ1 + 2λ2 ≥ λ1 + λ2 > 3ε/π2 = δ,whih proves that (DCP) holds for C.Let y0 ∈ Ki and let Θ∗(y0) be the standard base of the dual one K∗. If (DCP) holdsfor the base Θ∗(y0), ondition (C1) an be rewritten as(C2) for eah y ∈ C(W ) there exists ηy ∈ E(C) satisfying
y − ηy − δy0 ∈ Ki.



5.3. Containment rate 57Proposition 5.2.2. Let Y be a loally onvex spae and let K ⊂ Y be a losed onvexone with intK 6= ∅. For any subset C of Y , (CP) is equivalent to (DCP).Proof. Let W be a 0-neighbourhood. By (CP), there exists a 0-neighbourhood O suhthat for eah y ∈ C(W ),
y − ηy + O ⊂ K for some ηy ∈ E(C).Take any y0 ∈ Ki = intK. Sine O an be assumed to be radial, −δy0 ∈ O for some δ > 0and y − ηy − δy0 ∈ K, whih means that (DCP) holds for C.To see the onverse impliation, note that by Theorem 1.1.1, K∗ has a weak∗ ompat,hene bounded base Θ∗. By Proposition 5.2.1, (DCP) holds for Θ∗.Proposition 5.2.3. Let Y be a loally onvex spae and let K be a losed onvex onein Y . Let K∗ have a bounded base Θ∗. If (DCP) holds for C, then intK 6= ∅.Proof. Let W be a 0-neighbourhood. By (DCP), there exists δ > 0 suh that for eah

y ∈ C(W ) there is ηy ∈ E(C) suh that θ∗(y − ηy) > δ for θ∗ ∈ Θ∗. Sine Θ∗ is boundedthere exists a 0-neighbourhood Q suh that for any θ∗ ∈ Θ∗ we have −δ/2 < θ∗(q) < δ/2for q ∈ Q. Consequently, θ∗(y − ηy + q) > δ/2 for any θ∗ ∈ Θ∗, whih proves that
y − ηy + Q ∈ K.

5.3. Containment rateNumerous onepts in funtional analysis an be haraterized by onstants and funtionsof a single real variable. For instane, by using the modulus of onvexity δX(ε) due toClarkson [45℄,
δX(ε) = inf{1 − ‖ 1

2 (x + y)‖ : x, y ∈ BX , ‖x − y‖ ≥ ε}one an haraterize strit onvexity and uniform rotundity of the unit ball BX in thespae X. In the present setion we de�ne the ontainment rate (f. [19, 20℄) whih isa nondereasing funtion of a single variable. The ontainment rate is used to hara-terize the ontainment property. The properties of the ontainment rate are used in thenext hapters to investigate Lipshitz and/or Hölder behaviour of e�ient points underperturbations. Similar approahes have been applied in many other domains (see e.g.[12, 51, 80, 81, 119, 113℄).Let Y = (Y, ‖ · ‖) be a normed spae and let K be a losed onvex pointed onein Y . Reall that for any subset C of Y and any ε > 0, the ball of radius ε around Cis B(C, ε) = {y ∈ Y : d(y, C) < ε}, and C(ε) = C \ B(E(C), ε), and the ontainmentproperty (CP) holds for C if for every ε > 0 there exists δ > 0 suh that(5.11) C(ε) + δBY ⊂ E(C) + K.Reall that φ : R+ → R+ is an admissible funtion, i.e. φ is nondereasing, φ(t) > 0for t > 0 and φ(0) = 0.The following immediate observation is the starting point for our onsiderations inthis setion: if there exists an admissible funtion φ suh that for eah y ∈ C there exists



58 5. Containment property
η ∈ E(C) satisfying(5.12) y − η + φ(d(y, E(C)))BY ⊂ K,then (CP) holds for C. Indeed, if we take any ε > 0 and y ∈ C(ε), then by taking
δ := φ(ε) ≤ φ(d(y, E(C))) we immediately get (5.11).Below we give a onstrution of an admissible funtion φ whih provides a harater-ization of (CP).We start with the de�nition of the ontainment funtion for a losed onvex pointedone K in Y .Definition 5.3.1 ([19℄). The funtion cont : K → R+ de�ned as

cont(k) = sup{r ≥ 0 : k + rBY ⊂ K}is alled the primal one ontainment funtion.The supremum in the above de�nition is attained sine K is losed. The funtion contis positively homogeneous and superlinear and
domcont = {k ∈ K : cont(k) > −∞} = K.Clearly, cont(k) ≤ ‖k‖ for any k ∈ K and cont ≡ 0 whenever intK = ∅. For k ∈ K wehave cont(k) = −∆K(k), where ∆K(y) = d(y,K) − d(y, Y \ K), y ∈ Y . The funtion ∆Kwas introdued in [76, 77℄ to derive optimality onditions in nonsmooth optimization. Itwas also used in [155℄ as a salarizing funtion for vetor optimization problems.Let C be a subset of Y and let y ∈ Y . Reall that the set

Cy = C ∩ (y −K)is the setion of C with respet to K and y (f. Setion 2.2).Definition 5.3.2 ([19, 20℄). The funtion µ : Y → R de�ned as(5.13) µ(y) = sup{cont(y − η) : η ∈ E(C)y}is the ontainment rate of y with respet to C and K.For any y ∈ Y put
‖y‖+ = d(y, Y \ K).For any r ≥ 0,

‖y‖+ ≥ r ⇔ y + rBY ⊂ K.Hene, for k ∈ K we have cont(k) = ‖k‖+ and
µ(y) = sup{‖y − η‖+ : y ∈ E(C)y}.We have

domµ = {y ∈ Y : µ(y) > −∞} = E(C) + K.Clearly, µ(y) = 0 for y ∈ E(C). If intK 6= ∅ and y ∈ E(C) + K we have µ(y) ≥ 0 andmoreover, µ(y) = 0 if and only if y ∈ WE(C) (see Proposition 5.3.6 below).The value µ(y) gives the maximal radius r suh that k+rBY ⊂ K for all k ∈ y−E(C)y.In this sense µ(y) measures the deviation from e�ieny for y.



5.3. Containment rate 59Definition 5.3.3 ([19, 20℄). The funtion δ : R+ → R ∪ {+∞,−∞} de�ned as
δ(ε) = inf{µ(y) : y ∈ C(ε)}is the ontainment rate of C with respet to K.The domain of δ is

dom δ = {ε ∈ R+ : δ(ε) < ∞} = {ε ∈ R+ : C(ε) 6= ∅}.Below we prove that δ is an admissible funtion if and only if (CP) holds for C. Westart with onditions ensuring that the supremum in the de�nition of the funtion µ isattained.Proposition 5.3.1. Let Y = (Y, ‖ · ‖) be a normed spae. Let K be a losed onvexpointed one in Y and let C be a subset of Y . Let y ∈ E(C) + K. If E(C)y is weaklyompat, then there exists ηy ∈ E(C) suh that y − ηy + µ(y)BY ⊂ K.Proof. Let y ∈ E(C) + K. For eah n ≥ 1, we have y = ηn + kn, where ηn ∈ E(C)y and
kn + cont(kn)BY ⊂ K satisfy

cont(kn) ≤ µ(y) and cont(kn) > µ(y) − 1/n.Sine E(C)y is weakly ompat, there exists a weakly onvergent subsequene (ηnm
) withlimit point η0 ∈ E(C)y. Consequently, knm

= y − ηnm
onverges weakly to some k0 ∈ Kand y = η0 + k0.To omplete the proof we show that k0 + µ(y)BY ⊂ K. On the ontrary, if k0 + µ(y)b

6∈ K for some b ∈ BY , then by separation arguments
f(k0 + µ(y)b) < 0 < f(k) for k ∈ K,for some f ∈ K∗. Sine knm

w→ k0 and (cont(knm
) − µ(y))b → 0, we would have

f(knm
+ cont(knm

)b) = f(k0 + µ(y)b) + f(knm
− k0) + f((cont(knm

) − µ(y))b) < 0,whih ontradits the fat that knm
+ cont(knm

)BY ⊂ K.The assertion of Proposition 5.3.1 an also be obtained as a onsequene of the Weier-strass theorem on existene of in�mum over ompat sets. To this end it is enough tonote that ‖y − ·‖+ is a weakly lower semiontinuous funtion.Following [42℄ we say that Rσ(C) is the generalized reession one of a set C ⊂ Y if
Rσ(C) = {v ∈ Y : there exist λn > 0 with λn → 0 and cn ∈ C suh that

λncn tends weakly to v}.A set C ⊂ Y is K-lower bounded if there is a onstant M > 0 suh that
C ⊂ MBY + K.If C ⊂ Y is K-lower bounded, then Rσ(C) ⊂ K (see [42℄).



60 5. Containment propertyProposition 5.3.2. Under any of the onditions:(i) E(C) is weakly ompat,(ii) E(C) is K-lower bounded and weakly losed and K has a weakly ompat base,the setions E(C)y are weakly ompat for y ∈ E(C) + K.Proof. Let y ∈ E(C) + K. For eah n ≥ 1 there is a representation y = ηn + kn with
ηn ∈ E(C), kn + cont(kn)BY ⊂ K satisfying

cont(kn) ≤ µ(y) and cont(kn) > µ(y) − 1/n.We start by proving that under any of the onditions (i) or (ii) the sequenes (ηn) and
(kn) ontain onvergent subsequenes with limit points η0 and k0, respetively, and(5.14) y = η0 + k0.If (i) holds, then (ηn) ontains a weakly onvergent subsequene. We an assume that
(ηn) weakly onverges to some η0 ∈ E(C). Sine K is losed and onvex, the sequene
(kn), kn = y − ηn, onverges weakly to k0 ∈ K and y = η0 + k0.Suppose now that (ii) holds and Θ is a weakly ompat base of K. Then kn = λnθn,where λn ≥ 0 and (θn) ⊂ Θ ontains a weakly onvergent subsequene. We an assumethat (θn) onverges to θ0 ∈ Θ. If λn → ∞, then

1

λn
(ηn − y)

w→ −θ0and −θ0 ∈ Rσ(E(C)) ∩ (−K), whih ontradits the K-lower boundedness of E(C).Hene, (λn) is bounded and (kn) weakly onverges to some k0 = λ0θ0 ∈ K. Consequently,
ηn = y − kn onverges weakly to some η0 ∈ E(C) and we get (5.14).Now we are in a position to prove the main propositions of this setion.Proposition 5.3.3. Let Y be a normed spae and let K be a losed onvex pointed onewith intK 6= ∅. Let C be a nonempty subset of Y . The following are equivalent:(i) (CP ) holds for C,(ii) δ : dom δ → R+ is an admissible funtion.Proof. (i)⇒(ii). Clearly, δ is nondereasing and δ(0) = 0. By Proposition 5.1.3, for any
ε ∈ dom δ there exists γ > 0 suh that for y ∈ C(ε) 6= ∅ one an �nd η ∈ E(C) satisfying
(y − η) + γBY ⊂ K. Consequently, µ(y) ≥ γ and δ(ε) ≥ γ > 0.(ii)⇒(i). Let ε∈dom δ, ε>0. Hene, δ(ε)=γ >0 and µ(y)≥γ for any y∈C(ε), whihmeans there exists η∈E(C) suh that (y−η)+(γ/2)BY ⊂K. Thus, (CP) holds for C.Proposition 5.3.4. Let K be a losed onvex pointed one in a normed spae Y with
intK 6= ∅. Let C be a nonempty subset of Y and assume (CP) holds for C. If all thesetions E(C)y for y ∈ E(C) + K are weakly ompat then for any ε > 0,(i) C(ε) + δ(ε)BY ⊂ E(C) + K,(ii) for all ε > 0 and for eah y ∈ C(ε) there exists η ∈ E(C) suh that y − η +

δ(ε)BY ⊂ K.Proof. (ii) follows diretly from Proposition 5.3.1. (i) follows from (ii).



5.3. Containment rate 61In the example below we alulate µ(y) for y from the losed unit ball.Example 5.3.1. Let Y = R
2, K = R

2
+ and C = clBY . Clearly, (DP) and (CP) hold for

C and
E(C) = {(η1, η2) ∈ C : η2 = −

√
1 − η2

1 , −1 ≤ η1 ≤ 0}.For any representation of (0, 0) in the form (0, 0) = η + kη, where η ∈ E(C), kη ∈ K, wehave η = (η1, η2) ∈ E(C)(0,0) = E(C) and
cont(kη) = min{−η1,

√
1 − η2

1} =

{√
1 − η2

1 for −1 ≤ η1 ≤ −1/
√

2,
−η1 for −1/

√
2 ≤ η1 ≤ 0,and µ((0, 0)) = sup{−1≤η1≤0} cont(kη) = 1/

√
2. For y ∈ C with y2 ≥ 0 we have

E(C)(y1,y2) = {(η1, η2) : η2 = −
√

1 − η2
1 , −1 ≤ η1 ≤ min{0, y1}}and

µ(y) = max
{−1≤η1≤min{0,y1}}

cont(kη) = max
{−1≤η1≤min{0,y1}}

min{y1 − η1, y2 +
√

1 − η1}.For y ∈ C with y2 < 0 we have
E(C)(y1,y2) = {(η1, η2) : η2 = −

√
1 − η2

1 , −
√

1 − y2
2 ≤ η1 ≤ min{0, y1}}and

µ(y) = max
{−

√
1−y2

2
≤η1≤min{0,y1}}

cont(kη)

= max
{−

√
1−y2

2
≤η1≤min{0,y1}}

min{y1 − η1, y2 +
√

1 − η2
1}.We lose this setion with haraterizations of (DP) and weak e�ieny in terms od

δ and µ, respetively.Proposition 5.3.5. Let Y be a normed spae and let K be a losed onvex pointed one.Let C be a nonempty subset of Y with E(C) nonempty and losed. The following state-ments are equivalent:(i) (DP) holds for C,(ii) δ(ε) ≥ 0 for all ε ∈ dom δ.Proof. (ii)⇒(i). Suppose that (DP) does not hold for C. There exists y ∈ C whih annotbe represented in the form y = η + k, where η ∈ E(C) and k ∈ K. Hene, µ(y) = −∞.By losedness of E(C), y ∈ C(ε) for some ε > 0. Consequently, δ(ε) = −∞, whihontradits (ii).(i)⇒(ii). By (DP), for eah y ∈ C we have y = η + k where η ∈ E(C) and k ∈ K.Hene, µ(y) ≥ 0 and (ii) follows.Proposition 5.3.6. Let Y be a normed spae and let K be a losed onvex one in Ywith intK 6= ∅. Let C be a nonempty subset of Y and assume (DP) holds for C. Thefollowing are equivalent:(i) µ(y) = 0,(ii) y ∈ WE(C).



62 5. Containment propertyProof. (i)⇒(ii). By (i), any representation of y in the form y = η + k, where η ∈ E(C)and k ∈ K, satis�es k ∈ ∂K, whih means that C ∩ (y − intK) = ∅, i.e., y ∈ WE(C).(ii)⇒(i). If µ(y) ≥ α > 0, then y = η + k with η ∈ E(C) k + αBY ⊂ K whih impliesthat y 6∈ WE(C).
5.4. Dual ontainment rateLet K be a losed onvex pointed one in a normed spae (Y, ‖·‖) with the dual K∗ ⊂ Y ∗.Let Θ∗ be a base of K∗.Definition 5.4.1 ([20℄). The funtion dcontΘ∗ : K → R+ de�ned as
dcontΘ∗(k) = inf{θ∗(k) : θ∗ ∈ Θ∗}is alled the Θ∗-dual one ontainment funtion.If it is lear from the ontext whih base Θ∗ is used, we omit the index Θ∗ in the no-tation. The terminology �primal one ontainment funtion� and �dual one ontainmentfuntion� is motivated by the fat that in some instanes these funtions yield a pair ofdual linear programming problems.Let C be a subset of Y and y ∈ Y . Reall that E(C)y = E(C) ∩ (y −K).Definition 5.4.2 ([20℄). The funtion ν : Y → R ∪ {±∞} de�ned as

ν(y) = sup{dcontΘ∗(y − η) : η ∈ E(C)y}is the dual ontainment rate of y with respet to C and K.It follows diretly from the de�nition that {y ∈ Y : ν(y) > −∞} = E(C) + K and
ν(y) ≥ 0 for y ∈ E(C) + K.Definition 5.4.3 ([20℄). The funtion d : R+ → R de�ned as

d(ε) = inf{ν(y) : y ∈ C(ε)}is the dual ontainment rate of C with respet to K.Proposition 5.4.1. Let (Y, ‖ · ‖) be a normed spae with a losed onvex pointed one
K and let K∗ ⊂ Y ∗ be its dual one with base Θ∗. Let C be a subset of Y with E(C)yweakly ompat for y ∈ E(C) + K. For any y ∈ E(C) + K there exists ηy ∈ E(C) suhthat

ν(y) = dcontΘ∗(y − ηy) = inf{θ∗(y − ηy) : θ∗ ∈ Θ∗}.Proof. Let y ∈ E(C)+K. Clearly, dcontΘ∗(y−η) ≤ ν(y) for any η ∈ E(C)y and for eah
̺ > 0 there exists η̺ ∈ E(C)y suh that for any θ∗ ∈ Θ∗,

θ∗(y − η̺) ≥ dcontΘ∗(y − η̺) > ν(y) − ̺.The net (η̺) ontains a weakly onvergent subnet; we an assume that (η̺) itself onvergesweakly to ηy ∈ E(C)y. Sine K is weakly losed, the net (k̺), k̺ = y − η̺, tends to some
ky ∈ K and y = ηy + ky. Thus, dcontΘ∗(y − ηy) ≥ ν(y), whih ompletes the proof.



5.4. Dual ontainment rate 63Proposition 5.4.2. Let (Y, ‖ · ‖) be a normed spae and let C be a subset of Y . Let Kbe a losed onvex pointed one in Y and let K∗ be its dual with a base Θ∗. The followingonditions are equivalent:(i) (DCP) holds for C,(ii) d(ε) > 0 for eah ε > 0.Proof. (i)⇒(ii). Take any ε > 0 and y ∈ C(ε). By (DCP ), there exist δ > 0 and
ηy ∈ E(C) suh that dcontΘ∗(y − ηy) ≥ δ. Hene,

ν(y) = sup{dcontΘ∗(y − η) : η ∈ E(C)y} ≥ δ,and d(ε) = inf{ν(y) : y ∈ C(ε)} ≥ δ > 0.(ii)⇒(i). Let d(ε) = α > 0. For eah y ∈ C(ε),
ν(y) = sup{dcontΘ∗(y − η) : η ∈ E(C)y} ≥ α,and onsequently, dcontΘ∗(y − ηy) > α/2 for some ηy ∈ E(C)y, i.e., (DCP) holds.Proposition 5.4.3. Let K be a losed onvex pointed one in a topologial vetor spae

Y with Ki 6= ∅. If Θ∗
1 and Θ∗

2 are any two bases of the form (5.8) with y1, y2 ∈ Ki suhthat y2 ∈ ry1 + K, where r > 0, then there exists γ > 0 with
dcontΘ∗

1
(k) ≥ γ dcontΘ∗

2
(k).Proof. Let

Θ∗
1 = {θ∗1 ∈ K∗ : θ∗1(y1) = 1}, Θ∗

2 = {θ∗2 ∈ K∗ : θ∗2(y2) = 1},where y1, y2 ∈ Ki. For any k ∈ K and θ∗1 ∈ Θ∗
1 , there exists θ

∗
2 ∈ Θ∗

2 suh that θ∗1(k) =

θ∗1(y2)θ
∗
2(k) with θ∗1(y2) > 0. Hene,

θ∗1(k) ≥ θ∗1(y2) inf
θ
∗

2∈Θ∗

2

θ
∗
2(k) ≥ θ∗1(y2) inf

θ∗
2
∈Θ∗

2

θ∗2(k),and(5.15) inf
θ∗
1
∈Θ∗

1

θ∗1(k) ≥ inf
θ∗
1
∈Θ∗

1

θ∗1(y2) inf
θ∗
2
∈Θ∗

2

θ∗2(k),Sine y2 ∈ ry1 + K, by putting γ := infθ∗
1
∈Θ∗

1
θ∗1(y2) > 0 we get the assertion.Example 5.4.1. Let Y = (Rm, ‖ · ‖∞), K = R

m
+ . Aording to De�nition 5.3.1,

(LP ) cont(k) = max rsubjet to
ki − r ≥ 0, i = 1, . . . , m.In view of De�nition 5.4.1,

(DP ) dcont(k) = min c1k1 + · · · + cmkmsubjet to
c1 + · · · + cm = 1

ci ≥ 0, i = 1, . . . , m.By linear programming duality, dcont(k) ≥ cont(k) for k ∈ K.Let Y be a Banah spae and Ki 6= ∅. Consider a standard base of K∗,
Θ∗ = {θ∗ ∈ K∗ : θ∗(y0) = 1}, where y0 ∈ Ki.



64 5. Containment propertyFor any k ∈ K, the problem of �nding(5.16) dcont(k) = inf{θ∗(k) : θ∗(y0) = 1, θ∗ ∈ K∗}an be viewed as an in�nite-dimensional linear programming problem. By applying theduality theory (see e.g. Barbu and Preupanu [15, Ch. 3, par. 3, p. 233℄) the dual takesthe form(5.17) sup{r ∈ R : k − ry0 ∈ K},(ompare also [15, Ch. 3, Th. 3.4, p. 235℄). Thus, (5.17) and (5.16) form a pair of dualproblems and by Proposition 2.1, Ch. 3, p. 197 of [15℄, we have
0 ≤ sup{r ∈ R : k − ry0 ∈ K} ≤ inf{θ∗(k) : θ∗(y0) = 1, θ∗ ∈ K∗} = r.The funtion

q(k) = sup{r > 0 : r−1k ∈ y0 + K}has also been onsidered in other ontext (see Namioka [115℄). It is superlinear and itshypograph
hgraph(q) = {(k, r) : q(k) ≥ r}is a one in Y × R.Below we give an example of an problem with r = 0.Example 5.4.2. Let p > 1, Y = ℓp, K = ℓp

+. As observed before,
(ℓp

+)i = {(si) ∈ ℓp : si > 0 for eah i ≥ 1}.By taking y0 = (1/i2) and k0 = (1/i3) we see that for any r > 0 there exists an index i0suh that 1/i3 − r/i2 < 0 for i > i0 and hene r = 0.
5.5. Containment rate for onvex setsIn this setion we investigate the ontainment rate δ(·) for onvex sets. De�ne

CEQ(ε) = {y ∈ C : d(y, E(C)) = ε}.Lemma 5.5.1. Let K be losed onvex one in Y with intK 6= ∅. Let C be a onvex subsetof Y with weakly ompat setions E(C)y for y ∈ E(C) + K. Then(5.18) δ(ε) = inf{µ(y) : y ∈ CEQ(ε)}.Proof. Clearly δ(ε) ≤ inf{µ(y) : y ∈ CEQ(ε)}. If δ(ε) < inf{µ(y) : y ∈ CEQ(ε)} = e,then µ(y) < e for a ertain y ∈ C, d(y, E(C)) > ε. In view of Proposition 5.3.1, y = ηy+ky,
ky + µ(y)BY ⊂ K.Sine [ηy, y] ⊂ C, one an �nd z ∈ CEQ(ε), z = ληy + (1− λ)y. Hene, z = ηy + (1−
λ)ky = ηy+kz, kz = (1−λ)ky, kz+(1−λ)µ(y)BY ⊂ K and µ(y) ≥ (1−λ)µ(y) = µ(z) ≥ e,ontrary to the hoie of y.Lemma 5.5.2. Let K be losed onvex one in Y with intK 6= ∅. Let C be a onvex subsetof Y with weakly ompat setions E(C)y for y ∈ E(C) + K. Then for any 0 ≤ β ≤ 1,

µ(y(β)) = βµ(y),where y = ηy + ky, ηy ∈ E(C), ky + µ(y)BY ∈ K and y(β) = ηy + β · ky.



5.5. Containment rate for onvex sets 65Proof. Let y ∈ E(C). By Proposition 5.3.1, y = ηy + ky, where ηy ∈ E(C) and ky +

µ(y)BY ⊂ K. Sine βky + βµ(y)BY ⊂ K for any β ≥ 0, we have µ(y(β)) ≥ βµ(y). If
µ(y(β)) > βµ(y), then y(β) = η + k, where k + µ(y(β))BY ⊂ K. Then for 0 ≤ β ≤ 1,

k = y − η = y − y(β) + y(β) − η = (1 − β)ky + k ∈ Kand cont(k) ≥ (1 − β) + µ(y(β)) > µ(y), ontrary to the de�nition of µ(y).Applying Lemmas 5.5.1 and 5.5.2 we prove the onavity of the ontainment rate µand the quasi-onvexity of δ.Proposition 5.5.1. Let K be losed onvex one in Y with intK 6= ∅. Let C be a onvexsubset of Y and let (DP) hold for C. If E(C)y are weakly ompat for y ∈ E(C) + K,the ontainment rate µ is onave on E(C) + K.Proof. Let y1, y2 ∈ E(C) + K and 0 ≤ λ ≤ 1. By Proposition 5.3.1, there exist η1, η2 ∈
E(C) suh that

y1 − η1 + µ(y1)BY ⊂ K and y2 − η2 + µ(y2)BY ⊂ K.Sine K is onvex,
y(λ) − η(λ) + (λµ(y1) + (1 − λ)µ(y2))BY ⊂ K,where y(λ) = λy1+(1−λ)y2, η(λ) = λη1+(1−λ)η2. Sine C is onvex and (DP) holds for

C, E(C) + K is onvex and η(λ) = η + k, where η ∈ E(C) and k ∈ K, and onsequently,
y(λ) − η + (λµ(y1) + (1 − λ)µ(y2))BY ⊂ K,whih proves the onavity of µ.Corollary 5.5.1. Under the assumptions of Proposition 5.5.1 the funtion µ is loallyLipshitz and weakly upper semiontinuous on E(C) + intK.Proof. See Theorem 10 of [66℄.Now we are in a position to prove the quasi-onvexity of δ.Theorem 5.5.1. Let K be a losed onvex pointed one in a normed spae (Y, ‖ · ‖) with

intK 6= ∅. Let C be a onvex subset of Y and let (DP) hold for C. If E(C)y are weaklyompat for y ∈ E(C) + K, then δ is quasionvex on dom δ.Proof. By Lemma 5.5.1, δ(ε) = inf{µ(y) : y ∈ CEQ(ε)}. Let ε1, ε2 ∈ dom δ, ε2 < ε1. Forany α > 0 there is yα ∈ CEQ(ε1) suh that µ(yα) < δ(ε1) + α. In view of Proposition5.3.1, there is ηα ∈ E(C) with yα − ηα + µ(yα) ∈ K.Let 0 ≤ λ ≤ 1. Sine the distane funtion d(·, E(C)) is ontinuous, there exists
0 ≤ λ ≤ 1 suh that d(λyα + (1 − λ)ηα, E(C)) = λε1 + (1 − λ)ε2. By Lemma 5.5.2,
µ(λyα + (1 − λ)ηα) = λµ(yα). Hene,

δ(λε1 + (1 − λ)ε2) = inf{µ(y) : y ∈ CEQ(λε1 + (1 − λ)ε2)}
≤ µ(λyα + (1 − λ)ηα) = λµ(yα) < δ(ε1) + α.Sine α > 0 is arbitrary and δ is nondereasing we get δ(λε1 + (1 − λ)ε2) ≤

max{δ(ε1), δ(ε2)}.



6. UPPER HAUSDORFF SEMICONTINUITY OF EFFICIENT POINTSIn this hapter we derive riteria for upper Hausdor� semiontinuity of the e�ient pointset EK(C) of a given subset C of a spae Y with respet to a losed onvex pointed one
K ⊂ Y when C is subjeted to perturbations.Perturbations u belong to a topologial spae U and are handled by a set-valuedmapping C : U →→ Y taking values in a topologial Hausdor� vetor spae Y, C(u) = C(u),
C(u0) = C. Reall that by E : U →→ Y, we denote the e�ient point set-valued mappingde�ned as

E(u) = E(C(u)).Upper Hausdor� semiontinuity of P enters into stability results of the solution mapping
S. This aspet will be disussed in detail in Chapter 9.In Setion 6.1 we derive su�ient onditions for upper Hausdor� semiontinuity ofe�ient points (Theorems 6.1.1, 6.1.3) for a one K with nonempty interior with the helpof the ontainment property introdued in Setion 5.1. In Setion 6.2, by applying theresults from Setion 6.1 to the mapping C(u) = f(u, A(u)) we derive su�ient ondi-tions for upper Hausdor� ontinuity of the performane mapping P to parametri vetoroptimization problems of the form (Pu).
6.1. Su�ient onditions for upper Hausdor� semiontinuity ofe�ient pointsLet U be a topologial spae (spae of parameters) and let Y be a Hausdor� topologialvetor spae. Let K be a losed onvex pointed one in Y .Let C : U →→ Y be a set-valued mapping, C(u) = C(u), C(u0) = C.Aording to the notation introdued in Setion 5.1, for any 0-neighbourhood W ,

C(W ) = (C \ E(C)) + W.We start with the main result of this setion.Theorem 6.1.1 ([21℄). Let U be a topologial spae and let Y be a Hausdor� topologialvetor spae. Let K be a losed onvex pointed one in Y with intK 6= ∅. Assume that(i) C is upper Hausdor� semiontinuous at u0 ∈ dom C and K-lower semiontinuousat u0, uniformly on E(C),(ii) (CP) holds for C.Then E is upper Hausdor� semiontinuous at u0 ∈ dom C.[66℄



6.1. Su�ient onditions for upper Hausdor� semiontinuity 67Proof. Let W1, W be 0-neighbourhoods suh that W1 + W1 ⊂ W . By Proposition 5.1.3,there exists a 0-neighbourhood O suh that for any y ∈ C(W1) there exists η ∈ E(C)satisfying(6.1) (y − η) + O ⊂ K.Let O1 be a 0-neighbourhood suh that O1+O1 ⊂ O. By (i), there exists a neighbourhood
U0 of u0 suh that(6.2) C(u) ⊂ C + W1 ∩ O1, (η + O1 −K) ∩ C(u) 6= ∅ for u ∈ U0.Take any u ∈ U0. If E(u) = ∅, the onlusion follows. Hene, suppose that E(u) 6= ∅ and
z ∈ E(u). By (6.2) there is y ∈ C suh that z − y ∈ W1 ∩ O1.If y 6∈ E(C) + W1, then y ∈ C(W1) and by (6.1) there exists η ∈ E(C) suh that

y − η + O ⊂ K.Moreover, by (6.2), there exists z ∈ C(u) suh that z − η ∈ O1 − K and so z = z sineotherwise
z − z = (z − y) + (y − η) + (η − z) ∈ W1 ∩ O1 + (y − η) + O1 + K ⊂ (y − η) + O ⊂ K,whih is impossible sine z ∈ E(C(u)).If y ∈ E(C) + W1, then z ∈ E(C) + W , whih �nishes the proof.Below we give an example showing that the uniform K-lower semiontinuity assump-tion is essential in Theorem 6.1.1.Example 6.1.1. Let U = cl{1/n : n = 1, . . .} with natural topology and u0 = 0 and let
C : U →→ R

2 be de�ned as follows:
C(0) = C := {(y1, y2) : y2 = −y1} ∪

∞⋃

k=1

(k,−k + 1),

C(1/n) = C(1/n) := {(y1, y2) : y2 = −y1 + 1/n, −n ≤ y1 ≤ n} ∪
∞⋃

k=1

(k,−k + 1).Now E(C) = {(y1, y2) : y2 = −y1} and
E(C(1/n)) = {(y1, y2) : y2 = −y1 + 1/n, −n ≤ y1 ≤ n} ∪

∞⋃

k=n+1

(k,−k + 1).Theorem 6.1.2. Let U be a topologial spae and let Y be a Hausdor� topologial vetorspae. Let K be a losed onvex pointed one in Y with intK 6= ∅. If C is Hausdor�ontinuous at u0 ∈ dom C and (CP) holds for C, then E is upper Hausdor� semiontinuousat u0 ∈ dom C.By Proposition 5.1.2, we obtain the following orollary.Corollary 6.1.1. Let U be a topologial spae and let Y be a Hausdor� topologial vetorspae. Let K be a losed onvex pointed one in Y with intK 6= ∅. Let C be a ompatsubset of Y and cl E(C) = WE(C). If C is Hausdor� ontinuous at u0 ∈ dom C, then Eis upper Hausdor� semiontinuous at u0 ∈ dom E .



68 6. Upper Hausdor� semiontinuity of e�ient pointsIn the proof of Theorem 6.1.1 we make use of Proposition 5.1.3 whih holds true when
intK 6= ∅. There are numerous examples of ones satisfying this ondition. For instane,the one R

m
+ of nonnegative elements in R

m as well the ones of nonnegative elements inthe spaes below have nonempty interiors.Example 6.1.2. 1. In the spae ℓ∞ of sequenes s = (si) with real terms,
ℓ∞ = {s = (si) : sup

i∈N

|si| < ∞}the one
ℓ∞+ = {s = (si) ∈ ℓ∞ : si ≥ 0}has nonempty interior.2. In the spae L∞(Ω) of essentially bounded funtions f : Ω ⊂ R

n → R with
ess supx∈Ω |f(x)| < ∞ the natural ordering one

L∞(Ω) = {f ∈ L∞(Ω) : f(x) ≥ 0 almost everywhere on Ω}has nonempty interior.A subset F of Y ∗ is equiontinuous ([78, 12.D℄) if for any ε > 0 there exists a 0-neighbourhood W suh that |f(W )| < ε for any f ∈ F. Equivalently, there exists abalaned 0-neighbourhood W suh that f(W ) ≤ 1 for eah f ∈ F. Aording to thede�nition of the polar set A◦ of a given set A, F is equiontinuous if and only if F ⊂ W ◦for a balaned 0-neighbourhood W. By the Banah�Alaoglu theorem, W ◦ is relativelyweak∗ ompat. When Y is a normed linear spae, F ⊂ Y ∗ is equiontinuous if and onlyif it is bounded in the norm topology of Y ∗.Now we formulate a variant of Theorem 6.1.1 with the help of the dual ontainmentproperty (DCP ), whih an be applied to ones K whih are not pointed.Theorem 6.1.3. Let U be a topologial spae and let Y be a Hausdor� loally onvextopologial vetor spae. Let K ⊂ Y be a losed onvex one in Y and let K∗ have anequiontinuous base Θ∗. If(i) C is upper Hausdor� semiontinuous at u0 ∈ dom C and K-lower semiontinuousat u0, uniformly on E(C),(ii) (DCP) holds for C,then the set-valued mapping E is upper Hausdor� semiontinuous at u0 ∈ dom E .Proof. Follows from Theorem 6.1.1 and Proposition 5.2.2.The following example shows that Theorem 6.1.3 annot be applied to some ones in�nite-dimensional spaes.Example 6.1.3. Let K be a onvex losed one in R
n with empty interior. Then K∗ hasno base sine the set KT = {y ∈ K∗ : y · x = 0 for eah x ∈ K} is a nontrivial linearsubspae ontained in K∗.The assumption of equiontinuity of the base Θ∗ is restritive. The one of nonnegativeelements in Lp(Ω), 1 < p < ∞, does not have an equiontinuous base sine it does nothave a bounded base (see [46℄).



6.2. Upper Hausdor� semiontinuity of the performane mapping 696.2. Upper Hausdor� semiontinuity of the performanemapping for parametri vetor optimization problemsIn this setion we apply Theorems 6.1.1 and 6.1.2 to prove the upper Hausdor� semi-ontinuity of the performane set-valued mapping P for parametri vetor optimizationproblems
(Pu)

minK f(x)subjet to x ∈ A(u).We start with two tehnial propositions.Proposition 6.2.1. Let U be a topologial spae and let X and Y be Hausdor� topologialvetor spaes. If a set-valued mapping A : U →→ Y is upper Hausdor� semiontinuous at
u0 ∈ domA, and f : X → Y is uniformly ontinuous on A(u0), then Af : U →→ Y,

Af (u) = f(A(u)), is upper Hausdor� semiontinuous at u0 ∈ domAf .Proof. Let W be a 0-neighbourhood in Y. There exists a 0-neighbourhood Q in X suhthat f(x + Q) ⊂ f(x) + W for x ∈ A(u0). Thus, f(A(u0) + Q) ⊂ f(A(u0) + W. By theupper Hausdor� semiontinuity of A, there exists a neighbourhood U0 of u0 suh that
A(u) ⊂ A(u0) + Q for u ∈ U0. Consequently, f(A(u)) ⊂ f(A(u0)) + W for u ∈ U0.Proposition 6.2.2. Let U be a topologial spae and let X and Y be Hausdor� topologialvetor spaes. If f : X → Y is a (uniformly) upper semiontinuous funtion, and a set-valued mapping A : U →→ Y is lower (Hausdor�) semiontinuous at u0, then Af is lower(Hausdor�) semiontinuous at u0 ∈ domAf .Proof. Let W be a 0-neighbourhood in Y. There exists a 0-neighbourhood Q in X suhthat f(x + Q) ⊂ f(x) + W for x ∈ A(u0). In view of the lower semiontinuity of A, thereexists a neighbourhood U0 of u0 suh that (x + Q) ∩ A(u) 6= ∅ for u ∈ U0. By putting
xu ∈ (x + Q) ∩A(u) for u ∈ U0, we get f(xu) ∈ C(u) ∩ (f(x) + W ) for u ∈ U0.By Theorem 6.1.2, we get the following stability result for problems (Pu) with (Pu0

)being (P ). Let A : U →→ Y be a set-valued mapping, A(u) = A(u), A(u0) = A.Theorem 6.2.1. Let U be a topologial spae and let Y be a Hausdor� topologial vetorspae. Let K be a losed onvex pointed one in Y with intK 6= ∅. Let f : X → Y be auniformly ontinuous funtion on A and A be Hausdor� ontinuous at u0 ∈ domA. If
(CP) holds for f(A), then P is upper Hausdor� semiontinuous at u0 ∈ domP.Su�ient onditions for upper Hausdor� semiontinuity of the set-valued mapping
A : U →→ X,

A(u) = {x ∈ X : G(x) ∩ (u − Ω) 6= ∅},where G : X →→ Y and Ω ⊂ Y is a losed onvex and pointed one in U , were investigatedby many authors. In partiular, when G is a single-valued mapping,
A(u) = {x ∈ X : G(x) �Ω u}.Continuity properties of this mapping depend heavily on the properties of the one Ω. Inthe ase where int Ω 6= ∅, C-lower semiontinuity was investigated by Ferro [59, 60℄. Forones with possibly empty interiors, ontinuity of A was investigated by Muselli [114℄.



70 6. Upper Hausdor� semiontinuity of e�ient points6.2.1. Multiobjetive optimization problems. In this setion we onsider multiob-jetive optimization problems
(MOP )

minK f(x)subjet to x ∈ A,where f = (f1, . . . , fm) : R
n → R

m, A ⊂ R
n and K ⊂ R

m is a losed onvex pointedone.Theorem 6.2.2. Assume that fi, i = 1, . . . , m, are linear funtions and
A = {x ∈ R

n : 〈bi, x〉 ≤ ci, i ∈ I}.If E(f, A) 6= ∅ and E(f, A) = WE(f, A), then (CP) holds for f(A).Proof. It is enough to observe that f(A) is a polyhedral set and apply Theorem 5.1.4and Corollary 3 of [72℄.Theorem 6.2.3. Suppose that fi, i = 1, . . . , m, are linear, A ⊂ R
n is onvex, and

E(f, A) 6= ∅. If E(f, A) is ompat, then (CP) holds for f(A).Proof. Note that f(A) is onvex and apply Corollary 5.1.2.Consider parametri multiobjetive problems
(MOPu)

minK f(x)subjet to x ∈ A(u),where f : R
n → R

m is ontinuous. Let U be a topologial spae and A : U →→ R
n be aset-valued mapping, A(u) = A(u), A(u0) = A.We apply Theorem 6.1.1 to the above parametri problem. We start with the followingstability results.Theorem 6.2.4. Let f = (f1, . . . , fm) : R

n → R
m be a linear mapping and let A : U →→

R
n be a set-valued mapping given by

A(u) = {x ∈ R
n : gj(u, x) ≤ 0, j ∈ J},where, for eah j ∈ J, the funtion gj(u0, ·) : R

n → R is onvex. If
• Af : U →→ R

m, Af (u) = f(u, A(u)), is Hausdor� ontinuous at u0 ∈ domA,

• E(f(A)) is nonempty and ompat, E(f(A)) = WE(f(A)),then E is upper Hausdor� semiontinuous at u0 ∈ dom E .Proof. Sine f is linear with respet to x and gj(u0, ·), j ∈ J, are onvex, the set Af (u0) =

f(A) is onvex. By Theorems 5.1.2 and 6.2.3, (CP) holds for f(A). By Theorem 6.1.1,the onlusion follows.To lose this setion let us note that set-valued mappings A : U →→ R
n given by(6.3) A(u) = {x ∈ R

n : gj(u, x) ≤ 0, j ∈ J},where, for eah j ∈ J, gj : U × R
n → R is a linear funtion with respet to x, gj(u, x) =

〈bj(u), x〉 − cj(u), j ∈ J, bj : U → R
n, cj : U → R, were investigated e.g. in [14℄.



6.2. Upper Hausdor� semiontinuity of the performane mapping 71Theorem 6.2.5. Let f = (f1, . . . , fm) : U × R
n → R

m be a linear funtion of x ∈ R
nand let A : U →→ R

n be a feasible set mapping given by
A(u) = {x ∈ R

n : gj(u, x) ≤ 0, j ∈ J},where, for eah j ∈ J, gj : U × R
n → R is a linear funtion with respet to x, gj(u, x) =

〈bj(u), x〉 − cj(u), j ∈ J, bj : U → R
n, cj : U → R. If

• A : U →→ R
n is upper and lower Hausdor� semiontinuous at u0 ∈ domA,

• E(f(A)) is nonempty, and E(f(A)) = WE(f(A)),then E is upper Hausdor� semiontinuous at u0 ∈ dom E .Proof. Follows from Theorem 6.1.2 and Propositions 6.2.1, 6.2.2.



7. UPPER HÖLDER CONTINUITY OF EFFICIENT POINTSWITH RESPECT TO PERTURBATIONS OF A SETIn this hapter we derive riteria for upper Hölder ontinuity and almness of the e�ientpoint sets E(C(u)). These properties appear in many ontexts of optimization theory andsensitivity analysis (see e.g. [100, 101, 56, 64, 91℄). Criteria for almness of some set-valuedmappings are given in [74, 75℄. Upper Hölder ontinuity of order q and Hölder almnessof the set-valued mapping E at u0 provide an estimate of the distane of any e�ientpoint of the perturbed problem (Pu) to the e�ient point set of (Pu0
) via the distane ofthe perturbations, ‖u − u0‖q. Hene, the upper Hölder property is of interest wheneverit is impossible or too di�ult to deal with the original problem and one wants to knowthe magnitude of the error made by aepting a solution of a perturbed problem as asolution of the original problem. For instane, numerial representation of problems leadsto perturbations due to �nite preision. As a partiular ase we obtain onditions forthe upper Lipshitz ontinuity of e�ient points. The upper Lipshitz property (upperHölder property with q = 1) has already appeared in investigation of stability of variousproblems (see e.g. [128, 130, 131℄).In Setions 4.1 and 4.2 we investigate upper Hölder ontinuity and Hölder almness of

E(C(u)) at a given point u0. The main requirement we impose is that for small argumentsthe ontainment rate δ is a su�iently fast growing funtion.In Setion 4.3 we apply the results obtained in Setions 4.1 and 4.2 to investigate Lip-shitzness and Hölder properties of the performane set-valued mapping P for parametrivetor optimization problems.
7.1. Upper Hölder ontinuity of e�ient pointsLet U = (U, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spaes and let C : U →→ Y be a set-valuedmapping, C(u) = C(u), C(u0) = C.In this setion we prove su�ient onditions for upper Hölder ontinuity of the e�ientpoint set-valued mapping E : U →→ Y ,

E(u) = E(C(u)).At the beginning of this hapter we indiated some situations where upper Hölder on-tinuity has a natural signi�ane. One more example omes from parametri vetor op-timization. Theorem 6.4 of [16℄ and Theorem 6.2 of [17℄ reveal the importane of upper[72℄



7.1. Upper Hölder ontinuity of e�ient points 73type ontinuities of the performane set-valued mapping P in ensuring the ontinuity ofsolutions to parametri vetor optimization problems.We start with su�ient onditions for upper Hölder ontinuity of the e�ient pointset-valued mapping E .Theorem 7.1.1. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spaes. Let K be a losedonvex pointed one in Y with intK 6= ∅. If(i) C : U →→ Y is Hölder ontinuous of order p ≥ 1 at u0 ∈ dom C with onstants
Lc > 0 and 0 < tc < 1,(ii) the setions E(C)y are weakly ompat for y ∈ E(C) + K,(iii) the ontainment rate δ of the set C satis�es the following ondition: for any
ε ∈ dom δ,

δ(ε) ≥ αεq for some α > 0 and q ≥ 1,then E is upper Hölder ontinuous of order p/q at u0 ∈ dom E . Preisely,
E(C(u)) ⊂ E(C) + (Lc + (2Lc/α)1/q)‖u − u0‖p/qBYfor all u ∈ u0 + tcBU .Proof. Take any y ∈ E(C(u)), u ∈ u0 + tcBU . By (i), there exists z ∈ C suh that

‖y − z‖ ≤ Lc‖u − u0‖p.If z ∈ E(C), the onlusion follows. If
d(z, E(C)) > ε0 := (2Lc/α)1/q‖u − u0‖p/q,then by (ii) and Proposition 5.3.4, there is η ∈ E(C) suh that

z − η + δ(ε0)BY ⊂ Kand by (iii), δ(ε0) ≥ 2Lc‖u − u0‖p. By (i), there is y ∈ C(u) suh that
‖y − η‖ ≤ Lc‖u − u0‖p.and so y = y sine otherwise

y − y = (y − z) + (z − η) + (η − y) ∈ (z − η) + 2Lc‖u − u0‖pBY ⊂ K,whih ontradits the fat that y ∈ E(C(u)). If
d(z, E(C)) ≤ (2Lc/α)1/q‖u − u0‖p/q,then for u ∈ u0 + tcBU we get

d(y, E(C)) ≤ ‖y − z‖ + d(z, E(C)) ≤ (Lc + (2Lc/α)1/q)‖u − u0‖p/q,whih ompletes the proof.By applying Proposition 4.0.3 we obtain the following onditions for Hölder ontinuityof E .Theorem 7.1.2. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spaes. Let K be a losedonvex pointed one in Y with intK 6= ∅. If



74 7. Upper Hölder ontinuity of e�ient points with respet to perturbations of a set(i) C : U →→ Y is Hölder ontinuous of order p ≥ 1 around u0 ∈ dom C with onstants
Lc > 0 and 0 < t < 1,(ii) for all u ∈ u0 + tBU the setions E(C(u))z are weakly ompat for z ∈ E(C(u))

+ K,(iii) all the ontainment rates δ of the sets C(u) with u ∈ u0 + tBU satisfy theondition: for any ε ∈ dom δ,
δ(ε) ≥ αεq for some α > 0 and q ≥ 1,then E is Hölder ontinuous of order p/q around u0 ∈ dom E . Preisely,

E(C(u)) ⊂ E(C(u′)) + (Lc + (2Lc/α)1/q)‖u − u′‖p/qBYfor all u, u′ ∈ u0 + (t/4)BU .Proof. It is enough to note that under the above assumptions, for every u′ ∈ u0+(t/2)BU ,
E(C(u)) ⊂ E(C(u′)) + (Lc + (2Lc/α)1/q)‖u − u′‖p/qBYfor u ∈ u′ + (t/2)BU . This means that E is uniformly upper Hölder ontinuous at u′ ∈

u0 + (t/2)BU and by Proposition 4.0.3, the onlusion follows.Corollary 7.1.1. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spaes. Let K be alosed onvex pointed one in Y with intK 6= ∅. Let C be Hölder ontinuous of order
p ≥ 1 at u0 ∈ dom C with onstants Lc > 0 and tc > 0. Suppose that one of the followingonditions hold:(i) E(C) is weakly ompat,(ii) E(C) is K-lower bounded and weakly losed and K has a weakly ompat base.If the ontainment rate δ of C satis�es the ondition: for any ε > 0,

δ(ε) ≥ αεq for some q ≥ 1 and α > 0,then the e�ient point set-valued mapping E is upper Hölder ontinuous of order p/q at
u0 ∈ dom E with onstant Lc + (2Lc/α)1/q and order p/q.Proof. This follows from Theorem 7.1.1 and Proposition 5.3.2.Corollary 7.1.2. Let Y = (Y, ‖ · ‖), U = (U, ‖ · ‖) be normed spaes. Let K be a losedonvex pointed one in a normed spae Y with intK 6= ∅. Let C be Lipshitz ontinuousat u0 ∈ dom C with onstants Lc > 0 and tc > 0. Suppose that one of the followingonditions holds:(i) E(C) is weakly ompat,(ii) E(C) is K-lower bounded and weakly losed and K has a weakly ompat base.If the ontainment rate δ of C satis�es the ondition: for any ε > 0,

δ(ε) ≥ αε for some α > 0,the e�ient point set-valued mapping E is upper Lipshitz ontinuous at u0 ∈ dom E withonstant Lc + 2Lc/α.Proof. This follows from Theorem 7.1.1 and Proposition 5.3.2.



7.2. Hölder almness of e�ient points 757.2. Hölder almness of e�ient pointsThe results of the previous setion are of global harater in the sense that they refer tothe behaviour of the whole set E(C) as a funtion of the parameter u.In the present setion we formulate su�ient onditions for upper pseudo-Hölderontinuity (Hölder almness) of the set-valued mapping E .Let y0 ∈ E(C) and tr > 0.Definition 7.2.1. The funtion δtr
: R+ → R+,

δtr
(ε) = inf{µ(y) : y ∈ C ∩ (y0 + trBY ) \ E(C) + εBY }is alled the loal ontainment rate of C at y0 ∈ E(C) with respet to K.Note that the only di�erene between the loal ontainment rate δtr

and the globalontainment rate δ is that now the in�mum is taken over all y ∈ C ∩ (y0 + trBY ). Hene,for any ε ∈ dom δtr
,

δtr
(ε) ≥ δ(ε).Theorem 7.2.1. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spaes. Let K be a losedonvex pointed one in Y with intK 6= ∅ and y0 ∈ E(C). If(i) C is upper pseudo-Hölder ontinuous of order p ≥ 1 with 0-neighbourhood V at

(u0, y0) ∈ graph C and onstants Lc > 0, tc > 0 and C is lower Hölder ontinuousof order p ≥ 1 at u0 ∈ dom C with onstants Lc > 0, tc,(ii) there exists a onstant tr > 0 suh that the setions E(C)y for y ∈ C∩(y0+trBY )are weakly ompat,(iii) for any ε > 0 the loal ontainment rate δtr
satis�es the ondition

δtr
(ε) ≥ αεq for some α > 0, q ≥ 1,then the set-valued mapping E is upper pseudo-Hölder (Hölder alm) of order p/q at

(u0, y0) ∈ graph E . Preisely, there exists tv > 0 suh that
E(C(u)) ∩ (y0 + tvBY ) ⊂ E(C) + (Lc + (2Lc/α)1/q)‖u − u0‖p/qBYfor all u ∈ u0 + tcBU .Proof. The proof follows the lines of the proof of Theorem 7.1.1. Let tv > 0 be anynumber satisfying (Lctc + tv)BY ⊂ V ⊂ trBY . Take any y ∈ E(C(u)) ∩ (y0 + tvBY ),

u ∈ u0 + tcBU . By (i), there is z ∈ C suh that ‖y − z‖ ≤ Lc‖u − u0‖p. Moreover,
z − y0 = (z − y) + (y − y0) ∈ (Lctc + tv)BY ⊂ trBY . If z ∈ E(C), the onlusion follows.If

d(z, E(C)) > (2Lc/α)1/q‖u − u0‖p/q,there is η ∈ E(C) suh that z − η + µ(z)BY ⊂ K. By (iii),
µ(z) ≥ δtr

((2Lc/α)1/q‖u − u0‖p/q) ≥ 2Lc‖u − u0‖p.By (i), there is y ∈ C(u) suh that ‖η − y‖ ≤ Lc‖u − u0‖p and so y = y sine otherwise
y − y = (y − z) + (z − η) + (η − y) ∈ K,



76 7. Upper Hölder ontinuity of e�ient points with respet to perturbations of the setwhih is impossible sine y ∈ E(C(u)). If
d(z, E(C)) ≤ (2Lc/α)1/q‖u − u0‖p/q,then

d(y, E(C)) ≤ ‖y − z‖ + d(z, E(C)) ≤ (Lc + (2Lc/α)1/q)‖u − u0‖p/q,whih ompletes the proof.
7.3. Upper Hölder ontinuity of e�ient points to vetoroptimization problemsIn the present setion we apply Theorems 7.1.1 and 7.2.1 to parametri vetor optimiza-tion problems (Pu),

(Pu)
minK f(u, x)subjet to x ∈ A(u).For u = u0 we obtain problem (P ),

(P )
minK f(x)subjet to x ∈ A.We formulate su�ient onditions for upper Hölder and upper pseudo-Hölder ontinuityof the performane set-valued mapping P : U →→ Y ,

P(u) = E(f(u, ·), A(u))at u0 ∈ domP.Based on Proposition 4.1.1 and Theorem 7.1.1 we obtain the following result.Theorem 7.3.1. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spaes. Let K be a losedonvex pointed one in Y with intK 6= ∅. Let f : X → Y sa�sfy the Lipshitz ondition(4.1) on X with onstant Lf > 0. If(i) A : U →→ X is Hölder ontinuous of order p ≥ 1 at u0 ∈ domA with onstants
La > 0 and 0 < ta < 1,(ii) for y ∈ f(A) the setions E(f, A)y are weakly ompat,(iii) for ε ∈ dom δ the ontainment rate δ of the set f(A) satis�es the ondition

δ(ε) ≥ αεq for ertain α > 0 and q ≥ 1,then P is upper Hölder ontinuous of order p/q at u0 ∈ domP. Preisely,
E(f, A(u)) ⊂ E(f, A) + (LfLa + (2LfLa/α)1/q)‖u − u0‖p/qBYfor all u ∈ u0 + taBU .Below we de�ne φ-strong domination property φ-(SDP) whih allows us to provesu�ient onditions for the upper Hölder ontinuity of P without the assumption thatall setions E(f, A)y, y ∈ f(A) are weakly ompat.Let C ⊂ Y be a subset of a normed spae Y .



7.3. Upper Hölder ontinuity of e�ient points to vetor optimization problems 77Definition 7.3.1. We say that the φ-strong domination property φ-(SDP) holds for Cif for eah y ∈ C there exists η ∈ E(C) suh that
y �K η + φ(‖y − η‖)BY , i.e., y − η + φ(‖y − η‖)BY ⊂ K,where φ : R+ → R+ is an admissible funtion. In partiular, we say that the strongdomination property of order q > 0 holds for C if φ-(SCP) holds for C with φ(·) = α(·)q,where α > 0.Aordingly, we say that φ-strong domination property φ-(SDP) holds for (P ) if the

φ-strong domination property φ-(SDP) holds for f(A), i.e. for eah x ∈ A there exists
x ∈ S(f, A) suh that
f(x) �K f(x) + φ(‖f(x) − f(x)‖)BY , i.e., f(x) − f(x) + φ(‖f(x) − f(x)‖)BY ⊂ K,where φ : R+ → R+ is an admissible funtion. In partiular, we say that the strongdomination property of order q > 0 holds for (P ) if φ-(SCP) holds for (P ) with φ(·) =

α(·)q, where α > 0.In other words,
‖f(x) − f(x)‖+ ≥ α‖f(x) − f(x)‖q,where ‖ · ‖+ = d(·,Kc), and Dc denote the omplement of D. If f(A) is uniformly rotundwith an admissible funtion φ (see Setion 2.3) and the setions f(A)y, y ∈ f(A), areompat, then φ-(SDP ) holds for (P ).Proposition 7.3.1. Let X = (X, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spaes. Let K bea losed onvex pointed one in Y with intK 6= ∅. If φ-(SDP) holds for (P ), then (CP)holds for f(A) and δ(ε) ≥ φ(ε) for any ε ∈ dom δ.Proof. Take 0 < ε ∈ dom δ and x ∈ A suh that d(f(x), E(f, A)) ≥ ε. Sine φ isnondereasing, by φ-(SDP), there exists x ∈ S(f, A) suh that

f(x) − f(x) + φ(ε)BY ⊂ f(x) − f(x) + φ(‖f(x) − f(x)‖)BY ⊂ K,whih, by Proposition 5.1.3, amounts to saying that (CP) holds for f(A). Moreover,
‖f(x) − f(x)‖+ ≥ φ(‖f(x) − f(x)‖).Consequently, µ(f(x)) ≥ φ(‖f(x) − f(x)‖) ≥ φ(ε) and δ(ε) ≥ φ(ε).Theorem 7.3.2. Let X = (X, ‖ · ‖), Y = (Y, ‖ · ‖), U = (U, ‖ · ‖) be normed spaes. Let

K be a losed onvex pointed one in Y with intK 6= ∅. Let f : X → Y be a Lipshitzmapping with onstant Lf > 0. If(i) A is Hölder ontinuous at u0 ∈ domA of order p ≥ 1 with onstants La > 0 and
ta > 0,(ii) (SDP) of order q ≥ 1 with onstant α > 0 holds for (P ),then the performane set-valued mapping P is upper Hölder ontinuous at u0 ∈ domP oforder p/q with onstants LfLa + (2LfLa/α)p/q and ta > 0.Proof. Take any y = f(x) ∈ E(f, A(u)), u ∈ u0 + taBU . By (i), there exists z ∈ A suhthat

‖x − z‖ ≤ La‖u − u0‖p,



78 7. Upper Hölder ontinuity of e�ient points with respet to perturbations of the setand by the Lipshitzness of f , ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p. If z ∈ S(f, A), theonlusion follows. Otherwise, by (ii), there exists z ∈ S(f, A) suh that
f(z) − f(z) + α‖f(z) − f(z)‖qBY ⊂ K.If α‖f(z) − f(z)‖q > 2LfLa‖u − u0‖p, then by (i), there exists x ∈ A(u) suh that

‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p and so f(x) = f(x) sine otherwise
f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x))

∈ (f(z) − f(z)) + 2La‖u − u0‖pBY ⊂ K,ontraditing the fat that y ∈ E(f, A(u)). If
α‖f(z) − f(z)‖q ≤ 2LfLc‖u − u0‖p,then for u ∈ u0 + taBU we get

d(y, E(f, A)) ≤ ‖y − f(z)‖ ≤ ‖y − f(z)‖ + ‖f(z) − f(z)‖
≤ (LfLa + (2LfLa/α)1/q)‖u − u0‖p/qwhih ompletes the proof.



8. SHARP AND FIRM SOLUTIONSTO VECTOR OPTIMIZATION PROBLEMSIn this hapter we introdue φ-sharp and weak φ-sharp solutions (loal and global) toproblem (P ). When applied to salar optimization problems, the onept of weak φ-sharp solutions redues to the onept of weak sharp minima due to Polyak [126℄. Insalar optimization weak sharp minima were also investigated via growth onditions, e.g.by Burke and Deng [43℄, Burke and Ferris [44℄, Henrion, Jourani and Outrata [74℄, Ng andZheng [116℄, Studniarski and Ward [147℄, Ward [150, 151℄. Weak sharp minima play animportant role in deriving onditions for Hölder almness of solutions in salar parametrioptimization (see e.g. [39, 100, 101℄). In the next hapter we will investigate stability for
φ-sharp and weak φ-sharp solutions.

8.1. Sharp solutionsLet X = (X, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spaes with open unit balls BX and
BY , respetively, and let K ⊂ Y be a losed onvex pointed one. Consider a vetoroptimization problem

(P )
minK f(x)subjet to x ∈ A.Let φ, ν : R+ → R+ be admissible funtions. Reall that y0 = f(x0) ∈ f(A) is a ν-stritlye�ient point to (P ) if

f(x) − f(x0) 6∈ ν(‖f(x) − f(x0)‖)BY −K for x ∈ A, f(x) 6= f(x0).For any η ∈ f(A) put
Sη := {x ∈ A : f(x) = η}.Definition 8.1.1. We say that x0 ∈ A, f(x0) = η, is a φ-sharp solution, x0 ∈ Shφ(f, A),if(8.1) f(x) − f(x0) 6∈ φ(‖x − x0‖)BY −K for x ∈ A \ Sη.Moreover, x0 ∈ A is sharp of order q > 0, x0 ∈ Shq(f, A), if x0 is φ-sharp with φ(·) =

τ‖ · ‖q, where τ > 0.For any y ∈ Y put
‖y‖− = d(y,−K).In Proposition 2.4.1 we have shown that y0 ∈ StE(f(A)) i� there exists an admissiblefuntion ν : R+ → R+ suh that [79℄



80 8. Sharp and �rm solutions to vetor optimization problems
ν(‖y − y0‖) ≤ ‖y − y0‖− for all y ∈ f(A),and ν an be hosen in the form

ν(ε) = inf{‖z − y0‖− : z ∈ f(A) \ (y0 + εBY )}.Equivalently, y0 ∈ StEν(f(A)) i�(8.2) (y − y0) ∩ (ν(‖y − y0‖)BY −K) = ∅ for y ∈ f(A) \ {y0}.As de�ned in Setion 2.4, y0 ∈ f(A) is a loally ν-stritly e�ient point, y0 ∈
LStEν(f(A)), if there exists a neighbourhood V of zero in Y suh that

(y − y0) ∩ (ν(‖y − y0‖)BY −K) = ∅ for y ∈ f(A) ∩ (y0 + V ) \ {y0}.In partiular, y0∈f(A) is a loally stritly e�ient point of order q > 0, y0∈LStEq(f(A)),if there exists a onstant β > 0 suh that y0 ∈ LStEφ(f(A)) with φ(·) = β(·)q, i.e.,
β‖y − y0‖q ≤ ‖y − y0‖− for y ∈ f(A) ∩ (y0 + V ).Or, in other words, y0 ∈ f(A) is a loal sharp minimum of order q > 0 (f. [147℄) of thefuntion ‖ · −y0‖− over the set f(A). We put StEν(f, A) := StEν(f(A)).Let us note that if f(A) is uniformly rotund (see Setion 2.3) with an admissiblefuntion ν, then E(f, A) = StEν(f, A). Indeed, suppose there exists x0 ∈ E(f, A),

f(x0) = η, suh that x0 6∈ StEν(f, A). There exists x ∈ A \ Sη satisfying f(x) − f(x0) ∈
ν(‖f(x) − f(x0)‖)BY − K. Hene, there exist 0 6= b ∈ BY and 0 6= k ∈ K suh that
1
2 (f(x) + f(x0)) = f(x0) − ν(‖f(x) − f(x0)‖)b − k. In view of the uniform rotundityof f(A), this entails that there exists x̃ ∈ A \ Sη suh that f(x̃) ∈ f(x0) − K, whihontradits the fat that x0 ∈ E(f, A).Equivalently, the relation (8.1) an be rephrased as(8.3) ‖f(x) − f(x0)‖− ≥ φ(‖x − x0‖) for x ∈ A \ Sη.Eah sharp solution is a solution. Indeed, if y0 = f(x0), x0 ∈ A, is a sharp solution, thenby (8.1),

f(x) − f(x0) 6∈ −K for x ∈ A, f(x) 6= f(x0).The relationship between sharp solutions and stritly e�ient points is lari�ed in thenext proposition.Proposition 8.1.1. Let K be a losed onvex pointed one in a normed spae Y. Let
f : X → Y be a Lipshitz mapping on A with onstant Lf > 0. If x0 ∈ Shφ(f, A), then
f(x0) ∈ StEν(f, A) with ν(·) = φ( 1

Lf
·).Proof. Let x0 ∈ Shφ(f, A) and f(x0) = η. Hene,

f(x) − f(x0) 6∈ φ(‖x − x0‖)BY −K for x ∈ A \ Sη.Sine ‖f(x) − f(x0)‖ ≤ Lf‖x − x0‖ and φ is nondereasing, φ( 1
Lf

‖f(x) − f(x0)‖) ≤
φ(‖x − x0‖) and

f(x) − f(x0) 6∈ φ

(
1

Lf
‖f(x) − f(x0)‖

)
BY −K for x ∈ A \ Sη,whih proves that η = f(x0) is ν-stritly e�ient with ν(·) = φ( 1

Lf
·).



8.1. Sharp solutions 81In view of Proposition 8.1.1,
Shφ(f, A) ⊂ A ∩ f−1(StEν(f, A)) with ν(·) = φ

(
1

Lf
·
)

.In partiular, it follows from Proposition 8.1.1 that if f is Lipshitz on A with onstant
Lf > 0 and x0 ∈ Shq(f, A) with onstant τ , then f(x0) ∈ StEq(f, A) with onstant

β = τ/Lq
f .Definition 8.1.2. We say that x0 ∈ A with f(x0) = η is a loal φ-sharp solution to (P ),

x0 ∈ LShφ(f, A), if there exists r > 0 suh that
f(x) − f(x0) 6∈ φ(‖x − x0‖)BY −K for x ∈ A ∩ (x0 + rBX), x 6∈ Sη.Any loal φ-sharp solution x0 ∈ LShφ(f, A), where φ(t) = τtq for t ∈ R+ with τ > 0 and

q > 0 is alled a loal sharp solution of order q (f. Jiménez [87, 88℄ for Sη = {x0}).Clearly, eah global sharp solution is a loal sharp solution. We prove the onversefor K-onvex funtions.Reall that f : X → Y is K-onvex on X if for any λ ∈ [0, 1] and x, x′ ∈ X,
f(λx + (1 − λ)x′) ∈ λf(x) + (1 − λ)f(x′) −K for any λ ∈ [0, 1], x, x′ ∈ X.Note that if A is onvex and f is K-onvex on A, then the sets Sη with η ∈ E(f, A) areonvex. Indeed, for any x, x′ ∈ Sη,

f(λx + (1 − λ)x′) ∈ η −Kand so f(λx + (1 − λ)x′) = η sine η ∈ E(f, A).Proposition 8.1.2. Let A be onvex and let f be K-onvex. Let x0 ∈ Sη. If x0 ∈
LSh1(f, A) with onstant τ > 0, then x0 ∈ Sh1(f, A) with onstant τ .Proof. Suppose on the ontrary that x0 is not a global sharp solution of order 1 withonstant τ . There exists x ∈ A \ Sη suh that

f(x) − f(x0) ∈ τ‖x − x0‖BY −K.Let λ ∈ [0, 1]. Set x(λ) := λx + (1 − λ)x0. For any r > 0 there is λ ∈ [0, 1] suh that
x(λ) ∈ B(x0, r) and by the onvexity assumptions
f(x(λ)) − f(x0) ∈ λ(f(x) − f(x0)) −K ⊂ τλ‖x − x0‖BY −K = τ‖x(λ) − x0‖BY −K,whih proves that x0 is not a loal sharp solution of order 1 with onstant τ .Below we give an example of problem (P ) with sharp solutions.Example 8.1.1. Let X = R

2, Y = R
2 and K = R

2
+. Let f : R

2 → R
2 be given as

f(x1, x2) = (x2
1 + x2

2, exp(x1) + x2)and A = {(x1, x2) ∈ R
2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}. Then (0, 1) ∈ E(f, A) and

(0, 0) ∈ S(f, A) and (0, 0) ∈ Sh2(f, A) with onstant τ = 0.5, i.e.
‖f(x) − f(0, 0)‖− ≥ 0.5‖x − (0, 0)‖2.
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Fig. 8.1 The set f(A) from Example 8.1.1

Fig. 8.2 The level sets of the funtion ‖f(x) − f(0, 0)‖
−
in Example 8.1.1We de�ne diretional di�erentiability of f at x0 in the diretion u via the ontingentderivative

f ′(x0; u) = lim
(t,v)→(0+,u)

f(x0 + tv) − f(x0)

tand we say that f is diretionally di�erentiable at x0 if f is diretionally di�erentiableat x0 in any diretion v ∈ X.
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Fig. 8.3 The graph of the funtion ‖f(x) − f(0, 0)‖
−
− 0.5‖x − (0, 0)‖2 in Example 8.1.1

The following proposition provides su�ient onditions for sharp solutions in termsof ontingent diretional derivatives.Proposition 8.1.3. Let X be a �nite-dimensional spae. Let f be diretionally di�eren-tiable at x0 ∈ A, f(x0) = η. If, for any tangent diretion 0 6= v ∈ TA\Sη
(x0),

f ′(x0; v) 6∈ τ cl BY −K,then x0 is a loal sharp solution of order 1 to (P ) with onstant τ > 0.Conversely, if x0 ∈ A is a loal sharp solution of order 1 with onstant τ > 0, thenfor any tangent diretion v ∈ TA\Sη
(x0), v 6= 0,

f ′(x0; v) 6∈ τBY −K.Proof. Suppose that x0, f(x0) = η, is not a loal sharp solution with onstant τ > 0. Foreah n ≥ 1 there exists xn ∈ A ∩ B(x0, 1/n), xn 6∈ Sη, xn → x0, suh that
f(xn) − f(x0) ∈ τ‖xn − x0‖BY −K.Putting vn := (xn − x0)/‖xn − x0‖ we get vn → v ∈ TA\Sη

(x0), v 6= 0, and
f(xn) − f(x0)

‖xn − x0‖
∈ τBY −K, i.e. f ′(x0; v) ∈ τ cl BY −K.To prove the seond assertion suppose that there exists v ∈ TA\Sη

(x0), v 6= 0, suh that
f(x0; v) ∈ τBY − K. Clearly, we may suppose that ‖v‖ = 1. There exists a sequene
(xn) ⊂ A \ Sα, xn → x0 suh that by putting vn := (xn − x0)/‖xn − x0‖ and tn :=

‖xn − x0‖ we get vn → v ∈ TA\S̃α
(x0). Moreover, f(x0 + tnvn)− f(x0) ∈ τtnBY −K forall n su�iently large, whih ontradits the sharp e�ieny of x0.



84 8. Sharp and �rm solutions to vetor optimization problemsCorollary 8.1.1. Let X be a �nite-dimensional spae and let f be diretionally di�er-entiable at x0 ∈ A with f(x0) = η. Then x0 is a loal sharp solution of order 1 to (P ) ifand only if for any v ∈ TA\Sη
, v 6= 0,

f ′(x0; v) 6∈ −K.Proof. The proof of the �if� part is the same as the proof of the �if� part of Proposi-tion 8.1.3 with τ = 1/n.To omplete the proof, assume that there exists v ∈ TA\S̃α
, v 6= 0, suh that

f ′(x0; v) = k0 ∈ −K.The remaining part of the proof follows the lines of the seond part of the proof ofTheorem 4.1 of [88℄.Now we disuss the relationships between loal sharp solutions and loal Henig propersolutions.Reall that η ∈ E(f, A) is a loal Henig proper e�ient point for (P ) if there exist alosed onvex one Ω ⊂ Y , int Ω 6= ∅, K \ {0} ⊂ int Ω and ̺ > 0 suh that
(f(x) − η) ∩ (−Ω) = {0} for x ∈ A ∩ B(x0, ̺).Moreover, x0 ∈ S(f, A), f(x0) = η, is a loal Henig proper solution to (P ) if η is a loalHenig proper e�ient point for (P ).Proposition 8.1.4. Let K be a losed onvex one with a ompat base Θ.(i) η ∈ E(f, A) is a loal Henig proper e�ient point for (P ) if and only if η is aloal stritly e�ient point of order 1.(ii) Let f be loally Lipshitz around x0 ∈ A. If x0 is a loal sharp solution of order

1 to (P ), then x0 is a loal Henig proper solution.Proof. (i) Suppose that η is not a loal stritly e�ient point of order 1 to (P ). For eah
n ≥ 1 there exists xn ∈ A \ Sη, xn → x0 suh that

f(xn) − f(x0) ∈
1

n
‖f(xn) − f(x0)‖BY −K,i.e., there exist λn > 0 and θn ∈ Θ suh that(8.4) f(xn) − f(x0) =

1

n
‖f(xn) − f(x0)‖bn − λnθn for some bn ∈ BY .Hene,

f(xn) − f(x0)

‖f(xn) − f(x0)‖
=

1

n
bn − λn

‖f(xn) − f(x0)‖
θn.Sine Θ is bounded, ‖θn‖ ≤ M for some M > 0 and

1 ≤ 1

n
+

λn

‖f(xn) − f(x0)‖
Mand onsequently, for all n su�iently large,

λn

‖f(xn) − f(x0)‖
≥ 1

2M
.



8.2. Weak sharp solutions 85This proves ‖f(xn) − f(x0)‖/λn ≤ 2M and εn := ‖f(xn) − f(x0)‖/(nλn) → 0. Finally,
f(xn) − f(x0) = −λn(εn(−bn) + θn)whih proves that η is not a loal Henig proper e�ient point.Suppose now that η is not a loal Henig proper e�ient point. For eah n ≥ 1 thereexists xn ∈ A, f(xn) 6= f(x0), xn → x0, suh that
f(xn) − f(x0) ∈ − cone

(
1

n
BY + Θ

)
,i.e., there exist λn > 0 and θn ∈ Θ suh that(8.5) f(xn) − f(x0) =

λn

n
bn − λnθn, where bn ∈ BY .Hene,

f(xn) − f(x0)

λn
=

1

n
bn − θn,and sine Θ is ompat, we an assume that θn → θ0 ∈ Θ, θ0 6= 0 and

vn :=
f(xn) − f(x0)

λn
→ −θ0.This proves that there exists M > 0 suh that ‖f(xn) − f(x0)‖/λn ≥ M and onsequently

λn

‖f(xn) − f(x0)‖
≤ 1

M
.Hene, εn := λn

n‖f(xn)−f(x0)‖
→ 0 and by (8.5),

f(xn) − f(x0) = εn‖f(xn) − f(x0)‖bn − kn, where kn ∈ K.This proves that η is not a loal stritly e�ient point.(ii) If x0 ∈ A, f(x0) = η, is a loal sharp solution of order 1 to (P ), then by Proposition8.1.1, η is a loal stritly e�ient point of order 1, and by part (i), η is a loal Henigproper solution to (P ).
8.2. Weak sharp solutionsIn the present setion we disuss weak sharp solutions to (P ) and growth onditionsfor vetor-valued funtions. Let us note that one an easily generalize the de�nitionsgiven below to φ-weak sharp solutions and φ-growth onditions, where φ is an admissiblefuntion. In view of further appliations we limit our attention to funtions φ of the form

φ(·) = τ (·)q, where τ > 0 and q > 0 are given onstants.Reall that Sη = {x ∈ A : f(x) = η}.Definition 8.2.1. We say that x0 ∈ A with f(x0) = η is a (global) weak sharp solutionof order q > 0 to (P ), x0 ∈ Whq(f, A), if there exists τ > 0 suh that(8.6) f(x) − f(x0) 6∈ τ (d(x, Sη))qBY −K for x ∈ A \ Sη.Relation (8.6) an be rewritten as(8.7) ‖f(x) − f(x0)‖− ≥ τ (d(x, Sη))q for x ∈ A \ Sη.



86 8. Sharp and �rm solutions to vetor optimization problemsEah weak sharp solution to (P ) is a solution to (P ). If x0 ∈ Shq(f, A), then x0 ∈
Whq(f, A). If x0 ∈ Whq(f, A), then Sη = {x ∈ A : f(x) = f(x0) = η} ⊂ Whq(f, A).Moreover, if x0 ∈ Whq(f, A), then(8.8) f(x) − f(x0) 6∈ τ (d(x, S(f, A))qBY −K for x ∈ A \ S(f, A).In the ase where f0 : X → R is a real-valued funtion, with the notation m0 =

inf{f0(x) : x ∈ A0}, x0 ∈ S(f0, A0) = {x ∈ A0 : f0(x) = m0}, relation (8.6) takes theform
f0(x) ≥ m0 + τ (d(x, S(f0, A0)))

q for x ∈ A0,whih means that S(f0, A0) is the set (global) weak sharp minima of order q of f0 over
A0 as de�ned e.g. in [43, 116, 147℄.Definition 8.2.2. We say that the global growth ondition of order q > 0 holds forproblem (P ) on S ⊂ S(f, A) if there exists τ > 0 suh that for any x ∈ S and x ∈
A \ S(f, A) we have(8.9) (f(x) − f(x)) ∩ (τ (d(x, S(f, A)))qBY −K) = ∅.Note �rst that if the global growth ondition of order q holds for S ⊂ S(f, A), thenfor any x ∈ S,

Sη = {x ∈ A : f(x) = f(x) = η} ⊂ S.Moreover, the global growth ondition holds for (P ) on S(f, A) i� for any x ∈ S(f, A),(8.10) f(x) − f(x) 6∈ τ (d(x, S(f, A))qBY −K for x ∈ A \ S(f, A).The following proposition establishes the relationship between global weak sharp so-lutions and the global growth ondition.Proposition 8.2.1. Let X and Y be normed spaes and let K be a losed onvex pointedone in Y . If there exists a subset S ⊂ S(f, A) suh that all x ∈ S are global weak sharpsolutions to (P ) of order q with onstant τ > 0, then the global growth ondition of order
q holds for (P ) on S with onstant τ .Proof. This follows immediately from the observation that for any x ∈ S,

Sη = {x ∈ A : f(x) = f(x) = η} ⊂ Sand hene
f(x) − f(x) 6∈ τ (d(x, S(f, A)))qBY −K for x ∈ A \ S,whih proves the assertion.Loal versions of the above notions an be obtained in several ways. The de�nitionsgiven below are shaped so as to be versatile for appliations presented in the next setions.Definition 8.2.3. We say that x0 ∈ A, f(x0) = η, is a loal weak sharp solution of order

q > 0 to (P ), x0 ∈ LWhq(f, A), if there exist a 0-neighbourhood V in X and onstant
τ > 0 suh that for x ∈ A ∩ (x0 + V ), x 6∈ Sη,

(f(x) − f(x0)) ∩ (τ (d(x, Sη))qBY −K) = ∅.



8.2. Weak sharp solutions 87Clearly, eah loal sharp solution of order q to (P ) is a loal weak sharp solution oforder q to (P ) and eah loal weak sharp solution of order q to (P ) is a loal solutionto (P ). Or, equivalently, x0 ∈ A is a loal weak sharp solution to (P ) i� x0 is a loalweak sharp minimum ([43, 116, 147℄) of the funtion ‖f(·) − f(x0)‖− over A.Definition 8.2.4. The (loal) growth ondition of order q > 0 holds for (P ) on S ⊂
S(f, A) if there exist a 0-neighbourhood V in X and τ > 0 suh that for any x ∈ S and
x ∈ A ∩ (x + V ), x 6∈ S, we have

(f(x) − f(x)) ∩ (τ (d(x, S(f, A)))qBY −K) = ∅.Moreover, we say that the loal growth ondition of order q holds for (P ) around
x0 ∈ S(f, A) if there exists a 0-neighbourhood V in X and a onstant τ > 0 suh thatfor any x ∈ S = S(f, A) ∩ (x0 + V ) and any x ∈ A ∩ (x + V ) we have

τ (d(x, S(f, A)))q ≤ ‖f(x) − f(x)‖−.Or equivalently, for x ∈ A ∩ (x + V ), x 6∈ S,
f(x) − f(x) 6∈ τ (d(x, S(f, A)))qBY −K.This means that eah x ∈ S(f, A) ∩ (x0 + V ) is a loal weak sharp minimum of order q(f. [43, 116, 147℄) of the funtion ‖f(·) − f(x)‖− over A with the same onstant τ > 0.Consider now the salar ase with f0 : X → R, K+ = R+, and m0 = f0(x0) =

inf{f0(x) : x ∈ A0}. Then, by de�nition, the growth ondition of order q > 0 holds for f0on a subset S ⊂ S(f0, A0), f0(S) = m0, if there is a neighbourhood V of zero in X anda onstant τ > 0 suh that(8.11) f0(x) ≥ m0 + τd(x, S(f0, A0))
q for x ∈ A ∩ (S + V )whih means that eah x ∈ S is a loal weak sharp minimum of order q of f0 over A0.Reall ([39, Ch. 3.1, Def. 3.1℄) that the growth ondition of order q > 0 holds for a real-valued funtion f0 on S ⊂ S(f0, A0) if there exist a onstant τ > 0 and a neighbourhood

V of zero in X suh that(8.12) f0(x) ≥ m0 + αd(x, S)q for x ∈ A ∩ (S + V ).Thus, if S = S(f, A) onditions (8.11) and (8.12) oinide.The question of relationships between well-posedness and weak sharp solutions willbe addressed in the next hapter.Proposition 8.2.2. Let f : X → Y be a Lipshitz mapping on X with onstant Lf > 0.If x0 ∈ A is a weak sharp solution of order q with onstant τ > 0, then f(x0) is a stritlye�ient point of order q with onstant β = τ/Lq
f .Proof. By de�nition, if x0 ∈ S(f, A), f(x0) = η, is a weak sharp solution of order q withonstant τ , then (f(x) − f(x0) ∩ τ (d(x, Sη))qBY −K) = ∅ for any x ∈ A \ Sη. Sine f isLipshitz on X, ‖f(x) − f(x0)‖ ≤ Lf‖x − x0‖. Consequently, ‖f(x) − η‖ ≤ Lfd(x, Sη),and

f(x) − η 6∈ τ

Lq
‖f(x) − η‖BY −K for x ∈ A, f(x) 6= η,whih proves that η ∈ StEq(f, A) with onstant τ/Lq.



88 8. Sharp and �rm solutions to vetor optimization problemsIn the theorem below we prove lower Hölder ontinuity of the performane set-valuedmapping P at a given u0 ∈ domP for a family of parametri problems of the form
(Pu)

minK f(x)subjet to x ∈ A(u).Let A : U →→ X be a set-valued mapping de�ned on a normed spae U , A(u) = A(u),
A(u0) = A.Theorem 8.2.1. Let Y = (Y, ‖·‖) be a normed spae and let K be a losed onvex pointedone in Y. If(i) all x ∈ S(f, A) are weak sharp solutions of order q ≥ 1 with onstant τ > 0,(ii) there exists 0 < t < 1 suh that (DP) holds for all f(A(u)), u ∈ u0 + tBU ,(iii) A is Hölder ontinuous of order p ≥ 1 with onstants La > 0 and t at u0 ∈ domAand f is Lipshitz on X with onstant Lf > 0,then P is lower Hölder ontinuous of order p/q at u0 ∈ domP, i.e.

E(f, A) ⊂ E(f, A(u)) + (LfLa + (2Lq
fLa/τ )1/q)‖u − u0‖p/qBYfor u ∈ u0 + tBU .Proof. Note �rst that under our assumptions the set-valued mapping Af is lower andupper Hölder ontinuous of order p at u0 ∈ domA. Now, it is enough to observe that byProposition 8.2.2, if all the solutions S(f, A) are weak sharp of order q ≥ 1, with onstant

τ > 0, then all η ∈ E(f, A) are stritly e�ient of order q with onstant τ . The onlusionfollows from Theorem 4.1.1.Note that we an speify the above result for parametri vetor optimization problemsin the same way as in Theorem 4.1.3.Theorem 8.2.2. Let X and Y be normed spaes and let K be a losed onvex pointedone in Y . Assume that(i) there exist τ > 0 and q ≥ 1 suh that for any x ∈ S(f, A),
f(x) − f(x) 6∈ τ (d(x, Sη))qBY −K for x ∈ A \ Sη,(ii) f is Lipshitz on X with onstant Lf > 0, A is Hölder ontinuous of order p ≥ 1at u0 ∈ domA with onstants La > 0 and 0 < t < 1,(iii) (DP) holds for all f(A(u)) and u ∈ B(u0, t).Then P is lower Hölder ontinuous of order p/q at u0 ∈ domP and

E(f, A) ⊂ E(f, A(u)) + Lf (La + (La/τ )1/q)‖u − u0‖p/qBYfor u ∈ B(u0, t).In Theorem 7.3.2 we derived onditions for the upper Hölder ontinuity of P withthe help of the (SDP) property. In deriving the stability onditions for di�erent type ofontinuities we an relax the (SDP) (or (CP)) property by imposing stronger assumptionson solutions (sharpness, weak sharpness).



8.3. Firm solutions 89Below we prove the upper Hölder ontinuity of P by assuming that all the solutionsto all (Pu) in some neighbourhood of u0 are weak sharp with the same onstant. Notethat in the result below we do not assume that intK 6= ∅.Theorem 8.2.3. Let X = (X, ‖ · ‖), Y = (Y, ‖ · ‖), U = (U, ‖ · ‖) be normed spaes. Let
K be a losed onvex pointed one in Y with intK 6= ∅. Let f : X → Y be a Lipshitzmapping with onstant Lf > 0. If(i) A is Hölder ontinuous at u0 ∈ domA of order p ≥ 1 with onstants La > 0 and

t > 0,(ii) (DP) holds for (P ),(iii) all z ∈ S(f, A(u)) for u ∈ B(u0, t) are weak sharp of order q ≥ 1 with the sameonstant τ , i.e.
f(z) − f(z) 6∈ τ (d(z, Sf(z)(u)))qBY −K for z ∈ A(u), z 6∈ Sf(z)(u),where Sf(z)(u) = {z ∈ S(f, A(u)) : f(z) = f(z)},then the performane set-valued mapping P is upper Hölder ontinuous at u0 ∈ domP oforder p/q with onstants Lf (La + (2LaLf/τ)1/q) and t > 0.Proof. Take any y = f(z) ∈ E(f, A(u)), u ∈ u0 + taBU . By (i), there exists x ∈ A suhthat

‖z − x‖ ≤ La‖u − u0‖pand by the Lipshitz property ‖f(z) − f(x)‖ ≤ LfLa‖u − u0‖p. If x ∈ S(f, A), theonlusion follows. Otherwise, by (ii), there exists x ∈ S(f, A), f(x) 6= f(x), suh that
f(x) ∈ f(x) − K. By (i), there exists z ∈ A(u) suh that ‖x − z‖ ≤ La‖u − u0‖p and
‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p. If f(z) = f(z), the onlusion follows. Otherwise,

f(z) − f(z) ∈ 2LfLa‖u − u0‖p −Kand sine by Proposition 8.2.2, f(z) is a stritly e�ient point of order q for (Pu) withonstant τ/Lq
f , we obtain

f(z) − f(z) 6∈ τ

Lq
f

‖f(z) − f(z)‖qBY −K.Hene,
‖f(z) − f(z)‖ ≤ Lf (2LaLf/τ)1/q‖u − u0‖p/qand onsequently

f(z) − f(x) = (f(z) − f(z)) + (f(z) − f(x)) ∈ Lf (La + (2LaLf/τ)1/q)‖u − u0‖p/q.

8.3. Firm solutionsIn a series of publiations Attouh andWets [6℄�[8℄ developed an approah to investigatingquantitative stability of variational systems as de�ned by Rokafellar and Wets [133℄. In[6℄ Lipshitz and Hölder ontinuities are investigated for φ-loal minimizers to parametrisalar minimization problems. Given a funtion f0 : X → R an element x0 ∈ X is alled



90 8. Sharp and �rm solutions to vetor optimization problemsa φ-loal minimizer of f0 if f0(x) ≥ f0(x0) + φ(‖x − x0‖) for all x in some ball around
x0 and φ : R+ → R+ is an admissible funtion, i.e. φ is nondereasing, φ(0) = 0 and
φ(t) > 0 for t > 0.In this setion we generalize the above idea to vetor-valued funtions by de�ning
φ-�rm solutions to vetor optimization problems. We exploit this notion to investigateHölder behaviour of the performane set-valued mapping P.Let f : X → Y be a mapping and A be a subset of X. Consider a vetor optimizationproblem

(P )
minK f(x)subjet to x ∈ A.In De�nition 7.3.1 we de�ned φ-strong ontainment property. Now we de�ne its analogfor problem (P ). Let φ : R+ → R+ be an admissible funtion.Definition 8.3.1. We say that the e�ient point set E(f, A) to (P ) is φ-dominated if

φ-(SDP) holds for f(A), i.e., if for eah x ∈ A there exists x ∈ S(f, A) suh that
f(x) �K f(x) + φ(‖f(x) − f(x)‖)BY , i.e., f(x) − f(x) + φ(‖f(x) − f(x)‖)BY ⊂ K.Moreover, E(f, A) is dominated of order q > 0 if E(f, A) is φ-dominated with φ(·) = α(·)qwith some α > 0.Definition 8.3.2. The solution set S(f, A) to (P ) is alled φ-�rm or φ-dominated if foreah x ∈ A there exists x ∈ S(f, A) suh that

f(x) �K f(x) + φ(‖x − x‖)BY , i.e., f(x) − f(x) + φ(‖x − x‖)BY ⊂ K.In partiular, S(f, A) is �rm of order q if S(f, A) is φ-�rm with φ(·) = ̺(·)q with some
̺ > 0, i.e., for eah x ∈ A there exists x ∈ S(f, A) suh that

f(x) − f(x) + ̺‖x − x‖qBY ⊂ K.Proposition 8.3.1. Let X = (X, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spaes. Let Kbe a losed onvex pointed one in Y with intK 6= ∅. Let f : X → Y be a Lipshitzmapping with onstant Lf > 0. If S(f, A) is φ-�rm, then E(f, A) is µ-dominated with
µ(·) = φ( 1

Lf
·).Proof. By assumption, for eah x ∈ A there exists x ∈ S(f, A) suh that

f(x) − f(x) + φ(‖x − x‖)BY ⊂ K.Sine ‖f(x)−f(x)‖ ≤ Lf‖x−x‖ and φ is nondereasing, φ( 1
Lf

‖f(x)−f(x)‖) ≤ φ(‖x−x‖)and
f(x) − f(x) + φ

(
1

Lf
‖f(x) − f(x)‖

)
BY ⊂ f(x) − f(x) + φ(‖x − x‖)BY ⊂ K,whih proves the assertion.In partiular, if f is Lipshitz on A with onstant Lf > 0 and the solution set S(f, A)is �rm of order q with onstant ̺ > 0, then E(f, A) is dominated of order q with onstant

̺/Lq
f .



8.3. Firm solutions 91Let C be a subset of Y. Reall that the domination property (DP) holds for C if
C ⊂ E(C) +K, and the domination property (DP) holds for (P ) if (DP) holds for f(A),i.e., for eah x ∈ A there is x ∈ S(f, A) suh that f(x) − f(x) ⊂ K.Let intK 6= ∅. We say that the (global) strong domination property (SDP) of order
q > 0 holds for C if there exists ̺ > 0 suh that for eah y ∈ C there exists η ∈ E(C)suh that(8.13) y − η − ̺‖y − η‖qBY ⊂ K.We say that the (loal) strong domination property (LSDP ) of order q > 0 holds for Caround y0 ∈ C if there exist a neighbourhood W of zero in Y and ̺ > 0 suh that foreah y ∈ C ∩ (y0 + W ) there exists η ∈ E(C) ∩ (y0 + W ) suh that (8.13) holds.To ast the notions of φ-�rm (or �rm of order q) solutions (see De�nitions 8.3.2)into the framework of variants of the domination property we say that the (global) �rmdomination property (FDP) of order q > 0 holds for (P ) if the solution set S(f, A) is �rmof order q, i.e., there exists a onstant ̺ > 0 suh that for eah x ∈ A \ S(f, A) thereexists x ∈ S(f, A) with(8.14) f(x) − f(x) − ̺‖x − x‖qBY ⊂ K.Equivalently, (FDP) of order q holds for (P ) i� there exists ̺ > 0 suh that for eah
x ∈ A \ S(f, A) there exists x ∈ S(f, A) suh that

̺‖x − x‖q ≤ ‖f(x) − f(x)‖+,where ‖ ·‖+ = d(·,Kc) and Dc denotes the omplement of a subset D. If f is Lipshitz on
X with onstant Lf > 0 and (FDP ) of order q with onstant ̺ > 0 holds for (P ), then
(SDP ) of order q with onstant ̺/Lf holds for (P ) (f. De�nition 7.3.1 and (8.13)).Definition 8.3.3 ([19℄). Let intK 6= ∅. We say that the (loal) �rm domination property
(LFDP ) of order q > 0 holds for (P ) around x0 ∈ A if there exist a 0-neighbourhood Vin X and ̺ > 0 suh that for eah x ∈ A ∩ (x0 + V ) there exists x ∈ S(f, A) ∩ (x0 + V )with

f(x) − f(x) + ̺‖x − x‖qBY ⊂ K.Equivalently, (LFDP ) of order q holds for (P ) around x0 ∈ A i� there exist a neigh-bourhood V of zero in X and ̺ > 0 suh that for eah x ∈ A ∩ (x0 + V ), there is
x ∈ S(f, A) ∩ (x0 + V ) with(8.15) ̺‖x − x‖q ≤ ‖f(x) − f(x)‖+.If f0 : X → R, K+ = R+, and m0 = f0(x0) = inf{f0(x) : x ∈ A0}, then, by de�nition,
(LFDP ) of order q holds around x0 ∈ A0 if there are a 0-neighbourhood V in X and
̺ > 0 suh that for any x ∈ A0 ∩ (x0 + V ), there is x ∈ S(f0, A0) ∩ (x0 + V ) satisfying(8.16) f0(x) ≥ m0 + ̺‖x − x‖q ≥ m0 + ̺d(x, S(f0, A0))

q,whih means that x0 is a loal weak sharp minimum of order q of f0 over A0 (f. [43,116℄). Note that (8.16) oinides with (8.11) for S = {x0}, whih means that for salar-valued funtions the growth ondition of order q around x0 oinides with the loal �rmdomination property of order q around x0.



92 8. Sharp and �rm solutions to vetor optimization problemsIt is worth notiing that, in general, if (LFDP ) holds around x0 ∈ A with a neigh-bourhood V, then it may not hold around x0 with a smaller neighbourhood V1 ⊂ V.Example 8.3.1. Let Y = R
2, K = R

2
+, f = id and A ⊂ R

2 is the union of three segmentsof the form
A = [(−10, 1/2), (−1, 1)] ∪ [(−1, 1), (0, 0)] ∪ [(0, 0), (20, 1)].We have (0, 0) ∈ S(id, A). (LFDP ) holds around (0, 0) with V = 11BY , but not with

V = 5BY , sine (−1, 1) ∈ 5BY and there is no s ∈ S(id, A)∩ 5BY suh that (8.15) holds.Example 8.3.2. Let Y = ℓ∞, f = id, and let K = ℓ∞+ . Consider
A = {y ∈ ℓ∞ : 0 ≤ f(y) ≤ 1},where f is the ontinuous linear funtional given by f(y) =

∑∞
n=1 yn/2n. We have

E(id, A) = {y ∈ A : f(y) = 0} and the strong domination property of order one holds for
A. It has been shown in [20℄ that StE(A) = ∅.



9. STABILITY OF SOLUTIONSIn this hapter we investigate Hausdor�, Hölder and pseudo-Hölder ontinuities of solu-tions to parametri vetor optimization problems. To this end we propose several de�ni-tions of well-posedness for vetor optimization problems. These de�nitions are based onproperties of ε-solutions to vetor optimization problems (f. [50, 52, 99, 104℄).The notion of well-posedness and its various generalizations appear to be very fruitfulin salar optimization, espeially in stability analysis. Well-posedness plays an importantrule in establishing onvergene of algorithms for solving salar optimization problems.In vetor optimization there is no ommonly aepted de�nition of well-posed problem.Some attempts in this diretion have been already made by Miglierina and Molho [110℄and the present author [21�23℄.In Setion 9.1, on the basis of ontinuity properties of ε-solution mappings we de-�ne well-posed vetor optimization problems. We establish relationships between well-posedness, sharp and weak sharp solutions. In Setion 9.2 we give su�ient onditionsfor the solution set-valued mapping S to be upper Hausdor� semiontinuous (Theorem9.2.1). In Setion 9.3 we prove lower Lipshitz ontinuity (Theorems 9.3.1, 9.3.3) of S. InSetion 9.4 we formulate su�ient onditions for upper Lipshitz ontinuity of S (Theo-rems 9.4.1�9.4.3). In Setion 9.5 lower Hölder and lower pseudo-Hölder ontinuities of Sare investigated. In Setion 9.6 upper Hölder and upper pseudo-Hölder ontinuities of Sare investigated (Theorem 9.C.1) as well as Hölder almness (Theorem 9.6.2).Let Y be a Hausdor� topologial vetor spae ordered by a partial ordering relation
�K generated by a losed onvex pointed one K (see Setion 1.2). Let X and U betopologial spaes. Let f : X → Y and A ⊂ X. We onsider vetor optimization problems

(P )
minK f(x)subjet to x ∈ Aand the family (Pu) of parametri vetor optimization problems parametrized by a pa-rameter u ∈ U ,

(Pu)
minK f(x)subjet to x ∈ A(u)with A(u0) = A. It is worth notiing that the results of the present hapter an be easilygeneralized to parametri problems (Pu) with parametrized mapping f .In relation to Propositions 6.2.1 and 6.2.2 we have the following tehnial result.Theorem 9.0.1. Let X, U be topologial spaes and let Y be a Hausdor� topologialvetor spae. Let f : X → Y be a K-upper ontinuous (respetively, K-lower ontinuous)[93℄



94 9. Stability of solutionsmapping and let A : U →→ X be lower semiontinuous at u0 ∈ domA. Then the set-valued mapping (Af : U) →→ (Y ), Af (u) = f(A(u)) for u ∈ U , is sup-lower ontinuous(respetively, inf-lower ontinuous) at u0 ∈ domA.Proof. Let y0 ∈ Af (u0). Choose any open 0-neighbourhoood Q in Y . There exists an
x0 ∈ A(u0) suh that f(x0) = y0 and, by the upper ontinuity of f (respetively, lowerontinuity of f), there exists an open neighbourhood W of x0 suh that f(W ) ⊂ y0+Q−K(respetively, f(W ) ⊂ y0 + Q + K). Sine A is lower semiontinuous at u0, there existsa neighbourhood U of u0 suh that W ∩ A(u) 6= ∅ for u ∈ U. Now, by taking any
x ∈ A(u), x ∈ W, u ∈ U , we obtain f(x) ∈ FA(u), f(x) ∈ y0 + Q − K (respetively,
f(x) ∈ y0+Q+K) and hene (y0+Q−K)∩Af (u) 6= ∅ (respetively, (y0+Q+K)∩FA(u) 6=
∅) for u ∈ U .

9.1. Well-posed vetor optimization problemsLet X and Y be Hausdor� topologial vetor spaes and let K be a losed onvex pointedone in Y with intK 6= ∅. Basing ourselves on the ontinuity properties of ε-solutions toa vetor optimization problem
(P )

minK f(x)subjet to x ∈ Awe introdue several onepts of well-posedness for (P ). To this end we exploit ε-solutionsto (P ) as de�ned e.g. in [99℄ and [104℄.Definition 9.1.1. Let ε ∈ K. A point x ∈ A is an ε-Pareto solution to (P ) if there is no
x ∈ A suh that f(x) − ε − f(x) ∈ K \ {0}.We denote by Sε(f, A) the set of all ε-solutions to (P ) and by Eε(f, A) the set of all
ε-points for (P ) (i.e. the image of Sε(f, A) under f). Thus, Sε(f, A) = A∩f−1(Eε(f, A)).Let K0 = intK ∪ {0} and η ∈ E(f, A). Let Πη : K0

→→ X be the set-valued mappingde�ned as
Πη(ε) := {x ∈ A : η + ε − f(x) ∈ K}.The set-valued mapping Πη is alled the η-ε-solution mapping. We have

Πη(ε) = A ∩ f−1(η + ε −K).Moreover, Πη(0) = {x ∈ S(f, A) : f(x) = η} = Sη and ⋃
η∈E(f,A) Πη(0) = S(f, A). Thesets Πη(ε) were used in [4℄ to investigate some stability properties of sequenes of vetoroptimization problems.Let Π : K0

→→ X be the set-valued mapping de�ned as
Π(ε) =

⋃

η∈E(f,A)

Πη(ε) = {x ∈ A : f(x) ∈ E(f, A) + ε −K}.It is alled the ε-solution mapping. We have
Π(ε) = A ∩ f−1(E(f, A) + ε −K).Moreover, Π(ε) ⊂ Sε(f, A) and Π(0) = S(f, A).



9.1. Well-posed vetor optimization problems 95We start with the following de�nition of well-posedness of (P ) in normed spaes X and Y .Definition 9.1.2. Problem (P ) is Hausdor� well-posed if(i) E(f, A) 6= ∅,(ii) the ε-solution mapping Π is upper Hausdor� semiontinuous at 0 ∈ dom Π, i.e.for any M > 0 there exists t > 0 suh that
Π(ε) ⊂ S(f, A) + MBX for ε ∈ K0 ∩ tBY .Definition 9.1.3. Let η ∈ E(f, A). Problem (P ) is η-Hausdor� well-posed if the η-ε-solution mapping Πη is upper Hausdor� semiontinuous at 0 ∈ dom Πη, i.e. for any

M > 0 there exists t > 0 suh that
Π(ε) ⊂ Sη + MBX for ε ∈ K0 ∩ tBY .Definition 9.1.4. Let (xn) ⊂ A be a sequene of feasible elements. It is a minimizingsequene for (P ) if for eah n ≥ 1 there exist yn ∈ K, limn yn = 0, and ηn ∈ E(f, A) suhthat f(xn) �K ηn + yn.The following proposition gives a haraterization of Hausdor� well-posedness in termsof minimizing sequenes.Proposition 9.1.1. Let X and Y be normed spaes and let K be a losed onvex pointedone in Y . The following onditions are equivalent:(i) (P ) is Hausdor� well-posed,(ii) E(f, A) 6= ∅, and for any minimizing sequene (xn) ⊂ A and every 0-neighbour-hood W in X,
xn ∈ S(f, A) + W for all n su�iently large.Proof. Follows diretly from the de�nitions.The following proposition establishes the relationships between well-posedness, φ-sharp, and weak φ-sharp solutions.Proposition 9.1.2. Let X and Y be normed spaes and let K be a losed onvex pointedone in Y with intK 6= ∅. Let η ∈ E(f, A).(i) If Sη ∩ Shφ(f, A) 6= ∅, then (P ) is η-Hausdor� well-posed. Moreover, if Sη =

{x0}, then (P ) is η-Hausdor� well-posed if and only if x0 ∈ Shφ(f, A).(ii) If S(f, A) = Shφ(f, A) (i.e. all solutions are φ-sharp with the same funtion φ),then (P ) is Hausdor� well-posed.(iii) (P ) is Hausdor� well-posed if and only if the global φ-growth ondition holds for
(P ), i.e. for any x ∈ S(f, A),

f(x) − f(x) 6∈ φ(d(x, S(f, A))BY −K for x ∈ A \ S(f, A).Proof. (i) Suppose that Πη is not upper Hausdor� semiontinuous at 0 ∈ domΠη. Thereexists M0 > 0 suh that for all n ≥ 1 one an �nd εn ∈ K0 ∩ (1/n)BY and zn ∈ Πη(εn)suh that zn ∈ Πη(εn) and d(zn, Sη) ≥ M0. Thus, for any x ∈ Sη,
f(zn) − f(x) ∈ εn −K ⊂ 1

n
BY −K.This proves that no x ∈ Sη is φ-sharp sine φ(‖zn − x‖) ≥ φ(M0) ≥ 1/n.



96 9. Stability of solutions(ii) Suppose that (P ) is not Hausdor� well-posed. There exists M0 > 0 suh that forall n ≥ 1 there are εn ∈ K0 ∈ (1/n)BY and zn ∈ Π(εn) suh that d(zn, S(f, A)) ≥ M0.Thus, there exists xn ∈ S(f, A) suh that
f(zn) − f(xn) ∈ εn −K ⊂ 1

n
BY −K.This proves that xn is not φ-sharp sine φ(‖zn − xn‖) ≥ φ(M0) ≥ 1/n.(iii) The proof is similar to (ii).With the de�nitions introdued below we an haraterize global sharp and weaksharp solutions of order q to (P ).Definition 9.1.5. Problem (P ) is Hölder well-posed of order q > 0 if(i) E(f, A) 6= ∅,(ii) the ε-solution mapping Π is upper Hölder of order q > 0 at 0 ∈ domΠ, i.e. thereexist onstants L > 0 and t > 0 suh that

A ∩ f−1(E(f, A) + ε −K) ⊂ S(f, A) + L‖ε‖qBX .We say that (P ) is Lipshitz well-posed if (P ) is Hölder well-posed with q = 1.Definition 9.1.6. Let η ∈ E(f, A). Problem (P ) is η-Hölder well-posed of order q > 0if the η-ε-solution mapping Πη is upper Hölder of order q > 0 at 0 ∈ domΠη, i.e. thereexist onstants L > 0 and t > 0 suh that
A ∩ f−1(η + ε −K) ⊂ Sη + L‖ε‖qBX .We say that (P ) is η-Lipshitz well-posed if (P ) is η-Hölder well-posed with q = 1.The following proposition establishes the relationships between sharp solutions andwell-posedness introdued in De�nitions 9.1.5 and 9.1.6. Reall that Sη = A ∩ f−1(η).Proposition 9.1.3. Let X and Y be normed spaes and let K be a losed onvex pointedone in Y with intK 6= ∅. Let η ∈ E(f, A).(i) If Sη ∩ Shq(f, A) 6= ∅, then (P ) is η-Hölder well-posed of order 1/q. Moreover,if Sη = {x0}, then (P ) is η-Hölder well-posed if and only if x0 ∈ Shq(f, A).(ii) If all x ∈ S(f, A) are sharp of order q with onstant τ > 0, then (P ) is Hölderwell-posed of order 1/q.Proof. By de�nition, Πη is upper Hölder of order 1/q at 0 ∈ domΠη if there are onstants

L > 0 and t > 0 suh that
A ∩ f−1(η + ε −K) ⊂ Sη + L‖ε‖1/qBX for ε ∈ K0 ∩ tBX .(i) Suppose now that Πη is not upper Hölder of order 1/q at 0 ∈ domΠη. Foreah n ≥ 1 there exist εn ∈ K0 ∩ (1/n)BY and xn ∈ A ∩ f−1(η + εn − K) suh that

d(xn, Sη) > n‖εn‖1/q. Hene, ‖xn − x0‖q > nq‖εn‖ for any x0 ∈ Sη and
f(xn) − f(x0) ∈

1

nq
‖xn − x0‖q εn

1
nq ‖xn − x0‖q

−K ⊂ 1

nq
‖xn − x0‖qBY −K,whih proves that Sη ∩ Shq(f, A) = ∅.



9.1. Well-posed vetor optimization problems 97To see the seond part of (i) suppose on the ontrary that x0 is not sharp of order q.For eah n ≥ 1 there exists xn ∈ A \ Sη suh that
f(xn) − f(x0) ∈

1

n
‖xn − x0‖qBY −K.By taking any ε ∈ intK, ‖ε‖ = 1, and λ > 0 suh that BY ⊂ λε −K we get

f(xn) − f(x0) ∈
λ

n
‖xn − x0‖qε −K,whih means that xn ∈ Πη(λ

n‖xn − x0‖qε). On the other hand,
‖xn − x0‖ = d(xn, Sη) 6≤ (λ/n)1/q‖xn − x0‖.(ii) Suppose on the ontrary that Π is not upper Hölder of order 1/q at 0 ∈ domΠ.For eah n ≥ 1 there exist εn ∈ K0 ∩ (1/n)BY and zn ∈ A∩ f−1(E(f, A) + εn −K) suhthat d(zn, S) > n‖εn‖1/q. Thus, there exists xn ∈ S(f, A) suh that

f(zn) − f(xn) ∈ εn −K.On the other hand, ‖zn − xn‖ ≥ d(zn, S(f, A)) and
1

nq
‖zn − xn‖q > ‖εn‖.Hene, bn := εn

1
nq ‖zn−xn‖q ∈ BY and
f(zn) − f(xn) ∈ 1

nq
‖zn − xn‖qBY −K, f(zn) 6= f(xn),whih ontradits the assumption that all x ∈ S(f, A) are sharp of order q with the sameonstant.Analogously, the following proposition establishes the relationships between well-posedness of (P ) and weakly sharp solutions to (P ).Proposition 9.1.4. Let X and Y be normed spaes and let K be a losed onvex pointedone in Y with intK 6= ∅. Let η ∈ E(f, A).(i) Sη ∩ Whq(f, A) 6= ∅ if and only if (P ) is η-Hölder well-posed of order 1/q.(ii) (P ) is Hölder well-posed of order 1/q if and only if the global growth onditionholds for (P ) on S(f, A), i.e. there exists a onstant τ > 0 suh that for all

x ∈ S(f, A),
f(x) − f(x) 6∈ τ (d(x, S(f, A))qBY −K for x ∈ A \ S(f, A).Proof. (i) The proof of this part is analogous to the proof of Proposition 9.1.3.(ii) Suppose that Π is not upper Hölder of order 1/q at 0 ∈ domΠ. For eah

n ≥ 1 there exist εn ∈ K0 ∩ (1/n)BY and zn ∈ A ∩ f−1(E(f, A) + εn − K) suh that
d(zn, S(f, A)) > n‖εn‖1/q. Hene, zn 6∈ S(f, A) and there exists xn ∈ S(f, A) suh that
f(zn) − f(xn) ∈ εn −K and

f(zn) − f(xn) ∈ 1

nq
d(zn, S(f, A))qBY −K,whih ontradits the assumption.



98 9. Stability of solutionsTo see the onverse, suppose on the ontrary that for eah n ≥ 1 one an �nd xn ∈
S(f, A) suh that there exists zn ∈ A \ S(f, A) suh that

f(zn) − f(xn) ∈ 1

n
d(zn, S(f, A))qBY −K.Sine there exist ε0 ∈ intK, ‖ε0‖ = 1, and λ > 0 suh that BY ⊂ λε0 −K, we get

f(zn) − f(xn) ∈ λ

n
d(zn, S(f, A))qε0 −K.Hene, zn ∈ Π(λ

nd(zn, S(f, A))qε0). But d(zn, S(f, A)) 6≤ (λ/n)1/qd(zn, S(f, A)) and (P )is not Hölder well-posed of order 1/q.Now we onsider loal well-posedness of (P ).Definition 9.1.7. Problem (P ) is Hölder alm well-posed of order q > 0 at x0 ∈ S(f, A)if the ε-solution mapping Π is Hölder alm of order q > 0 at (0, x0) ∈ graphΠ, i.e. thereexist r > 0, L > 0 and t > 0 suh that
Π(ε) ∩ (x0 + rBX) ⊂ Π(0) + L‖ε‖qBXfor ε ∈ K0 ∩ tBY . We say that (P ) is alm well-posed at x0 ∈ S(f, A) if (P ) is Hölderalm well-posed at x0 with q = 1.Definition 9.1.8. Problem (P ) is η-Hölder alm well-posed of order q > 0 at x0 ∈ Sηif the η-ε-solution mapping Πη is Hölder alm of order q > 0 at (0, x0) ∈ graphΠη, i.e.there exist r > 0, L > 0 and t > 0 suh that

Πη(ε) ∩ (x0 + rBX) ⊂ Πη(0) + L‖ε‖qBXfor ε ∈ K0 ∩ tBY . We say that (P ) is η-alm well-posed at x0 ∈ Sη if (P ) is η-Hölderalm well-posed of order q = 1 at x0.Now we address the question of relationships between loal well-posedness, loal sharpand loal weak sharp solutions. Reall that x0 ∈ A is a loal sharp solution of order q > 0to (P ), x0 ∈ LShq(f, A), if one an �nd a 0-neighbourhood V in X and onstant τ > 0suh that
(f(x) − f(x0)) ∩ (τ‖x − x0‖qBY −K) = ∅ for all x ∈ A ∩ (x0 + V ), f(x) 6= f(x0).Equivalently, x0 ∈ LShq(f, A) i� there is a 0-neighbourhood V in X suh that

τ‖x − x0‖q ≤ ‖f(x) − f(x0)‖− for all x ∈ A ∩ (x0 + V ), f(x) 6= f(x0).Or, x0 ∈ LShq(f, A) i� x0 is a loal sharp minimum of order q of the funtion ‖f(·) −
f(x0)‖− over A (f. [147℄).Moreover, x0 ∈ LWhq(f, A), f(x0) = η, if there exist a 0-neighbourhood V in X and
τ > 0 suh that

f(x) − f(x0) 6∈ τ (d(x, Sη))qBY −K for x ∈ A ∩ (x0 + V ), x 6∈ Sη.Proposition 9.1.5. Let K be a losed onvex pointed one in a normed spae (Y, ‖ · ‖)with intK 6= ∅. Let η ∈ E(f, A).(i) (P ) is η-Hölder alm of order 1/q at (0, x0) ∈ graphΠ (De�nition 9.1.8) if andonly if x0 ∈ LWhq(f, A).



9.1. Well-posed vetor optimization problems 99(ii) (P ) is Hölder alm of order 1/q at (0, x0) ∈ graphΠ (De�nition 9.1.7) if andonly if there exists a 0-neighbourhood V suh that the loal growth ondition oforder q holds for (P ) on S = S(f, A) ∩ (x0 + V ) (f. De�nition 8.2.4).Proof. (i) By de�nition, Πη is Hölder alm of order 1/q at (0, x0) ∈ graph Πη if thereare a 0-neighbourhood V in X and onstants L > 0 and t > 0 suh that
A ∩ f−1(η + ε −K) ∩ (x0 + V ) ⊂ Sη + L‖ε‖1/qBX for ε ∈ K0 ∩ tBY .Suppose on the ontrary that x0 6∈ LWhq(f, A), i.e., for eah n ≥ 1 there are zn ∈

A ∩ (x0 + 1
nBX), f(zn) 6= f(x0), suh that

f(zn) − f(x0) ∈
1

n
(d(zn, Sη))qBY −K.Sine there exist ε0 ∈ intK, ‖ε0‖ = 1, and λ > 0 suh that BY ⊂ λε0 −K we get

f(zn) ∈ f(x0) +
λ

n
(d(zn, Sη))qε0 −K.Hene, zn ∈ Πη(λ

n (d(zn, Sη))qε0), but d(zn, Sη) 6≤ L(λ/n)1/qd(zn, Sη), whih means that
Πη is not Hölder alm of order 1/q at (0, x0) ∈ graph Πη.(ii) By de�nition, Π is Hölder alm of order 1/q at (0, x0) ∈ graphΠ if there are a
0-neighbourhood V in X and onstants L > 0 and t > 0 suh that

A ∩ f−1(E(f, A) + ε −K) ∩ (x0 + V ) ⊂ S(f, A) + L‖ε‖1/qBX for ε ∈ K0 ∩ tBY .Now, suppose on the ontrary that the loal growth ondition of order q does not holdfor (P ) around x0 ∈ S(f, A), i.e. for eah n ≥ 1 one an �nd xn ∈ S(f, A) ∩ (x0 + 1
nBX)and zn ∈ A ∩ (xn + 1

nBX), f(zn) 6= f(xn), suh that
f(zn) − f(xn) ∈ 1

n
(d(zn, S(f, A)))qBY −K.By taking ε0 ∈ intK, ‖ε0‖ = 1, and λ > 0 suh that BY ⊂ λε0 −K we get

f(zn) = f(xn) +
λ

n
(d(zn, S(f, A)))qε −K.Hene, zn ∈ Π(λ

n (d(zn, S(f, A)))qε0) ∩ (x0 + 2
nBY ) but

d(zn, S(f, A)) 6≤ L

(
λ

n

)1/q

d(zn, S(f, A)),whih means that Π is not Hölder alm of order 1/q at (0, x0) ∈ graphΠ.For the onverse suppose that (P ) is not Hölder alm of order 1/q. For eah n ≥ 1there exist εn ∈ K0 ∩ 1
nBY and zn ∈ Π(εn) ∩ (x0 + 1

nBX) suh that
d(zn, S(f, A)) ≥ n‖εn‖1/q.Hene, there exists xn ∈ S(f, A) suh that f(zn) ∈ f(xn) + εn −K and thus

f(zn) − f(xn) ∈ 1

nq
(d(zn, S(f, A))qBY −K,whih proves that the loal growth ondition does not hold for (P ) around x0.Analogously we an prove the loal ounterpart of Proposition 9.1.3.



100 9. Stability of solutionsProposition 9.1.6. Let K be a losed onvex pointed one in a normed spae (Y, ‖ · ‖)with intK 6= ∅. Let η ∈ E(f, A).(i) If x0 ∈ Sη ∩LShq(f, A), then (P ) is η-Hölder alm well-posed at x0 of order 1/q.Moreover, if Sη = {x0}, then (P ) is η-Hölder well-posed of order 1/q at x0 if andonly if x0 ∈ LShq(f, A).(ii) If there exists a 0-neighbourhood V suh that all x ∈ S(f, A)∩ (x0 + V ) are loalsharp of order q with the same onstant, then (P ) is Hölder alm well-posed at
x0 of order 1/q.Proof. (i) The proof is similar to the proof of Proposition 9.1.3(i).(ii) Sine eah loal sharp solution is a loal weak sharp solution, the onlusionfollows from Proposition 9.1.5(ii).9.1.1. Conditions for well-posedness in the outome spae. In this setion weinvestigate relationships between well-posedness of (P ), stritly e�ient points and loalstritly e�ient points to (P ).As previously, K0 = intK ∪ {0} and ε ∈ K0. Reall that y0 ∈ C is ε-e�ient [99℄,

y0 ∈ ε-E(C), if
(y0 − ε −K) ∩ C = ∅.Let C be a subset of a Hausdor� topologial vetor spae Y. Aording to De�ni-tion 2.2.1, an element y0 ∈ C is a stritly e�ient point, y0 ∈ StE(C), if for every

0-neighbourhood W in Y there exists a 0-neighbourhood O in Y suh that
C ∩ (y0 + O −K) ⊂ y0 + W.Let η ∈ E(C). Let Π̃η : K0
→→ Y be de�ned as(9.1) Π̃η(ε) := {y ∈ C : η + ε − y ∈ K}.Thus, Π̃η is the η-ε-solution mapping Πη for f = id and A = C and
Π̃η(ε) = C ∩ (η + ε −K).Let Π̃ : K →→ Y be de�ned as(9.2) Π̃(ε) := {y ∈ C : E(C) + ε − y ∈ K}.In other words,

Π̃(ε) = C ∩ (E(C) + ε −K)and Π̃ is the ε-solution mapping Π for f = id and A = C.The following proposition establishes the relationship between upper Hausdor� semi-ontinuity of Π̃ or Π̃η and stritly e�ient points.Proposition 9.1.7. Let X and Y be Hausdor� topologial vetor spaes and let K be alosed onvex pointed one in Y with intK 6= ∅. Let C be a subset of Y and let η ∈ E(C).(i) Π̃η is upper Hausdor� semiontinuous at ε = 0 if and only if η ∈ StE(C).(ii) If all η ∈ E(C) are uniformly stritly e�ient in the sense that for any 0-neighbourhood W there exists a 0-neighbourhood O suh that for any η ∈ E(C)

C ∩ (η + O −K) ⊂ η + W,then Π̃ is upper Hausdor� semiontinuous at ε = 0.



9.1. Well-posed vetor optimization problems 101Proof. (i) Let η ∈ StE(C) and let W be a 0-neighbourhood in Y . There exists a 0-neighbourhood O in Y suh that
C ∩ (η + O −K) ⊂ η + W.Hene, C ∩ (η + ε − K) ⊂ η + W for any ε ∈ O ∩ K0, whih proves that Πη is upperHausdor� semiontinuous at ε = 0. In partiular, for ε = 0 we have C ∩ (η −K) = {η}.Suppose now that Π̃η is upper Hausdor� semiontinuous at ε = 0 and take any

0-neighbourhood W in Y . There exists a 0-neighbourhood O suh that
Π̃η(ε) = C ∩ (η + ε −K) ⊂ η + W for ε ∈ O ∩ K0.Take any 0 6= ε ∈ O ∩ K0. There exists a 0-neighbourhood Ō in Y suh that Ō ⊂ ε −Kand hene C ∩ (η + Ō −K) ⊂ η + W , whih ompletes the proof of the �rst assertion.(ii) Let W be a 0-neighbourhood in Y . By the uniform strit e�ieny of all η ∈ E(C),there exists a 0-neighbourhood O in Y suh that

C ∩ (η + O −K) ⊂ η + W for any η ∈ E(C).Hene, for any ε ∈ O ∩ K0,
C ∩ (η + ε −K) ⊂ η + W for any η ∈ E(C)and onsequently for any ε ∈ O ∩ K0,

C ∩ (E(C) + ε −K) =
⋃

η∈E(C)

C ∩ (η + ε −K) ⊂ E(C) + W,

whih proves that Π̃ is upper Hausdor� semiontinuous at ε = 0. In partiular, for ε = 0we have C ∩ (E(C)−K) = E(C).Proposition 9.1.8. Let X and Y be normed spaes and let K be a losed onvex pointedone in Y with intK 6= ∅. Let C ⊂ Y and η ∈ E(C).(i) Π̃η is upper Hölder of order 1/q, q > 0, at ε = 0 if and only if η ∈ StEq(C).(ii) If all η ∈ E(C) are stritly e�ient of order q > 0 with the same onstant β,then Π̃ is upper Hölder of order 1/q at ε = 0.Proof. (i) Suppose that η 6∈ StEq(f, A). For eah n ≥ 1 there are yn ∈ C, bn ∈ BY ,
kn ∈ K suh that

yn − η =
1

n
‖yn − η‖qbn − kn.Sine intK 6= ∅, there is ε0 ∈ intK suh that BY ⊂ ε0 −K. Hene,

yn − η =
1

n
‖yn − η‖qε0 − ℓn, where ℓn ∈ K.This means that yn ∈ Π̃η( 1

n‖yn − η‖qε0). On the other hand, ‖yn − η‖ 6≤ 1
n1/q ‖yn − η‖,whih proves that Π̃η is not upper Hölder of order 1/q.(ii) The proof is similar.Proposition 9.1.9. Let K be a losed onvex pointed one in a normed spae (Y, ‖ · ‖)and intK 6= ∅. Let η ∈ E(C). If Π̃η is Hölder alm of order 1/q at (0, η) ∈ graph Π̃η,then η ∈ LStEq(C) .



102 9. Stability of solutionsProof. By de�nition, Π̃η is Hölder alm of order 1/q at (0, η) ∈ graph Π̃η if there are aneighbourhood V of zero in Y and onstants t > 0, L > 0 suh that
C ∩ (η + ε −K) ∩ (η + V ) ⊂ η + L‖ε‖1/qBY for ε ∈ K0 ∩ tBY .Suppose that η 6∈ LStEq(C). For eah n ≥ 1 one an �nd yn ∈ C ∩ (η + 1

nBY ) suh that
1
n‖yn − η‖q > ‖yn − η‖−. This means that

yn − η ∈ 1

n
‖yn − η‖qBY −K,i.e., yn − η = 1

n‖yn − η‖qbn − kn with bn ∈ BY , kn ∈ K. Take any ε ∈ intK, ‖ε‖ = 1.Sine bn ∈ λε −K, for all n ≥ 1 and a ertain λ > 0, we get
yn = η +

λ

n
‖yn − η‖qε − ℓn, ℓn ∈ K.Hene, yn ∈ Π̃η(λ

n‖yn − η‖qε), and yn − η 6∈ λL
n ‖yn − η‖BY , whih means that Π̃η is notHölder alm of order 1/q at (0, η) ∈ graph Π̃η.Proposition 9.1.10. Let C be a subset of a Hausdor� topologial spae Y. If (DP) holdsfor C, then Π̃ is K-upper Hausdor� semiontinuous at ε = 0.Proof. It is enough to observe that Π̃(ε) ⊂ Π̃(0) + K.

9.2. Hausdor� ontinuity of solutionsIn the following setions we provide su�ient onditions for Hausdor�, Lipshitz andHölder ontinuities of the solution mapping S. To formulate these onditions we appealto the notions of sharpness and weak sharpness of solutions to (P ) and/or (Pu). In viewof the results of the previous setions analogous onditions an be formulated with thehelp of well-posedness.In this setion we investigate upper and lower Hausdor� ontinuities of S at u0. Themain assumptions are the ontainment property and the well-posedness in the sensede�ned in previous setions.Theorem 9.2.1. Let X and U be topologial spaes and let Y be a Hausdor� topologialvetor spae. Let K be a losed onvex pointed one in Y with intK 6= ∅. If(i) f : X → Y is uniformly ontinuous on X,(ii) A : U →→ X is Hausdor� ontinuous at u0 ∈ domA,(iii) (P ) is Hausdor� well-posed,(iv) (CP) holds for f(A),then S is upper Hausdor� semiontinuous at u0 ∈ domS.Proof. Let V be 0-neighbourhood in X. Let V1 be a 0-neighbourhood in Y suh that
V1 + V1 ⊂ V. By the well-posedness of (P ), there exists a 0-neighbourhood W suh that

Π(ε) ⊂ Π(0) + V1 for ε ∈ W ∩ K0.Sine Π(0) = S(f, A), the above inlusion an be rephrased as(9.3) A ∩ f−1(E(f, A) + W ∩ K0 −K) ⊂ S(f, A) + V1.



9.2. Hausdor� ontinuity of solutions 103Let W1 be a 0-neighbourhood in Y suh that W1 + W1 ⊂ W and let W2 be a 0-neighbourhood in Y suh that W2 ⊂ W ∩ K0 − K. By (CP), Proposition 5.1.3, thereexists a 0-neighbourhood O in Y suh that for any x ∈ A with f(x) 6∈ E(f, A)+W2 thereexists x ∈ S(f, A) suh that
f(x) − f(x) + O ⊂ K.Let O1 be a 0-neighbourhood in Y suh that O1 + O1 ⊂ O. By the uniform ontinuity of

f on X, there exists a 0-neighbourhood O2 in X suh that
f(x + O2) ⊂ f(x) + O1 for all x ∈ X.Moreover, by the Hausdor� ontinuity of A, there exists a neighbourhood U0 of u0 suhthat

A ⊂ A(u) + V1 ∩ O2, A(u) ⊂ A + V1 ∩ O2.Take any z ∈ S(f, A(u)) for u ∈ U0. There exists x ∈ A suh that x ∈ z + V1 ∩ O2.Consequently, f(x) ∈ f(z) + O1.If f(x) 6∈ E(f, A) + W2 − K, then f(x) 6∈ E(f, A) + W2 and by (CP), there exists
x ∈ S(f, A) suh that

f(x) − f(x) + O ⊂ K.By the Hausdor� ontinuity of A, there exists z ∈ A(u) suh that z ∈ x+V1∩O2. Hene,
f(z) ∈ f(x) + O1 and so f(z) = f(z) sine otherwise
f(z) − f(z) ∈ (f(z) − f(x)) + (f(x) − f(x)) + (f(x) − f(z)) ⊂ f(x) − f(x) + O ⊂ −K,whih is impossible beause z ∈ S(f, A(u)). If f(x) ∈ E(f, A) + W2 − K, by (9.3),

x ∈ S(f, A) + V1 and
z ∈ x + V1 ∩ O2 ⊂ S(f, A) + V1 + V1 ∩ O2 ⊂ S(f, A) + V,whih ompletes the proof.The following examples show that well-posedness does not imply the ontainmentproperty of the set f(A).Example 9.2.1. Let us onsider problem (P ) (see Figure 9.2) with K = R

2
+, and f :

R → R
2,

f(x) =

{
(x, e1−x) if x ≥ 1,
(x, x2) if 0 ≤ x ≤ 1,under the onstraint x ≥ 0.In Example 9.2.1 problem (P ) is Hausdor� well-posed but the set f(A) does not havethe ontainment property (CP). In a simple modi�ation presented below the set f(A)has the ontainment property.Example 9.2.2. Let us onsider the vetor optimization problem (see Figure 9.2) with

K = R
2
+ and f : R → R

2 of the form
f(x) =

{
(x, 1

2 + 1
2e1−x) if x ≥ 1,

(x, x2) if 0 ≤ x ≤ 1,under the onstraints ≥ 0.
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Fig. 9.2
Theorem 9.2.2. Let X and U be topologial spaes and let Y be a Hausdor� topologialvetor spae. Let K be a losed onvex pointed one in Y with intK 6= ∅. If(i) f : X → Y is uniformly ontinuous on X, and A : U →→ X is Hausdor�ontinuous at u0 ∈ domA,(ii) there exists a neighbourhood U0 of u0 suh that all (Pu) for u ∈ U0 are uniformlyHausdor� well-posed in the sense that for any 0-neighbourhood V in X thereexists a 0-neighbourhood W in Y suh that

A(u) ∩ f−1(E(f, A(u)) + W ∩ K0 −K) ⊂ S(f, A(u)) + V for all u ∈ U0,(iii) (CP) holds uniformly for f(A(u)), u ∈ U0 in the sense that for any 0-neighbour-hood W in Y there exists a 0-neighbourhood O in Y suh that for any u ∈ U0and z ∈ A(u) f(z) 6∈ E(f, A(u)) + W there exists z ∈ S(f, A(u)) suh that
f(z) − f(z) + O ⊂ K,then S is lower Hausdor� semiontinuous at u0 ∈ domA.



9.3. Lower Lipshitzness of solutions 105Proof. Let V be a 0-neighbourhood in X. Let V1 be a 0-neighbourhood in Y suh that
V1 + V1 ⊂ V. By the (uniform) well-posedness of (Pu), there exists a 0-neighbourhood Wsuh that(9.4) A(u) ∩ f−1(E(f, A(u)) + W ∩ K0 −K) ⊂ S(f, A(u)) + V1for u ∈ U0.Let W1 be a 0-neighbourhood in Y suh that W1 + W1 ⊂ W and let W2 be a 0-neighbourhood in Y suh that W2 ⊂ W ∩K0 −K. By (CP) and Proposition 5.1.3, thereexists a 0-neighbourhood O in Y suh that for any z ∈ A(u) with f(z) 6∈ E(f, A(u))+W2there exists z ∈ S(f, A(u)) suh that

f(z) − f(z) + O ⊂ K.Let O1 be a 0-neighbourhood in Y suh that O1 + O1 ⊂ O. By the uniform ontinuity of
f on X, there exists a 0-neighbourhood O2 in X suh that

f(x + O2) ⊂ f(x) + O1 for all x ∈ X.Moreover, by the Hausdor� ontinuity of A, there exists a neighbourhood U1 of u0 suhthat
A ⊂ A(u) + V1 ∩ O2, A(u) ⊂ A + V1 ∩ O2for u ∈ U0 ∩ U1. Take any x ∈ S(f, A) and u ∈ U0 ∩ U1. There exists z ∈ A(u) suh that

z ∈ x + V1 ∩ O2. Consequently, f(z) ∈ f(x) + O1.If f(z) 6∈ E(f, A(u)) + W2 − K, then f(z) 6∈ E(f, A(u)) + W2. By (CP), there exists
z ∈ S(f, A(u)) suh that

f(z) − f(z) + O ⊂ Kand by the Hausdor� ontinuity of A, there exists x ∈ A suh that x ∈ z + V1 ∩ O2.Consequently, f(x) ∈ f(z) + O1 and
f(x) − f(x) ∈ (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x) ⊂ f(z) − f(z) + O ⊂ −K,whih ontradits the fat that x ∈ S(f, A).Hene, f(z) ∈ E(f, A(u))+ W2 −K. Then by (9.4), z ∈ S(f, A(u))+ V1. This impliesthat

x ∈ z + V1 ∩ O2 ⊂ S(f, A(u)) + V1 + V1 ∩ O2 ⊂ S(f, A(u)) + V,whih ompletes the proof.
9.3. Lower Lipshitzness of solutionsIn this setion we derive su�ient onditions for lower Lipshitz ontinuity of S(u) =

S(f, A(u)) at (u0, x0) ∈ graphS and at u0 ∈ domS. By assuming that x0 is sharp oforder 1 we prove lower Lipshitzness of S at (u0, x0) ∈ graphS. Correspondingly, toobtain lower Lipshitzness of S u0 ∈ domS we assume that all x0 ∈ S(f, A) are sharp oforder 1 with the same onstant τ .Reall that for any η ∈ E(f, A),
Sη := {x ∈ S(f, A) : f(x) = η}.



106 9. Stability of solutionsCorrespondingly, for any u ∈ U and η ∈ E(f, A(u)),
Sη(u) = {z ∈ S(f, A(u)) : f(x) = η}.Theorem 9.3.1. Let f : X → Y be Lipshitz with onstant Lf > 0. Assume that(i) A : U →→ X is Lipshitz at u0 ∈ domA with onstants La > 0, t > 0,(ii) (DP) holds for all (Pu), u ∈ B(u0, t),(iii) all x0 ∈ S(f, A) are global sharp solutions to (P ) of order 1 with the sameonstant τ > 0, i.e. for any η ∈ E(f, A) and x0 ∈ S(f, A),

f(x) − f(x0) 6∈ τ‖x − x0‖BY −K for x ∈ A \ Sη.Then P is lower Lipshitz at u0 ∈ domP, i.e.,
E(f, A) ∈ E(f, A(u)) + (LfLa + 2L2

fLa/τ)‖u − u0‖BY for u ∈ B(u0, t).Moreover, if instead of (iii) we assume that(iv) all z ∈ S(f, A(u)) for u ∈ B(u0, t) are global sharp solutions to (Pu) of order 1with the same onstant τ > 0, i.e. for any η ∈ E(f, A(u)),
f(z) − f(z) 6∈ τ‖z − z‖BY −K for z ∈ A(u) \ Sη(u).then S is lower Lipshitz at u0 ∈ domS. Preisely,

S(f, A) ⊂ S(f, A(u)) + (2LfLa/τ + La)‖u − u0‖BY for u ∈ B(u0, t).Proof. We start by proving lower Lipshitz ontinuity of S at u0 ∈ domS. Note �rst thatby (ii), S(f, A(u)) 6= ∅ for u ∈ B(u0, t), i.e. u0 ∈ int domS. Take any x0 ∈ S(f, A) and
u ∈ B(u0, t). By (i), there is z ∈ A(u) suh that

‖x0 − z‖ ≤ La‖u − u0‖.If z ∈ S(f, A(u)), the onlusion follows. Otherwise, by (DP), there exists z ∈ S(f, A(u))suh that f(z) ∈ f(z) −K and f(z) 6= f(z). If ‖z − z‖ ≤ 2LaLf

τ ‖u − u0‖, then
‖x0 − z‖ ≤ (La + 2LaLf/τ)‖u − u0‖and the onlusion follows. So, assume that(9.5) ‖z − z‖ >

2LaLf

τ
‖u − u0‖.By (iv), z ∈ S(f, A(u)) is a global sharp solution to (Pu). Sine f(z) 6= f(z) we have

f(z) − f(z) 6∈ τ‖z − z‖BY −K.By (i), there exists x ∈ A suh that ‖z − x‖ ≤ La‖u − u0‖ and
‖f(z) − f(x)‖ ≤ LfLa‖u − u0‖ and ‖f(z) − f(x0)‖ ≤ LfLa‖u − u0‖.Hene, in view of (9.5),

‖f(x0) − f(x)‖≥ ‖f(z) − f(z)‖ − ‖f(x) − f(z)‖ − ‖f(z) − f(x0)‖
≥ τ‖z − z‖ − 2LaLf‖u − u0‖ > 0,whih proves that f(x) 6= f(x0). Hene, sine x0 is a global sharp solution to (P ),(9.6) f(x) − f(x0) 6∈ τ‖x − x0‖BY −K.



9.3. Lower Lipshitzness of solutions 107On the other hand,
f(x) − f(x0) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x0))(9.7)

∈ 2LfLa‖u − u0‖BY −K.By (9.6) and (9.7),
‖x − x0‖ ≤ 2LfLa

τ
‖u − u0‖.Consequently,

‖x0 − z‖ ≤ ‖x0 − x‖ + ‖x − z‖ ≤ (La + 2LfLa/τ)‖u − u0‖,whih proves the assertion.To prove that P is lower Lipshitz at u0 ∈ domP take any η ∈ E(f, A) and u ∈
B(u0, t). There exists x ∈ S(f, A) suh that f(x) = η. By (i), there exists z ∈ A(u) suhthat

‖x − z‖ ≤ La‖u − u0‖ and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖.If z ∈ S(f, A(u)), then f(z) ∈ E(f, A(u) and the onlusion follows. Otherwise, thereexists z ∈ S(f, A(u)) suh that f(z) ∈ f(z) −K and f(z) 6= f(z).By (i), there exists x ∈ A suh that
‖x − z‖ ≤ La‖u − u0‖ and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖.If f(x) = f(x), the onlusion follows. If f(x) 6= f(x), by (iii) and by Proposition 8.1.1,

f(x) − f(x) 6∈ τ

Lf
‖f(x) − f(x)‖BY −K.On the other hand, as before,

f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x))

∈ 2LfLa‖u − u0‖BY −K.This proves that
‖f(x) − f(x)‖ ≤

2LaL2
f

τ
‖u − u0‖and onsequently

‖f(x) − f(z)‖ ≤ ‖f(x − f(x)‖ + ‖f(x) − f(z)‖ ≤ (LfLa + 2L2
fLa/τ)‖u − u0‖,whih proves the assertion.Remark 9.3.1. 1. The �rst assertion of Theorem 9.3.1 an be dedued from Theorem4.1.3 and hene assumption (iii) of Theorem 9.3.1 an be weakened by assuming that all

η ∈ E(f, A) are stritly e�ient points of order 1 with the same onstant β. Then theonlusion is that P is lower Lipshitz ontinuous at u0 ∈ domP, i.e.
E(f, A) ⊂ E(f, A(u)) + (LfLa + 2LfLa/β)‖u − u0‖BY for u ∈ B(u0, t).2. Moreover, if a given η ∈ E(f, A) is stritly e�ient of order 1 with onstant β > 0,then P is lower Lipshitz ontinuous at (u0, η) ∈ graphP, i.e.

η ∈ E(f, A(u)) + (LfLa + 2LfLa/β)‖u − u0‖BY for u ∈ B(u0, t).Clearly, the onstants β appearing in the above estimates may be di�erent.



108 9. Stability of solutionsWe say that x0 ∈ S(f, A) is strongly sharp of order q > 0 if there exists a onstant
τ > 0 suh that(9.8) f(x) − f(x0) 6∈ τ‖x − x0‖BY −K for x ∈ A, x 6= x0.This ondition implies that f(x) 6= f(x0) for x 6= x0. Hene, eah strongly sharp solutionis sharp and Sη = {x0}, where f(x0) = η. With this notion we an prove the followingvariant of Theorem 9.3.1.Theorem 9.3.2. Let f : X → Y be Lipshitz with onstant Lf > 0. Assume that(i) A : U →→ X is Lipshitz at u0 ∈ domA with onstants La > 0, t > 0,(ii) (DP) holds for all (Pu), u ∈ B(u0, t),(iii) eah x0 ∈ S(f, A) is a global strongly sharp solution of order 1 to (P ) withonstant τ > 0.Then P is lower Lipshitz at u0 ∈ domP,i.e.,

E(f, A) ∈ E(f, A(u)) + (2L2
fLa/τ + LfLa)‖u − u0‖BY for any u ∈ B(u0, t)and S is lower Lipshitz at u0 ∈ domS, i.e.,

S(f, A) ⊂ S(f, A(u)) + (2LfLa/τ + La)‖u − u0‖BX for any u ∈ B(u0, t).Proof. In view of Theorem 9.3.1 we only need to prove the lower Lipshitz ontinuity of
S. Take any x0 ∈ S(f, A) and u ∈ B(u0, t). By (i), there is z ∈ A(u) suh that

‖x0 − z‖ ≤ La‖u − u0‖.If z ∈ S(f, A(u)), the onlusion follows. Otherwise, by (DP), there exists z ∈ S(f, A(u))suh that f(z) ∈ f(z) −K and f(z) 6= f(z). By (i), there exists x ∈ A suh that
‖z − x‖ ≤ La‖u − u0‖,and

‖f(z) − f(x)‖ ≤ LfLa‖u − u0‖ and ‖f(z) − f(x0)‖ ≤ LfLa‖u − u0‖.If x = x0, the onlusion follows. Hene, assume that x 6= x0. Sine x0 is a global stronglysharp solution to (P ),(9.9) f(x) − f(x0) 6∈ τ‖x − x0‖BY −K.On the other hand,
f(x) − f(x0) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x0))(9.10)

∈ 2LfLa‖u − u0‖BY −KBy (9.9) and (9.10),
‖x − x0‖ ≤ 2LfLa

τ
‖u − u0‖.Consequently,

‖x0 − z‖ ≤ ‖x0 − x‖ + ‖x − z‖ ≤ (La + 2LfLa/τ)‖u − u0‖,whih proves the assertion.By assuming weak sharpness of solutions to (P ) we get the following result.



9.4. Upper Lipshitzness of solutions 109Theorem 9.3.3. Let f : X → Y be Lipshitz with onstant Lf > 0. Assume that(i) A is Lipshitz at u0 ∈ domA with onstants La > 0 and t > 0,(ii) (DP) holds for (Pu), u ∈ B(u0, t),(iii) all z ∈ S(f, A(u)) for u ∈ B(u0, t) are weak sharp solutions to (Pu) of order 1with onstant τ > 0.Then S is lower Lipshitz at u0 ∈ domS. Preisely,
S(f, A) ⊂ S(f, A(u)) + (La + 2LfLa + 2LaLf/τ )‖u − u0‖BX for u ∈ B(u0, t).Proof. Let x ∈ S(f, A) and u ∈ B(u0, t). By Theorem 8.2.2, there exists z ∈ S(f, A(u))suh that

‖f(x) − f(z)‖ ≤ (LfLa + 2L2
fLa/τ )‖u − u0‖.By (i), there exists z ∈ A(u) suh that

‖x − z‖ ≤ La‖u − u0‖ and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖.If z ∈ S(f, A(u)), the onlusion follows. Suppose that z 6∈ S(f, A(u)). We have
f(z) − f(z) = (f(z) − f(x)) + (f(x) − f(z)) ∈ (2LfLa + 2L2

fLa/τ )‖u − u0‖BY .On the other hand, sine z ∈ S(f, A(u)) is weakly sharp, f(z) = η and f(z) 6= f(z),
f(z) − f(z) 6∈ τd(z, Sη(u))BY −K,where Sη(u) = {z ∈ S(f, A(u)) : f(z) = η}. Consequently,

d(x, S(f, A(u)) ≤ d(x, Sη(u)) ≤ d(x, z)+d(z, Sη(u)) ≤ (La+2LfLa+2LaL2
f/τ)‖u−u0‖.

9.4. Upper Lipshitzness of solutionsIn this setion making use of sharp and weak sharp solutions we prove upper Lipshitznessof S.Theorem 9.4.1. Let f : X → Y be Lipshitz with onstant Lf > 0. Assume that(i) A is Lipshitz at u0 ∈ domA with onstants La > 0 and t > 0,(ii) (DP) holds for (P ),(iii) all z ∈ S(f, A(u)) for u ∈ B(u0, t) are sharp solutions to (Pu) of order 1 withonstant τ > 0.Then
• S is upper Lipshitz at u0 ∈ domS, i.e.,

S(f, A(u)) ⊂ S(f, A) + (La + 2LaLf/τ)‖u − u0‖BX for u ∈ B(u0, t),

• P is upper Lipshitz at u0 ∈ domP, i.e.,
E(f, A(u)) ⊂ E(f, A) + (LfLa + 2LaL2

f/τ)‖u − u0‖BY for u ∈ B(u0, t).Proof. Let z ∈ S(f, A(u)), u ∈ B(u0, t). By the upper Lipshitzness of A, there exists
x ∈ A suh that

‖x − z‖ ≤ La‖u − u0‖.



110 9. Stability of solutionsIf x ∈ S(f, A), the onlusion follows. Otherwise, by (DP), there exists x ∈ S(f, A) suhthat f(x) ∈ f(x) −K and f(x) 6= f(x).If ‖x−x‖ ≤ 2Lf La

τ ‖u−u0‖, the onlusion follows. Otherwise, ‖x−x‖ >
2Lf La

τ ‖u−u0‖.By the lower Lipshitzness of A, there exists z ∈ A(u) suh that
‖x − z‖ ≤ La‖u − u0‖.Sine f is Lipshitz,

f(z) − f(z) = (f(z) − f(x)) + (f(x) − f(x)) + (f(x) − f(z))(9.11)
∈ 2LfLa‖u − u0‖BY −K.Moreover,

‖f(z) − f(z)‖ ≥ ‖f(x) − f(x)‖ − ‖f(x) − f(z)‖ − ‖f(x) − f(z)‖(9.12)
≥ τ‖x − x‖ − 2LfLa‖u − u0‖ > 0,whih proves that f(z) 6= f(z), and sine z ∈ S(f, A(u)) is a sharp solution to (Pu) weget(9.13) f(z) − f(z) 6∈ τ‖z − z‖BY −K.By (9.11) and (9.13), ‖z − z‖ ≤ 2Lf La

τ ‖u − u0‖ and �nally
‖z − x‖ ≤ ‖z − x‖ + ‖z − z‖ ≤ (La + 2LfLa/τ )‖u − u0‖.To see the seond assertion, take any η ∈ E(f, A(u)). There exists z ∈ S(f, A(u))suh that η = f(z). By (i), there exists x ∈ A suh that ‖z − x‖ ≤ La‖u − u0‖. If

x ∈ S(f, A), the onlusion follows. If x 6∈ S(f, A), by (ii), there exists x ∈ S(f, A)suh that f(x) ∈ f(x) − K and f(x) 6= f(x). By (i), there exists z ∈ A(u) suh that
‖z − x‖ ≤ La‖u − u0‖. If f(z) = f(z), the onlusion follows. Otherwise,
f(z) − f(z) = (f(z) − f(x)) + (f(x) − f(x)) + (f(x) − f(z)) ∈ 2LfLa‖u − u0‖BY −Kand sine z ∈ S(f, A(u)) is a sharp solution to (Pu),

f(z) − f(z) 6∈ τ

Lf
‖f(z) − f(z)‖BY −K.Consequently, ‖f(z) − f(z)‖ ≤ 2L2

f La

τ ‖u − u0‖ and
f(x) − f(z) = (f(x) − f(z)) + (f(z) − f(z))

∈ (LfLa + 2L2
fLa/τ )‖u − u0‖BY .Reall that (SDP) of order 1 with onstant α > 0 holds for (P ) if for any x ∈ A thereexists x ∈ S(f, A) suh that

f(x) − f(x) + α‖f(x) − f(x)‖BY ⊂ K.By using the strong domination property (SDP) of order 1 we an prove the followingvariant of Theorem 9.4.1 for losed onvex pointed ones with nonempty interior.Theorem 9.4.2. Let K be a losed onvex pointed one with intK 6= ∅. Let f : X → Ybe Lipshitz with onstant Lf > 0. Assume that



9.4. Upper Lipshitzness of solutions 111(i) A is Lipshitz at u0 ∈ domA with onstants La > 0 and t > 0,(ii) (SDP) of order 1 with onstant α > 0 holds for (P ).Then P is upper Lipshitz at u0 ∈ domP, i.e.,
E(f, A(u)) ⊂ E(f, A) + (LfLa + 2LaLf/α)‖u − u0‖BY for u ∈ B(u0, t).If moreover,(iii) all x ∈ S(f, A) are sharp of order 1 with onstant τ > 0,then S is upper Lipshitz at u0 ∈ domS, i.e.,
S(f, A(u)) ⊂ S(f, A) + (La + 2LaL2

f/ατ)‖u − u0‖BX for u ∈ B(u0, t).Proof. To see the �rst assertion, take any η ∈ E(f, A(u)), u ∈ B(u0, t). There exists
z ∈ S(f, A(u)) suh that η = f(z). By (i), there exists x ∈ A suh that

‖x − z‖ ≤ La‖u − u0‖.If x ∈ S(f, A), then ‖f(z)−f(x)‖ ≤ LfLa‖u−u0‖ and the onlusion follows. Otherwise,by (SDP), there exists x ∈ S(f, A) with f(x) 6= f(x) suh that
f(x) − f(x) + α‖f(x) − f(x)‖BY ⊂ K.By (i), there exists z ∈ A(u) suh that ‖z − x‖ ≤ La‖u − u0‖. If z ∈ S(f, A(u)), theonlusion follows. If z 6∈ S(f, A(u)), then

‖f(x) − f(x)‖ ≤ 2LfLa

α
‖u − u0‖sine otherwise

f(z) − f(z) = f(z) − f(x) + (f(x) − f(x)) + (f(x) − f(z))

∈ (f(x) − f(x)) + 2LaLfBY

⊂ (f(x) − f(x)) + α‖f(x) − f(x)‖BY

⊂ −K,whih ontradits the fat that z ∈ S(f, A(u)). Finally,
f(z) − f(x) = (f(z) − f(x)) + (f(x) − f(x) ∈ (LfLa + 2LfLa/α)‖u − u0‖BY ,whih proves the �rst assertion.To prove the seond assertion take any z ∈ S(f, A(u)), u ∈ B(u0, t). By (i), thereexists x ∈ A suh that

‖x − z‖ ≤ La‖u − u0‖.If x ∈ S(f, A), the onlusion follows. Otherwise, by (SDP), there exists x ∈ S(f, A) with
f(x) 6= f(x) suh that

f(x) − f(x) + α‖f(x) − f(x)‖BY ⊂ K.In the same way as above we argue that
f(x) − f(x) ∈ 2LfLa

α
‖u − u0‖BY .



112 9. Stability of solutionsSine x is a global sharp solution of order 1 to (P ) and f(x) 6= f(x),
f(x) − f(x) 6∈ τ

Lf
‖x − x‖BY −Kand onsequently ‖x − x‖ ≤ 2L2

f La

ατ ‖u − u0‖. Hene,
‖z − x‖ ≤ ‖z − x‖ + ‖x − x‖ ≤ (La + 2L2

fLa/ατ )‖u − u0‖.Making use of weakly sharp solutions we obtain the following result.Theorem 9.4.3. Let f : X → Y be Lipshitz with onstant Lf > 0. Assume that(i) A is Lipshitz at u0 ∈ domA with onstants La > 0 and t > 0,(ii) (DP) holds for (Pu) and u ∈ B(u0, t),(iii) all x ∈ S(f, A) are weakly sharp solutions to (P ) of order 1 with onstant τ > 0.Then S is upper Lipshitz at u0 ∈ domS, i.e. for any u ∈ B(u0, t),
S(f, A(u)) ⊂ S(f, A) + (La + 2LfLa + 2L2

aLf/τ)‖u − u0‖BX .Proof. Let z ∈ S(f, A(u)), u ∈ U0. By Theorem 8.2.3, there exists x ∈ S(f, A) suh that
f(z) − f(x) ∈ (LaLf + 2LaL2

f/τ)‖u − u0‖BY .By the upper Lipshitzness of A, there exists x ∈ A suh that
‖z − x‖ ≤ La‖u − u0‖ and ‖f(z) − f(x)‖ ≤ LfLa‖u − u0‖.If x ∈ S(f, A), the onlusion follows. Otherwise,

f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)

∈ (2LfLa + 2LaL2
f/τ)‖u − u0‖BY .On the other hand, sine x ∈ S(f, A) is a global weakly sharp solution of order 1 with

f(x) = η and f(x) 6= f(x),
f(x) − f(x) 6∈ τd(x, Sη)BY −K.Consequently, d(x, Sη) ≤ (2LfLa + 2LaL2

f/τ )‖u − u0‖ and
d(z, S(f, A)) ≤ d(z, Sη) ≤ d(z, x) + d(x, Sη)

≤ (La + 2LfLa + 2LaL2
f/τ)‖u − u0‖.

9.5. Lower Hölder and lower pseudo-Hölder ontinuity ofsolutionsIn this setion we investigate lower Hölder ontinuity of the solution mapping S at u0 ∈
domS and lower pseudo-Hölder ontinuity of S at (u0, x0) ∈ graphS. The spaes X,

Y and U are assumed to be normed spaes with open unit balls BX , BY and BU ,respetively.Reall that for a set-valued mapping A : U →→ X, A(u) = A(u), A(u0) = A, and
f : X → Y the set-valued mapping Af : U →→ Y is given by(9.14) Af (u) = f(A(u)), Af (u0) = f(A).



9.5. Lower Hölder and lower pseudo-Hölder ontinuity of solutions 113Theorem 9.5.1. Let K be a losed onvex pointed one in Y . Assume that(i) there exists 0 < t < 1 suh that all z ∈ S(f, A(u)) for u ∈ B(u0, t) are sharpsolutions to (Pu) of order q ≥ 1 with onstant τ > 0, i.e.,
f(z) − f(z) 6∈ τ‖z − z‖qBY −K for z ∈ A(u), f(z) 6= f(z),(ii) f : X → Y is Lipshitz on X with onstant Lf > 0 and A is Hölder ontinuousof order p ≥ 1 at u0 ∈ domA with onstants La > 0 and 0 < t < 1,(iii) (DP) holds for all f(A(u)) and u ∈ B(u0, t).Then S is lower Hölder ontinuous of order p

q at u0 ∈ domS. Preisely,
S(f, A) ⊂ S(f, A(u)) + (La + (2LaLf/τ)1/q)‖u − u0‖p/qBXfor u ∈ B(u0, ta).Proof. Take u ∈ B(u0, t) and x ∈ S(f, A). By (ii), there exists z ∈ A(u) suh that

‖x − z‖ ≤ La‖u − u0‖p and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p.If z ∈ S(f, A(u)), the assertion follows. If z 6∈ S(f, A(u)), then by (iii), there exists
z ∈ S(f, A(u)) suh that f(z) ∈ f(z) − K. If ‖z − z‖ ≤ (2LfLa/τ)1/q‖u − u0‖p/q, theonlusion follows. Hene, assume that

τ‖z − z‖q > 2LfLa‖u − u0‖p.By (ii), there exists x ∈ A suh that
‖x − z‖ ≤ La‖u − u0‖p and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p.Sine z ∈ Shq(f, A(u)) and f(z) 6= f(z) we have

f(z) − f(z) 6∈ τ‖z − z‖qBY −Kand
‖f(x) − f(x)‖ ≥ ‖f(z) − f(z)‖ − ‖f(x) − f(z)‖ − ‖f(z) − f(x)‖

≥ τ‖z − z‖q − 2LfLa‖u − u0‖p > 0.This proves that f(x) 6= f(x) and in view of the fat that x ∈ Shq(f, A) we get(9.15) f(x) − f(x) 6∈ τ‖x − x‖qBY −K.On the other hand,
f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x)) ∈ 2LfLa‖u − u0‖p −K,whih together with (9.15) leads to the inequality

‖x − x‖ ≤ (2LfLa/τ)1/q.Finally,
‖x − z‖ ≤ ‖x − z‖ + ‖x − x‖ ≤ (La + (2LfLa/τ)1/q)‖u − u0‖p/q,whih proves the assertion.Now we prove su�ient onditions for lower pseudo-Hölder ontinuity of S at (u0, x0)

∈ graphS.



114 9. Stability of solutionsTheorem 9.5.2. Let K be a losed onvex pointed one in Y . Let x0 ∈ S(f, A) and
f(x0) = η. Assume that(i) there exists 0 < ta < 1 suh that all z ∈ S(f, A(u) ∩ (x0 + V ) for u ∈ B(u0, ta)are loal sharp solutions to (Pu) of order q ≥ 1 with onstants τ > 0 and ts > 0,i.e.,

f(z) − f(z) 6∈ τ‖z − z‖qBY −K for z ∈ A(u) ∩ (z + tsBX), f(z) 6= f(z),(ii) f : X → Y is Lipshitz around x0 with onstant Lf > 0 and A is pseudo-Hölderontinuous of order p ≥ 1 at (u0, x0) ∈ graphA with 0-neighbourhood V andonstants La and ta,(iii) (LDP) holds for all f(A(u)) and u ∈ B(u0, ta).Then S is lower pseudo-Hölder ontinuous of order p/q at (u0, x0) ∈ graphS. Preisely,
S(f, A) ∩ (x0 + V ) ⊂ S(f, A(u)) + (La + (2LaLf/τ)1/q)‖u − u0‖p/qBXfor u ∈ B(u0, t) with t = min{ta, ts}.Proof. Take u ∈ B(u0, t) and x ∈ S(f, A) ∩ (x0 + V ). By (ii), in view of the lowerpseudo-Hölder ontinuity of A, there exists z ∈ A(u) suh that

‖x − z‖ ≤ La‖u − u0‖p and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p.If z ∈ S(f, A(u)), the assertion follows. If z 6∈ S(f, A(u)), then by (iii), there exists
z ∈ S(f, A(u)) suh that f(z) ∈ f(z) − K. If ‖z − z‖ ≤ (2LfLa/τ)1/q‖u − u0‖p/q, theonlusion follows. Hene, assume that

τ‖z − z‖q > 2LfLa‖u − u0‖p.By the upper Hölder ontinuity of A, there exists x ∈ A suh that
‖x − z‖ ≤ La‖u − u0‖p and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p.Sine z ∈ Shq(f, A(u)) and f(z) 6= f(z) we have

f(z) − f(z) 6∈ τ‖z − z‖qBY −Kand
‖f(x) − f(x)‖ ≥ ‖f(z) − f(z)‖ − ‖f(x) − f(z)‖ − ‖f(z) − f(x)‖

≥ τ‖z − z‖q − 2LfLa‖u − u0‖p > 0.This proves that f(x) 6= f(x) and in view of the fat that x ∈ Shq(f, A) we get(9.16) f(x) − f(x) 6∈ τ‖x − x‖qBY −K.On the other hand,
f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x)) ∈ 2LfLa‖u − u0‖p −K,whih together with (9.16) leads to the inequality

‖x − x‖ ≤ (2LfLa/τ)1/q.Finally,
‖x − z‖ ≤ ‖x − z‖ + ‖x − x‖ ≤ (La + (2LfLa/τ)1/q)‖u − u0‖p/q,whih proves the assertion.



9.6. Upper Hölder ontinuity and Hölder almness of solutions to parametri problems 1159.6. Upper Hölder ontinuity and Hölder almness of solutions toparametri problemsIn this setion we investigate Hölder almness of S at (u0, x0) ∈ graphS. The spaes X,

Y and U are assumed to be normed spaes with open unit balls BX , BY and BU , respe-tively. Analogous results for salar optimization problems were obtained by Bonnans andShapiro ([39, Se. 4.4.2℄) and Bonnans and Io�e [38℄.Reall that for a set-valued mapping A : U →→ X, A(u) = A(u), A(u0) = A, and amapping f : X → Y the set-valued mapping Af : U →→ Y is given by(9.17) Af (u) = f(A(u)), Af (u0) = f(A).We start with the result on Hölder almness of P.Theorem 9.6.1. Let K be a losed onvex pointed one in Y with intK 6= ∅. Let x0 ∈
S(f, A). Assume that(i) Af given by (9.17) is pseudo-Lipshitz of order p ≥ 1 at (u0, f(x0)) ∈ graphAwith a neighbourhood W of zero in Y, W ⊂ tfBX , and onstants La > 0 and

t > 0,(ii) the loal strong domination property (LSDP ) of order q ≥ 1 holds for f(A)around f(x0) with the neighbourhood 1
2W and onstant α > 0.Then P is Hölder alm at (u0, f(x0)) ∈ graphP. Preisely, there is a neighbourhood Wof zero in Y suh that

E(f, A(u)) ∩ (f(x0) + W ) ⊂ E(f, A)) + Lf (La + (2LfLa/α)1/q)‖u − u0‖p/qfor u ∈ u0 + tBU .Proof. Let W be a neighbourhood of zero in Y suh that W + LatBY ⊂ W. Take any
f(x) ∈ E(f, A(u)) ∩ (f(x0) + W ), u ∈ u0 + tBU . By the pseudo-Lipshitzness of A at
(u0, f(x0)) ∈ graphA, there exists z ∈ A suh that

‖f(x) − f(z)‖ ≤ La‖u − u0‖p.Clearly, f(z) ∈ f(x0) + W. By (LSDP ) of order q ≥ 1 around f(x0), there exists z ∈
S(f, A) suh that

α‖f(z) − f(z)‖q ≤ ‖f(z) − f(z)‖+.By the lower pseudo-Lipshitzness of A at (u0, f(x0)) ∈ graphA, there exists x ∈ A(u)suh that
‖f(x) − f(z)‖ ≤ La‖u − u0‖p,We have f(x) − f(x) = [f(z) − f(z)] + w, where

w = [f(x) − f(z)] + [f(z) − f(x)] and ‖w‖ ≤ 2La‖u − u0‖p.Hene ‖w‖ > ‖f(z) − f(z)‖+ sine otherwise
f(x) − f(x) = [f(z) − f(z)] + w ∈ K,ontrary to the e�ieny of f(x) over f(A(u)). Consequently,

α‖f(z) − f(z)‖q ≤ ‖w‖ ≤ 2La‖u − u0‖p,



116 9. Stability of solutionsand(9.18) ‖f(z) − f(z)‖ ≤ (2La/α)1/q‖u − u0‖p/q.Hene,
‖f(x) − f(z)‖ ≤ ‖f(x) − f(z)‖ + ‖f(z) − f(z)‖ ≤ (La + (2La/α)1/m)‖u − u0‖p/m,whih proves the assertion.Theorem 9.6.2. Let K be a losed onvex pointed one in Y with intK 6= ∅. Let x0 ∈

S(f, A) and let f : X → Y be loally Lipshitz at x0 with onstants Lf > 0 and t > 0.Assume that(i) A is pseudo-Lipshitz at (u0, x0) ∈ graphA with neighbourhood V of zero in X,

V ⊂ tBX , and onstants La > 0 and t,(ii) (LFDP ) holds around x0 with the neighbourhood 1
2V and onstant α > 0,(iii) the growth ondition of order q > 1 holds around x0 with the neighbourhood Vand onstant τ > 0.Then S is alm of order 1/q at (u0, x0) ∈ graphS. Preisely,

S(f, A(u)) ∩ (x0 + λV ) ⊂ S(f, A)) + (La + (2L2
fLa/ατ)1/q)‖u − u0‖1/qBXfor u ∈ B(u0, t) and a ertain 0 < λ < 1/2.Proof. By taking t small enough, we an hoose 0 < λ < 1

2 suh that λV + tLaBX ⊂ 1
2V.Take any x ∈ S(f, A(u))∩ (x0 + λV ), u ∈ u0 + tBU . By (i), there exists z ∈ A suh that

‖x − z‖ ≤ La‖u − u0‖.We have z − x0 = (z − x) + (x − x0) ∈ tLaBX + λV ⊂ 1
2V. By Lipshitzness of f,(9.19) ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖ .Sine (LFDP ) holds around x0, there exists z ∈ S(f, A) ∩ (x0 + 1

2V ) suh that
α‖z − z‖ ≤ ‖f(z) − f(z)‖+.By (i), there exists x ∈ A(u) suh that

‖x − z‖ ≤ LA‖u − u0‖,and x−x0 = (x−z)+(z−x0) ∈ tcLABX+ 1
2V ⊂ V. We have f(x)−f(x) = [f(z)−f(z)]+w,where w = [f(x) − f(z)] + [f(z) − f(x)]. By Lipshitzness of f,

‖w‖ ≤ 2LfLa‖u − u0‖.Sine x ∈ S(u), we have ‖w‖ > ‖f(z) − f(z)‖+ and thus,
α‖f(z) − f(z)‖ ≤ αLf‖z − z‖ ≤ Lf‖w‖ ≤ 2L2

fLa‖u − u0‖.Hene,
‖f(z) − f(z)‖ ≤

2L2
fLa

α
‖u − u0‖,or equivalently,

f(z) − f(z) ∈
2L2

fLa

α
‖u − u0‖BY .



9.7. Hölder ontinuity of the solution mapping S 117On the other hand, z − z = (z − x0) + (x0 − z) ∈ 1
2V + 1

2V ⊂ V , and sine the growthondition of order q ≥ 1 holds for f around x0 we have
f(z) − f(z) 6∈ τd(z, S(f, A))qBY −K .Thus,

2L2
fLc

τ
‖u − u0‖BY 6⊂ τd(z, S(f, A))qBY −K,and onsequently

2L2
fLa

α
‖u − u0‖BY 6⊂ τd(z, S(f, A))qBY ,whih means that

d(z, S(f, A))q ≤
2L2

fLa

ατ
‖u − u0‖or d(z, S(f, A)) ≤ (2L2

fLa/ατ )1/q‖u − u0‖1/q. Finally,
d(x, S(f, A)) ≤ ‖x − z‖ + d(z, S(f, A)) ≤ (La + (2L2

fLa/ατ)1/q)‖u − u0‖1/q.Theorem 9.6.3. Let K be a losed onvex pointed one in Y with intK 6= ∅. Let x0 ∈
S(f, A) and let f : X → Y be loally Lipshitz on x0 + tfBX with onstants Lf . Assumethat (i) A : U →→ X is pseudo-Lipshitz at (u0, x0) ∈ graphA with neighbourhood V ofzero in X, V ⊂ tfBX ,(ii) the loal �rm strong domination property holds around x0 with the neighbourhood

1
2V,(iii) (P ) is Hölder alm well-posed at x0 of order 1/m, m > 1.Then S is Hölder alm of order 1/m at (u0, x0) ∈ graphS.Proof. Follows diretly from Proposition 9.1.4 and Theorem 9.6.2.With V = X we obtainCorollary 9.6.1. Let K be a losed onvex pointed one in Y with intK 6= ∅. Let

f : X → Y be loally Lipshitz. Assume that(i) A is Lipshitz around u0 ∈ domA,(ii) the (global) �rm domination property holds for (P ),(iii) (P ) is upper Hölder well-posed of order 1/m, m > 1.Then S is upper Hölder of order 1/m at u0.

9.7. Hölder ontinuity of the solution mapping SIn this setion we formulate onditions for Hölder ontinuity of S provided that prob-lems (Pu) satisfy the growth ondition of order q ≥ 1. For salar optimization problemssimilar results were obtained by Bonnans and Shapiro ([39, Se. 4.4.2℄) and Bonnans andIo�e [38℄.



118 9. Stability of solutionsTheorem 9.7.1. Let K be a losed onvex pointed one in Y . Let f : X → Y be Lipshitzwith onstant Lf > 0. Assume that(i) A : U →→ X is Hölder of order p > 0 around u0 ∈ domA with onstants La > 0and 0 < t < 1,(ii) (DP) holds for (Pu) with u ∈ B(u0, t),(iii) the global growth ondition of order q ≥ 1 holds for all (Pu) on S(f, A(u)) withonstant τ > 0.Then S is Hölder of order p/q at u0 ∈ domS. Preisely,
S(f, A(u)) ⊂ S(f, A(u′)) + (La + (2Lq+1

f La/τ )1/q)‖u − u′‖p/qBXfor u, u′ ∈ u0 + (t/4)BU .Proof. The proof follows from Proposition 4.0.3, by observing that under the assumptions
S is uniformly lower Hölder of order p/q at any u′ ∈ u0 + (t/2)BY .Theorem 9.7.2. Let K be a losed onvex pointed one in Y with intK 6= ∅. Let x0 ∈
S(f, A) and let f : X → Y be loally Lipshitz on x0 + tfBX with onstants Lf . Assumethat (i) A is pseudo-Lipshitz at (u0, x0) ∈ graphA with neighbourhood V of zero in X,

V ⊂ tfBX ,(ii) the loal �rm domination property holds for (P ) around x0 with a neighbourhood
Q, Q + Q ⊂ V,(iii) (P ) is Hölder alm well-posed at x0 of order 1/m, m ≥ 1.Then S is Hölder alm of order 1/m at (u0, x0) ∈ graphS.Proof. Follows diretly from Proposition 9.1.4 and Theorem 9.6.2.



Final remarksOur aim was to provide su�ient onditions for semi- and pseudo-ontinuitites in thesense of Lipshitz and/or Hölder for the set-valued mappings P and S. We foused onformulating su�ient onditions whih are as weak as possible in order to make themappliable to a wide lass of problems. As a result we have not assumed any partiularform of desription of the feasible set A. In the literature there exist numerous resultswhih provide onditions guaranteeing Lipshitz and/or Hölder behaviour of the feasibleset depending on parameters. This is the reason why we did not takle this problem here.An important aspet of the results presented here is that in many ases we are ableto determine Lipshitz onstants when investigating Lipshitz (or Hölder) behaviour of
P and S. This fat is of importane in investigating onditioning of vetor optimizationproblems. From the material of Chapter 8 we an dedue that strit e�ieny and sharpas well as weakly sharp solutions are essential for stability of solutions. Moreover, thegreater the onstant β related to strit e�ieny and the onstant τ related to sharp (orweakly sharp) solutions, the greater the orresponding Lipshitz onstants for P and S.It is an open problem to provide su�ient and neessary onditions for sharp solutions(and stritly e�ient points) of higher orders as well as to analyse these notions from thepoint of view of general extremality sheme as proposed by Kruger [95℄.
Postsriptum:Si les ironstanes arrivent à être surmontées, être vainues, la nature transporte la luttedu dehors au dedans et fait peu à peu hanger assez notre ÷ur pour qu'il désire autrehose. . . Marel Proust, A l'ombre des jeunes �lles
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