
1. IntrodutionThe present work is devoted to the study of the t-deformed free probability. The notionof the t-deformation of a measure and of a onvolution, inspired by the onditionally freeonvolution of Bo»ejko, Leinert and Speiher [Bo1, BS2, BLS℄, was �rst introdued inthe papers by Bo»ejko and Wysoza«ski [BW1, BW2℄. We propose for the t-deformedfree probability the name of Kesten probability, justi�ed by the fat that the measurearising in the orresponding entral limit theorem is, for a suitable hoie of parameters,exatly the spetral measure of a random walk on the free group with a �nite number ofgenerators, as disovered by Kesten in [K℄ (see also [PS℄).In the seond hapter we reall the neessary de�nitions and basi fats from prob-ability, espeially relating to the Cauhy transforms and their reiproals, as they areneeded for analyti desriptions of the onvolutions in question. In the next hapter wegather the de�nitions of the t-deformation of measures and of the t-deformed free on-volution t and relate them to the free, onditionally free and boolean ases. We presentthe R t transform, whih linearizes the onvolution t . We then reall two fundamentallimit theorems, the entral limit theorem and the Poisson limit theorem. We realulatethe Cauhy transform of the Poisson limit measure from �rst priniples, as the limit ofonvolution powers of µN =
(
1 − λ

N

)
δ0 + λ

N δ1, and then get the expliit form of themeasure from a result of Saitoh and Yoshida on the orresponding orthogonal polynomi-als. We then disuss the in�nite divisibility with respet to the onvolution t , and weestablish a Lévy�Khinhin formula. We onlude the third hapter by proving that for
t > 0 all probability measures µ have the Nia�Speiher property, that is, one an �ndtheir onvolution power µ t s for all s ≥ 1. This behaviour is similar to the free ase, as inthe original paper of Nia and Speiher [NS℄, and di�erent from the boolean ase (when
t = 0) for whih the property is satis�ed for all s > 0.In the fourth hapter we onstrut generalized Brownian motions, parametrized bya pair (t, q), 0 < t < 1, −1 ≤ q < 1. Suh a proess is a family of operators ω(τ ),
τ ∈ R, in an appropriate nonommutative probability spae. To onstrut it we �rstonsider a Fok-type Hilbert spae on whih we de�ne the reation and annihilationalgebra generated by the reation and annihilation operators c∗(h) and c(h), h ∈ H = KC,where K is a real Hilbert spae and KC its omplexi�ation. We show that the vauumstate ̺(a) = 〈Ω, aΩ〉 on this algebra is determined by a funtion on pair partitions ofan ordered set. We note that from the form of this pairing presription it follows thatthe Gaussian elements ω(k) = c∗(k) + c(k), k ∈ K →֒ KC, are Kesten-distributed for
q = −1 and are q-gaussian as t → 0. We then get the proess by identifying K with
L2(R) and de�ning ω(τ ) = ω(χ[0,τ)), where χ[0,τ) is the harateristi funtion of the[5℄



6 �. Wojakowskiinterval [0, τ ). Later in that hapter we present a link between the Kesten-distributedgeneralized Brownian motions and the redued free produt of Voiulesu. The last partof the hapter is devoted to the alulation of the expliit form of the Mehler kernelfor the Kesten measure and to a disussion of its positivity. The Mehler kernel, whenpositive, de�nes a lassial Markov proess, whih an be seen as a lassial version ofthe generalized stationary Brownian (Ornstein�Uhlenbek) proess. Moreover, we notiethat for those values of the parameter t for whih the kernel is not positive, it is impossibleto onstrut the seond quantization funtor.The �fth hapter is devoted to a generalization of the t-deformation of the free onvo-lution ⊞ to the t-deformation of the free produt ⋆. We �rst notie that the onstrutionof the onditionally free produt an be adapted to give the de�nition of a t-produtof algebras of polynomials in one variable, together with their orresponding states. Wethen show by a ombinatorial approah that we an de�ne produts for states on algebrasin many nonommutative variables arising in the above way, and that they are positivede�nite. We onlude this hapter by generalizing a reurrene formula for moments of t-deformed measures to a reurrene formula for moments of t-deformed states on algebrasin many nonommutative variables.The author wishes to thank Prof. Marek Bo»ejko for guidane, enouragement, en-thusiasm and patiene. This work was partially sponsored by the European ResearhNetwork �Quantum Probability with Appliations to Physis, Information Theory andBiology�, HPRN-CT-2002-00279, the European Commission Marie Curie Host Fellowshipfor the Transfer of Knowledge �Harmoni Analysis, Nonlinear Analysis and Probability�,MTKD-CT-2004-013389 and the KBN Grant No 1P03A 01330.
2. Nonommutative probabilityThe present work is onerned with a partiular onstrution in the general frameworkof nonommutative probability theory.In lassial probability the fundamental objet of study is the triple (Ω,Σ,P) where

Ω is a sample spae, Σ the σ-�eld of events and P a probability measure on (Ω,Σ). Therandom variables are real-valued measurable funtions. The distribution of a randomvariable X is the measure µX de�ned on the Borel subsets of the real line given by
µX(B) = P(X−1(B)) for all Borel sets B. The expetation of a random variable X isthus the expetation of the distribution µX .The random variables form a ommutative algebra A on whih one an de�ne theexpetation funtional E assoiated to the probability measure. To determine the dis-tribution of a random variable X one an look at its higher-order moments, that is, thevalues of the expetation funtional E at Xn ∈ A. The moment sequene, when allmoments are �nite, an determine the measure uniquely or not. This distintion wasaddressed for instane in [Ak℄. Although various su�ient onditions are known, there isno expliit haraterization of measures determined by their moment sequenes. The suf-�ient ondition most important to us is the ompatness of the support of the measure.



Probability interpolating between free and boolean 7In nonommutative probability the starting point is the above algebrai propertyof the random variables. The fundamental objet of study is the algebra of randomvariables together with an expetation funtional; they need not arise from any triple
(Ω,Σ,P). What is more, one an onsider nonommutative algebras. Thus, one de�nesa nonommutative probability spae to be a pair (A, ϕ) where A is a unital omplex
⋆-algebra and ϕ a linear positive funtional suh that ϕ(1) = 1. A nonommutativerandom variable is simply an elementX ∈ A. We shall almost always onsider self-adjointrandom variables X = X∗. By the distribution we then understand the moments ϕ(Xn),
n = 0, 1, . . . . Sine the sequene of moments is positive de�nite, there exists a probabilitymeasure µ on the real line suh that ϕ(Xn) =

T
xn dµ(x). In most of what follows we shallassume that the algebra A is a C⋆-algebra, as a result the moment sequenes generatedby the expetation funtional will orrespond to measures with ompat support. Inthis way the probability measure assoiated to any self-adjoint random variable from thealgebra will be uniquely determined.An essential onept in lassial probability is independene of random variables andonvolution of probability measures, whih is the distribution of the sum of independentrandom variables. These notions an be arried over to the nonommutative framework,they are known there as tensor independene and lassial onvolution. However, severalother kinds of independene together with orresponding onvolutions were desribed:

• free independene together with the free onvolution ⊞, introdued by Voiulesu[V1, V2℄; those onepts an be traed bak to the paper [Av℄,
• boolean independene and boolean onvolution ⊎, introdued by Speiher andWoroudi [SW℄; they are losely related to the regular free produt representationof free produt groups of Bo»ejko (see [Bo2, BLS℄),
• onditionally free independene together with the onditionally free onvolution cof pairs of measures, introdued by Bo»ejko, Leinert and Speiher in [BLS, BS3℄;see also [Bo1℄. The free and boolean ases are ontained in this approah throughan appropriate hoie of the seond measure of the pairs.Before we reall the above notions and disuss the deformations of whih the t-deforma-tion of this paper is a prominent example, we need some preliminaries. A good andmore omprehensive introdution to nonommutative probability an be found in [HP℄or [VDN℄.2.1. Basi notions. In the present work we shall be working with probability measureson the real line, the set of whih we shall denote by Prob(R). Let us reall some of thebasi de�nitions and fats that we shall need in the sequel. Sine all the theorems andfats presented in this setion are well known, we omit the proofs.2.1.1. Orthogonal polynomials. Let µ ∈ Prob(R) be a measure with �nite moments ofall orders, that is, for all k ∈ N,

|mµ(k)| =
∣∣∣
∞\
−∞

xk dµ(x)
∣∣∣ <∞,



8 �. Wojakowskiwhih we denote by µ ∈ Prob
(m)(R). For suh a measure we an de�ne the orrespondingorthonormal polynomials by the lassial three-term reurrene formula [Ak℄(2.1) p0(x) = 1, p1(x) = x− a0,

(x− an)pn(x) = bnpn+1(x) + bn−1pn−1(x),where we all the numbers an, bn ∈ R, bn ≥ 0, n = 0, 1, . . . , the Jaobi oe�ients.Symmetri measures with moments are haraterized by the property an = 0. Theorthonormal polynomials satisfy the relation\
supp(µ)

pj(x)pk(x) dµ(x) = δj,k.Most measures we will onsider have ompat support; suh measures are uniquely deter-mined by their moments. In that ase the orresponding orthonormal polynomials forman orthonormal basis of the spae L2(µ).2.1.2. Cauhy transforms. The most important tool to handle probability measures innonommutative probability is the Cauhy transform.Definition 2.1. Let µ ∈ Prob(R). Then the Cauhy transform of µ is de�ned by
Gµ(z) =

∞\
−∞

dµ(x)

z − x
for z ∈ C

+.Proposition 2.2. The Cauhy transform Gµ(z) is analyti in the upper half plane andtakes values in the lower half plane, Gµ : C+ → C−.There is an important link between the Cauhy transform of a measure with �nitemoments of all orders and the orresponding reurrene oe�ients of orthogonal poly-nomials. For suh µ ∈ Prob
(m)(R) the Cauhy transform an be written in the form ofa formal ontinued fration:

Gµ(z) =
1

z − a0 −
λ0

z − a1 −
λ1

z − a2 −
λ2. . .

,

where λn = (bn)2 and the oe�ients an are the same as in the reurrene formula (2.1).If µ has ompat support, whih we denote µ ∈ Prob
(c)(R), the ontinued frationonverges to the Cauhy transform (for proof see [C, Chapter III, Setion 4℄); moreover,we have the following theorem ([C, Chapter IV, Theorem 2.2℄):Theorem 2.3. A measure µ ∈ Prob(R) has ompat support if and only if the oe�-ients ai and λi are bounded.The Cauhy transform Gµ(z) is also related to Mµ(z), the generating funtion of themoments mµ(k):

1

z
Gµ

(
1

z

)
= Mµ(z) =

∞∑

k=0

mµ(k)zk.



Probability interpolating between free and boolean 9An important operation on measures that is well re�eted in Cauhy transforms is thedilation.Definition 2.4. We de�ne the dilation of a measure µ ∈ Prob(R) by a fator λ bysetting Dλ(µ)(A) = µ(λ−1A) for all Borel subsets A ⊂ R.We then have
GDλ(µ)(z) =

1

z − λa0 −
λ2λ0

z − λa1 −
λ2λ1

z − λa2 −
λ2λ2. . .

=
1

λ
Gµ

(
z

λ

)
.

The moments of the measure µ an be alulated from the oe�ients of the ontinuedfration with the use of Theorem 5.1 of [AB℄:Theorem 2.5. For a probability measure µ with ompat support we have
mµ(n) =

∑

π∈NC1,2(n)

∏

Bj∈π
|Bj |=2

λd(Bj)

∏

Bk∈π
|Bk|=1

αd(Bj)

where NC1,2(n) is the set of nonrossing partitions of {1, . . . , n} suh that for π ∈
NC1,2(n) its bloks Bj ∈ π have one or two elements , |Bj | is the ardinality of theblok Bj , and d(Bj) is its depth.Definition 2.6. A partition of the ordered set A = {1, . . . , n} is a set of bloks Bj ⊂ Asuh that Bi∩Bj = ∅ if i 6= j and ⋃

Bj = A. A rossing in a partition V = {B1, . . . , Bm}ours if for some 1 ≤ j ≤ m and k, l ∈ Bj , k < l there exists Bi and r, s ∈ Bi, r < ssuh that k < r < l < s or r < k < s < l. A partition is alled nonrossing if it has norossings. In a nonrossing partition one de�nes the depth of a blok Bj as the numberof bloks enveloping Bj , that is, d(Bj) = #{Bi | ∃r, s ∈ Bi, r < Bj < s}.2.1.3. Reiproals of Cauhy transformsProposition 2.7. The reiproal of the Cauhy transform Fµ(z) = 1/Gµ(z) : C+ → C+is analyti in the upper half plane.Complex funtions mapping analytially the upper half plane into itself are alled Pikfuntions . An elementary introdution to this subjet an be found in Chapter 2 of [D℄,a more detailed treatment is in [AG℄. For our purposes, the most important property ofPik funtions is the Nevanlinna integral representation theorem.Theorem 2.8 (Nevanlinna). A funtion F (z) is a Pik funtion if and only if there exist
a, b ∈ R with b ≥ 0 and a �nite positive measure ̺ suh that

F (z) = a+ bz +

∞\
−∞

1 + xz

x− z
d̺(x).Moreover , a, b and ̺ are uniquely determined.It is also possible to easily haraterize reiproals of Cauhy transforms in the lassof Pik funtions.



10 �. WojakowskiTheorem 2.9 (Nevanlinna). A funtion F (z) is the reiproal of the Cauhy transformof some probability measure µ ∈ Prob(R) if and only if it is a Pik funtion and b = 1in the Nevanlinna representation:
F (z) = Fµ(z) = a+ z +

∞\
−∞

1 + xz

x− z
d̺(x).

2.2. Free probability. We are now in a position to de�ne the most prominent typeof nonommutative probability, the free probability. To de�ne independene in lassialprobability one passes through onditions on sub-σ-�elds, it is thus natural that in thenonommutative theory one starts with subalgebras.Definition 2.10. A family of subalgebras Ai ⊂ A is alled free if
ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an) = 0(2.2)whenever ϕ(aj) = 0, aj ∈ Aij
, j = 1, . . . , n and i1 6= i2 6= · · · 6= in.Two random variables are alled free if they belong to two distint free subalgebras.For measures µ and ν with ompat support, their free onvolution µ ⊞ ν is de�nedas the distribution of X + Y ∈ A where X,Y ∈ A are free and have distributions µand ν respetively. To this onept there orresponds the notion of the free produt ofnonommutative probability spaes. Given (A1, ϕ1) and (A2, ϕ1) we de�ne A = A1⋆A2 asthe free produt with amalgamation of units, that is, the ⋆-algebra generated by the unitand words of the form ai1

1 b
j1
1 . . . ain

n b
jn
n where ak ∈ A1, bk ∈ A2, k, ik, jk ∈ N, ik, jk > 0,

i1, jn ≥ 0. The state ϕ = ϕ1 ⋆ ϕ2 is de�ned so as to satisfy the relation (2.2). Thenwe have ϕ|Ai
= ϕi, the algebras Ai naturally embedded into A are free, and if X ∈ A1,

Y ∈ A2 then mµX⊞µY
(n) = ϕ((X + Y )n).Sine the measure µ ⊞ ν depends only on the measures µ and ν, it is essential tobe able to desribe it only in terms of µ and ν. This is done with the use of the R-transforms R⊞

µ (z), R⊞
ν (z), the analogues of the logarithm of the Fourier transform inlassial probability. If we de�ne

R⊞
µ (z) = G−1

µ (z) − 1/z,(2.3)where G−1
µ (z) is the right inverse of Gµ(z) with respet to omposition of funtions, wehave

R⊞

µ⊞ν(z) = R⊞

µ (z) +R⊞

ν (z).(2.4)
G−1

µ (z) and R⊞
µ (z) are well de�ned in some neighbourhood of zero. We an thus writethe above equation in an alternative form

Gµ(z) =
1

z −R⊞
µ (Gµ(z))

.(2.5)Moreover, sine R⊞
µ (z) is analyti, it an be treated as a series ∑∞

k=0R
⊞
µ (k + 1)zk. Theoe�ients R⊞

µ (k) an be alulated by the results of Speiher [S1℄ from the ombinatorial



Probability interpolating between free and boolean 11moment-umulant formula
mµ(n) =

∑

π∈NC(n)
π=(π1,...,πk)

k∏

i=1

R⊞
µ (|πi|),(2.6)

where NC(n) is the set of nonrossing partitions of {1, . . . , n}, πi, i = 1, . . . , k, are bloksof the partition π, and |πi| is the ardinality of the blok. Equivalently, one an startwith reiproals instead of Cauhy transforms and de�ne
ϕµ(z) = F−1

µ (z) − zgetting a similar linearity relation ϕµ⊞ν(z) = ϕµ(z) + ϕν(z). Moreover, this approahextends to measures with unbounded support and with in�nite moments; one only hasto �nd an appropriate domain for z. This has been done by Maassen [Ma℄ for the ase ofmeasures with �nite variane and by Berovii and Voiulesu without this assumptionin [BV2℄. Berovii and Voiulesu prove that for any probability measure µ ∈ Prob(R)and any α > 0 there exists β > 0 suh that the funtion ϕµ(z) is analyti in a domain ofthe form
{z : |z| > β, Im(z) > 0, Re(z) < α Im(z)}and that suh an analyti funtion determines a orresponding probability measure. Sinethe sum of two suh funtions is again analyti in suh a trunated angle for β largeenough, the orresponding measure is determined.2.3. Boolean probability. The seond well-known example of nonommutative inde-pendene is the boolean relation.Definition 2.11. A family of subalgebras Ai ⊂ A is alled boolean-independent if

ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an)(2.7)whenever
aj ∈ Aij

, j = 1, . . . , n, aj 6= 1 ∈ A and i1 6= i2 6= · · · 6= in.The boolean produt has been introdued by Bo»ejko in [Bo1, Bo2℄ and is known underits name sine the paper of Speiher and Woroudi [SW℄. For our purposes the booleanprodut (A1, ϕ1) ⋆b (A2, ϕ2) an be thought of as a speial ase of the onditionally freeprodut (A1, ϕ1, ψ1)⋆c (A2, ϕ2, ψ2), where on the appropriate algebras we have ψi(α1⊕β)

= α. This setup is enough for studying the distributions of sums of random variables.In a full treatment of the boolean produt and independene we would have to onsideralgebras Ãi = Ai ⊕ C 1̃ with arti�ially added units, together with states ϕ̃i(α1̃ ⊕ β) =

α+ ϕ(β) and ψi(α1̃ ⊕ β) = α; this is, however, beyond the sope of the present paper.As in the previous onstrutions, the boolean onvolution is best desribed in termsof analyti funtions. Let µ, ν ∈ Prob(R), and let
R⊎

µ(z) = z − 1

Gµ(z)
, R⊎

ν (z) = z − 1

Gν(z)
.(2.8)We know from [SW℄ that R⊎

µ⊎ν(z) = R⊎
µ(z)+R⊎

ν (z). Speiher and Woroudi also show thatthis de�nition works for arbitrary probability measures, possibly with in�nite moments,



12 �. Wojakowskidue to the Nevanlinna theorem. Another important property arising from the Nevanlinnatheory is that every probability measure is in�nitely divisible with respet to the booleanonvolution. The easiest proof of this fat is by showing that for any probability measure
µ ∈ Prob(R) and t ≥ 0 the funtion tR⊎

µ(z) is the boolean transform R⊎
µt

(z) of someprobability measure µt. Consequently, for any N ∈ N we have µ = µ1/N ⊎ · · · ⊎ µ1/N ,where R⊎
µ1/N

(z) = (1/N)R⊎
µ(z). Moreover, for any µ ∈ Prob(R) we an de�ne its t-thboolean onvolution power µ⊎t for t ≥ 0 by requiring R⊎

µ⊎t(z) = tR⊎
µ(z).2.4. Conditionally free probability. The onditionally free onvolution has beenintrodued in the papers of Bo»ejko, Leinert and Speiher [BS2, BLS℄. Similarly to thefree ase, we start by looking at onditionally free subalgebras. Let A be a ⋆-algebra withtwo states ϕ and ψ.Definition 2.12. We say that the subalgebras A1,A2 ⊂ (A, ϕ, ψ) are onditionally freeif they satisfy

ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an),(2.9)
ψ(a1 · · · an) = ψ(a1) · · ·ψ(an) = 0(2.10)whenever(2.11) ψ(aj) = 0, aj ∈ Aij

, j = 1, . . . , n and i1 6= i2 6= · · · 6= in,where (2.10) means that the subalgebras are free with respet to the seond state ψ.Consider random variables X ∈ (A1, ϕ, ψ), Y ∈ (A2, ϕ, ψ). To eah of them thereorrespond two sequenes of moments, with respet to the two states ϕ and ψ, henetwo probability measures, X ∼ (µX , νX), Y ∼ (µY , νY ). The pair of measures X + Y ∼
(µX+Y , νX+Y ) orresponding to the random variableX+Y is alled the onditionally freeonvolution of (µX , νX) and (µY , νY ) and denoted (µX+Y , νX+Y ) = (µX , νX) c (µY , νY ),where by (2.10) we have νX+Y = νX ⊞ νY . As in the free ase, if we are given twononommutative probability spaes (A1, ϕ1, ψ1) and (A2, ϕ2, ψ2), on A = A1 ⋆ A2, thefree produt with amalgamation of units, we an de�ne states ϕ and ψ by requiring themto satisfy relations (2.9)�(2.11). We denote this by (A, ϕ, ψ) = (A1, ϕ1, ψ1)⋆c(A2, ϕ2, ψ2).The natural embeddings of A1 and A2 into A are onditionally free, ϕ|Ai

= ϕ, ψ|Ai
= ψ,and if X ∈ A1, Y ∈ A2 then mµX+Y

(n) = ϕ((X + Y )n) and mνX+Y
(n) = ψ((X + Y )n).The onditionally free onvolution an also be desribed in terms of R-transforms.Sine the seond measure of the pairs is onvolved freely, it will be desribed by the freetransform R⊞

ν (z). For the �rst measure one uses a di�erent funtion dependent on bothmeasures; we denote it by Rc

µ,ν(z). We also use the equation (2.5) de�ning R⊞
ν (z), thusgetting

Gµ(z) =
1

z −Rc

µ,ν(Gν(z))
, Gν(z) =

1

z −R⊞
ν (Gν(z))

(2.12)and if (µ, ν) = (µ1, ν1) c (µ2, ν2) then
R

c

µ,ν(z) = R
c

µ1,ν1
(z) +R

c

µ2,ν2
(z), R⊞

ν (z) = R⊞
ν1

(z) +R⊞
ν2

(z).



Probability interpolating between free and boolean 13As in the free ase, the R-transforms an be written as power series
R

c

µ,ν(z) =
∞∑

k=0

R
c

µ,ν(k + 1)zk, R⊞
ν (z) =

∞∑

k=0

R⊞
ν (k + 1)zk,and have orresponding ombinatorial moment-umulant formulae

mν(n) =
∑

π∈NC(n)
π=(π1,...,πk)

k∏

i=1

R⊞

ν (|πi|),(2.13)
mµ(n) =

∑

π∈NC(n)
π=(π1,...,πk)

∏

πi outer

R
c

µ,ν(|πi|)
∏

πj inner

R⊞
ν (|πj |),(2.14)

where a blok πi is alled inner when there exists another blok πj with a, b ∈ πj suhthat a < p < b for all p ∈ πi. All bloks whih are not enveloped in suh a way are alledouter. Equivalently one an say that the outer bloks πi have depth d(πi) = 0 and theinner πj have d(πj) > 0.The above de�nitions are well established in the ase of measures with ompat sup-port. Only reently, after the main part of the present work was ompleted, Belinshi [Be℄extended the theory of the onditionally free onvolution to arbitrary probability mea-sures. His approah, however, is not expressed in terms of R-transforms but uses thesubordination funtions of Biane [Bi℄. We know that for any probability measures ν1, ν2there exist funtions ω1(z), ω2(z) suh that for all z ∈ C \ R,
Gν1

(ω1(z)) = Gν2
(ω2(z)) = Gν1⊞ν2

(z).Belinshi proved that if (µ, ν) = (µ1, ν1) c (µ2, ν2) and with the notation
hξ = Fξ(z) − z for all measures ξ,we have
hµ(z) = hµ1

(ω1(z)) + hµ2
(ω2(z)).It seems likely that the above onsiderations will be extended to inlude a formulationin terms of the R or φ transforms on appropriate domains, similarly to the paper [BV2℄in whih the authors develop the ase of arbitrary probability measures in the free ase.Sine a number of our results are proved through properties of the transforms, we willstill need bounded support in most ases.2.5. Deformations. Let T : Prob(R) → Prob(R). There are two ways of using suha deformation of measures to de�ne deformations of onvolutions that we are interestedin. The �rst uses the free onvolution and is valid for any invertible map T :Definition 2.13. The T -deformed free onvolution T is de�ned by

µ T ν = T−1(Tµ⊞ Tν)(2.15)for any probability measures µ and ν.



14 �. WojakowskiFor the seond one we need to assume that T maps measures with ompat supportto measures with ompat support, but no invertibility is required.Definition 2.14.
(µ⊞T ν, Tµ⊞ Tν) = (µ, Tµ) c (ν, Tν)for ompatly supported µ and ν.Remark 2.15. The free onvolution ⊞ in De�nition 2.13 an be replaed by any as-soiative onvolution ⊕ (for instane by the lassial onvolution), produing anotherassoiative onvolution ⊕(T ). This is going to be the subjet of a forthoming paper.We are interested mostly in transformations T preserving boundedness of support,satisfying the Bo»ejko property of the following de�nition.Definition 2.16. A transformation T of probability measures has the Bo»ejko propertyif whenever for probability measures µ, ν we write

(ξ, η) = (µ, Tµ) c (ν, Tν),then
η = Tξ.(2.16)There are two reasons that suh deformations are of interest; we gather them in thefollowing propositions.Proposition 2.17. For transformations with the Bo»ejko property the above de�ned on-volution ⊞T is assoiative.Proof. By assoiativity of the onditionally free onvolution we have

(µ⊞T ν) ⊞T ξ = (µ⊞T ν, T (µ⊞T ν)) c (ξ, T ξ) = (µ⊞T ν, Tµ⊞ Tν) c (ξ, T ξ)

= (µ, Tµ) c (ν, Tν) c (ξ, T ξ) = µ⊞T (ν ⊞T ξ).Proposition 2.18. If the transformation T with the Bo»ejko property is invertible, thenthe onvolutions T and ⊞T oinide.Proof. We have
µ⊞T ν = (µ⊞T ν, Tµ⊞ Tν) = (T−1(Tµ⊞ Tν), Tµ⊞ Tν) = µ T ν.A problem of Bo»ejko was to �nd all transformations T with the Bo»ejko prop-erty (2.16).The �rst known example was the t-deformation treated in depth in the present paper,introdued by Bo»ejko andWysoza«ski in the papers [BW1, BW2℄ and further studied bythe author in [W℄. Its generalization, the (a, b)-deformation, was onsidered by Krystekand Yoshida in [KY2℄. Further examples, the so-alled pure onvolutions, were given byOravez in [O1, O2℄. Another attempt was the ∆ deformation and its speial ases, the

r and s deformations (see [Bo3, KY1, Y1, Y2℄); however, in [BKW℄ it was proved thatthis deformation has the Bo»ejko property only when it redues to the identity or mapsall measures to δ0, and that in other ases it leads to nonassoiative onvolutions. In thepapers [KW1, KW2℄ the authors introdue two more families of deformations, of whihone is invertible and based on ideas similar to the t- and (a, b)-deformations, whereas



Probability interpolating between free and boolean 15the other is not invertible, and uses measures in�nitely divisible with respet to the freeonvolution.As mentioned at the beginning of this hapter, the lassial onvolution in the ordi-nary probability theory, and the various anonial onvolutions of the nonommutativeprobability theory, that is, the lassial, free, boolean and strongly and weakly monotoniones (not disussed in this paper, introdued in the work of Muraki [Mu1℄), arise as thedistributions of sums of suitably distributed random variables that are independent inthe orresponding sense. Speiher [S2℄ and Muraki [Mu2℄ proved that without furtherassumptions on the algebras of random variables the above �ve notions are the onlypossible.However, it seems that to deal suessfully with nonommutative random variablesit would su�e to limit ourselves to algebras of nonommutative polynomials in manyvariables. The last hapter of the present paper is an attempt to substantiate this ideain the ase of the t-deformed probability. Only reently, a major step in this diretionfor the general ase has been made by Muraki [Mu3℄. His idea is to derive a notion ofindependene from the notion of Fok spae, and to work with orthogonal polynomialsthat are nonommutative. A reoniliation of the approah of Muraki and ours will bethe subjet of a future work.
3. Kesten probabilityThe objet of the present paper is to study some problems arising in free probability the-ory around the onept of t-deformation of measures, onvolutions, states and produts.It was introdued by Bo»ejko and Wysoza«ski in [BW1, BW2℄.3.1. t-deformation of measures. We will use the language introdued in the previoushapter to de�ne the most fundamental idea in our study, the t-deformation of a measure.Let t ≥ 0. For a measure with ompat support µ ∈ Prob

(c)(R) the Cauhy transformhas the onvergent ontinued fration representation with bounded oe�ients:
Gµ(z) =

1

z − a0 −
λ0

z − a1 −
λ1

z − a2 −
λ2. . .

.

We de�ne the t-deformed measure denoted Utµ or µt as the measure for whih the on-tinued fration representation of the Cauhy transform is
GUtµ(z) =

1

z − ta0 −
tλ0

z − a1 −
λ1

z − a2 −
λ2. . .

.



16 �. WojakowskiSine the reurrene oe�ients remain bounded, Utµ is again a ompatly supportedmeasure and GUtµ(z) is well de�ned for z ∈ C+. The above de�nition seems intuitiveand instrutive, but it is preferable to use the algebrai expression relating the reiproalsof the above Cauhy transforms, sine by the ruial observation of [BW1℄, Ut thus de�nedextends to all probability measures on the real line. Hene we make the followingDefinition 3.1. The t-deformation of a measure µ ∈ Prob(R) is the measure Utµorresponding to the reiproal of the Cauhy transform given by
FUtµ(z) = tFµ(z) + (1 − t)z.(3.1)Let us reall the argument that allows this extension:Proposition 3.2. For all µ ∈ Prob(R) and t ≥ 0 the funtion FUtµ(z) de�ned in (3.1)is the reiproal of the Cauhy transform of a unique measure µt = Utµ ∈ Prob(R).Proof. By the Nevanlinna theorem, for µ there exist a ∈ R and a positive �nite measure

̺ suh that
FUtµ(z) = tFµ(z) + (1 − t)z = t

(
a+ z +

∞\
−∞

1 + xz

x− z
d̺(x)

)
+ (1 − t)z

= ta+ z +

∞\
−∞

1 + xz

x− z
d(t̺)(x),where ta and t̺ satisfy again the onditions of the Nevanlinna theorem.Let us also reall from [BW1℄ the basi properties that follow from this de�nition.Proposition 3.3. For any µ ∈ Prob(R) and t, s ≥ 0 the following properties are satis-�ed :

• (Ut)t≥0 is a multipliative semigroup: Us(Ut(µ)) = Ust(µ);
• dilations of measures ommute with Ut: Dλ(Ut(µ)) = Ut(Dλ(µ));
• Ut and U1/t for t > 0 are inverses of eah other ;
• Ut(µ)

t→1−→ µ in the ⋆-weak topology ;
• Ut is ontinuous in the ⋆-weak topology : if µn → µ then Ut(µn) → Ut(µ).Let us now see the ation of Ut on a ouple of elementary examples.Example 3.4. Sine for a single point measure δa we have Fδa

(z) = z − a, we get
Ut(δa) = δta.Example 3.5. For a two-point measure ω = pδa + qδb, p+ q = 1 we have

GUt(ω)(z) =
1

t
Gω(z) + (1 − t)z

=
1

(1 − t)z + t
p

−a+z + q
−b+z

=
p(z − b) + q(z − a)

zp(1 − t)(z − b) + zq(1 − t)(z − a) + t(z − a)(z − b)
=
W1(z)

W2(z)
,where the degrees of the polynomials W1(z) and W2(z) are 1 and 2, respetively. Thismeans that Ut(ω) is again a two-point measure PδA + QδB and its Cauhy transform



Probability interpolating between free and boolean 17an be multiplied in the numerator and in the denominator by c, the reiproal of theoe�ient of z2 in W2(z), so that
GUt(ω)(z) =

cW1(z)

cW2(z)
=

P

z −A
+

Q

z −B
,where P +Q = 1 and A,B are the zeros of W2(z). This leads to the following solution:

A =
1

2

(
b(1 + q(−1 + t)) + a(q + t− qt)

+
√
−4abt+ (b(1 + q(−1 + t)) + a(q + t− qt))2

)
,

B =
1

2

(
b(1 + q(−1 + t)) + a(q + t− qt)

−
√
−4abt+ (b(1 + q(−1 + t)) + a(q + t− qt))

2
)
,

P =
1

2
+

b(−1 + q + qt) − a(q − t+ qt)

2
√
−4abt+ (b(1 + q(−1 + t)) + a(q + t− qt))

2
,

Q =
1

2
− b(−1 + q + qt) − a(q − t+ qt)

2
√
−4abt+ (b(1 + q(−1 + t)) + a(q + t− qt))

2
.Note that the solution given on page 740 of [BW2℄ is erroneous.As observed by Bo»ejko and Wysoza«ski in [BW2℄, the relation between the Cauhytransform Gµ(z) and Mµ(z), the generating funtion of moments, allows the derivationof a reurrene formula for the moments of the deformed measure Utµ:

mUtµ(n) = tmµ(n) +

n−1∑

k=1

mµ(k)mUtµ(n− k).(3.2)In partiular, if the �rst moment mµ(1) of the measure µ vanishes, then also mUtµ(1) = 0and mUtµ(2) = tmµ(2).3.2. t-deformed free onvolution. We are now in a position to de�ne the t-deformedfree (or simply t-free) onvolution.Definition 3.6. Given two probability measures µ, ν ∈ Prob(R) and t > 0 we de�netheir t-free onvolution as
µ t ν = U1/t((Utµ) ⊞ (Utν)).Remark 3.7. The onvolution t is learly assoiative, sine

(µ t ν) t ̺ = U1/t

[
Ut

(
U1/t(Utµ⊞ Utν)

)
⊞ Ut̺

]
= U1/t(Utµ⊞ Utν ⊞ Ut̺).We would also like to be able to desribe our onvolution with the help of some trans-form R t

µ (z) that would have the linearization property with respet to the onvolution
t . Sine by the above de�nition Ut(µ t ν) = (Utµ) ⊞ (Utν), a natural hoie would be
R t

µ (z) = R⊞
Utµ(z); however, for reasons that will beome lear after the next setion, onthe onnetion between the t-free onvolution and the onditionally free onvolution ofBo»ejko, Leinert and Speiher [BLS℄, we prefer to multiply it by a fator 1/t, thus gettingthe following



18 �. WojakowskiDefinition 3.8. The R t
µ (z) transform of a measure µ ∈ Prob(R) is given by

R t

µ (z) =
1

t
R⊞

Utµ(z).This way we have the desired linearization property R t

µ t ν(z) = R t
µ (z) + R t

ν (z). Wean also de�ne the ϕ t
µ (z) transform by ϕ t

µ (z) = 1
tϕUtµ(z).Example 3.9. Let us alulate the R t (z) transform of the two-point measure onsideredabove.

R t

ω (z) =
1

t
R⊞

Utω(z).By de�nition of R⊞ we get
R⊞

Utω(z) = G−1
Utω

(z) − 1

z
,where G−1

Utω
(z) is the inverse of GUtω(z) with respet to omposition of funtions. Toalulate it we need to solve a quadrati equation. A straightforward alulation thusgives

±G
−1
Utω

(z) =
1 + z − zq + tzq ±

√
−4z(1 − q) + (−1 − z + zq − tzq)

2

2z
.It an be easily seen thatGUtω(z)

z→0−→ ∞, so the branh of the square root in the de�nitionof G−1
Utω

(z) is hosen so that G−1
Utω

(z)
z→∞−→ 0, that is,

G−1
Utω

(z) =
1 + z − zq + tzq −

√
−4z(1 − q) + (−1 − z + zq − tzq)

2

2z
.Consequently,

R t

ω (z) =
−1 + z − zq + tzq −

√
−4z(1 − q) + (−1 − z + zq − tzq)2

2zt
.(3.3)3.3. Connetion with the onditionally free onvolution. We an now reall thefollowing observation from [BW1℄ and give it an analyti proof:Theorem 3.10. Let ̺, η ∈ Prob

(c)(R) and (µ, ν) = (̺, Ut̺) c (η, Utη). Then
(µ, ν) = (̺, Ut̺) c (η, Utη) = (̺ t η, Ut̺⊞ Utη).Proof. The equation ν = Ut̺ ⊞ Utη follows trivially from the de�nition of the onvolu-tion c . To prove µ = ̺ t η we shall look at the respetive R-transforms. From (2.12)and the de�nition of Ut we have

R
c

̺,Ut̺(GUt̺(z)) = z − 1

G̺(z)
= z −

((
1 − 1

t

)
z +

1
t

GUt̺(z)

)
=

1

t

(
z − 1

GUt̺(z)

)
,thus(3.4) R

c

̺,Ut̺(z) =
1

t

(
G−1

Ut̺
(z) − 1

z

)
=

1

t
R⊞

Ut̺(z).



Probability interpolating between free and boolean 19From (2.12) we an �nd the Cauhy transform of the measure µ:
Gµ(z) =

1

z −Rc

̺,Ut̺(GUt̺ ⊞ Utη(z)) −Rc

η,Utη(GUt̺ ⊞ Utη(z))

=
1

z − 1
tR

⊞
Ut̺

(GUt̺ ⊞ Utη(z)) − 1
tR

⊞
Utη(GUt̺ ⊞ Utη(z))

=
1

z − 1
tR

⊞

Ut̺ ⊞ Utη(GUt̺ ⊞ Utη(z))
=

1
1
t (z − R⊞

Ut̺ ⊞ Utη(GUt̺ ⊞ Utη(z))) +
(
1 − 1

t

)
z

=
1

1
t · 1

GUt̺ ⊞ Utη(z) +
(
1 − 1

t

)
z

= GU1/t(Ut̺ ⊞ Utη)(z) = G̺ t η(z).

Remark 3.11. As we see in equation (3.4), the onditionally free transform Rc

µ,Utµ(z)is proportional to the free transform R⊞
Utµ

(z) of the deformed measure Utµ, similarly tothe t-free transform R t
µ (z). This justi�es the hoie of the onstant 1/t in De�nition 3.8,so that R t

µ (z) = Rc

µ,Utµ(z).Remark 3.12. From the preeding remark and equations (2.13) and (2.14) we get thefollowing moment-umulant formulae:
mµ(n) =

∑

π∈NC(n)
π=(π1,...,πk)

t−#outer(π)
k∏

i=1

R⊞

Utµ(|πi|) =
∑

π∈NC(n)
π=(π1,...,πk)

t#inner(π)
k∏

i=1

R t

µ (|πi|)

3.4. Connetion with the boolean onvolution. The boolean onvolution of mea-sures with ompat support an also be seen to be a speial ase of the onditionally freeonvolution, namely (µ ⊎ ν, δ0) = (µ, δ0) c (ν, δ0). As a onsequene of this and of theontinuity properties of the onditionally free onvolution we know that if
̺t

t→0−→ δ0, ηt
t→0−→ δ0 and (ζt, θt) = (µ, ̺t) c (ν, ηt)then

ζt
t→0−→ µ ⊎ ν and θt

t→0−→ δ0,all onvergenes onsidered in the weak-⋆ topology.The onnetion between the t-free onvolution and the boolean onvolution is twofold:Remark 3.13. First of all, the deformation Ut is de�ned for all t ≥ 0, whereas theonvolution t only for t > 0, sine it involves U1/t. However, if we let t→ 0 then for any
µ, ν ∈ Prob

(c)(R) we have Utµ,Utν
t→0−→ δ0 and by the above remarks

(µ,Utµ) c (ν, Utν) = (µ t ν, Utµ⊞ Utν)
t→0−→ (µ ⊎ ν, δ0).We use this onvergene property to extend the t-free onvolution to the ase t = 0, andto say that t interpolates between the free onvolution ⊞ for t = 1 and the booleanonvolution ⊎ for t = 0.



20 �. WojakowskiRemark 3.14. Seondly, for any t ≥ 0 and µ ∈ Prob(R), we have, from De�nition 3.1and equation (2.8),
R⊎

µ⊎t(z) = tR⊎
µ(z) = tz − t

Gµ(z)
= z − 1

GUtµ(z)
= R⊎

Utµ(z),whih means that the Ut transformation of a probability measure is nothing else than its
t-th boolean onvolution power.3.5. t-free entral limit theorem. Let us now reall the fundamental observation of[BW1℄, the entral limit theorem.Theorem 3.15. Let µ ∈ Prob(R) be suh that mµ(1) = 0, mµ(2) = 1 and let t > 0.Then

D1/
√

nµ t · · · t D1/
√

nµ
n→∞−→ κtin the weak-⋆ topology , where the limiting measure κt is related to the standard Wignermeasure ω, appearing in the free entral limit theorem, by κt = U1/tD√

tω.Proof. From the de�nition of the onvolution t we have
D1/

√
nµ t · · · t D1/

√
nµ = U1/t(D1/

√
nUtµ⊞ · · · ⊞D1/

√
nUtµ).Moreover, we know from (3.2) that mUtµ(1) = 0 and mUtµ(2) = t. We may thus use thefree entral limit theorem to get

D1/
√

nUtµ⊞ · · · ⊞D1/
√

nUtµ
n→∞−→ D√

tω.Remark 3.16. The measure κt for t = 1−1/(2N) where N ∈ N appeared �rst in a paperby Harry Kesten [K℄, where it is shown that this is the spetral measure of a randomwalk on the free group with N generators.Definition 3.17. We shall all κt the Kesten measure with parameter t.The Kesten distribution κt has been alulated for instane in [BW2℄. It has a partabsolutely ontinuous with respet to the Lebesgue measure, denoted κ̃t, and for t < 1/2a disrete part κ̂t with two atoms:
κ̃t =

1

2π
·

√
4t− x2

1 − (1 − t)x2
χ[−2

√
t,2

√
t](x) dx,

κ̂t =
1 − 2t

2 − 2t
(δ−1/

√
1−t + δ1/

√
1−t) for t < 1/2,and its Cauhy transform in the ontinued fration representation has the form

Gκt
(z) =

1

z − 1

z − t

z − t. . .
.

3.6. t-free Poisson limit theorem. The seond important type of limit theorem is thePoisson limit theorem, speifying the weak-⋆ limit of µN =
(
1− λ

N

)
δ0 + λ

N δ1 as N → ∞.



Probability interpolating between free and boolean 21Let us �rst write in more detail the argument that allows the de�nition in [BW2℄ of the
t-free Poisson measure π(t)

λ as one having onstant umulants (this relates also to theonditionally free Poisson distribution of [BLS℄).Theorem 3.18. Let λ > 0 and µN =
(
1 − λ

N

)
δ0 + λ

N δ1. Then
lim

N→∞
R t

µ
t N

N

(z) = R t

π
(t)
λ

(z) =
λ

1 − z
.Proof. For simpliity of notation set ǫ = λ/N . By the linearization property of the R t (z)transform we have

R t

µ
t N

N

(z) = NR t

µN
(z).By equation (3.3) of Example 3.9 we have

R t

µN
(z) =

−1 + z − zǫ+ tzǫ−
√
−4z(1 − ǫ) + (−1 − z + zǫ− tzǫ)

2

2zt

=
z − 1 −

√
(−1 − z)

2 − 4z

2zt
+

−z + tz − 4z+2(−1−z)(z−tz)

2
√

(−1−z)2−4z

2zt
ǫ+ O(ǫ2)

=
ǫ

1 − z
+ O(ǫ2),where the two terms in the seond line are the �rst two terms of the Taylor expansion of

R t
µN (z), onsidered as a funtion of ǫ, around 0, and where O(ǫ2) stands for the remainderof the expansion. We thus have

R t

π
(t)
λ

(z) = lim
N→∞

NR t

µN
(z) =

λ

1 − z
.Let us note that tλ

1−z is the free R⊞-transform of the free Poisson measure πtλ (seefor instane [HP℄). Thus, we have on one hand
tR t

π
(t)
λ

(z) =
tλ

1 − z
= R⊞

πtλ
(z),on the other hand, from the de�nition of the R t transform we get

tR t

π
(t)
λ

(z) = R⊞

Utπ
(t)
λ

(z),and hene Utπ
(t)
λ = πtλ, whih means that the t-free Poisson measure is a deformationof the free Poisson measure: π

(t)
λ = U1/tπtλ. Calulation of the expliit form of themeasure π(t)

λ an now be done by alulating G−1
U1/tπtλ

(z), inverting it and using theStieltjes inversion formula. We an get it another way by using the ontinued frationrepresentation of Cauhy transforms and by a result by Saitoh and Yoshida [SY℄. Weknow that
Gπtλ

(z) =
1

z − tλ− tλ

z − (tλ+ 1) − tλ

z − (tλ+ 1) − tλ. . .



22 �. Wojakowskiand by the properties of Ut

G
π

(t)
λ

(z) = GU1/tπtλ
(z) =

1

z − λ− λ

z − (tλ+ 1) − tλ

z − (tλ+ 1) − tλ. . .
.

Note that although the transform G
π

(t)
λ

(z) in [BW2℄ was alulated orretly, the orre-sponding ontinued fration forms (11.39) and (11.40) were erroneous. From the aboveontinued fration representation we get the oe�ients in the reursion formula for monipolynomials orthogonal with respet to the measure π(t)
λ :

p0(x) = 1, p1(x) = x− λ,

p2(x) = (x− (tλ+ 1))p1(x) − λp0(x),

pn+1(x) = (x− (tλ+ 1))pn(x) − tλpn−1(x).Saitoh and Yoshida onsidered measures orthogonalizing systems of orthogonal monipolynomials de�ned by
q0(x) = c, q1(x) = x− α,

qn+1(x) = (x− a)qn(x) − bqn−1(x).It an be easily seen that for α = λ, a = tλ + 1, b = tλ and c = 1/t these relationsprodue for n ≥ 1 the polynomials pn(x) orresponding to the t-free Poisson measure
π

(t)
λ . For n = 0 we get p0(x) = tq0(x), but this does not spoil the orthogonality relations.Saitoh and Yoshida alulate the unique probability measure ν orthogonalizing the abovesystem of polynomials:

ν = ν̃ + ν̂,where
f(x) = (1 − c)(x− a)2 + (c− 2)(α− a)(x− a) + (α− a)2 + bc2,

dν̃(x) =
c
√

4b− (x− a)2

2πf(x)
· χ[a−2

√
b,a+2

√
b](x) dx,and

dν̂(x) =





0 if f(x) has no real roots,
max

(
0, 1 − b

(α−a)2

)
δy if f(x) has one real root y = α+ b

α−a ,
w1δy1

+ w2δy2
if f(x) has two real roots y1 and y2,where

wi =
1√

(α− a)2 − 4b(1 − c)
max

(
0,

bc

|yi − α| −
|yi − α|

c

)
.We therefore get the absolutely ontinuous part of the t-free Poisson measure, as well asits disrete part:
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π̃

(t)
λ =

√
4tλ− (1 − x+ tλ)

2

2πx(1 + (−1 + t)x+ λ− tλ)
χ[tλ+1−2

√
tλ,tλ+1+2

√
tλ](x) dx,

π̂
(t)
λ =

{
max(0, 1 − λ)δ0 for t = 1,
w1δy1

+ w2δy2
for t 6= 1.3.7. t-in�nite divisibility and t-free Lévy�Khinhin formula. We already brie�ymentioned the term �in�nite divisibility� in the ontext of the properties of the booleanonvolution. Let us reall the de�nition:Definition 3.19. We say that a probability measure µ is in�nitely divisible with respetto a onvolution ⋆ if for every N ∈ N there exists a measure µN suh that µ = µ⋆N

N .This an be rewritten equivalently in terms of R⋆-transforms: a probability measure
µ is in�nitely divisible with respet to a onvolution ⋆ if for every N ∈ N there existsa measure µN suh that R⋆

µ(z) = NR⋆
µN

(z). In the ase of the t-free onvolution t weprefer to use the ϕ t
µ (z) transform, sine it allows us to treat measures with unboundedsupport. We have an analogue of the free Levy�Khinhin formula:Theorem 3.20. A measure µ is t -in�nitely divisible if and only if there exist α ∈ R anda �nite positive measure ̺ suh that for all z ∈ C+,

ϕ t

µ (z) = α+

∞\
−∞

1 + zx

z − x
d̺(x).Proof. In the ase of the t-free onvolution a measure µ is t -in�nitely divisible if forevery N ∈ N there exists a measure µN suh that on some trunated angle domain

ϕ t

µ (z) = Nϕ t

µN
(z).By a double appliation of the de�nition of the ϕ t transform to the left and right handside of the above equation we get

1

t
ϕ⊞

Utµ(z) = ϕ t

µ (z) = Nϕ t

µN
(z) = N

1

t
ϕ⊞

UtµN
(z),hene, the measure µ is t -in�nitely divisible if and only if

ϕ⊞

Utµ(z) = Nϕ⊞

UtµN
(z),whih is equivalent to ⊞-in�nite divisibility of Utµ (all equalities hold on some trunatedangle domains). By the free Levy�Khinhin formula (see [Ma℄, [BV1℄ and [BV2℄) themeasure Utµ is freely in�nitely divisible if and only if there exist α̃ ∈ R and a positivemeasure ˜̺ suh that for all z ∈ C+,

ϕ⊞
Utµ(z) = α̃+

∞\
−∞

1 + zx

z − x
d˜̺(x).Hene

ϕ t

µ (z) =
1

t
ϕ⊞

Utµ(z) = α+

∞\
−∞

1 + zx

z − x
d̺(x),where α = α̃/t and ̺ = ˜̺/t.



24 �. Wojakowski3.8. ⊞t-onvolution powers of probability measures. Nia and Speiher [NS℄proved the followingTheorem 3.21. For any probability measure µ, possibly not in�nitely divisible, and anynumber s ≥ 1 there exists a probability measure µs suh that
µs = µ⊞s,whih is understood as

ϕ⊞

µs
(z) = sϕ⊞

µ (z).In the ase of the boolean onvolution, sine all probability measures are in�nitelydivisible, the same property holds for s ≥ 0. We are interested in �nding a similar resultfor the ase of the t-free onvolution t . Clearly, we ould not expet suh a propertyonly for s ≥ s0, for some 0 < s0 < 1, sine then, by iterating the onvolution power, wewould have the property for all s > 0. In fat, we have the followingTheorem 3.22. For an arbitrary probability measure µ ∈ Prob(R) there exists a measure
µs ∈ Prob(R) suh that µ = µ t s

s for s ≥ 1.Proof. By de�nition
ϕ t

µ (z) =
1

t
ϕ⊞

Utµ(z) =
1

t
ϕ⊞

ν (z),where Utµ = ν ∈ Prob(R), hene for s ≥ 1 there exists a measure νs suh that ν = ν⊞s
s ,whih gives

1

t
ϕ⊞

ν (z) =
s

t
ϕ⊞

νs
(z) = sϕ t

U1/tνs
(z).We have therefore found a measure U1/tνs whih has the required property (U1/tνs)

t s = µfor s ≥ 1. It is not possible to improve on s, sine that would imply that the freeonvolution version would also hold for s ≥ 0, whih is known to be false.
4. Generalized Brownian motion4.1. Introdution. In [BS3℄ Bo»ejko and Speiher onsider the generalized Brownianmotions. Suh a proess is a family of operators ω(t), t ∈ R, in an appropriate nonom-mutative probability spae. The onstrution of suh proesses usually follows severalsteps. First we onsider a separable omplex in�nite-dimensional Hilbert spae H and aunital ⋆-algebra C(H) with generators c∗(h), c(h) for all h ∈ H satisfying the relations

c∗(af + bg) = ac∗(f) + bc∗(g), (c(f))⋆ = c∗(f),for all f, g ∈ H and a, b ∈ C. We all c∗(h) reation operators and c(h) annihilationoperators , and the algebra C(H) the reation and annihilation algebra. We also onsidera unital ⋆-algebra A(K) generated by ω(h), h ∈ K, with the relations
ω(af + bg) = aω(f) + bω(g), ω(f) = (ω(f))⋆,for all f, g ∈ K and a, b ∈ R, where K is a real Hilbert spae. A natural way to relate thetwo objets above is to require the omplex Hilbert spae H to be the omplexi�ation of



Probability interpolating between free and boolean 25the real K, written H = KC. Let k ∈ K →֒ H. Then the ⋆-subalgebra of C(H) generatedby c∗(k) + c(k) is isomorphi to A(K). The algebra A(K) ould be alled the algebra ofinrements, sine if we identify K with L2(R, dx) then the indiator funtions χ[0,t)(x)are in L2(R) and the proess ω(t), t ≥ 0, an be de�ned as ω(χ[0,t)). In order to turnthe algebras onsidered into nonommutative probability spaes we need yet to speifystates on both of them.Definition 4.1. A Fok state on C(H) is a positive normalized linear funtional ̺t :

C(H) → C given by
̺t[c

♯1(f1) · · · c♯n(fn)] =
∑

V ∈P2(n)

t(V )
∏

(k,l)∈V

〈fk, fl〉 ·Q(♯k, ♯l),(4.1)where the symbols ♯i ∈ (1, ⋆) indiate reation or annihilation, and Q is a two by twomatrix with Q(1, ⋆) = 1 and 0 in all other entries:
Q =

(
0 1

0 0

)
,and where t is a funtion on the set of pair partitions, t : P2(n) → C.Definition 4.2. A Gaussian state ˜̺t on A(K) is a positive normalized linear funtionalgiven by

˜̺t[ω(f1) · · ·ω(fn)] =
∑

V ∈P2(n)

t(V )
∏

(k,l)∈V

〈fk, fl〉.(4.2)Remark 4.3. The Gaussian state ˜̺t on A(K) is the restrition of the Fok state ̺t on
C(KC) to the subalgebra A(K).Remark 4.4. Not every �pairing presription� t(V ) gives rise to a positive funtional inthe above de�nitions. However, Guµ  and Maassen proved in Theorem 2.6 of [GM℄ thata funtion t(V ) produes a positive Gaussian state ˜̺t if and only if it also produes apositive Fok state ̺t. We all suh funtions positive de�nite.Remark 4.5. The GNS representation assoiated to the pair (C(H), ̺t) is a ⋆-algebra ofreation and annihilation operators ating on a Hilbert spae Ft(H) having a Fok-typestruture

Ft(H) =

∞⊕

n=0

Hn.Conversely, we an start by de�ning an appropriate Fok-type spae and then take as
C(H) the ⋆-algebra generated by reation and annihilation operators on this Fok spae;we follow this approah later in this hapter.When ˜̺t is indeed a state, the sequenes ˜̺t[ω(f)k], k = 0, 1, . . . , are moment sequenesof probability measures. One an onsider measures only for f ∈ K suh that 〈f, f〉 = 1,sine moments arising from other elements orrespond to their dilations.Example 4.6. Various examples of positive de�nite �pairing presriptions� t(V ) havebeen given, resulting in di�erent probabilities:



26 �. Wojakowski1. when t(V ) = t
(I)
q (V ) = q#I(V ), −1 ≤ q ≤ 1, where #I(V ) is the number ofrossings in the partition V , the moments ˜̺t[ω(f)k], k = 0, 1, . . . , orrespond tothe q-Gaussian measure [BKS℄,2. the ase t(V ) = t

(cc)
1−t(V ) = (1 − t)#V −cc(V ), 0 ≤ t ≤ 1, where cc(V ) is the numberof onneted omponents of the partition V , and #V the number of bloks of thepartition V , has been onsidered in [BS3℄; the orresponding measure is known for

1− t = 1/N , N ∈ N, and equals D√
1/N

g ⊞ · · ·⊞D√
1/N

g where g is the standardlassial Gaussian measure,3. when t(V ) = tt,−1(V ) = t
(cc)
1−t(V ) · t

(I)
−1(V ) = (1 − t)#V −#cc(V ) · (−1)#I(V ) themoments ˜̺t[ω(f)k], k = 0, 1, . . . , orrespond to the Kesten measure κt.The fat that the funtion tt,−1(V ) in point 3 above is positive de�nite is a onsequeneof Corollary 1 of [BS3℄, whih states that the pointwise produt of two positive de�nitefuntions t1(V ) · t2(V ) is again positive de�nite. Our aim in the remaining part of thissetion is to omplete the results of [BS3℄ by presenting a detailed onstrution of theorresponding Fok-type spae. Moreover, by the above mentioned orollary, we mayonsider the more general pointwise produt t

(I)
q (V ) · t(cc)

1−t(V ) instead of the speial ase
t
(I)
−1(V ) · t(cc)

1−t(V ).Definition 4.7. For a partition V ∈ P2(n) let
tt,q(V ) = t

(cc)
1−t(V ) · t(I)

q (V ) = (1 − t)#V −#cc(V ) · q#I(V ),where #cc(V ) is the number of onneted omponents, #I(V ) is the number of rossingsand #V is the number of bloks of the partition V , and 0 < t < 1, −1 ≤ q < 1.Proposition 4.8. The funtion tt,q(V ) is multipliative, that is , if the partition V de-omposes into onneted omponents (V0, . . . , Vk) then tt,q(V ) = tt,q(V0) · · · tt,q(Vk).Proof. Sine tt,q(V ) = t
(cc)
1−t(V ) · t(I)

q (V ) and both fators are multipliative, so is theirprodut.4.2. Fok spae. We shall onstrut our Brownian motion by �rst onstruting a Fokspae on whih we shall de�ne appropriate operators.Definition 4.9. Let H be an in�nite-dimensional separable omplex Hilbert spae. Letus denote by F0 the algebrai Fok spae onsisting of a distinguished vetor Ω and ofvetors of the form (f1 ⊗ · · ·⊗ fn, A), where n ∈ N, fi ∈ H, and A ⊂ {1, . . . , n − 1}together with a pre-salar produt given by bilinear extension of
〈Ω,Ω〉t,q = 1,

〈Ω, (f1 ⊗ · · · ⊗ fn, A)〉t,q = 0,

〈(f1 ⊗ · · ·⊗ fn, A), (g1 ⊗ · · ·⊗ gm, B)〉t,q
= δmn

∑

π∈Sn

〈f1, gπ(1)〉 · · · 〈fn, gπ(n)〉(t− 1)(n−1)−#[A∩B∩b(π)] · q#I(π)

where for π ∈ Sr

b(π) = {r − k | 1 ≤ k ≤ r − 1, π(Bk) = Bk} ⊂ {1, . . . , r − 1}.



Probability interpolating between free and boolean 27The sets attahed to simple tensors an be visualized as interval partitions grouping theelements of the tensor into interval bloks. The numbers in the sets indiate the tensorsymbol, ounted from the right, on whih one interval ends and another begins. Thisnotation may seem a little umbersome, but allows for a very onise notation of intervalpartitions of sets of di�erent ardinality.Theorem 4.10. The bilinear form 〈 , 〉t,q is positive for 0 < t < 1 and −1 ≤ q < 1.Proof. Fix n ∈ N and set f̂ = f1 ⊗ · · ·⊗ fn ∈ H⊗n. We have to show that for all possiblehoies of M ∈ N, f̂1, . . . , f̂M and A1, . . . , AM ⊂ {1, . . . , n− 1} we have
L :=

〈 M∑

i=1

(f̂i, Ai),

M∑

j=1

(f̂j , Aj)
〉

t,q
≥ 0.We have

L =

M∑

i,j=1

∑

π∈Sn

〈f̂i, π(f̂j)〉(1 − t)(n−1)−#[Ai∩Aj∩b(π)]q#I(π)

= (1 − t)n−1 1

n!

M∑

i,j=1

∑

π,σ∈Sn

〈σ(f̂i), π(f̂j)〉(1 − t)−#[Ai∩Aj∩b(σ−1π)] q#I(σ−1π)

where π(f̂) denotes π(f1 ⊗ · · ·⊗ fn) = fπ(1) ⊗ · · ·⊗ fπ(n). We know that the kernels
F,G,H on {1, . . . ,M} × Sn given by

F ((i, σ), (j, π)) = (1 − t)−#[Ai∩Aj∩b(σ−1π)],

G((i, σ), (j, π)) = 〈σ(f̂i), π(f̂j)〉,
H((i, σ), (j, π)) = q#I(σ−1π)are positive de�nite by [BS3℄, and so is their pointwise produt.Definition 4.11. To �nish the onstrution of the spae F we �rst divide the algebraiFok spae F0 by the kernel of the pre-salar produt 〈 , 〉t,q and take the ompletion ofthe result with respet to the salar produt 〈 , 〉t,q.4.3. Creation and annihilation algebraDefinition 4.12. For eah f ∈ H let us de�ne a reation operator c∗(f) and an annihi-lation operator c(f) by linear extension of

c∗(f)Ω = (f, ∅),
c∗(f)(f1 ⊗ · · · ⊗ fn, A) = (f ⊗ f1 ⊗ · · ·⊗ fn, A ∪ {n}),and
c(f)Ω = 0,

c(f)(f1, ∅) = 〈f, f1〉Ω,

c(f)(f1 ⊗ · · ·⊗ fn, A) =

n∑

i=1

〈f, fi〉(f1 ⊗ · · · ⊗ f̌i ⊗ · · · ⊗ fn, A|i) · (1 − t)z(i,A) · qi−1,



28 �. Wojakowskiwhere
z(i, A) =

{
0 if i = 1 and n− 1 ∈ A,
1 otherwise,

A|i =

{
A \ {n− 1} if i = 1 and n− 1 ∈ A,
A ∩ {1, . . . , n− i} otherwise,and with the usual onvention that

f1 ⊗ · · ·⊗ f̌i ⊗ · · · ⊗ fn = f1 ⊗ · · · ⊗ fi−1 ⊗ fi+1 ⊗ · · ·⊗ fn.Theorem 4.13. For all η, ξ ∈ F and all f ∈ H we have
〈c∗(f)η, ξ〉t,q = 〈η, c(f)ξ〉t,q.Proof. It is enough to show for all n ∈ N, all f1, . . . , fn, g1, . . . , gn ∈ H, all A ⊂ {1, . . .

. . . , n− 2} and all B ⊂ {1, . . . , n− 1}
〈c∗(f1)(f2 ⊗ · · · ⊗ fn, A), (g1 ⊗ · · ·⊗ gn, B)〉t,q

= 〈(f2 ⊗ · · ·⊗ fn, A), c(f1)(g1 ⊗ · · · ⊗ gn, B)〉t,q.Let us alulate both sides:LHS = 〈(f1 ⊗ · · ·⊗ fn, A ∪ {n− 1}), (g1 ⊗ · · ·⊗ gn, B)〉t,q
=

∑

π∈Sn

〈f1, gπ(1)〉 · · · 〈fn, gπ(n)〉(1 − t)(n−1)−#[(A∪{n−1})∩B∩b(π)] · q#I(π),

RHS =

=

n∑

i=1

〈f1, gi〉〈(f2 ⊗ · · ·⊗ fn, A), (g1 ⊗ · · ·⊗ ǧi ⊗ · · · ⊗ gn, B|i)〉t,q(1 − t)z(i,B) · qi−1

=

n∑

i=1

∑

σ∈S
(i)
n−1

〈f1, gi〉〈f2, gσ(2)〉 · · · 〈fn, gσ(n)〉(1 − t)(n−2)−#[A∩B|i∩b(σ)]+z(i,B) · qi−1+#I(σ),

where S(i)
n−1 is the set of all bijetions from {2, . . . , n} to {1, . . . , ǐ, . . . , n} and b(σ) and

I(σ) are de�ned by onsidering σ in the anonial way as an element of Sn−1. For given
i and σ de�ne π ∈ Sn by π(1) = i, π(j) = σ(j). The assertion follows if

(n− 1) − #[(A ∪ {n− 1}) ∩B ∩ b(π)] = (n− 2) − #[A ∩B|i ∩ b(σ)] + z(i, B)(4.3)and
#I(π) = i− 1 + #I(σ).(4.4)Condition (4.3) has been proven in [BS3℄. To show (4.4) note that for σ ∈ S

(i)
n−1 and itsanonial ounterpart σ′ ∈ Sn−1:

{2, . . . , n} σ−−−−→ {1, . . . , ǐ, . . . , n}

1-1xy
x
y1-1

{1, . . . , n− 1} σ′

−−−−→ {1, . . . , n− 1}



Probability interpolating between free and boolean 29the sets of inversions I(σ) = {(k, l) | k < l and σ(k) > σ(l)} and I(σ′) = {(k′, l′) |
k′ < l′ and σ′(k′) > σ′(l′)} are also in 1-1 orrespondene, hene of the same ardinality.Moreover, for π ∈ Sn de�ned above we have I(π) = I(σ′)∪{(1, l) | 1 < l and i = σ′(1) >

σ′(l)}, thus #I(π) = #I(σ) + i− 1.Definition 4.14. Let C(H) be the unital ∗-algebra generated by all c∗(f), c(f) for f ∈ Hand de�ne on C(H) the state
̺t,q(a) = 〈Ω, aΩ〉t,q.Theorem 4.15. For all n ∈ N and all f1, . . . , fn ∈ H we have

̺t,q[c
♯1(f1) · · · c♯n(fn)] =





0 if n odd ,∑

V ∈P2(n)

tt,q(V )
∏

(k,l)∈V

〈fk, fl〉 ·Q(♯k, ♯l) if n = 2r,(4.5)where
Q =

(
0 1

0 0

)
.Proof. A nonzero vauum expetation is only possible if the number of reators equalsthat of annihilators, hene the odd moments vanish. By an observation of Bo»ejko andSpeiher [BS3, p. 144℄, to prove the theorem it is enough to onsider the ase where the fiform an orthonormal basis of H and where eah fi appears exatly twie in {f1, . . . , f2r},whih means that in the sum only one term orresponding to a partition denoted V0survives. If for some 1 ≤ i < m < 2r we have 〈fj , fk〉 = 0 for all j = i, . . . ,m and

k = 1, . . . , i − 1,m + 1, . . . , 2r then by orthogonality and the de�nition of the reationand annihilation operators we get
[c♯1(f1) · · · c♯i−1(fi−1)]c

♯i(fi) · · · c♯m(fm)[c♯m+1(fm+1) · · · c♯2r(f2r)]Ω

= [c♯1(f1) · · · c♯i−1(fi−1)]〈Ω, c♯i(fi) · · · c♯m(fm)Ω〉t,q[c♯m+1(fm+1) · · · c♯2r(f2r)]Ω

= ̺t,q(c
♯i(fi) · · · c♯m(fm))[c♯1(f1) · · · c♯i−1(fi−1)c

♯m+1(fm+1) · · · c♯2r(f2r)]Ω,whih means that the state tt,q is multipliative. Thus, it is enough to onsider the asewhen V0 is a single onneted omponent; the general ase will follow by multipliativeextension. In suh a ase we have tt,q(V0) = (1 − t)r−1q#I(V0) = RHS of (4.5). Tosee that this is equal to LHS of (4.5) = ̺t,q[c
♯(f1) · · · c♯(fn)] we need to show that theexponents of 1 − t and of q in tt,q(V0) = RHS will orrespond to those oming from adiret omputation of LHS. The two exponents behave exatly as in models where onlyone of them is present. The exponent of 1 − t is exatly r − 1, sine eah annihilationoperator apart from c(f1) gives a fator 1 − t. The exponent of q is indeed equal to thenumber of rossings of V0: this follows from the orresponding result on the q-Fok spaeonsidered in [BS1, Proposition 2℄.4.4. Connetion with the redued free produt. The next theorem gives a linkbetween the generalized Brownian motion onsidered in the present work and the reduedfree produt of Voiulesu. However, we need to assume q = −1 and use the notation

̺t = ̺t,−1.



30 �. WojakowskiTheorem 4.16. Let {ci = c(fi), c
∗
i = c∗(fi) | i ∈ N} denote a distinguished set ofgenerators of the unital ∗-algebra C0 = 〈{ci = c(fi)}〉, for some orthonormal basis {fi}of the underlying Hilbert spae K, let t1, t2 be real numbers with 0 ≤ t1, t2 ≤ 1 and

s1 = 1 − t1, s2 = 1 − t2. De�ne s by
1

s
=

1

s1
+

1

s2
and t = 1 − s =

1 − t1t2
2 − t1 − t2

.Embed C0 in C0 ⋆ C0 (free produt with identi�ation of units) via
ci 7→

√
s

s1
j1(ci) +

√
s

s2
j2(ci), c∗i 7→

√
s

s1
j1(c

∗
i ) +

√
s

s2
j2(c

∗
i ),and let ̺ be the restrition of ̺t1 ⋆ ̺t2 to C0. Then ̺ = ̺t.Proof. We need to show that for all n ∈ N and all i(1), . . . , i(n) ∈ N,

(4.6) ̺t1 ⋆ ̺t2

[(√
s

s1
j1(c

#
i(1)) +

√
s

s2
j2(c

#
i(1))

)
, . . . ,

(√
s

s1
j1(c

#
i(n)) +

√
s

s2
j2(c

#
i(n))

)]

= ̺t[c
#
i(1) · · · c

#
i(n)].To do this we shall show the equality of free umulants of the left and right sides of theabove equation. For a given state ϕ on a unital ∗-algebra B its multilinear free umulants

rϕ are de�ned via the relation (ai ∈ B)
ϕ(a1 · · · an) =

∑

V ={V1,...,Vp}∈P2(n)

rϕ[aV1
] · · · rϕ[aVp

],(4.7)
where rϕ[aVi

] = rϕ[av1
, . . . , avs

] for Vi = (v1, . . . , vs). Let us �rst onsider the umulantsof the right-hand side of (4.6), that is, of r̺t
[c♯i(1) · · · c

♯
i(n)]. For odd n this quantity van-ishes, sine by the de�ning equation (4.7) it is a sum of produts of �shorter� umulants,at least one term in eah of those produts being of odd length, and umulants of lengthone are the original state, hene are zero on single reators and annihilators. Moreover,sine the moments of ̺t are expressed in Theorem 4.15 by a formula involving summationover all 2-partitions, it an be seen by indution that the free umulant an be obtainedfrom the following formula involving only onneted pair partitions:

r̺t
[c♯i(1), . . . , c

♯
i(2r)] =

∑

V0={V1,...,Vr}∈P2(2r)
V0 connected

tt(V0)
∏

(k,l)∈V0

〈fk, fl〉 ·Q(♯k, ♯l)

=
∑

V0={V1,...,Vr}∈P2(2r)
V0 connected

sr−1 · (−1)#I(V0)
∏

(k,l)∈V0

〈fk, fl〉 ·Q(♯k, ♯l).

To evaluate the free umulant of the left-hand side of the equation (4.6) we use the fatthat free umulants linearize the free produt:
r̺t1

⋆̺t2

[(√
s

s1
j1(c

♯
i(1)) +

√
s

s2
j2(c

♯
i(1))

)
, . . . ,

(√
s

s1
j1(c

♯
i(2r)) +

√
s

s2
j2(c

♯
i(2r))

)]
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= r̺t1

[√
s

s1
c♯i(1), . . . ,

√
s

s1
c♯i(2r)

]
+ r̺t2

[√
s

s2
c♯i(1), . . . ,

√
s

s2
c♯i(2r)

]

=

(
s

s1

)r

r̺t1
[c♯i(1), . . . , c

♯
i(2r)] +

(
s

s2

)r

r̺t2
[c♯i(1), . . . , c

♯
i(2r)]

=
∑

V0={V1,...,Vr}∈P2(2r)
V0 connected

sr−1 · (−1)#I(V0)
∏

(k,l)∈V0

〈fk, fl〉 ·Q(♯k, ♯l).

4.5. Seond quantization. An important subjet in the study of the generalized Brow-nian motions is the existene and properties of the seond quantization funtor. In theprevious setion we onsidered the ⋆-algebra A(K), generated by the Gaussian elements
ω(k) where k ∈ K and K is a real Hilbert spae, together with a Gaussian state ˜̺t givenby a pairing presription t. Alternatively, we an onsider the von Neumann algebra
Γ (K) generated by the embeddings of ω(k) = c∗(k) + c(k) into the reation and annihi-lation algebra C(KC), together with the vauum expetation Fok state ̺t(·) = 〈Ω, ·Ω〉tgiven by the same pairing presription t. The paper [R℄ studies the properties of thealgebra Γ (K). When the Fok state is traial, we have the following de�nition.Definition 4.17. Let K(1),K(2) be two real Hilbert spaes and T : K(1) → K(2) anyontration. A unital trae preserving ompletely positive map Γ (T ) : (Γ (K(1)), 〈Ω, ·Ω〉t)
→ (Γ (K(2)), 〈Ω, ·Ω〉t) is alled a seond quantization funtor.A detailed study of this notion an be found in [GM℄. The most important result ofthat paper is the existene of Γ under the ondition of multipliativity of t and faithfulnessof ̺t for Γ (l2

R
(Z)). It is also proved that in the ase of the Kesten type pairing presription

t(V ) = tt,−1(V ) = t
(cc)
1−t(V ) · t

(I)
−1(V ) = (1 − t)#V −#cc(V ) · (−1)#I(V ), 0 < t < 1,the orresponding vauum Fok state 〈Ω, ·Ω〉t is traial, and that the assumptions of theexistene theorem are satis�ed.In our alulations we onsider a partiular hoie of the Hilbert spaes and of theontration in the above onstrution. Namely, we take the same one-dimensional Hilbertspae K = K

(1) = K
(2), and the simplest possible ontration T = e−τI = sI where

τ > 0, 0 < s < 1. The algebra Γ (K) is L∞(supp(κt), κt). Sine the support of the Kestenmeasure κt is ompat, we have L∞(supp(κt), κt) ⊂ L2(supp(κt), κt). Any γ ∈ L2(κt)an be written as γ(x) =
∑∞

k=0 αkpk(x), where pk(x), k = 0, 1, . . . , is the sequeneof polynomials orthonormal with respet to the Kesten measure κt. The ation of theoperator Γ (T ) is
Γ (T )γ(x) =

∞∑

k=0

skαkpk(x).(4.8)The operator Γ (T ) an be expressed by a kernel, Γ (T )γ(x) =
T
ks(x, y)γ(y) dκt(y), andthe kernel an be de�ned with the use of orthonormal polynomials:

ks(x, y) =

∞∑

k=0

skpk(x)pk(y)



32 �. Wojakowski(see [J℄). Moreover, if the funtion γ is bounded, γ ∈ L∞(κt) →֒ L2(κt), then fromTheorem 2 of [J℄ it follows that Γ (T )γ(x) is also bounded, provided that the kernel isnonnegative. Thus, the kernel, when nonnegative, de�nes an operator Γ (T ) : Γ (K) →
Γ (K). The requirement of omplete positivity of Γ (T ) redues in this ase to positivity,and in terms of the kernel to the question whether ks(x, y) is positive for x, y in thesupport of κt. This hoie of the Hilbert spae and of the operator T was meant asa test ase for the general problem of existene of the seond quantization funtor andwas arried out before the paper [GM℄ appeared. The results of Guµ  and Maassen are,however, limited to the ase 0 ≤ t ≤ 1. Our alulations, in addition to providing a losedform formula for the kernel, show that it remains positive for 0 < t < (1 +

√
2)/2 andis no longer so for greater t. This means that no seond quantization funtor an existin this ase; it is also an answer to a question of Janson [J℄ on the existene of kernelswithout the positivity property.4.6. The Mehler kernel for the Kesten measure. We reall that the Cauhy trans-form of the Kesten measure κt is the following:

Gκt
(z) =

1

z − 1

z − t

z − t. . .
.

We an therefore use the oe�ients of the ontinued fration to de�ne the reurreneoe�ients of the orthonormal polynomials.Definition 4.18. Let us denote by pk(x) the system of polynomials othonormal withrespet to µt given by the following reurrene relations:
p0(x) = 1, p1(x) = x,

xpn(x) = λnpn+1(x) + λn−1pn−1(x),where
1 = λ0,

√
t = λ1 = λ2 = λ3 = λ4 = · · · .Hene
p2(x) =

x2 − 1√
t
.Definition 4.19. We denote by ks(x, y) the t-deformed Mehler kernel

ks(x, y) =

∞∑

k=0

skpk(x)pk(y),and by ka
s (x, y), a = x, y, the shifted sums

kx
s (x, y) =

∞∑

k=0

skpk+1(x)pk(y), ky
s (x, y) =

∞∑

k=0

skpk(x)pk+1(y).We would like to see that the above series are onvergent for any x, y ∈ supp(κt).The oe�ients λk of the reurrene relation for polynomials orthogonal with respet to



Probability interpolating between free and boolean 33the Kesten measure are onstant for k ≥ 1, we may thus use the following boundednessresult proven in [N, Chapter 3, Theorem 12℄ for polynomials with onvergent oe�ients.Theorem 4.20. The sequene {|pk(x)|} is uniformly bounded on any losed interval ∆ ⊂
(−2

√
t, 2

√
t).Moreover, we an expliitly alulate the values of pk(x) when x is one of the atomsor one of the endpoints of the above interval, whih is the support of the absolutelyontinuous part of the Kesten measure.Lemma 4.21. For any t > 0, at the endpoints of the interval we have

p0(2
√
t) = 1, p1(2

√
t) = 2

√
t, pk(2

√
t) =

2kt− (k − 1)√
t

,

p0(−2
√
t) = 1, p1(−2

√
t) = −2

√
t, pk(−2

√
t) =

2kt− (k − 1)√
t

· (−1)k,and for 0 < t < 1/2 at the atoms we have
p0

(
1√

1 − t

)
= 1, p1

(
1√

1 − t

)
=

1√
1 − t

, pk

(
1√

1 − t

)
=

1√
1 − t

( √
t√

1 − t

)k

,

p0

( −1√
1 − t

)
= 1, p1

( −1√
1 − t

)
=

−1√
1 − t

, pk

( −1√
1 − t

)
=

1√
1 − t

( −
√
t√

1 − t

)k

.Proof. It is a simple veri�ation that the sequenes pk(x) satisfy the reurrene formulaeof De�nition 4.18 for the appropriate values of x.Theorem 4.22. The series ks(x, y), kx
s (x, y) and ky

s (x, y) are onvergent for all −1 <

s < 1, x, y ∈ supp(κt), t > 0.Proof. First observe that the sequenes pk(x) when x is one of the atoms are boundedwhenever the atoms show up in the measure, i.e. for 0 < t < 1/2. Hene, for −1 < s < 1the series ks(x, y), kx
s (x, y) and ky

s (x, y) are onvergent for all x, y ∈ (−2
√
t, 2

√
t) ∪

{−1/
√

1 − t, 1/
√

1 − t} (the disrete part appearing only when 0 < t < 1/2).The remaining task onsists in heking the ase x ∈ {±2
√
t}, y ∈ (−2

√
t, 2

√
t) ∪

{−1/
√

1 − t, 1/
√

1 − t} and also the ase x, y ∈ {±2
√
t}. But in the �rst ase, thedesired radius of onvergene an be easily alulated from the Cauhy riterion, and inthe seond ase from the d'Alembert riterion.Theorem 4.23. The Mehler kernel ks(x, y) for the measure κt is given by

ks(x, y) =
(s2 − 1)(s2(t− 1) − t− s(t− 1)xy)

(s2 − 1)2t+ s(−xy − s2xy + s(x2 + y2))for any −1 < s < 1, x, y ∈ supp(κt).



34 �. WojakowskiProof. We will use the reurrene relation de�ning the polynomials pk(x) to �nd rela-tionships between the series ks(x, y), kx
s (x, y) and ky

s (x, y):
ks(x, y) =

∞∑

k=0

skpk(x)pk(y) = 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
+

∞∑

k=3

skpk(x)pk(y)

= 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
+

∞∑

k=3

sk

(
xpk−1(x)√

t
− pk−2(x)

)
pk(y)

= 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
+

x√
t

∞∑

k=3

skpk−1(x)pk(y) −
∞∑

k=3

skpk−2(x)pk(y)

= 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
+
sx√
t

∞∑

k=2

skpk(x)pk+1(y)−s2
∞∑

k=1

skpk(x)pk+2(y)

= 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
− sx√

t

(
y + sx

y2 − 1√
t

)
+
sx√
t

∞∑

k=0

skpk(x)pk+1(y)

− s2
∞∑

k=1

skpk(x)

(
ypk+1(y)√

t
− pk(y)

)

= 1 + sxy − s2(y2 − 1)

t
− sxy√

t
+
sx√
t
ky

s (x, y) − s2y√
t

∞∑

k=1

skpk(x)pk+1(y)

+ s2
∞∑

k=1

skpk(x)pk(y)

= 1 + sxy − s2 − s2(y2 − 1)

t
− sxy + s2y2

√
t

+
sx− s2y√

t
ky

s (x, y) + s2ks(x, y).Hene
(4.9) ks(x, y) =

1 + sxy − s2 − s2(y2−1)
t − sxy+s2y2

√
t

+ sx−s2y√
t
ky

s (x, y)

1 − s2and symmetrially
(4.10) ks(x, y) =

1 + sxy − s2 − s2(x2−1)
t − sxy+s2x2

√
t

+ sy−s2x√
t
kx

s (x, y)

1 − s2
.Moreover

ky
s (x, y) =

∞∑

k=0

skpk(x)pk+1(y)(4.11)
= y + sx

y2 − 1√
t

+

∞∑

k=2

skpk(x)pk+1(y)

= y + sx
y2 − 1√

t
+

∞∑

k=2

skpk(x)

(
ypk(y)√

t
− pk−1(y)

)
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= y + sx

y2 − 1√
t

+
y√
t

∞∑

k=2

skpk(x)pk(y) −
∞∑

k=2

skpk(x)pk−1(y)

= y + sx
y2 − 1√

t
− y√

t
(1 + sxy) +

y√
t

∞∑

k=0

skpk(x)pk(y) − s
∞∑

k=1

skpk+1(x)pk(y)

= y +
sxy2 − sx− y − sxy√

t
+ sx+

y√
t
ks(x, y) − s

∞∑

k=0

skpk+1(x)pk(y)

= y + sx+
sxy2 − sx− y − sxy√

t
+

y√
t
ks(x, y) − skx

s (x, y).Solving (4.9), (4.10) and (4.11) for ks(x, y) we get the desired formula.4.7. Positivity of the t-deformed Mehler kernelTheorem 4.24. The Mehler kernel ks(x, y) is nonnegative for all hoies of 0 ≤ s < 1,
x, y ∈ supp(κ), 0 < t < (1 +

√
2)/2.Proof. We use the fat that the kernel is symmetri, ks(x, y) = ks(y, x). We shall splitthe proof into four ases: 1. both x and y are in the atoms; 2. one of them is in thepositive atom and the other in the ontinuous part of the support; 3. one in the negativeatom and the other in the ontinuous part; 4. both x and y in the ontinuous part.1. When both x, y ∈ {−1/
√

1 − t, 1/
√

1 − t} and the measure admits atoms, that is,for 0 ≤ t < 1/2, we get
ks

( −1√
1 − t

,
−1√
1 − t

)
= ks

(
1√

1 − t
,

1√
1 − t

)
= 1 − s

t− 1 + st
≥ 1sine t− 1 + st ≤ 0, and

ks

( −1√
1 − t

,
1√

1 − t

)
= 1 − s

1 − t+ st
≥ 0.2. When x = 1/

√
1 − t and y ∈ [−2

√
t, 2

√
t], 0 ≤ t < 1/2 we get

ks

(
1√

1 − t
, y

)
=

(1 − s2)(s2(1 − t) + t− s
√

1 − t y)

t
(
(s2 − 1)2 − s(1+s2)y√

1−t t
+ s2y2

t − s2

(t−1)t

) .To hek positivity we shall onsider separately the numerator and denominator. Sine
1 − s2 > 0, only the seond fator of the numerator is relevant. This is a linear funtionin y and assumes negative values for y > s2−s2t+t

s
√

1−t
.We may ignore the positive fator t in the denominator and the remaining part is aquadrati funtion of y and assumes negative values for

s2 − s2t+ t

s
√

1 − t
< y <

1 − t+ s2t

s
√

1 − t
.Sine under the assumptions on s, y and t we have

y ≤ 2
√
t <

s2 − s2t+ t

s
√

1 − t
<

1 − t+ s2t

s
√

1 − t
,whih means that for the relevant values of y both the numerator and the denominatorare positive, the positivity of the whole kernel is established in this ase.



36 �. Wojakowski3. When x = −1/
√

1 − t and y ∈ [−2
√
t, 2

√
t], 0 ≤ t < 1/2 we get

ks

( −1√
1 − t

, y

)
=

(1 − s2)(s2(1 − t) + t+ s
√

1 − t y)

t
(
(s2 − 1)2 + s(1+s2)y√

1−t t
+ s2y2

t − s2

(t−1)t

) .By an argument similar to the previous point, the numerator is positive for all y >
s2t−s2−t√

1−t
, whereas the denominator assumes negative values for

y ∈
(
t− 1 − s2t

s
√

1 − t
,
s2t− s2 − t

s
√

1 − t

)
.But sine

s2t− s2 − t

s
√

1 − t
< −2

√
t ≤ y,both the numerator and denominator remain positive for all y ∈ [−2

√
t, 2

√
t], hene thepositivity is established.4. When both x, y ∈ [−2

√
t, 2

√
t] and t > 0 we get

ks(x, y) =
(1 − s2)(−s2(t− 1) + t+ s(t− 1)xy)

t
(
(s2 − 1)2 + s

(
− xy

t − s2xy
t + s(x2+y2)

t

)) .Observe that the denominator satis�es
t

(
(s2 − 1)2 + s

(
− xy

t
− s2xy

t
+
s(x2 + y2)

t

))

= t

((
(1 − s2) +

s2x2 − sxy

2t

)2

+

(
1 − x2

4t

)(
s2x− sy√

t

)2)
,so it is nonnegative. Denote by w(s, t, x, y) the seond fator of the numerator:

w(s, t, x, y) = −(s2(−1 + t)) + t+ s(−1 + t)xy = s2(1 − t) + s(t− 1)xy + t.It remains to hek when the polynomial w(s, t, x, y) is nonnegative. First assume that
t ∈ (0, 1). We shall prove nonnegativity of w in this ase:

s2(1 − t) + s(t− 1)xy + t > s2(1 − t) + s(t− 1)4t+ t,beause sine s(t − 1) < 0 the left hand side expression is the smallest for xy = 4t,furthermore, evaluation of the right hand side at the lowest point of the parabola gives
s2(1 − t) + s(t− 1)4t+ t > t+

4(t− 1)2t2

t− 1
= (1 − 2t)2t > 0.Hene ks(x, y) is nonnegative in this ase.Now assume t ∈ [1,∞). The minimum of the polynomial w(s, t, x, y) is attained atone of the points when xy = −4t, and sine the oe�ient of s2 is negative, when s = 0or s→ 1. Then

w(0, t,−2
√
t, 2

√
t) = t > 0and

w(s, t,−2
√
t, 2

√
t)

s→1−→ −4t2 + 4t+ 1 > 0 for t < 1 +
√

2

2
.Hene, for t > (1 +

√
2)/2 the kernel ks(x, y) admits negative values for some s, x, ywithin the appropriate domain.



Probability interpolating between free and boolean 375. Multidimensional boolean umulants5.1. t-free produt of states. From the previous onsiderations we know that the t-free onvolution of measures an be interpreted as a speial ase of the onditionally freeonvolution of Bo»ejko, Leinert and Speiher [BLS℄. However, the onstrution presentedin that paper onsists of �rst onstruting a onditionally free produt of pairs of states
(Φ1, Φ2) = (µ1, µ2) ⋆c (ν1, ν2) on A = A1 ⋆A2 = C〈X1, X2〉 for two given pairs of states
(µ1, µ2) on A1 = C 〈X1〉 and (ν1, ν2) on A2 = C 〈X2〉, and only then de�ning (φ1, φ2) =

(µ1, µ2) ⊞c (ν1, ν2) on C 〈X〉 by linear extension of (φ1, φ2)(X
n) = (Φ1, Φ2)((X1 +X2)

n).Using those observations, we would now like to de�ne the t-deformed free produt ofstates.To this end we shall de�ne a family of transformations U (n)
t ating on states onalgebras of polynomials in n nonommuting variables, suh that for n = 1 we get thetransformation of measures Ut disussed previously and that for

(Φ, Ψ) =
n
⋆c
i=1

(µi, Ut(µi)),(5.1)where µi are states on C 〈Xi〉 and the seond state Ψ is de�ned as the free produt
Ψ =

n
⋆

i=1
Ut(µi),(5.2)we have

(Φ, Ψ) = (Φ,U
(n)
t (Φ)).(5.3)We have the following assioiativity lemma, proved by Mªotkowski in [Mª, Proposition 2℄:Lemma 5.1. Assume that I =

⋃
j∈J Ij is a partition of I. Then

⋆c
j∈J

( ⋆c
i∈Ij

(µi, νi)) = ⋆c
i∈I

(µi, νi).(5.4)Therefore, we also get
(Ψ,U

(n)
t (Ψ)) ⋆c (Φ,U

(m)
t (Φ)) = (Θ,U

(n+m)
t (Θ)),(5.5)for the states Ψ on C 〈X1, . . . , Xn〉, Φ on C 〈Xn+1, . . . , Xn+m〉 andΘ on C 〈X1, . . . , Xn+m〉.This allows for the followingDefinition 5.2. We shall all the state Θ arising in equation (5.5) the t-deformed freeprodut of the states Ψ and Φ.5.1.1. Boolean umulants and interval partitions. Sine we are dealing with algebrasof nonommutative polynomials in many variables, every f ∈ C 〈X1, . . . , Xn〉 an bewritten as a �nite sum f =

∑
αi1,...,ik

Xi1 · · ·Xik
. Linear funtionals an thus be de�nedon simple words Xi1 · · ·Xik

and then extended to the whole algebra.We now get to the details of the de�nition of the transformation U (n)
t and to the dis-ussion of whether it produes states, i.e. positive funtionals. In the previous hapterswe saw that the one-dimensional deformation of measures Ut is the t-th boolean onvolu-tion power, whih followed from the properties of the orresponding Cauhy transforms.We shall see that U (n) an also be seen as a kind of boolean onvolution power. We needthe following



38 �. WojakowskiDefinition 5.3. Let η be a state on C 〈X1, . . . , Xn〉. Then we de�ne the boolean R-transform RB
η on simple words Xi1 · · ·Xik

by the relation
η(Xi1 · · ·Xik

) =
∑

V ∈B(n)
V =(V1,...,Vk)

RB
η (XV1

) · · ·RB
η (XVk

)

where B(n) is the set of interval partitions of the set {1, . . . , n}, that is, ontaining onlyouter bloks, and XVk
= (Xvk−1+1, . . . , Xvk

) if Vk = (vk−1 + 1, . . . , vk). We shall denotethe interval (vk−1 + 1, . . . , vk) by [vk−1 + 1, vk].Definition 5.4. We shall all a state η⊎t on C 〈X1, . . . , Xn〉 the t-th boolean produtpower of some other state η on C 〈X1, . . . , Xn〉, t ∈ R, when(5.6) η⊎t(Xi1 · · ·Xik
) =

∑

V ∈B(n)
V =(V1,...,Vk)

tRB
η (XV1

) · · · tRB
η (XVk

).

Following Lehner [L℄ we shall make use of the following de�nitions:Definition 5.5. A partition π is irreduible if the elements 1 and n are in the sameonneted omponent.Definition 5.6. The interval losure of a given partition π is the smallest interval parti-tion π dominating π, that is, for every blok πi ∈ π there exists an interval blok Bi ∈ πsuh that πi ⊂ Bi.In the following we will make use of the moment-umulant relations for the ondition-ally free produt, whih involve summation over only nonrossing partitions. Thus we willneed the above de�nitions only in the nonrossing ontext, along with some propertiesgathered in the following proposition:Proposition 5.7. Let π be a nonrossing partition of the set [1, n]. Then:1. π is irreduible if the elements 1 and n are in the same blok.2. Any π an be deomposed into irreduible fators Pi, i = 1, . . . , k.3. Any suh irreduible fator Pi onsists of bloks πjk
∈ π suh that ⋃

πjk
= [ri, si]and exatly one of those bloks is outer and ontains ri and si, both the ends ofthe spanned interval ; we denote this blok by outer(Pi).4. The interval losure of the partition π is the interval partition π with bloks

([r1 = 1, s1], [r2 = s1 + 1, s2], . . . , [rl, sl = n]) orresponding to the ends of in-tervals spanned by the irreduible omponents.Proof. Instead of a formal algebrai proof we shall present the notions and ideas ondiagrams. Let n = 10 and onsider a nonrossing partition π of the set [1, 10] suh thatone of the bloks πi of π ontains both 1 and 10; it ould be for instane
1 2 3 4 5 6 7 8 9 10 π



Probability interpolating between free and boolean 39where πi = (1, 6, 10). The smallest interval partition dominating π must have an intervalblok that dominates the blok πi ontaining the endpoints, hene π must be omposedof one blok ontaining all the points:
1 2 3 4 5 6 7 8 9 10 πConversely, sine we are now dealing with nonrossing partitions only, if the smallestinterval partition dominating π is a one-blok interval, there must be a blok πi in πontaining both 1 and n, otherwise we have a situation like one of the following:
1 2 3 4 5 6 7 8 9 10 π1

1 2 3 4 5 6 7 8 9 10 π2

1 2 3 4 5 6 7 8 9 10 π3...
1 2 3 4 5 6 7 8 9 10 πiWe have marked the outer bloks of all the partitions in bold line. Let irreduiblefators be the subpartitions onsisting of one outer blok together with all inner blokssupported on points from between the ends of the outer blok. As an illustration take

π2 from the above examples. Clearly π2 = ((1, 3, 6), (2), (4, 5), (7, 9, 10), (8)) and it de-omposes into P1 = ((1, 3, 6), (2), (4, 5)) and P2 = ((7, 9, 10), (8)). Every suh irreduiblefator is mapped into an interval in the interval losure.It is also lear that summations involving all nonrossing partitions of an ordered setan be written as omposite summations, �rst over interval partitions ω and then overall nonrossing partitions π suh that π = ω.5.1.2. Main theoremTheorem 5.8. For states µi on C 〈Xi〉, i = 1, . . . , n, and (Φ, Ψ) = ⋆c
n
i=1(µi, Ut(µi)) wehave Φ⊎ t = Ψ , and write U (n)

t (Φ) = Ψ .Proof. The onditionally free produt of states is linearized by the multilinear umulants,whih for a pair (µ, ν) of states on C 〈Xi〉 are de�ned through
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ν(a1 · · · ak) =

∑

π∈NC(k)

∏

Vi∈π
Vi outer

rν [Vi]
∏

Vj∈π
Vj inner

rν [Vj ],(5.7)
µ(a1 · · · ak) =

∑

π∈NC(k)

∏

Vi∈π
Vi outer

Rµ,ν [Vi]
∏

Vj∈π
Vj inner

rν [Vj ],(5.8)
where for a partition blok V = {v1, . . . , vj} we denote by rν [V ] = rν [av1

, . . . , avj
] the freeumulant of the state ν and by Rµ,ν [V ] = Rµ,ν [av1

, . . . , avj
] the onditional umulant withrespet to the states µ and ν. In this de�nition we assumed aj ∈ C 〈Xi〉, j = 1, . . . , k, andwe extend it to C 〈X1, . . . , Xn〉 by putting rν [a1, . . . , ak] = Rµ,ν [a1, . . . , ak] = 0 wheneverany aj /∈ C 〈Xi〉.We note that for the spei� hoie a1, . . . , ak = Xi we have ν(a1 · · · ak) = ν(Xk

i )and µ(a1 · · · ak) = µ(Xk
i ) and the above equations (5.7), (5.8) de�ne the same reurrenerelation as (2.13), (2.14) for linear umulants, whih means that rν [a1, . . . , ak] = R⊞

ν (k)and Rµ,ν [a1, . . . , ak] = Rc

µ,ν(k). As a onsequene, for (µ, ν) = (µi, Ut(µi)) we get
Rµi,Ut(µi)[a1, . . . , ak] =

1

t
rUt(µi)[a1, . . . , ak](5.9)for our spei� hoie a1, . . . , ak = Xi.The transforms orresponding to the onditionally free produt (Φ, Ψ) are the sumsof the transforms orresponding to the pairs (µi, Ut(µi)), extended to C 〈X1, . . . , Xn〉:

RV = RΦ,Ψ [av1
, . . . , avj

] =
n∑

i=1

Rµi,Ut(µi)[av1
, . . . , avj

],(5.10)
rV = rΨ [av1

, . . . , avj
] =

n∑

i=1

rµi
[av1

, . . . , avj
],(5.11)

and the moments with respet to the states (Φ, Ψ) are reovered through the moment-umulant formulae for the onditionally free produt established in [BLS℄:(5.12) Ψ(a1 · · · ak) =
∑

π∈NC(k)

∏

Vi∈π
Vi outer

rVi

∏

Vj∈π
Vj inner

rVj
,

and(5.13) Φ(a1 · · · ak) =
∑

π∈NC(k)

∏

Vi∈π
Vi outer

RVi

∏

Vj∈π
Vj inner

rVj
.

To prove the assertion we only need to onsider a1 · · · an of the form Xi1 · · ·Xik
. Forthis hoie, all umulants appearing in the right-hand sides of the above equations willsatisfy RV = (1/t)rV , sine they are sums of umulants for whih (5.9) holds. Let us nowgroup the nonrossing partitions π in the summation in (5.13), aording to the strutureof their irreduible omponents, whih is re�eted by the interval partitions π arising as
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Φ(Xi1 . . . Xik

) =
∑

ω∈B(k)

∑

π∈NC(k)
π=ω

∏

Vi∈π
Vi outer

RVi

∏

Vj∈π
Vj inner

rVj

=
∑

ω∈B(k)
ω=ω1,...,ωm

∑

π=C1∪···∪Cm

Ci∈NC(supp(ωi))
Ci=ωi

m∏

i=1

Router(Ci)

∏

Vj∈Ci

Vj inner

rVj

=
∑

ω∈B(k)
ω=ω1,...,ωm

∑

C1∈NC(supp(ω1))
C1=ω1

· · ·
∑

Cm∈NC(supp(ωm))
Cm=ωm

m∏

i=1

Router(Ci)

∏

Vj∈Ci

Vj inner

rVj
.

Set for onveniene
KΦ(ωi) =

∑

Ci∈NC(supp(ωi))
Ci=ωi

Router(Ci)

∏

Vj∈Ci

Vj inner

rVj
.

Then
Φ(Xi1 · · ·Xik

) =
∑

ω∈B(k)
ω=ω1,...,ωm

m∏

i=1

KΦ(ωi),

whih is exatly the expression (5.6) de�ning boolean umulants, thus KΦ(ωi) = RB
Φ (ωi).Transforming equation (5.12) in the same way as (5.13) above we get

Ψ(Xi1 · · ·Xik
) =

∑

ω∈B(k)
ω=ω1,...,ωm

m∏

i=1

KΨ (ωi),

where
KΨ (ωi) =

∑

Ci∈NC(supp(ωi))
Ci=ωi

router(Ci)

∏

Vj∈Ci

Vj inner

rVj
,

hene
KΨ (ωi) = tKΦ(ωi).Thus tRB

Φ (ωi) = RB
Ψ , whih ompletes the proof.5.2. Reurrene formula for moments. Earlier in this work we mentioned a resultby Bo»ejko and Wysoza«ski from [BW2℄ where the authors give a reurrene formulafor the moments of Ut(µ):(5.14) mUt(µ)(n) = tmµ(n) +

n−1∑

k=1

mUt(µ)(k)mµ(n− k).We shall extend it to the states Φ and Ψ . By fatoring the �leftmost� (respetively�rightmost�) interval term out of the produt and grouping similar terms in the de�nitionof the boolean umulants we get the following



42 �. WojakowskiProposition 5.9. For any state η on C 〈X1, . . . , Xn〉 we have
η(Xi1 . . . Xik

) =
∑

ω∈B(k)

∏

i

RB
η (ωi)

= RB
η ([1, k]) +

k−1∑

j=1

RB
η ([1, j])η(Xij+1

· · ·Xik
)

= RB
η ([1, k]) +

k−1∑

j=1

η(Xi1 · · ·Xij
)RB

η ([j + 1, k]).

If k = 1 only RB
η ([1]) survives.Theorem 5.10.

Ψ(Xi1 · · ·Xik
) = tΦ(Xi1 · · ·Xik

) + (t− 1)

k−1∑

j=1

Ψ(Xi1 · · ·Xij
)Φ(Xij+1

· · ·Xik
).

Proof. We apply Proposition 5.9 to the RHS of the above a number of times:
RHS = tRB

Φ ([1, k])

+
k−1∑

j=1

tRB
Φ ([1, j])Φ(Xij+1

· · ·Xik
)

+

k−1∑

ι=1

Ψ(Xi1 · · ·Xiι
)tRB

Φ ([ι+ 1, k])

+

k−2∑

ι=1

Ψ(Xi1 · · ·Xiι
)

k−1∑

j=ι+1

tRB
Φ ([ι+ 1, j])Φ(Xij+1

· · ·Xik
)

−
k−1∑

j=1

Ψ(Xi1 · · ·Xij
)Φ(Xij+1

· · ·Xik
)

= RB
Ψ ([1, k]) +

k−1∑

ι=1

Ψ(Xi1 · · ·Xiι
)RB

Ψ ([ι+ 1, k])

+
k−1∑

j=1

RB
Ψ ([1, j])Φ(Xij+1

· · ·Xik
)(5.15)

+

k−1∑

j=2

(j−1∑

ι=1

Ψ(Xi1 · · ·Xiι
)RB

Ψ ([ι+ 1, j])
)
Φ(Xij+1

· · ·Xik
)(5.16)

−
k−1∑

j=1

Ψ(Xi1 · · ·Xij
)Φ(Xij+1

· · ·Xik
)(5.17)

= Ψ(Xi1 · · ·Xik
) = LHSbeause by Proposition 5.9 the terms (5.15) and (5.16) anel with (5.17).
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