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Abstract

We begin with a short presentation of the basic concepts related to Lie groupoids and Lie
algebroids, but the main part of this paper deals with Lie algebroids. A Lie algebroid over a
manifold is a vector bundle over that manifold whose properties are very similar to those of a
tangent bundle. Its dual bundle has properties very similar to those of a cotangent bundle: in
the graded algebra of sections of its exterior powers, one can define an operator dE similar to the
exterior derivative. We present the theory of Lie derivatives, Schouten–Nijenhuis brackets and
exterior derivatives in the general setting of a Lie algebroid, its dual bundle and their exterior
powers. All the results (which, for the most part, are already known) are given with detailed
proofs. In the final sections, the results are applied to Poisson manifolds, whose links with Lie
algebroids are very close.
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1. Introduction

Groupoids are mathematical structures able to describe symmetry properties more gen-

eral than those described by groups. They were introduced (and named) by H. Brandt

[3] in 1926. The reader will find a general presentation of that important concept in [52]

and [5].

A groupoid with a topological structure (resp., a differentiable structure) is called a

topological groupoid (resp., a Lie groupoid). Around 1950, Charles Ehresmann [14] used

these concepts as essential tools in topology and differential geometry.

In recent years, Michael Karasev [22], Alan Weinstein [50, 8] and Stanisław Zakrzewski

[55] independently discovered that Lie groupoids equipped with a symplectic structure

can be used for the construction of noncommutative deformations of the algebra of smooth

functions on a manifold, with potential applications to quantization. Poisson groupoids

were introduced by Alan Weinstein [51] as generalizations of both Poisson Lie groups and

symplectic groupoids.

The infinitesimal counterpart of the notion of a Lie groupoid is the notion of a Lie

algebroid, in the same way as the infinitesimal counterpart of the notion of a Lie group

is the notion of a Lie algebra. Lie algebroids were first considered by Jean Pradines [41].

Lie groupoids and Lie algebroids are now an active domain of research, with ap-

plications in various parts of mathematics [51, 4, 29, 2, 30, 5]. More specifically, Lie

algebroids have applications in mechanics [53, 31, 15, 39] and provide a very natural

setting in which one can develop the theory of differential operators such as the exte-

rior derivative of forms and the Lie derivative with respect to a vector field. In such

a setting, slightly more general than that of the tangent and cotangent bundles to a

smooth manifold and their exterior powers, the theory of Lie derivatives extends, in a

very natural way, into the theory of the Schouten–Nijenhuis bracket (first introduced in

differential geometry by J. A. Schouten [44] and developed by A. Nijenhuis [40]). Other

bidifferential operators such as the bracket of exterior forms on a Poisson manifold, first

discovered for Pfaff forms by F. Magri and C. Morosi [38] and extended to forms of all

degrees by J.-L. Koszul [28], appear in such a setting as very natural: they are Schouten–

Nijenhuis brackets for the Lie algebroid structure of the cotangent bundle to a Poisson

manifold.

In this paper, we first present the basic concepts related to Lie groupoids and Lie

algebroids. Then we develop the theory of Lie derivatives, Schouten–Nijenhuis brackets

and exterior derivatives in the general setting of a Lie algebroid, its dual bundle and

the exterior powers. All the results (which, for the most part, are already known, see for

example [54, 16, 17]) are given with detailed proofs. Most of these proofs are the same as

[5]



6 C.-M. Marle

the classical ones (when the Lie algebroid is the tangent bundle to a smooth manifold); a

few ones are slightly more complicated because, unlike the algebra of exterior differential

forms on a manifold, the algebra of sections of exterior powers of the dual of a Lie algebroid

is not locally generated by its elements of degree 0 and their differentials. These results

may even be extended to more general algebroids with no assumption of skew-symmetry

[18], but here we will not discuss these generalizations, nor will we discuss the Schouten

bracket for symmetric tensors. In the final section, the results are applied to Poisson

manifolds. We show that the cotangent space of a Poisson manifold has a Lie algebroid

structure and that the total space of the vector bundle dual to a Lie algebroid has a

natural Poisson structure, and we use these properties for lifting Poisson structures and

Lie algebroid structures to the tangent bundle.

2. Lie groupoids

2.1. Definition and first properties. Before stating the formal definition of a group-

oid, let us explain, in an informal way, why it is a very natural concept. The easiest way

to understand that concept is to think of two sets, Γ and Γ0. The first one, Γ, is called the

set of arrows or total space of the groupoid, and the other one, Γ0, the set of objects or

set of units of the groupoid. One may think of an element x ∈ Γ as an arrow going from

an object (a point in Γ0) to another object (another point in Γ0). The word “arrow” is

used here in a very general sense: it means a way for going from a point in Γ0 to another

point in Γ0. One should not think of an arrow as a line drawn in the set Γ0 joining the

starting point of the arrow to its end point. Rather, one should think of an arrow as living

outside Γ0, with only its starting point and its end point in Γ0, as shown in Figure 1.

Γ0

x y

m(x,y)

t
(
m(x,y)

)
= t(x) s(x) = t(y) s(y) = s

(
m(x,y)

)

Γ

Fig. 1. Two arrows x, y ∈ Γ, with the target of y, t(y) ∈ Γ0, equal to the source of x, s(x) ∈ Γ0,
and the composed arrow m(x, y)

The following ingredients enter the definition of a groupoid.

(i) Two maps s : Γ → Γ0 and t : Γ → Γ0, called the source map and the target map of

the groupoid. If x ∈ Γ is an arrow, s(x) ∈ Γ0 is its starting point and t(x) ∈ Γ0 its

end point.

(ii) A composition law on the set of arrows; we can compose an arrow y with another

arrow x, and get an arrow m(x, y), by following first the arrow y, then the arrow x.

Of course, m(x, y) is defined if and only if the target of y is equal to the source of x.

The source of m(x, y) is equal to the source of y, and its target is equal to the target

of x, as illustrated in Figure 1. It is only by convention that we write m(x, y) rather
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than m(y, x): the arrow which is followed first is on the right, by analogy with the

usual notation f ◦ g for the composition of two maps g and f . The composition of

arrows is associative.

(iii) An embedding ε of the set Γ0 into the set Γ, which associates a unit arrow ε(u) with

each u ∈ Γ0. That unit arrow is such that both its source and its target are u, and

it plays the role of a unit when composed with another arrow, either on the right or

on the left: for any arrow x, m(ε(t(x)), x) = x, and m(x, ε(s(x))) = x.

(iv) Finally, an inverse map ι from the set of arrows onto itself. If x ∈ Γ is an arrow, one

may think of ι(x) as the arrow x followed in the reverse sense.

Now we are ready to state the formal definition of a groupoid.

Definition 2.1.1. A groupoid is a pair of sets (Γ,Γ0) equipped with the structure defined

by the following data:

(i) an injective map ε : Γ0 → Γ, called the unit section of the groupoid;

(ii) two maps s : Γ → Γ0 and t : Γ → Γ0, called, respectively, the source map and the

target map; they satisfy

s ◦ ε = t ◦ ε = idΓ0
;

(iii) a composition law m : Γ2 → Γ, called the product, defined on the subset Γ2 of Γ×Γ,

called the set of composable elements,

Γ2 = {(x, y) ∈ Γ × Γ; s(x) = t(y)},

which is associative, in the sense that whenever one side of the equality

m(x,m(y, z)) = m(m(x, y), z)

is defined, the other side is defined too, and the equality holds; moreover, the com-

position law m is such that for each x ∈ Γ,

m(ε(t(x)), x) = m(x, ε(s(x))) = x;

(iv) a map ι : Γ → Γ, called the inverse, such that, for every x ∈ Γ, (x, ι(x)) ∈ Γ2,

(ι(x), x) ∈ Γ2 and

m(x, ι(x)) = ε(t(x)), m(ι(x), x) = ε(s(x)).

The sets Γ and Γ0 are called, respectively, the total space and the set of units of the

groupoid, which is itself denoted by Γ
t

⇉
s

Γ0.

Remark 2.1.2. The definition of a groupoid can be stated very briefly in the language

of category theory: a groupoid is a small category all of whose arrows are invertible. We

recall that a category is said to be small if the collections of its arrows and of its objects

are sets.

2.1.3. Identification and notations. In what follows, by means of the injective map ε,

we will identify the set of units Γ0 with the subset ε(Γ0) of Γ. Therefore ε will be the

canonical injection in Γ of its subset Γ0.

For x, y ∈ Γ, we will sometimes write x ◦ y, x.y, or even simply xy for m(x, y), and

x−1 for ι(x). Also we will write “the groupoid Γ” for “the groupoid Γ
t

⇉
s

Γ0”.
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2.2. Properties and comments. The above definition has the following consequences.

2.2.1. Involutivity of the inverse map. The inverse map ι is involutive:

ι ◦ ι = idΓ .

We have indeed, for any x ∈ Γ,

ι ◦ ι(x) = m(ι ◦ ι(x), s(ι ◦ ι(x))) = m(ι ◦ ι(x), s(x)) = m(ι ◦ ι(x),m(ι(x), x))

= m(m(ι ◦ ι(x), ι(x)), x) = m(t(x), x) = x.

2.2.2. Unicity of the inverse. Let x, y ∈ Γ be such that

m(x, y) = t(x) and m(y, x) = s(x).

Then we have

y = m(y, s(y)) = m(y, t(x)) = m(y,m(x, ι(x))) = m(m(y, x), ι(x))

= m(s(x), ι(x)) = m(t(ι(x)), ι(x)) = ι(x).

Therefore for any x ∈ Γ, the unique y ∈ Γ such that m(y, x) = s(x) and m(x, y) = t(x)

is ι(x).

2.2.3. The fibres of the source and target maps and the isotropy groups. The

target map t (resp. the source map s) of a groupoid Γ
t

⇉
s

Γ0 determines an equivalence

relation on Γ: two elements x and y ∈ Γ are said to be t-equivalent (resp. s-equivalent)

if t(x) = t(y) (resp. if s(x) = s(y)). The corresponding equivalence classes are called the

t-fibres (resp. the s-fibres) of the groupoid. They are of the form t−1(u) (resp. s−1(u))

with u ∈ Γ0.

For each unit u ∈ Γ0, the subset

Γu = t−1(u) ∩ s−1(u) = {x ∈ Γ; s(x) = t(x) = u}

is called the isotropy group of u. It is indeed a group, with the restrictions of m and ι as

composition law and inverse map.

2.2.4. A way to visualize groupoids. We have seen (Figure 1) how groupoids may

be visualized, by using arrows for elements in Γ and points for elements in Γ0. There is

another, very useful way to visualize groupoids, shown in Figure 2. The total space Γ of

the groupoid is represented as a plane, and the set Γ0 of units as a straight line in that

t(x) s(x) = t(y) s(y)

ι(x)

x
y

ι(y)

m(x,y)

ι
(
m(x,y)

)

Γ0

t-fi
be

r s-fiber

Fig. 2. A way to visualize groupoids
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plane. The t-fibres (resp. the s-fibres) are represented as parallel straight lines, transverse

to Γ0.

Such a visualization should be used with care: one may think, at first sight, that there

is only one element in the groupoid with a given source and a given target, which is not

true in general.

2.3. Simple examples of groupoids

2.3.1. The groupoid of pairs. Let E be a nonempty set. Let Γ = E × E, Γ0 = E,

s : E × E → E be the projection on the right factor s(x, y) = y, t : E × E → E

the projection on the left factor t(x, y) = x, and ε : E → E × E be the diagonal map

x 7→ (x, x). We define the composition law m : (E × E) × (E × E) → E × E and the

inverse ι : E × E → E × E by

m((x, y), (y, z)) = (x, z), ι(x, y) = (y, x).

Then E × E
t

⇉
s

E is a groupoid, called the groupoid of pairs of elements in E.

2.3.2. Equivalence relations. Let E be a nonempty set with an equivalence relation r.

Let Γ = {(x, y) ∈ E × E; xry} and Γ0 = E. The source and target maps s and t are the

restrictions to Γ of the source and target maps, above defined on E×E for the groupoid

of pairs. The composition law m, the injective map ε and the inverse ι are the same

as for the groupoid of pairs, suitably restricted. Then Γ
t

⇉
s

E is a groupoid, more precisely

a subgroupoid of the groupoid of pairs of elements in E.

Remark 2.3.3. This example shows that equivalence relations may be considered as

special groupoids. Conversely, on the set of units Γ0 of a general groupoid Γ
t

⇉
s

Γ0, there

is a natural equivalence relation: u1, u2 ∈ Γ0 are said to be equivalent if there exists

x ∈ Γ such that s(x) = u1 and t(x) = u2. But the groupoid structure generally carries

more information than that equivalence relation: there may be several x ∈ Γ such that

s(x) = u1 and t(x) = u2, i.e., several ways in which u1 and u2 are equivalent.

2.4. Topological and Lie groupoids

Definitions 2.4.1. A topological groupoid is a groupoid Γ
t

⇉
s

Γ0 for which Γ is a (maybe

non-Hausdorff) topological space, Γ0 a Hausdorff topological subspace of Γ, t and s sur-

jective continuous maps, m : Γ2 → Γ a continuous map and ι : Γ → Γ a homeomorphism.

A Lie groupoid is a groupoid Γ
t

⇉
s

Γ0 for which Γ is a smooth (maybe non-Hausdorff)

manifold, Γ0 a smooth Hausdorff submanifold of Γ, t and s smooth surjective submersions

(which implies that Γ2 is a smooth submanifold of Γ × Γ), m : Γ2 → Γ a smooth map

and ι : Γ → Γ a smooth diffeomorphism.
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2.5. Examples of topological and Lie groupoids

2.5.1. Topological groups and Lie groups. A topological group (resp. a Lie group)

is a topological groupoid (resp. a Lie groupoid) whose set of units has only one element e.

2.5.2. Vector bundles. A smooth vector bundle τ : E →M on a smooth manifold M

is a Lie groupoid, with the base M as set of units (identified with the image of the zero

section); the source and target maps both coincide with the projection τ , the product

and the inverse maps are the addition (x, y) 7→ x + y and the opposite map x 7→ −x in

the fibres.

2.5.3. The fundamental groupoid of a topological space. Let M be a topological

space. A path in M is a continuous map γ : [0, 1] → M . We denote by [γ] the homotopy

class of a path γ and by Π(M) the set of homotopy classes of paths in M (with endpoints

fixed). For [γ] ∈ Π(M), we set t([γ]) = γ(1), s([γ]) = γ(0), where γ is any representative

of the class [γ]. The concatenation of paths determines a well defined composition law on

Π(M), for which Π(M)
t

⇉
s

M is a topological groupoid, called the fundamental groupoid

of M . The inverse map is [γ] 7→ [γ−1], where γ is any representative of [γ] and γ−1 is the

path t 7→ γ(1 − t). The set of units is M , if we identify a point in M with the homotopy

class of the constant path equal to that point.

Given a point x ∈ M , the isotropy group of the fundamental groupoid of M at x is

the fundamental group at that point.

When M is a smooth manifold, the same construction can be made with piecewise

smooth paths, and the fundamental groupoid Π(M)
t

⇉
s

M is a Lie groupoid.

2.5.4. The gauge groupoid of a fibre bundle with structure group. The structure

of a locally trivial topological bundle (B, p,M) with standard fibre F and structure group

a topological group G of homeomorphisms of F , is usually determined via an admissible

fibred atlas (Ui, ϕi), i ∈ I. The Ui are open subsets of M such that
⋃
i∈I Ui = M . For

each i ∈ I, ϕi is a homeomorphism of Ui × F onto p−1(Ui) which, for each x ∈ Ui,

maps {x} × F onto p−1(x). For each pair (i, j) ∈ I2 such that Ui ∩ Uj 6= ∅, and each

x ∈ Ui ∩ Uj , the homeomorphism ϕj ◦ ϕ
−1
i restricted to {x} × F is an element of G (F

being identified with {x}×F ). Elements of G are called admissible homeomorphisms of F .

Another, maybe more natural, way of describing that structure is by looking at the set

Γ of admissible homeomorphisms between two fibres of that fibre bundle, Bx = p−1(x)

and By = p−1(y), with x, y ∈ M . The set Γ has a topological structure (in general not

Hausdorff). For γ ∈ Γ mapping Bx onto By, we define s(γ) = x, t(γ) = y. Then Γ
t

⇉
s

M

is a topological groupoid, called the gauge groupoid of the fibre bundle (B, p,M). When

the bundle is smooth, its gauge groupoid is a Lie groupoid.

2.6. Properties of Lie groupoids

2.6.1. Dimensions. Let Γ
t

⇉
s

Γ0 be a Lie groupoid. Since t and s are submersions, for

any x ∈ Γ, the t-fibre t−1(t(x)) and the s-fibre s−1(s(x)) are submanifolds of Γ, both of
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dimension dimΓ−dim Γ0. The inverse map ι restricted to the t-fibre through x (resp. the

s-fibre through x) is a diffeomorphism of that fibre onto the s-fibre through ι(x) (resp.

the t-fibre through ι(x)). The dimension of the submanifold Γ2 of composable pairs in

Γ × Γ is 2 dimΓ − dim Γ0.

2.6.2. The tangent bundle of a Lie groupoid. Let Γ
t

⇉
s

Γ0 be a Lie groupoid. Its

tangent bundle TΓ is a Lie groupoid, with TΓ0 as set of units, and Tt : TΓ → TΓ0 and

Ts : TΓ → TΓ0 as target and source maps. Let us denote by Γ2 the set of composable

pairs in Γ × Γ, by m : Γ2 → Γ the composition law and by ι : Γ → Γ the inverse. Then

the set of composable pairs in TΓ × TΓ is simply TΓ2, the composition law on TΓ is

Tm : TΓ2 → TΓ and the inverse is Tι : TΓ → TΓ.

When the groupoid Γ is a Lie group G, the Lie groupoid TG is a Lie group too.

Remark 2.6.3. The cotangent bundle of a Lie groupoid is a Lie groupoid, and more

precisely a symplectic groupoid [4, 8, 50, 1, 11]. Remarkably, the cotangent bundle of a

non-Abelian Lie group is not a Lie group: it is a Lie groupoid. This fact may be considered

as a justification of the current interest in Lie groupoids: as soon as one is interested in

Lie groups, by looking at their cotangent bundles, one has to deal with Lie groupoids!

2.6.4. Isotropy groups. For each unit u ∈ Γ0 of a Lie groupoid, the isotropy group Γu
(defined in 2.2.3) is a Lie group.

3. Lie algebroids

The concept of a Lie algebroid was first introduced by J. Pradines [41], in connection

with Lie groupoids.

3.1. Definition and examples. A Lie algebroid over a manifold is a vector bundle

based on that manifold, whose properties are very similar to those of the tangent bundle.

Let us give a formal definition.

Definition 3.1.1. Let M be a smooth manifold and (E, τ,M) be a vector bundle with

base M . A Lie algebroid structure on that bundle is the structure defined by the following

data:

(1) a composition law (s1, s2) 7→ {s1, s2} on the space Γ(τ ) of smooth sections of the

bundle, for which Γ(τ ) becomes a Lie algebra;

(2) a smooth vector bundle map ρ : E → TM , where TM is the tangent bundle of M ,

such that for every pair (s1, s2) of smooth sections of τ , and every smooth function

f : M → R, we have the Leibniz-type formula

{s1, fs2} = f{s1, s2} + (L(ρ ◦ s1)f)s2.

We have denoted by L(ρ◦ s1)f the Lie derivative of f with respect to the vector field

ρ ◦ s1:

L(ρ ◦ s1)f = i(ρ ◦ s1)df.
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The vector bundle (E, τ,M) equipped with its Lie algebroid structure will be called a

Lie algebroid and denoted by (E, τ,M, ρ); the composition law (s1, s2) 7→ {s1, s2} will be

called the bracket and the map ρ : E → TM the anchor of the Lie algebroid (E, τ,M, ρ).

Proposition 3.1.2. Let (E, τ,M, ρ) be a Lie algebroid. The map s 7→ ρ ◦ s, which as-

sociates to a smooth section s of τ the smooth vector field ρ ◦ s on M , is a Lie algebra

homomorphism. In other words, for each pair (s1, s2) of smooth sections of τ ,

[ρ ◦ s1, ρ ◦ s2] = ρ ◦ {s1, s2}.

Proof. Let s1, s2 and s3 be three smooth sections of τ and f be a smooth function on M .

By the Jacobi identity for the Lie algebroid bracket,

{{s1, s2}, fs3} = {s1, {s2, fs3}} − {s2, {s1, fs3}}.

If we use the property of the anchor, the right hand side becomes

{s1, {s2, fs3}} − {s2, {s1, fs3}} = f
(
{s1, {s2, s3}} − {s2, {s1, s3}}

)

+
(
(L(ρ ◦ s1) ◦ L(ρ ◦ s2) − L(ρ ◦ s2) ◦ L(ρ ◦ s1))f

)
s3.

Similarly, the left hand side becomes

{{s1, s2}, fs3} = f{{s1, s2}, s3} + (L(ρ ◦ {s1, s2})f)s3.

Using again the Jacobi identity for the Lie algebroid bracket, we obtain
((
L(ρ ◦ {s1, s2}) − (L(ρ ◦ s1) ◦ L(ρ ◦ s2) − L(ρ ◦ s2) ◦ L(ρ ◦ s1))

)
f
)
s3 = 0.

But we have

L(ρ ◦ s1) ◦ L(ρ ◦ s2) − L(ρ ◦ s2) ◦ L(ρ ◦ s1) = L([ρ ◦ s1, ρ ◦ s2]).

Finally, (
L(ρ ◦ {s1, s2} − [ρ ◦ s1, ρ ◦ s2])f

)
s3 = 0.

This result, which holds for any smooth function f on M and any smooth section s3 of τ ,

proves that s 7→ ρ ◦ s is a Lie algebra homomorphism.

Remarks 3.1.3. Let (E, τ,M, ρ) be a Lie algebroid.

(i) Lie algebra homomorphisms. For each smooth vector field X on M , the Lie derivative

L(X) with respect to X is a derivation of C∞(M,R): for every pair (f, g) of smooth

functions on M ,

L(X)(fg) = (L(X)f)g + f(L(X)g).

The map X 7→ L(X) is a Lie algebra homomorphism from the Lie algebra A1(M)

of smooth vector fields on M into the Lie algebra Der(C∞(M,R)) of derivations of

C∞(M,R), equipped with the commutator

(D1, D2) 7→ [D1, D2] = D1 ◦D2 −D2 ◦D1

as composition law. These facts were used in the proof of Proposition 3.1.2.

The map s 7→ L(ρ ◦ s), obtained by composition of two Lie algebra homomorphisms,

is a Lie algebra homomorphism, from the Lie algebra Γ(τ ) of smooth sections of the Lie

algebroid (E, τ,M, ρ) into the Lie algebra of derivations of C∞(M,R).
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(ii) Leibniz-type formulae. According to Definition 3.1.1 we have, for any pair (s1, s2) of

smooth sections of τ and any smooth function f on M ,

{s1, fs2} = f{s1, s2} + (i(ρ ◦ s1)df) s2.

As an easy consequence of the definition, we also have

{fs1, s2} = f{s1, s2} − (i(ρ ◦ s2)df) s1.

More generally, for any pair (s1, s2) of smooth sections of τ and any pair (f1, f2) of smooth

functions on M , we have

{f1s1, f2s2} = f1f2{s1, s2} + f1(i(ρ ◦ s1)df2)s2 − f2(i(ρ ◦ s2)df1)s1.

With the use of the Lie derivative operators, this formula may also be written as

{f1s1, f2s2} = f1f2{s1, s2} + f1(L(ρ ◦ s1)f2)s2 − f2(L(ρ ◦ s2)f1)s1.

3.1.4. Simple examples of Lie algebroids

(i) The tangent bundle. The tangent bundle (TM, τM ,M) of a smooth manifold M ,

equipped with the usual bracket of vector fields as composition law and with the identity

map idTM as anchor, is a Lie algebroid.

(ii) An involutive distribution. Let V be a smooth distribution on a smooth manifold M ,

i.e., a smooth vector subbundle of the tangent bundle TM . We assume that V is involu-

tive, i.e., such that the space of its smooth sections is stable under the bracket operation.

The vector bundle (V, τM |V ,M), with the usual bracket of vector fields as composition

law and with the canonical injection iV : V → TM as anchor, is a Lie algebroid. We have

denoted by τM : TM → M the canonical projection of the tangent bundle and by τM |V
its restriction to the subbundle V .

(iii) A sheaf of Lie algebras. Let (E, τ,M) be a vector bundle over the smooth manifold

M and (z1, z2) 7→ [z1, z2] be a smooth, skew-symmetric bilinear bundle map defined

on the fibred product E ×M E, with values in E, such that for each x ∈ M , the fibre

Ex = τ−1(x), equipped with the bracket (z1, z2) 7→ [z1, z2], is a Lie algebra. We define

the bracket of two smooth sections s1 and s2 of τ as the section {s1, s2} such that, for

each x ∈ M , {s1, s2}(x) = [s1(x), s2(x)]. For the anchor, we take the zero vector bundle

map from E to TM . Then (E, τ,M) is a Lie algebroid of particular type, called a sheaf

of Lie algebras over the manifold M .

(iv) A finite-dimensional Lie algebra. In particular, a finite-dimensional Lie algebra can

be considered as a Lie algebroid over a base reduced to a single point, with the zero map

as anchor.

3.2. The Lie algebroid of a Lie groupoid. We now describe the most important

example of Lie algebroid: to every Lie groupoid, there is an associated Lie algebroid,

much like to every Lie group there is an associated Lie algebra. It is in this setting that

Pradines [41] introduced Lie algebroids for the first time. For more information about Lie

groupoids and their associated Lie algebroids, the reader is referred to [35, 36, 8, 13, 1].

In the following propositions and definitions, Γ
t

⇉
s

Γ0 is a Lie groupoid.
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Proposition 3.2.1. For each x ∈ Γ, the maps

y 7→ Lx(y) = xy and z 7→ Rx(z) = zx

are smooth diffeomorphisms, respectively from t−1(s(x)) onto t−1(t(x)) and from s−1(t(x))

onto s−1(s(x)). These maps are called the left translation and right translation by x,

respectively.

Proof. The smoothness of the groupoid composition law m : (x, y) 7→ xy implies the

smoothness of Lx and Rx. These maps are diffeomorphisms whose inverses are

(Lx)
−1 = Lx−1 , (Rx)

−1 = Rx−1 ,

so the proof is complete.

Definition 3.2.2. A vector field Y and a vector field Z, defined on open subsets of Γ, are

said to be, respectively, left invariant and right invariant if they have the two properties:

(i) the projections on Γ0 of Y by the target map t, and of Z by the source map s, vanish:

Tt(Y ) = 0, T s(Z) = 0;

(ii) for each y in the domain of definition of Y and each x ∈ s−1(t(y)), xy is in the

domain of definition of Y and

Y (xy) = TLx(Y (y));

similarly, for each z in the domain of definition of Z and each x ∈ t−1(s(z)), zx is in

the domain of definition of Z and

Z(zx) = TRx(Z(z)).

Proposition 3.2.3. Let A(Γ) be the intersection of kerTt and TΓ0
Γ (the tangent bundle

TΓ restricted to the submanifold Γ0). Then A(Γ) is the total space of a vector bundle

τ : A(Γ) → Γ0, with base Γ0, the canonical projection τ being the map which associates

a point u ∈ Γ0 to every vector in kerTut. That vector bundle has a natural Lie algebroid

structure and is called the Lie algebroid of the Lie groupoid Γ. Its composition law is

defined thus: Let w1 and w2 be two smooth sections of that bundle over an open subset

U of Γ0. Let ŵ1 and ŵ2 be the two left invariant vector fields, defined on s−1(U), whose

restrictions to U are equal to w1 and w2 respectively. Then for each u ∈ U ,

{w1, w2}(u) = [ŵ1, ŵ2](u).

The anchor ρ of that Lie algebroid is the map Ts restricted to A(Γ).

Proof. The correspondence which associates, to each smooth section w of the vector

bundle τ : A(Γ) → Γ0, the prolongation of that section by a left invariant vector field ŵ,

is a vector space isomorphism. Therefore, by setting

{w1, w2}(u) = [ŵ1, ŵ2](u),

we obtain a Lie algebra structure on the space of smooth sections of τ : A(Γ) → Γ0. Let

f be a smooth function, defined on the open subset U of Γ0 on which w1 and w2 are
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defined. For each u ∈ U ,

{w1, fw2}(u) = [ŵ1, f̂w2](u) = [ŵ1, (f ◦ s)ŵ2](u)

= f(u)[ŵ1, ŵ2(u)] + (i(ŵ1)d(f ◦ s))(u)ŵ2(u)

= f(u)[ŵ1, ŵ2(u)] + 〈df(u), T s(ŵ1(u))〉ŵ2(u)

= f(u){w1, w2}(u) +
〈
df(u), T s(w1(u))〉w2(u),

which proves that Ts has the properties of an anchor.

Remark 3.2.4. We could exchange the roles of t and s and use right invariant vector

fields instead of left invariant vector fields. The Lie algebroid obtained remains the same,

up to an isomorphism.

Examples 3.2.5. (i) When the Lie groupoid Γ
t

⇉
s

is a Lie group, its Lie algebroid is

simply its Lie algebra.

(ii) We have seen (2.5.2) that a vector bundle (E, τ,M), with addition in the fibres as

composition law, can be considered as a Lie groupoid. Its Lie algebroid is the same vector

bundle, with the zero bracket on its space of sections, and the zero map as anchor.

(ii) Let M be a smooth manifold. The groupoid of pairs M ×M
t

⇉
s

M (2.3.1) is a Lie

groupoid whose Lie algebroid is isomorphic to the tangent bundle (TM, τM ,M) with the

identity map as anchor.

(iii) The fundamental groupoid (2.5.3) of a smooth connected manifold M is a Lie

groupoid. Its total space is the simply connected covering space of M ×M and, as in the

previous example, its Lie algebroid is isomorphic to the tangent bundle (TM, τM ,M).

3.2.6. Integration of Lie algebroids. According to Lie’s third theorem, for any given

finite-dimensional Lie algebra, there exists a Lie group whose Lie algebra is isomorphic to

that Lie algebra. The same property is not true for Lie algebroids and Lie groupoids. The

problem of finding necessary and sufficient conditions under which a given Lie algebroid

is isomorphic to the Lie algebroid of a Lie groupoid remained open for more than 30

years. Partial results were obtained by J. Pradines [42], K. Mackenzie [35], P. Dazord

[11], P. Dazord ans G. Hector [12]. An important breakthrough was made by Cattaneo

and Felder [7] who, starting from a Poisson manifold, built a groupoid (today called

the Weinstein groupoid) which, when its total space is regular, has a dimension twice

that of the Poisson manifold, has a symplectic structure and has as Lie algebroid the

cotangent space to the Poisson manifold. That groupoid was obtained by symplectic

reduction of an infinite-dimensional manifold. That method may in fact be used for any

Lie algebroid, as shown by Cattaneo [6]. A complete solution of the integration problem for

Lie algebroids was obtained by M. Crainic and R. L. Fernandes [9]. They have shown that

with each given Lie algebroid, one can associate a topological groupoid with connected

and simply connected t-fibres, now called the Weinstein groupoid of that Lie algebroid.

That groupoid, when the Lie algebroid is the cotangent bundle to a Poisson manifold,

is the same as that previously obtained by Cattaneo and Felder by another method.

When that topological groupoid is in fact a Lie groupoid, i.e., when it is smooth, its Lie
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algebroid is isomorphic to the given Lie algebroid. Crainic and Fernandes have obtained

computable necessary and sufficient conditions under which the Weinstein groupoid of a

Lie algebroid is smooth. In [10] they have used these results for integration of Poisson

manifolds, i.e., for construction of a symplectic groupoid whose set of units is a given

Poisson manifold.

3.3. Locality of the bracket. We will prove that the value, at any point x ∈ M , of

the bracket of two smooth sections s1 and s2 of the Lie algebroid (E, τ,M, ρ), depends

only on the jets of order 1 of s1 and s2 at x. We will need the following lemma.

Lemma 3.3.1. Let (E, τ,M, ρ) be a Lie algebroid, s1 : M → E a smooth section of τ ,

and U an open subset of M on which s1 vanishes. Then for any other smooth section s2
of τ , {s1, s2} vanishes on U .

Proof. Let x be a point in U . There exists a smooth function f : M → R with support in

U such that f(x) = 1. The section fs1 vanishes identically, since s1 vanishes on U while

f vanishes outside of U . Therefore, for any other smooth section s2 of τ ,

0 = {fs1, s2} = −{s2, fs1} = −f{s2, s1} − (i(ρ ◦ s2)df)s1.

So at x we have

f(x){s1, s2}(x) = (i(ρ ◦ s2)df)(x)s1(x) = 0.

Since f(x) = 1, we obtain {s1, s2}(x) = 0.

Proposition 3.3.2. Let (E, τ,M, ρ) be a Lie algebroid. The value {s1, s2}(x) of the

bracket of two smooth sections s1 and s2 of τ , at a point x ∈M , depends only on the jets

of order 1 of s1 and s2 at x. Moreover, if s1(x) = 0 and s2(x) = 0, then {s1, s2}(x) = 0.

Proof. Let U be an open neighbourhood of x in M on which there exists a local basis

(σ1, . . . , σk) of smooth sections of τ . For any point y ∈ U , (σ1(y), . . . , σk(y)) is a basis of

the fibre Ey = τ−1(y). Let s1 and s2 be two smooth sections of τ . On the open subset U ,

these two sections can be expressed, in a unique way, as

s1 =
k∑

i=1

fiσi, s2 =
k∑

j=1

gjσj ,

where the fi and gj are smooth functions on U .

By Lemma 3.3.1, the values of {s1, s2} in U depend only on the values of s1 and s2
in U . Therefore in U we have

{s1, s2} =
∑

i,j

(
figj{σi, σj} + fi(L(ρ ◦ σi)gj)σj − gj(L(ρ ◦ σj)fi)σi

)
.

This expression proves that the value of {s1, s2} at x depends only on the fi(x), dfi(x),

gj(x) and dgj(x), that is, on the jets of order 1 of s1 and s2 at x.

If s1(x) = 0, we have, for all i ∈ {1, . . . , k}, fi(x) = 0, and similarly if s2(x) = 0, we

have, for all j ∈ {1, . . . , k}, gj(x) = 0. The above expression thus shows that {s1, s2}(x)

= 0.
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4. Exterior powers of vector bundles

We recall in this section some definitions and general properties related to vector bundles,

their dual bundles and exterior powers. In the first subsection we recall some properties of

graded algebras, graded Lie algebras and their derivations. The second subsection applies

these properties to the graded algebra of sections of the exterior powers of a vector bundle.

For more details the reader may consult the book by Greub, Halperin and Vanstone [19].

The reader already familiar with this material may skip this section, or just look briefly

at the sign conventions we are using.

4.1. Graded vector spaces and graded algebras

Definitions 4.1.1. (i) An algebra is a vector space A over the field K = R or C, endowed

with a K-bilinear map called the composition law ,

A×A→ A, (x, y) 7→ xy, where x, y ∈ A.

(ii) An algebra A is said to be associative if its composition law is associative, i.e., if for

all x, y, z ∈ A,

x(yz) = (xy)z.

(iii) A vector space E over the field K = R or C is said to be Z-graded if one has chosen

a family (Ep, p ∈ Z) of vector subspaces of E such that

E =
⊕

p∈Z

Ep.

For each p ∈ Z, an element x ∈ E is said to be homogeneous of degree p if x ∈ Ep.

(iv) Let E =
⊕

p∈Z
Ep and F =

⊕
p∈Z

F p be two Z-graded vector spaces over the same

field K. A K-linear map f : E → F is said to be homogeneous of degree d (with d ∈ Z) if

for each p ∈ Z,

f(Ep) ⊂ F p+d.

(v) An algebra A is said to be Z-graded if A =
⊕

p∈Z
Ap is Z-graded as a vector space

and if in addition, for all p, q ∈ Z, x ∈ Ap and y ∈ Aq,

xy ∈ Ap+q.

(vi) A Z-graded algebra A =
⊕

p∈Z
Ap is said to be Z2-commutative if for all p, q ∈ Z,

x ∈ Ap and y ∈ Aq,

xy = (−1)pqyx.

It is said to be Z2-anticommutative if for all p, q ∈ Z, x ∈ Ap and y ∈ Aq,

xy = −(−1)pqyx.

4.1.2. Some properties and examples

(i) Composition of homogeneous linear maps. We consider three Z-graded vector spaces,

E =
⊕

p∈Z
Ep, F =

⊕
p∈Z

F p and G =
⊕

p∈Z
Gp, over the same field K. Let f : E → F

and g : F → G be two linear maps, with f homogeneous of degree d1 and g homogeneous

of degree d2. Then g ◦ f : E → G is homogeneous of degree d1 + d2.
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(ii) The algebra of linear endomorphisms of a vector space. Let E be a vector space and

L(E,E) be the space of linear endomorphisms of E. We take as composition law on the

latter space the usual composition of maps,

(f, g) 7→ f ◦ g, with f ◦ g(x) = f(g(x)), x ∈ E.

With that composition law, L(E,E) is an associative algebra.

(iii) The graded algebra of graded linear endomorphisms. We now assume that E =⊕
p∈Z

Ep is a Z-graded vector space. For each d ∈ Z, let Ad be the vector subspace of

L(E,E) whose elements are the linear endomorphisms f : E → E which are homogeneous

of degree d, i.e., such that for all p ∈ Z, f(Ep) ⊂ Ep+d. Let A =
⊕

d∈Z
Ad. By using

property 4.1.2(i), we see that with the usual composition of maps as composition law, A

is a Z-graded associative algebra.

Let us use property 4.1.2(i) with E = F = G in the following definition.

Definition 4.1.3. Let E =
⊕

p∈Z
Ep be a Z-graded vector space, and f, g ∈ L(E,E)

be two homogeneous linear endomorphisms of E of degrees d1 and d2, respectively. The

linear endomorphism [f, g] of E defined by

[f, g] = f ◦ g − (−1)d1d2g ◦ f,

which, by 4.1.2(i), is homogeneous of degree d1 + d2, is called the graded bracket of f

and g.

Definition 4.1.4. Let A =
⊕

p∈Z
Ap be a Z-graded algebra. Let θ : A → A be a linear

endomorphism of the graded vector space A. Let d ∈ Z. The linear endomorphism θ is

said to be a derivation of degree d of the graded algebra A if

(i) as a linear endomorphism of a graded vector space, θ is homogeneous of degree d;

(ii) for all p ∈ Z, x ∈ Ap and y ∈ A,

θ(xy) = (θ(x))y + (−1)dpx(θ(y)).

Remark 4.1.5. More generally, as shown by Koszul [27], for an algebra A equipped with

an involutive automorphism, one can define two types of remarkable linear endomor-

phisms of A, the derivations and the antiderivations. When A =
⊕

p∈Z
Ap is a Z-graded

algebra, and when the involutive automorphism used is that which maps each x ∈ Ap

to (−1)px, it turns out that all nonzero graded derivations are of even degree, that all

nonzero graded antiderivations are of odd degree, and that both derivations and an-

tiderivations can be defined as in Definition 4.1.4. For simplicity we have chosen to use

the term derivations for both derivations and antiderivations.

4.1.6. Some properties of derivations. Let A =
⊕

p∈Z
Ap be a Z-graded algebra.

(i) A derivation of degree 0. For every p ∈ Z and x ∈ Ap, we set

µ(x) = px.

The map µ, defined for homogeneous elements of A, can be extended in a unique way

to a linear endomorphism of A, still denoted by µ. This endomorphism is a derivation of

degree 0 of A.
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(ii) The graded bracket of two derivations. Let θ1 : A → A and θ2 : A → A be two

derivations of A, of degree d1 and d2, respectively. Their graded bracket (Definition 4.1.3)

[θ1, θ2] = θ1 ◦ θ2 − (−1)d1d2θ2 ◦ θ1

is a derivation of degree d1 + d2.

Definition 4.1.7. A Z-graded Lie algebra is a Z-graded algebra A =
⊕

p∈Z
Ap (in the

sense of 4.1.1(v)), whose composition law, often denoted by (x, y) 7→ [x, y] and called the

graded bracket , has the following two properties:

(i) it is Z2-anticommutative in the sense of 4.1.1(vi), i.e., for all p, q ∈ Z, P ∈ Ap and

Q ∈ Aq,

[P,Q] = −(−1)pq[Q,P ];

(ii) it satisfies the Z-graded Jacobi identity , i.e., for p, q, r ∈ Z, P ∈ Ap, Q ∈ Aq and

R ∈ Ar,

(−1)pr[P, [Q,R]] + (−1)qp[Q, [R,P ]] + (−1)rq[R, [P,Q]] = 0.

4.1.8. Examples and remarks

(i) Lie algebras and Z-graded Lie algebras. A Z-graded Lie algebra A =
⊕

p∈Z
Ap is not a

Lie algebra in the usual sense, unless Ap = {0} for all p 6= 0. However, its subspace A0 of

homogeneous elements of degree 0 is a Lie algebra in the usual sense: it is stable under the

bracket operation and when restricted to elements in A0, the bracket is skew-symmetric

and satisfies the usual Jacobi identity.

(ii) The graded Lie algebra associated to a graded associative algebra. Let A =
⊕

p∈Z
Ap

be a Z-graded associative algebra, whose composition law is denoted by (P,Q) 7→ PQ.

We define another composition law, denoted by (P,Q) 7→ [P,Q] and called the graded

commutator ; we first define it for homogeneous elements in A by setting, for all p, q ∈ Z,

P ∈ Ap and Q ∈ Aq,

[P,Q] = PQ− (−1)pqQP ;

then we extend the definition to all pairs of elements in A by bilinearity. The reader will

easily verify that with this composition law, A is a graded Lie algebra. When Ap = {0}

for all p 6= 0, we recover the well known way in which one can associate a Lie algebra to

any associative algebra.

(iii) The graded Lie algebra of graded endomorphisms. Let E =
⊕

p∈Z
Ep be a graded

vector space. For each p ∈ Z, let Ap ⊂ L(E,E) be the space of linear endomorphisms of E

which are homogeneous of degree p, and let A =
⊕

p∈Z
Ap. As we have seen in 4.1.2(iii),

when equipped with the composition of maps as composition law, A is a Z-graded associa-

tive algebra. Let us define another composition law on A, called the graded commutator ;

we first define it for homogeneous elements in A by setting, for all p, q ∈ Z, P ∈ Ap and

Q ∈ Aq,

[P,Q] = PQ− (−1)pqQP ;

then we extend the definition by bilinearity. By using 4.1.8(ii), we see that A with this

composition law is a Z-graded Lie algebra.
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(iv) Various interpretations of the graded Jacobi identity. Let A =
⊕

p∈Z
Ap be a Z-

graded Lie algebra. The Z-graded Jacobi identity indicated in Definition 4.1.7 can be

recast into other forms, which better indicate its meaning. Let us set, for all P,Q ∈ A,

adP Q = [P,Q].

For each p ∈ Z and P ∈ Ap, adP : A→ A is a graded endomorphism of A, homogeneous

of degree p. By taking into account the Z2-anticommutativity of the bracket, the reader

will easily see that the graded Jacobi identity can be written in the following two forms:

First form. For all p, q, r ∈ Z, P ∈ Ap, Q ∈ Aq and R ∈ Ar,

adP ([Q,R]) = [adP Q,R] + (−1)pq[Q, adP R].

This equality means that for all p ∈ Z and P ∈ Ap, the linear endomorphism adP : A→ A

is a derivation of degree p of the graded Lie algebra A, in the sense of 4.1.4.

Second form. For all p, q, r ∈ Z, P ∈ Ap, Q ∈ Aq and R ∈ Ar,

ad[P,Q]R = adP ◦ adQR− (−1)pq adQ ◦ adP R = [adP , adQ]R.

This equality means that for all p, q ∈ Z, P ∈ Ap and Q ∈ Aq, the endomorphism

ad[P,Q] : A → A is the graded bracket (in the sense of 4.1.3) of the two endomorphisms

adP : A → A and adQ : A → A. In other words, the map P 7→ adP is a Z-graded Lie

algebra homomorphism from the Z-graded Lie algebra A into the Z-graded Lie algebra of

sums of linear homogeneous endomorphisms of A, with the graded bracket as composition

law (example 4.1.8(iii)).

When Ap = {0} for all p 6= 0, we recover the well known interpretations of the usual

Jacobi identity.

4.2. Exterior powers of a vector bundle and of its dual. In what follows all the

vector bundles will be assumed to be locally trivial and of finite rank; therefore we will

write simply vector bundle for locally trivial vector bundle.

4.2.1. The dual of a vector bundle Let (E, τ,M) be a vector bundle on the field

K = R or C. We will denote its dual bundle by (E∗, π,M). Let us recall that it is a vector

bundle over the same base manifold M , whose fibre E∗
x = π−1(x) over each point x ∈M

is the dual vector space of the corresponding fibre Ex = τ−1(x) of (E, τ,M), i.e., the

space of linear forms on Ex (i.e., linear functions defined on Ex and taking their values

in the field K).

For each x ∈M , the duality pairing E∗
x × Ex → K will be denoted by

(η, v) 7→ 〈η, v〉.

4.2.2. The exterior powers of a vector bundle Let (E, τ,M) be a vector bundle of

rank k. For each integer p > 0, we will denote by (
∧p

E, τ,M) the pth exterior power of

(E, τ,M). It is a vector bundle over M whose fibre
∧p

Ex, over each point x ∈M , is the

pth exterior power of the corresponding fibre Ex = τ−1(x) of (E, τ,M). We recall that∧p
Ex can be canonically identified with the vector space of p-multilinear skew-symmetric

forms on the dual E∗
x of Ex.
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Similarly, for any integer p > 0, we will denote by (
∧p

E∗, π,M) the pth exterior

power of the bundle (E∗, π,M), dual of (E, τ,M).

For p = 1, (
∧1

E, τ,M) is simply the bundle (E, τ,M), and similarly (
∧1

E∗, π,M)

is simply the bundle (E∗, π,M). For p greater than the rank k of (E, τ,M), (
∧p

E, τ,M)

and (
∧p

E∗, π,M) are the trivial bundle over M , (M × {0}, p1,M), whose fibres are

zero-dimensional (p1 : M × {0} →M being the projection onto the first factor).

For p = 0, we set (
∧0

E, τ,M) = (
∧0

E∗, π,M) = (M×K, p1,M), where p1 : M×K →

M is the projection onto the first factor.

Finally, for p < 0, (
∧p

E, τ,M) and (
∧p

E∗, π,M) are defined to be the trivial bundle

over M , (M × {0}, p1,M). With these conventions, (
∧p

E, τ,M) and (
∧p

E∗, π,M) are

defined for all p ∈ Z.

4.2.3. Operations in the graded vector spaces
∧
Ex and

∧
E∗
x Let (E, τ,M) be

a vector bundle of rank k, (E∗, π,M) its dual and, for each p ∈ Z, (
∧p

E, τ,M) and

(
∧p

E∗, π,M) their pth exterior powers. We recall in this section some operations which

can be made, for each point x ∈M , in the vector spaces
∧p

Ex and
∧p

E∗
x.

For each x ∈M , let us consider the Z-graded vector spaces
∧
Ex =

⊕

p∈Z

∧p
Ex and

∧
E∗
x =

⊕

p∈Z

∧p
E∗
x.

We will say that elements in
∧
E∗
x are (multilinear) forms at x, and that elements in∧

Ex are multivectors at x.

(i) The exterior product. Let us recall that for each x ∈ M , p, q ∈ Z, P ∈
∧p

Ex and

Q ∈
∧q

Ex, there exists P ∧Q ∈
∧p+q

Ex, called the exterior product of P and Q, defined

by the following formulae.

• If p < 0, then P = 0, therefore, for any Q ∈
∧q

Ex, P ∧Q = 0. Similarly, if q < 0, then

Q = 0, therefore, for any P ∈
∧p

Ex, P ∧Q = 0.

• If p = 0, then P is a scalar (P ∈ K), and therefore, for any Q ∈
∧q

Ex, P ∧Q = PQ,

the usual product of Q by the scalar P . Similarly, for q = 0, then Q is a scalar (Q ∈ K),

and therefore, for any P ∈
∧p

Ex, we have P ∧ Q = QP , the usual product of P by

the scalar Q.

• If p ≥ 1 and q ≥ 1, P ∧Q, considered as a (p+ q)-multilinear form on E∗
x, is given by

the formula, where η1, . . . , ηp+q ∈ E∗
x,

P ∧Q(η1, . . . , ηp+q) =
∑

σ∈S(p,q)

ε(σ)P (ησ(1), . . . , ησ(p))Q(ησ(p+1), . . . , ησ(p+q)).

We have denoted by S(p,q) the set of permutations σ of {1, . . . , p+ q} which satisfy

σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q),

and set

ε(σ) =

{
1 if σ is even,

−1 if σ is odd.
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Similarly, let us recall that for all x ∈ M , p, q ∈ Z, ξ ∈
∧p

E∗
x and η ∈

∧q
E∗
x, there

exists ξ∧η ∈
∧p+q

E∗
x, called the exterior product of ξ and η. It is defined by the formulae

given above, the only change being the exchange of the roles of Ex and E∗
x.

The exterior product is associative and Z2-commutative: for all x ∈ M , p, q, r ∈ Z,

P ∈
∧p

Ex, Q ∈
∧q

Ex and R ∈
∧r

Ex,

P ∧ (Q ∧R) = (P ∧Q) ∧R, Q ∧ P = (−1)pqP ∧Q,

and similarly, for ξ ∈
∧p

E∗
x, η ∈

∧q
E∗
x and ζ ∈

∧r
E∗
x,

ξ ∧ (η ∧ ζ) = (ξ ∧ η) ∧ ζ, η ∧ ξ = (−1)pqξ ∧ η.

For all x ∈ M , the exterior product extends, by bilinearity, as a composition law in

each of the graded vector spaces
∧
Ex and

∧
E∗
x. With these composition laws, these

vector spaces become Z-graded associative and Z2-commutative algebras.

(ii) The interior product of a form by a vector. Let us recall that for each x ∈M , v ∈ Ex,

p ∈ Z, η ∈
∧p

E∗
x, there exists i(v)η ∈

∧p−1
E∗
x, called the interior product of η by v,

defined by the following formulae.

• For p ≤ 0, i(v)η = 0, since
∧p−1

E∗
x = {0}.

• For p = 1,

i(v)η = 〈η, v〉 ∈ K.

• For p > 1, i(v)η is the (p−1)-multilinear form on Ex such that, for all v1, . . . , vp−1 ∈ Ex,

i(v)η(v1, . . . , vp−1) = η(v, v1, . . . , vp−1).

For each x ∈ M and v ∈ Ex, the map η 7→ i(v)η extends, by linearity, as a graded

endomorphism of degree −1 of the graded vector space
∧
E∗
x. Moreover, that endomor-

phism is in fact a derivation of degree −1 of the exterior algebra of E∗
x, i.e., for all p, q ∈ Z,

ζ ∈
∧p

E∗
x, η ∈

∧q
E∗
x,

i(v)(ζ ∧ η) = (i(v)ζ) ∧ η + (−1)pζ ∧ (i(v)η).

(iii) The pairing between
∧
Ex and

∧
E∗
x. Let x ∈M , p, q ∈ Z, η ∈

∧p
E∗
x and v ∈

∧q
Ex.

We set

〈η, v〉 =

{
0 if p 6= q or p < 0 or q < 0,

ηv if p = q = 0.

In order to define 〈η, v〉 when p = q ≥ 1, let us first assume that η and v are decomposable,

i.e., that they can be written as

η = η1 ∧ · · · ∧ ηp, v = v1 ∧ · · · ∧ vp,

where ηi ∈ E∗
x, vj ∈ Ex, 1 ≤ i, j ≤ p. Then we set

〈η, v〉 = det(〈ηi, vj〉).

One may see that 〈η, v〉 depends only on η and v, not on the way in which they are

expressed as exterior products of elements of degree 1. The map (η, v) 7→ 〈η, v〉 extends

in a unique way to a bilinear map
∧
E∗
x ×

∧
Ex → K, still denoted by (η, v) 7→ 〈η, v〉,
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called the pairing . That map allows us to consider the graded vector spaces
∧
E∗
x and∧

Ex as dual to each other.

Let η ∈
∧p

E∗
x and v1, . . . , vp be elements of Ex. The pairing 〈η, v1∧· · ·∧vp〉 is related,

in a very simple way, to the value taken by η, considered as a p-multilinear form on Ex,

on the set (v1, . . . , vp). We have

〈η, v1 ∧ · · · ∧ vp〉 = η(v1, . . . , vp).

(iv) The interior product of a form by a multivector. For each x ∈ M and v ∈ Ex, we

have defined in 4.2.3(ii) the interior product i(v) as a derivation of degree −1 of the

exterior algebra
∧
E∗
x of forms at x. Let us now define, for each multivector P ∈

∧
Ex,

the interior product i(P ). Let us first assume that P is homogeneous of degree p, i.e.,

P ∈
∧p

Ex.

• For p < 0,
∧p

Ex = {0}, therefore i(P ) = 0.

• For p = 0,
∧0

Ex = K, therefore P is a scalar and we set, for all η ∈
∧
E∗
x,

i(P )η = Pη.

• For p ≥ 1 and P ∈
∧p

Ex decomposable, i.e.,

P = P1 ∧ · · · ∧ Pp, with Pi ∈ Ex, 1 ≤ i ≤ p,

we set

i(P1 ∧ · · · ∧ Pp) = i(P1) ◦ · · · ◦ i(Pp).

We see easily that i(P ) depends only on P , not on the way in which it is expressed as

an exterior product of elements of degree 1.

• We extend by linearity the definition of i(P ) to all P ∈
∧p

Ex, and we see that i(P ) is

a graded endomorphism of degree −p of the graded vector space
∧
E∗
x. Observe that

for p 6= 1, i(P ) is not in general a derivation of the exterior algebra
∧
E∗
x.

Finally, we extend the definition of i(P ) by linearity to all elements P ∈
∧
Ex.

(v) The interior product by an exterior product. It is easy to see that for all P,Q ∈
∧
Ex,

i(P ∧Q) = i(P ) ◦ i(Q).

(vi) Interior product and pairing. For p ∈ Z, η ∈
∧p

E∗
x and P ∈

∧p
Ex, we have

i(P )η = (−1)(p−1)p/2〈η, P 〉.

More generally, for p, q ∈ Z, P ∈
∧p

(Ex), Q ∈
∧q

(Ex) and η ∈
∧p+q

(E∗
x),

〈
i(P )η,Q

〉
= (−1)(p−1)p/2〈η, P ∧Q〉.

This formula shows that the interior product by P ∈
∧p

Ex is (−1)(p−1)p/2 times the

transpose, with respect to the pairing, of the exterior product by P on the left.

4.2.4. The exterior algebra of sections Let (E, τ,M) be a vector bundle of rank k

over the field K = R or C, over a smooth manifold M , (E∗, π,M) be its dual bundle

and, for each integer p ≥ 1, let (
∧p

E, τ,M) and (
∧p

E∗, π,M) be their respective pth

exterior powers.
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For each p ∈ Z, we will denote byAp(M,E) the space of smooth sections of (
∧p

E, τ,M),

i.e., the space of smooth maps Z : M →
∧p

E which satisfy

τ ◦ Z = idM .

Similarly, for each p ∈ Z, we will denote by Ωp(M,E) the space of smooth sections of

the vector bundle (
∧p

E∗, π,M), i.e., the space of smooth maps η : M →
∧p

E∗ which

satisfy

π ◦ η = idM .

Let us observe that Ωp(M,E) = Ap(M,E∗).

We will denote by A(M,E) and Ω(M,E) the direct sums

A(M,E) =
⊕

p∈Z

Ap(M,E), Ω(M,E) =
⊕

p∈Z

Ωp(M,E).

These direct sums, taken over all p ∈ Z, are in fact taken over all integers p which

satisfy 0 ≤ p ≤ k, where k is the rank of the vector bundle (E, τ,M), since we have

Ap(M,E) = Ωp(M,E) = {0} for p < 0 as well as for p > k.

For p = 0, A0(M,E) and Ω0(M,E) both coincide with the space C∞(M,K) of smooth

functions defined on M which take their values in the field K.

Operations such as exterior product, interior product and pairing, defined for each

point x ∈M in 4.2.3, can be extended to elements in A(M,E) and Ω(M,E).

(i) The exterior product of two sections. For example, the exterior product of two sections

P,Q ∈ A(M,E) is the section

x ∈M, x 7→ (P ∧Q)(x) = P (x) ∧Q(x).

The exterior product of two sections η, ζ ∈ Ω(M,E) is similarly defined.

With the exterior product as composition law, A(M,E) and Ω(M,E) are Z-graded

associative and Z2-commutative algebras, called the algebra of multivectors and the al-

gebra of forms associated to the vector bundle (E, τ,M). Their subspaces A0(M,E) and

Ω0(M,E) of homogeneous elements of degree 0 both coincide with the usual algebra

C∞(M,K) of smooth K-valued functions on M , with the usual product of functions as

composition law. We observe that A(M,E) and Ω(M,E) are Z-graded modules over the

ring of functions C∞(M,K).

(ii) The interior product by a section of A(M,E). For each P ∈ A(M,E), the interior

product i(P ) is an endomorphism of the graded vector space Ω(M,E). If p ∈ Z and

P ∈ Ap(M,E), the endomorphism i(P ) is homogeneous of degree −p. For p = 1, i(P ) is

a derivation of degree −1 of the algebra Ω(M,E).

(iii) The pairing between A(M,E) and Ω(M,E). The pairing

(η, P ) 7→ 〈η, P 〉, η ∈ Ω(M,E), P ∈ A(M,E),

is a C∞(M,K)-bilinear map, defined on Ω(M,E) × A(M,E), which takes its values in

C∞(M,K).
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5. Exterior powers of a Lie algebroid and of its dual

We now consider a Lie algebroid (E, τ,M, ρ) over a smooth manifold M . We denote by

(E∗, π,M) its dual vector bundle, and use all the notations defined in Section 4. We will

assume that the base field K is R, but most results remain valid for K = C. We will prove

that differential operators such as the Lie derivative and the exterior derivative, which

are well known for sections of the exterior powers of a tangent bundle and of its dual,

still exist in this more general setting.

5.1. Lie derivatives with respect to sections of a Lie algebroid. We prove in

this section that for each smooth section V of the Lie algebroid (E, τ,M, ρ), there exists

a derivation of degree 0 of the exterior algebra Ω(M,E), called the Lie derivative with

respect to V and denoted by Lρ(V ). When the Lie algebroid is the tangent bundle

(TM, τM ,M, idTM ), we will recover the usual Lie derivative of differential forms with

respect to a vector field.

Proposition 5.1.1. Let (E, τ,M, ρ) be a Lie algebroid on a smooth manifold M . For each

smooth section V ∈ A1(M,E) of the vector bundle (E, τ,M), there exists a unique graded

endomorphism of degree 0 of the graded algebra of exterior forms Ω(M,E), called the Lie

derivative with respect to V and denoted by Lρ(V ), which has the following properties:

(i) For a smooth function f ∈ Ω0(M,E) = C∞(M,R),

Lρ(V )f = i(ρ ◦ V )df = L(ρ ◦ V )f,

where L(ρ ◦ V ) denotes the usual Lie derivative with respect to the vector field ρ ◦ V .

(ii) For a form η ∈ Ωp(M,E) of degree p > 0, Lρ(V )η is the form defined by the formula,

where V1, . . . , Vp are smooth sections of (E, τ,M),

(Lρ(V )η)(V1, . . . , Vp) = Lρ(V )(η(V1, . . . , Vp))

−

p∑

i=1

η(V1, . . . , Vi−1, {V, Vi}, Vi+1, . . . , Vp).

Proof. Clearly (i) defines a function Lρ(V )f ∈ Ω0(M,E) = C∞(M,R). We see immedi-

ately that for f, g ∈ C∞(M,R),

Lρ(V )(fg) = (Lρ(V )f)g + f(Lρ(V )g). (∗)

Now (ii) defines a map (V1, . . . Vp) 7→ (Lρ(V )η)(V1, . . . , Vp) on (A1(M,E))p, with values

in C∞(M,R). In order to prove that this map defines an element Lρ(V )η in Ωp(M,E),

it is enough to prove that it is skew-symmetric and C∞(M,R)-linear in each argument.

The skew-symmetry and the R-linearity in each argument are easily verified. It remains

to prove that for each function f ∈ C∞(M,R),

(Lρ(V )η)(fV1, V2, . . . , Vp) = f(Lρ(V )η)(V1, V2, . . . , Vp). (∗∗)
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We have

(Lρ(V )η)(fV1, V2, . . . , Vp) = Lρ(V )(η(fV1, V2, . . . , Vp)) − η({V, fV1}, V2, . . . , Vp)

−

p∑

i=2

η(fV1, V2, . . . , Vi−1, {V, Vi}, Vi+1, . . . , Vp).

By using (∗), we may write

Lρ(V )(η(fV1, V2, . . . , Vp)) = Lρ(V )(fη(V1, V2, . . . , Vp))

= (Lρ(V )f)η(V1, V2, . . . , Vp) + fLρ(V )(η(V1, V2, . . . , Vp)).

Using the property of the anchor, we also have

{V, fV1} = (i(ρ ◦ V )df)V1 + f{V, V1} = (Lρ(V )f)V1 + f{V, V1}.

Equality (∗∗) follows immediately.

The endomorphism Lρ(V ), defined on the subspaces of homogeneous forms, can then

be extended, in a unique way, to Ω(M,E), by imposing the R-linearity of the map η 7→

Lρ(V )η.

Let us now introduce the Ω(M,E)-valued exterior derivative of a function. In the next

section, that definition will be extended to all elements in Ω(M,E).

Definition 5.1.2. Let (E, τ,M, ρ) be a Lie algebroid on a smooth manifold M . For each

function f ∈Ω0(M,E)=C∞(M,R), the Ω(M,E)-valued exterior derivative of f , denoted

by dρf , is the unique element in Ω1(M,E) such that, for each section V ∈ A1(M,E),

〈dρf, V 〉 = 〈df, ρ ◦ V 〉.

Remark 5.1.3. Let us observe that the transpose of the anchor ρ : E → TM is a vector

bundle map tρ : T ∗M → E∗. By composition of that map with the usual differential of

functions, we obtain the Ω(M,E)-valued exterior differential dρ. We have indeed

dρf = tρ ◦ df.

Proposition 5.1.4. Under the assumptions of Proposition 5.1.1, the Lie derivative has

the following properties:

1. For all V ∈ A1(M,E) and f ∈ C∞(M,R),

Lρ(V )(dρf) = dρ(Lρ(V )f).

2. For all V,W ∈ A1(M,E) and η ∈ Ω(M,E),

i({V,W})η = (Lρ(V ) ◦ i(W ) − i(W ) ◦ Lρ(V ))η.

3. For each V ∈ A1(M,E), Lρ(V ) is a derivation of degree 0 of the exterior algebra

Ω(M,E). That means that for all η, ζ ∈ Ω(M,E),

Lρ(V )(η ∧ ζ) = (Lρ(V )η) ∧ ζ + η ∧ (Lρ(V )ζ).

4. For all V,W ∈ A1(M,E) and η ∈ Ω(M,E),

Lρ({V,W})η = (Lρ(V ) ◦ Lρ(W ) − Lρ(W ) ◦ Lρ(V ))η.

5. For all V ∈ A1(M,E), f ∈ C∞(M,R) and η ∈ Ω(M,E),

Lρ(fV )η = fLρ(V )η + dρf ∧ i(V )η.
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Proof. 1. Let W ∈ A1(M,E). Then

〈Lρ(V )(dρf),W 〉 = Lρ(V )〈dρf,W 〉 − 〈dρf, {V,W}〉

= L(ρ ◦ V ) ◦ L(ρ ◦W )f − L(ρ ◦ {V,W})f

= L(ρ ◦W ) ◦ L(ρ ◦ V )f = 〈dρ(Lρ(V )f),W 〉,

so Property 1 is proven.

2. Let V,W ∈ A1(M,E), η ∈ Ωp(M,E) and V1, . . . , Vp−1 ∈ A1(M,E). We may write

(Lρ(V ) ◦ i(W )η)(V1, . . . , Vp−1) = Lρ(V )(η(W,V1, . . . , Vp−1))

−

p−1∑

k=1

η(W,V1, . . . , Vk−1, {V, Vk}, Vk+1, . . . , Vp−1)

= (Lρ(V )η)(W,V1, . . . , Vp−1) + η({V,W}, V1, . . . , Vp−1)

=
(
(i(W ) ◦ Lρ(V ) + i({V,W}))η

)
(V1, . . . , Vp−1),

so Property 2 is proven.

3. Let V ∈ A1(M,E), η ∈ Ωp(M,E) and ζ ∈ Ωq(M,E). For p < 0, as well as for

q < 0, both sides of the equality stated in Property 3 vanish, so the equality is trivially

satisfied. For p = q = 0, the equality is also satisfied, as shown by equality (∗) in the

proof of Proposition 5.1.1. We still have to prove the equality for p > 0 and (or) q > 0.

We will do that by induction on p + q. Let r ≥ 1 be an integer such that the equality

stated in Property 3 holds for p + q ≤ r − 1. Such an integer exists, for example r = 1.

We now assume that p ≥ 0 and q ≥ 0 are such that p + q = r. Let W ∈ A1(M,E). By

using Property 2, we may write

i(W ) ◦ Lρ(V )(η ∧ ζ) = Lρ(V ) ◦ i(W )(η ∧ ζ) − i({V,W})(η ∧ ζ)

= Lρ(V )(i(W )η ∧ ζ + (−1)pη ∧ i(W )ζ)

− i({V,W})η ∧ ζ − (−1)pη ∧ i({V,W})ζ.

Since i(W )η ∈ Ωp−1(M,E) and i(W )ζ ∈ Ωq−1(M,E), the induction assumption allows

us to use Property 3 to transform the first terms of the right hand side. We obtain

i(W ) ◦ Lρ(V )(η ∧ ζ) = (Lρ(V ) ◦ i(W )η) ∧ ζ + i(W )η ∧ Lρ(V )ζ

+ (−1)p(Lρ(V )η) ∧ i(W )ζ + (−1)pη ∧ (Lρ(V ) ◦ i(W )ζ)

− i({V,W})η ∧ ζ − (−1)pη ∧ i({V,W})ζ.

By rearranging the terms, we obtain

i(W ) ◦ Lρ(V )(η ∧ ζ) =
(
Lρ(V ) ◦ i(W )η − i({V,W})η

)
∧ ζ

+ (−1)pη ∧
(
Lρ(V ) ◦ i(W )ζ − i({V,W})ζ

)

+ i(W )η ∧ Lρ(V )ζ + (−1)p(Lρ(V )η) ∧ i(W )ζ.

By using again Property 2 we get

i(W ) ◦ Lρ(V )(η ∧ ζ) = (i(W ) ◦ Lρ(V )η) ∧ ζ + (−1)pη ∧ (i(W ) ◦ Lρ(V )ζ)

+ i(W )η ∧ Lρ(V )ζ + (−1)pLρ(V )η ∧ i(W )ζ

= i(W )
(
Lρ(V )η ∧ ζ + η ∧ Lρ(V )ζ

)
.
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Since the last equality holds for all W ∈ A1(M,E), it follows that Property 3 holds for

η ∈ Ωp(M,E) and ζ ∈ Ωq(M,E) with p, q ≥ 0 and p + q = r. We have thus proven by

induction that Property 3 holds for all p, q ∈ Z, η ∈ Ωp(M,E), ζ ∈ Ωq(M,E). The same

equality holds, by bilinearity, for all η, ζ ∈ Ω(M,E).

4. Let V,W ∈ A1(M,E). Then {V,W} ∈ A1(M,E) and, by Property 3, Lρ(V ), Lρ(W )

and Lρ({V,W}) are derivations of degree 0 of the graded algebra Ω(M,E). By 4.1.6(ii),

the graded bracket

[Lρ(V ),Lρ(W )] = Lρ(V ) ◦ Lρ(W ) − Lρ(W ) ◦ Lρ(V )

is also a derivation of degree 0 of Ω(M,E). Property 4 means that the derivations

Lρ({V,W}) and [Lρ(V ),Lρ(W )] are equal. In order to prove that equality, it is enough

to prove that it holds true for η ∈ Ω0(M,E) and for η ∈ Ω1(M,E), since the graded

algebra Ω(M,E) is generated by its homogeneous elements of degrees 0 and 1.

Let f ∈ Ω0(M,E) = C∞(M,R). We have

Lρ({V,W})f = L(ρ ◦ {V,W})f = L([ρ ◦ V, ρ ◦W ])f

= [L(ρ ◦ V ),L(ρ ◦W )]f = [Lρ(V ),Lρ(W )]f,

therefore Property 4 holds for η = f ∈ Ω0(M,E).

Now let η ∈ Ω1(M,E) and Z ∈ A1(M,E). By using Property 2, then Property 4 for

elements η ∈ Ω0(M,E), we may write

i(Z) ◦ Lρ({V,W})η = Lρ({V,W})(i(Z)η) − i({{V,W}, Z})η

=
(
Lρ(V ) ◦ Lρ(W ) − Lρ(W ) ◦ Lρ(V )

)
(i(Z)η) − i({{V,W}, Z})η.

By using Property 2 and the Jacobi identity, we obtain

i(Z) ◦ Lρ({V,W})η = Lρ(V )
(
i({W,Z})η + i(Z) ◦ Lρ(W )η

)

− Lρ(W )
(
i({V, Z})η + i(Z) ◦ Lρ(V )η

)
− i({{V,W}, Z})η

= i({W,Z})Lρ(V )η + i({V, Z})Lρ(W )η

− i({V, Z})Lρ(W )η − i({W,Z})Lρ(V )η

+ i(Z) ◦
(
Lρ(V ) ◦ Lρ(W ) − Lρ(W ) ◦ Lρ(V )

)
η

+ i
(
{V, {W,Z}} − {W, {V, Z}} − {{V,W}, Z}

)
η

= i(Z) ◦
(
Lρ(V ) ◦ Lρ(W ) − Lρ(W ) ◦ Lρ(V )

)
η.

Since the last equality holds for all Z ∈ A1(M,E), Property 4 holds for all η ∈ Ω1(M,E),

and therefore for all η ∈ Ω(M,E).

5. Let V ∈ A1(M,E) and f ∈ C∞(M,R). We have seen (Property 4) that Lρ(fV ) is

a derivation of degree 0 of Ω(M,E). We easily verify that

η 7→ fLρ(V )η + dρf ∧ i(V )η

is also a derivation of degree 0 of Ω(M,E). Property 5 means that these two derivations

are equal. As above, it is enough to prove that Property 5 holds for η ∈ Ω0(M,E) and

for η ∈ Ω1(M,E).

Let g ∈ Ω0(M,E) = C∞(M,R). We may write Lρ(fV )g = i(fV )dρg = fLρ(V )g,

which shows that Property 5 holds for η = g ∈ Ω0(M,E).
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Let η ∈ Ω1(M,E) and W ∈ A1(M,E). We have

〈Lρ(fV )η,W 〉 = Lρ(fV )(〈η,W 〉) − 〈η, {fV,W}〉

= fLρ(V )(〈η,W 〉) − f〈η, {V,W}〉 + 〈η, (i(W )dρf)V 〉

= 〈fLρ(V )η,W 〉 + (i(W )dρf)i(V )η = 〈fLρ(V )η + dρf ∧ i(V )η,W 〉,

since, η being in Ω1(M,E), i(W ) ◦ i(V )η = 0. The last equality being satisfied for all

W ∈ A1(M,E), the result follows.

The next proposition shows that for each V ∈ A1(M,E), the Lie derivative Lρ(V ),

already defined as a derivation of degree 0 of the graded algebra Ω(M,E), can also

be extended to a derivation of degree 0 of the graded algebra A(M,E), with very nice

properties. As we will soon see, the Schouten–Nijenhuis bracket will appear as a very

natural further extension of the Lie derivative.

Proposition 5.1.5. Let (E, τ,M, ρ) be a Lie algebroid on a smooth manifold M . For

each smooth section V ∈ A1(M,E) of the vector bundle (E, τ,M), there exists a unique

graded endomorphism of degree 0 of the graded algebra of multivectors A(M,E), called the

Lie derivative with respect to V and denoted by Lρ(V ), which has the following properties:

(i) For a smooth function f ∈ A0(M,E) = C∞(M,R),

Lρ(V )f = i(ρ ◦ V )df = L(ρ ◦ V )f,

where L(ρ ◦V ) denotes the usual Lie derivative with respect to the vector field ρ ◦V .

(ii) For an integer p ≥ 1 and a multivector P ∈ Ap(M,E), Lρ(V )P is the unique element

in Ap(M,E) such that, for all η ∈ Ωp(M,E),
〈
η,Lρ(V )P

〉
= Lρ(V )(〈η, P 〉) −

〈
Lρ(V )η, P

〉
.

Proof. Let us first observe that A0(M,E) = Ω0(M,E) = C∞(M,R), and that for

f ∈ A0(M,E), the definition of Lρ(V )f given above is the same as that given in Propo-

sition 5.1.1.

Now let p ≥ 1 and P ∈ Ap(M,E). The map

η 7→ K(η) = Lρ(V )(〈η, P 〉)−
〈
Lρ(V )η, P

〉

is clearly an R-linear map defined on Ωp(M,E), with values in C∞(M,R). Let f ∈

C∞(M,R). We have

K(fη) = Lρ(V )(〈fη, P 〉) − 〈Lρ(V )(fη), P 〉

= f
(
Lρ(V )(〈η, P 〉) − 〈Lρ(V )η, P 〉

)
+ (Lρ(V )f)〈η, P 〉 − (Lρ(V )f)〈η, P 〉

= fK(η).

This proves that the map K is C∞(M,R)-linear. Since the pairing allows us to consider

the vector bundle (
∧p

E, τ,M) as the dual of (
∧p

E∗, π,M), we see that there exists a

unique element Lρ(V )P ∈ Ap(M,E) such that, for all η ∈ Ωp(M,E),

K(η) = Lρ(V )(〈η, P 〉)− 〈Lρ(V )η, P 〉 = 〈η,Lρ(V )P 〉,

and that ends the proof.
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Proposition 5.1.6. Under the assumptions of Proposition 5.1.5, the Lie derivative has

the following properties:

1. For all V,W ∈ A1(M,E),

Lρ(V )(W ) = {V,W}.

2. For V, V1, . . . , Vp ∈ A1(M,E),

Lρ(V )(V1 ∧ · · · ∧ Vp) =

p∑

i=1

V1 ∧ · · · ∧ Vi−1 ∧ {V, Vi} ∧ Vi+1 ∧ · · · ∧ Vp.

3. For each V ∈ A1(M,E), Lρ(V ) is a derivation of degree 0 of the exterior algebra

A(M,E). That means that for all P,Q ∈ A(M,E),

Lρ(V )(P ∧Q) = (Lρ(V )P ) ∧Q+ P ∧ Lρ(V )Q.

4. For all V ∈ A1(M,E), P ∈ A(M,E) and η ∈ Ω(M,E),

Lρ(V )(i(P )η) = i(Lρ(V )P )η + i(P )(Lρ(V )η).

5. Similarly, for all V ∈ A1(M,E), P ∈ A(M,E) and η ∈ Ω(M,E),

Lρ(V )(〈η, P 〉) = 〈Lρ(V )η, P 〉 + 〈η,Lρ(V )P 〉.

6. For all V,W ∈ A1(M,E) and P ∈ A(M,E),

Lρ({V,W})P =
(
Lρ(V ) ◦ Lρ(W ) − Lρ(W ) ◦ Lρ(V )

)
P.

7. For all V ∈ A1(M,E), f ∈ C∞(M,R), P ∈ A(M,E) and η ∈ Ω(M,E),

〈η,Lρ(fV )P 〉 = f〈Lρ(V )P, η〉 + 〈dρf ∧ i(V )η, P 〉.

Proof. 1. Let V,W ∈ A1(M,E) and η ∈ Ω(M,E). We may write

〈η,Lρ(V )W 〉 = Lρ(V )(〈η,W 〉)− 〈Lρ(V )η,W 〉 = 〈η, {V,W}〉.

We have proven Property 1.

2. The proof is similar to that of Property 1.

3. When P = V1 ∧ · · · ∧ Vp and Q = W1 ∧ · · · ∧Wq are decomposable homogeneous

elements in A(M,E), Property 3 is an easy consequence of 2. The validity of Property 3

for all P,Q ∈ A(M,E) follows by linearity.

4. When P = V1 ∧ · · · ∧ Vp is a decomposable homogeneous element in A(M,E),

Property 4 is an easy consequence of Property 2. The validity of Property 4 for all

P,Q ∈ A(M,E) follows by linearity.

5. This is an immediate consequence of Property 4.

6. This is an immediate consequence of Property 4 of this Proposition and of Prop-

erty 4 of Proposition 5.1.4.

7. This is an immediate consequence of Property 4 of this proposition, and of Prop-

erty 5 of Proposition 5.1.4.

5.2. The Ω(M,E)-valued exterior derivative. We have introduced above (Defi-

nition 5.1.2) the Ω(M,E)-valued exterior derivative of a function f ∈ Ω0(M,E) =

C∞(M,R). The next proposition shows that the Ω(M,E)-valued exterior derivative ex-

tends to a graded endomorphism of degree 1 of the graded algebra Ω(M,E). We will see
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later (Proposition 5.2.3) that the Ω(M,E)-valued exterior derivative is in fact a derivation

of degree 1 of Ω(M,E).

Proposition 5.2.1. Let (E, τ,M, ρ) be a Lie algebroid over a smooth manifold M . There

exists a unique graded endomorphism of degree 1 of the exterior algebra of forms Ω(M,E),

called the Ω(M,E)-valued exterior derivative (or, in brief, the exterior derivative) and

denoted by dρ, which has the following properties:

(i) For f ∈ Ω0(M,E) = C∞(M,R), dρf is the unique element in Ω1(M,E), already

defined (Definition 5.1.2), such that, for each V ∈ A1(M,E),

〈dρf, V 〉 = Lρ(V )f = 〈df, ρ ◦ V 〉 = 〈tρ ◦ df, V 〉,

where d stands for the usual exterior derivative of smooth functions on M , and
tρ : E∗ → T ∗M is the transpose of the anchor ρ.

(ii) For p ≥ 1 and η ∈ Ωp(M,E), dρη is the unique element in Ωp+1(M,E) such that,

for all V0, . . . , Vp ∈ A1(M,E),

dρη(V0, . . . , Vp) =

p∑

i=0

(−1)iLρ(Vi)(η(V0, . . . , V̂i, . . . , Vp))

+
∑

0≤i<j≤p

(−1)i+jη({Vi, Vj}, V0, . . . , V̂i, . . . , V̂j , . . . , Vp),

where the symbol ̂ over the terms Vi and Vj means that these terms are omitted.

Proof. For f ∈ Ω0(M,E), dρf is clearly an element in Ω1(M,E).

Let p ≥ 1 and η ∈ Ωp(M,E). As defined in (ii), dρη is a map, defined on (A1(M,E))p,

with values in C∞(M,R). The reader will immediately see that this map is skew-symmet-

ric and R-linear in each of its arguments. In order to prove that dρη is an element in

Ωp+1(M,E), it remains only to verify that as a map, dρη is C∞(M,R)-linear in each of

its arguments, or simply in its first argument, since the skew-symmetry will imply the

same property for all other arguments. Let f ∈ C∞(M,R). We have

dρη(fV0, V1, . . . , Vp) = Lρ(fV0)(η(V1, . . . , Vp))

+

p∑

i=1

(−1)iLρ(Vi)(fη(V0, . . . , V̂i, . . . , Vp))

+
∑

1≤j≤p

(−1)jη({fV0, Vj}, V1, . . . , V̂j , . . . , Vp)

+
∑

1≤i<j≤p

(−1)i+jη({Vi, Vj}, fV0, V1, . . . , V̂i, . . . , V̂j , . . . , Vp).

By a rearrangement of the terms on the right hand side, and by using the formulae

Lρ(Vi)(fη(. . .)) = (Lρ(Vi)f)η(. . .) + fLρ(Vi)(η(. . .))

and

{fV0, Vj} = f{V0, Vj} − (Lρ(Vj)f)V0,

we obtain

dρη(fV0, V1, . . . , Vp) = fdρη(V0, V1, . . . , Vp).
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We have shown that dρη ∈ Ωp+1(M,E). The Ω(M,E)-valued exterior derivative so de-

fined on Ωp(M,E) for all p ∈ Z extends, in a unique way, to a graded endomorphism of

degree 1 of Ω(M,E).

Remark 5.2.2. Let p ≥ 1, η ∈ Ωp(M,E) and V0, . . . , Vp ∈ A1(M,E). The formula for

dρη given in Proposition 5.2.1 can be recast into another form, often useful:

dρη(V0, . . . , Vp) =

p∑

i=0

(−1)i(Lρ(Vi)η)(V0, . . . , V̂i, . . . , Vp)

−
∑

0≤i<j≤p

(−1)i+jη({Vi, Vj}, V0, . . . , V̂i, . . . , V̂j , . . . , Vp).

For example, for p = 1,

dρη(V0, V1) = Lρ(V0)(η(V1)) − Lρ(V1)(η(V0)) − η({V0, V1})

= 〈Lρ(V0)η, V1〉 − 〈Lρ(V1)η, V0〉 + η({V0, V1}).

Proposition 5.2.3. Under the assumptions of Proposition 5.2.1, the Ω(M,E)-valued

exterior derivative has the following properties:

1. Let V ∈ A1(M,E). The Lie derivative Lρ(V ), the exterior derivative dρ and the

interior product i(V ) are related by the formula

Lρ(V ) = i(V ) ◦ dρ + dρ ◦ i(V ).

2. The exterior derivative dρ is a derivation of degree 1 of the exterior algebra Ω(M,E).

That means that for each p ∈ Z, η ∈ Ωp(M,E) and ζ ∈ Ω(M,E),

dρ(η ∧ ζ) = dρη ∧ ζ + (−1)pη ∧ dρζ.

3. Let V ∈ A1(M,E). Then

Lρ(V ) ◦ dρ = dρ ◦ Lρ(V ).

4. The square of dρ vanishes identically,

dρ ◦ dρ = 0.

Proof. 1. Let V0 = V, V1, . . . , Vp ∈ A1(M,E) and η ∈ Ωp(M,E). Then

(i(V ) ◦ dρη)(V1, . . . , Vp) = dρη(V, V1, . . . , Vp)

=

p∑

i=0

(−1)iLρ(Vi)(η(V0, . . . , V̂i, . . . , Vp))

+
∑

0≤i<j≤p

(−1)i+jη({Vi, Vj}, V0, . . . , V̂i, . . . , V̂j , . . . , Vp),

and

(dρ ◦ i(V )η)(V1, . . . , Vp) =

p∑

i=1

(−1)i−1Lρ(Vi)(η(V0, . . . , V̂i, . . . , Vp))

+
∑

1≤i<j≤p

(−1)i+jη(V0, {Vi, Vj}, V1, . . . , V̂i, . . . , V̂j , . . . , Vp).
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Let us add these two equalities. Several terms cancel, and we obtain
(
(i(V ) ◦ dρ + dρ ◦ i(V ))η

)
(V1, . . . , Vp)

= Lρ(V0)(η(V1, . . . , Vp)) +

p∑

j=1

(−1)jη({V0, Vj}, V1, . . . , V̂j , . . . , Vp).

When we shift, in the last term of the right hand side, the argument {V0, Vj} to the jth

position, we obtain
(
(i(V ) ◦ dρ + dρ ◦ i(V ))η

)
(V1, . . . , Vp) = Lρ(V0)(η(V1, . . . , Vp))

+

p∑

j=1

η(V1, . . . , Vj−1, {V0, Vj}, Vj+1, . . . , Vp)

= (Lρ(V0)η)(V1, . . . , Vp).

2. For η = f and ζ = g ∈ Ω0(M,E) = C∞(M,R), Property 2 holds since, for all

V ∈ A1(M,E),

〈dρ(fg), V 〉 = 〈d(fg), ρ ◦ V 〉 = 〈fdg + g df, ρ ◦ V 〉 = 〈fdρg + gdρf, V 〉.

Now let p, q ≥ 0 be two integers, η ∈ Ωp(M,E) and ζ ∈ Ωq(M,E). We will prove that

Property 2 holds by induction on p+q. Just above, we have seen that it holds for p+q = 0.

Let us assume that r is an integer such that Property 2 holds for p+ q ≤ r, and that now

p+ q = r + 1. Let V ∈ A1(M,E). We may write

i(V )dρ(η ∧ ζ) = Lρ(V )(η ∧ ζ) − dρ ◦ i(V )(η ∧ ζ)

= Lρ(V )η ∧ ζ + η ∧ Lρ(V )ζ − dρ
(
i(V )η ∧ ζ + (−1)pη ∧ i(V )ζ

)
.

We may now use the induction assumption, since in the last terms of the right hand side

i(V )η ∈ Ωp−1(M,E) and i(V )ζ ∈ Ωq−1(M,E). After some rearrangements we obtain

i(V )dρ(η ∧ ζ) = i(V )(dρη ∧ ζ + η ∧ dρζ).

Since this result holds for all V ∈ A1(M,E), Property 2 holds for p + q = r + 1, and

therefore for all p, q ∈ Z.

3. Let V ∈ A1(M,E). We know (Proposition 5.1.4) that Lρ(V ) is a derivation of

degree 0 of the exterior algebra Ω(M,E), and we have just seen (Property 2) that dρ is

a derivation of degree 1 of that algebra. Therefore, by 4.1.6, their graded bracket

[Lρ(V ), dρ] = Lρ(V ) ◦ dρ − dρ ◦ Lρ(V )

is a derivation of degree 1 of Ω(M,E). In order to prove that this derivation is equal

to 0, it is enough to prove that it vanishes on Ω0(M,E) and on Ω1(M,E). We have

already proven that it vanishes on Ω0(M,E) (Property 1 of 5.1.4). Let η ∈ Ω1(M,E) and

W ∈ A1(M,E). By using Property 1 of this proposition and Property 2 of 5.1.4, we may

write

i(W ) ◦
(
Lρ(V ) ◦ dρ − dρ ◦ Lρ(V )

)
η = Lρ(V ) ◦ i(W ) ◦ dρη − i({V,W}) ◦ dρη

− Lρ(W ) ◦ Lρ(V )η + dρ ◦ i(W ) ◦ Lρ(V )η.
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After some rearrangements, we obtain

i(W ) ◦
(
Lρ(V ) ◦ dρ − dρ ◦ Lρ(V )

)
η

=
(
Lρ(V ) ◦ Lρ(W ) − Lρ(W ) ◦ Lρ(V ) − Lρ({V,W})

)
η

+ dρ ◦ i({V,W})η − dρ ◦ i({V,W})η

−
(
Lρ(V ) ◦ dρ − dρ ◦ Lρ(V )

)
(i(W )η)

= 0,

since i(W )η ∈ Ω0(M,E), which implies that the last term vanishes.

4. Property 2 shows that dρ is a derivation of degree 1 of Ω(M,E). We know (4.1.6)

that [dρ, dρ] = 2dρ ◦ dρ is a derivation of degree 2 of Ω(M,R). In order to prove that

dρ ◦ dρ = 0, it is enough to prove that it vanishes on Ω0(M,E) and on Ω1(M,E).

Let f ∈ Ω0(M,E) = C∞(M,R) and V,W ∈ A1(M,E). Then

(dρ ◦ dρf)(V,W ) = Lρ(V )(dρf(W )) − Lρ(W )(dρf(V )) − dρf({V,W})

=
(
Lρ(V ) ◦ Lρ(W ) − Lρ(W ) ◦ Lρ(V ) − Lρ({V,W})

)
f = 0,

where we have used Property 4 of Proposition 5.1.4. We have shown that dρ ◦dρ vanishes

on Ω0(M,E).

Now let η ∈ Ω1(M,E) and V0, V1, V2 ∈ A1(M,E). Using Property 1, we may write

(dρ ◦ dρη)(V0, V1, V2) =
(
(i(V0) ◦ dρ)(dρη)

)
(V1, V2)

=
(
(Lρ(V0) ◦ dρ − dρ ◦ i(V0) ◦ dρ)η

)
(V1, V2).

The last term on the right hand side may be transformed, by using again Property 1:

dρ ◦ i(V0) ◦ dρ(η) = dρ ◦ Lρ(V0)η − dρ ◦ dρ(i(V0)η) = dρ ◦ Lρ(V0)η,

since, as i(V0)η ∈ Ω0(M,E), we have dρ ◦ dρ(i(V0)η) = 0. So we obtain

(dρ ◦ dρη)(V0, V1, V2) =
(
(Lρ(V0) ◦ dρ − dρ ◦ Lρ(V0))η

)
(V1, V2).

But Property 3 shows that
(
Lρ(V0) ◦ dρ − dρ ◦ Lρ(V0)

)
η = 0,

so we have

(dρ ◦ dρη)(V0, V1, V2) = 0,

and our proof is complete.

5.3. Defining a Lie algebroid by properties of its dual. Let (E, τ,M) be a vector

bundle and (E∗, π,M) its dual bundle. We have seen in 5.2 that when (E, τ,M) has a

Lie algebroid structure whose anchor is denoted by ρ, this structure determines, on the

graded algebra Ω(M,E) of sections of the exterior powers of the dual bundle (E∗, π,M),

a graded derivation dρ, of degree 1, which satisfies d2
ρ = dρ ◦ dρ = 0. Now we are going

to prove a converse of this property: when a graded derivation of degree 1, whose square

vanishes, is given on Ω(M,E), it determines a Lie algebroid structure on (E, τ,M). This

property will be used later to prove that the cotangent bundle of a Poisson manifold has

a natural Lie algebroid structure.

We will need the following lemmas.
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Lemma 5.3.1. Let (E, τ,M) be a vector bundle and (E∗, π,M) its dual bundle. Let δ be a

graded derivation of degree 1 of the exterior algebra Ω(M,E) (notations defined in 4.2.4).

For each pair (X,Y ) of smooth sections of (E, τ,M) there exists a unique smooth section

[X,Y ]δ of (E, τ,M), called the δ-bracket of X and Y , such that

i([X,Y ]δ) = [[i(X), δ], i(Y )].

Proof. The map defined by the right hand side of the above equality,

D : η 7→ D(η) = [[i(X), δ], i(Y )],

is a derivation of degree −1 of Ω(M,E), since it is obtained by repeated application of the

graded bracket to derivations (property 4.1.6(ii)). Therefore, it vanishes on Ω0(M,E) =

C∞(M,R). As a consequence, the map is C∞(M,R)-linear; we have indeed, for each

f ∈ C∞(M,R) and η ∈ Ω(M,R),

D(fη) = D(f) ∧ η + fD(η) = fD(η).

Therefore, there exists a unique smooth section [X,Y ]δ of (E, τ,M) such that, for each

η ∈ Ω1(M,E),

〈η, [X,Y ]δ〉 = D(η).

Now the maps

i([X,Y ]δ) and [[i(X), δ], i(Y )]

are both derivations of degree −1 of Ω(M,E), which coincide on Ω0(M,E) and Ω1(M,E).

Since derivations are local, and since Ω(M,E) is locally generated by its elements of

degrees 0 and 1, these two derivations are equal.

Lemma 5.3.2. Under the assumptions of Lemma 5.3.1, set, for each smooth section X of

(E, τ,M),

Lδ(X) = [i(X), δ].

Then, for each smooth section X of (E, τ,M), we have

[Lδ(X), δ] = [i(X), δ2];

for each pair (X,Y ) of smooth sections of (E, τ,M), we have

[Lδ(X),Lδ(Y )] − Lδ([X,Y ]δ) = [[i(X), δ2], i(Y )];

and for each triple (X,Y, Z) of smooth sections of (E, τ,M), we have

i
(
[X, [Y, Z]δ]δ + [Y, [Z,X]δ]δ + [Z, [X,Y ]δ]δ

)
=

[
[[i(X), δ2], i(Y )], i(Z)

]
.

Proof. Let us use the graded Jacobi identity. We may write

[Lδ(X), δ] = [[i(X), δ], δ] = −[[δ, δ], i(X)] − [[δ, i(X)], δ].

Since [δ, δ] = 2δ2, we obtain

2[Lδ(X), δ] = −2[δ2, i(X)] = 2[i(X), δ2],



36 C.-M. Marle

which proves the first equality. Similarly, by using again the graded Jacobi identity and

the equality just proven,

[Lδ(X),Lδ(Y )] = [Lδ(X), [i(Y ), δ]] = −[i(Y ), [δ,Lδ(X)]] + [δ, [Lδ(X), i(Y )]]

= −[[δ,Lδ(X)], i(Y )] + [[Lδ(X), i(Y )], δ]

= [[Lδ(X), δ], i(Y )] + [i([X,Y ]δ), δ]

= [[i(X), δ2], i(Y )] + Lδ([X,Y ]δ).

The second formula is proven. Finally,

i([X, [Y, Z]δ]δ) = [Lδ(X), i([Y, Z]δ)]

= [Lδ(X), [Lδ(Y ), i(Z)]]

= − [Lδ(Y ), [i(Z),Lδ(X)]] − [i(Z), [Lδ(X),Lδ(Y )]]

= [Lδ(Y ), [Lδ(X), i(Z)]] −
[
i(Z),Lδ([X,Y ]δ)

]

−
[
i(Z),

[
[i(X), δ2], i(Y )

]]

= i([Y, [X,Z]δ]δ) + i([[X,Y ]δ, Z]δ)

+
[[

[i(X), δ2], i(Y )
]
, i(Z)

]
.

The proof is complete.

Theorem 5.3.3. Let (E, τ,M) be a vector bundle and (E∗, π,M) its dual bundle. Let

δ be a graded derivation of degree 1 of the exterior algebra Ω(M,E) (notations defined

in 4.2.4), which satisfies

δ2 = δ ◦ δ = 0.

Then δ determines a natural Lie algebroid structure on (E, τ,M). For that structure, the

anchor map ρ : E → TM is the unique vector bundle map such that, for each smooth

section X of (E, τ,M) and each function f ∈ C∞(M,R),

i(ρ ◦X) df = 〈δf,X〉.

The bracket (X,Y ) 7→ {X,Y } is the δ-bracket defined in Lemma 5.3.1; it is such that,

for each pair (X,Y ) of smooth sections of (E, τ,M),

i({X,Y }) = [[i(X), δ], i(Y )].

The ω(M,E)-valued exterior derivative associated to that Lie algebroid structure (Propo-

sitions 5.2.1 and 5.2.3) is the given derivation δ.

Proof. Since δ2 = 0, Lemmas 5.3.1 and 5.3.2 prove that the δ-bracket satisfies the Jacobi

identity. Let X and Y be two smooth sections of (E, τ,M) and f a smooth function

on M . By using the definition of the δ-bracket we obtain

i([X, fY ]δ) = f i([X,Y ]δ) + (Lδ(X)f) i(Y ).

But

Lδ(X)f = [i(X), δ]f = 〈δf,X〉,

since i(X)f = 0. We must prove now that the value of δ(f) at any point x ∈M depends

only on the value of the differential df of f at that point. We first observe that δ being
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a derivation, the values of δ(f) in some open subset U of M depend only on the values

of f in that open subset. Moreover, we have

δ(1 f) = δ(f) = δ(1) f + 1 δ(f) = δ(1) f + δ(f),

which proves that δ vanishes on constants.

Let a ∈ M . We use a chart of M whose domain U contains a, and whose local

coordinates are denoted by (x1, . . . , xn). In order to calculate δ(f)(a), the above remarks

allow us to work in that chart. We may write

f(x) = f(a) +

n∑

i=1

(xi − ai)ϕi(x) with lim
x→a

ϕi(x) =
∂f

∂xi
(a).

Therefore,

(δf)(a) =
n∑

i=1

∂f

∂xi
(a) δ(xi)(a).

We have proven that δ(f)(a) depends only on df(a), and that we may write

δ(f) = tρδ ◦ df,

where tρδ : T ∗M → E∗ is a smooth vector bundle map. Let ρδ : E → TM be its transpose.

We may now write

[X, fY ]δ = f [X,Y ]δ + 〈df, ρδ ◦X〉Y.

This proves that the vector bundle (E, τ,M), with the δ-bracket and the map ρδ as

anchor, is a Lie algebroid. Finally, by using Propositions 5.2.1 and 5.2.3, we see that

the Ω(M,E)-valued exterior derivative associated to that Lie algebroid structure is the

derivation δ.

5.4. The Schouten–Nijenhuis bracket. In this subsection (E, τ,M, ρ) is a Lie al-

gebroid. We have seen (Propositions 5.1.4 and 5.1.6) that the composition law which

associates, to each pair (V,W ) of sections of the Lie algebroid (E, τ,M, ρ), the bracket

{V,W}, extends to a map (V, P ) 7→ Lρ(V )P , defined on A1(M,E)×A(M,E), with val-

ues in A(M,E). Theorem 5.4.3 below will show that this map extends, in a very natural

way, to a composition law (P,Q) 7→ [P,Q], defined on A(M,E) × A(M,E), with val-

ues in A(M,E), called the Schouten–Nijenhuis bracket . That bracket was discovered by

Schouten [44] for multivectors on a manifold, and its properties were further studied by

Nijenhuis [40].

The following lemmas will be used in the proof of Theorem 5.4.3.

Lemma 5.4.1. Let (E, τ,M, ρ) be a Lie algebroid, p, q∈Z, P ∈Ap(M,E), Q∈Aq(M,E),

f ∈ C∞(M,R) and η ∈ Ω(M,E). Then

i(P )(df ∧ i(Q)η) − (−1)pdf ∧ (i(P ) ◦ i(Q)η) + (−1)(p−1)qi(Q) ◦ i(P )(df ∧ η)

+ (−1)(p−1)q+pi(Q)(df ∧ i(P )η) = 0.

Proof. Let us denote by E(P,Q, f, η) the left hand side of the above equality. We have

to prove that E(P,Q, f, η) = 0.
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Obviously, E(P,Q, f, η) = 0 when p < 0, as well as when q < 0. When p = q = 0, we

have

E(P,Q, f, η) = PQdf ∧ η − PQdf ∧ η −QP df ∧ η +QP df ∧ η = 0.

Now we proceed by induction on p and q, with the induction assumption that E(P,Q, f, η)

= 0 when p ≤ pM and q ≤ qM , for some integers pM and qM . Let P = X ∧ P ′ with

X ∈ A1(M,E) and P ′ ∈ ApM (M,E), Q ∈ Aq(M,E) with q ≤ qM , f ∈ C∞(M,R) and

η ∈ Ω(M,E). We obtain, after some calculations,

E(P,Q, f, η) = E(X ∧ P ′, Q, f, η)

= (−1)pM+q−1E(P ′, Q, f, i(X)η) + (−1)pM 〈df,X〉i(P ) ◦ i(Q)η

− (−1)pM+pMq〈df,X〉i(Q) ◦ i(P )η

= 0,

since, by the induction assumption, E(P ′, Q, f, i(X)η) = 0.

Since every P ∈ ApM+1(M,E) is the sum of terms of the form X ∧ P ′ with X ∈

A1(M,E) and P ′ ∈ ApM (M,E), we see that E(P,Q, f, η) = 0 for all p ≤ pM +1, q ≤ qM ,

P ∈ ApM+1(M,E) and Q ∈ AqM (M,E).

Moreover, P and Q play similar parts in E(P,Q, f, η), since

E(P,Q, f, η) = (−1)pq+p+qE(Q,P, f, η).

Therefore E(P,Q, f, η) = 0 for all p ≤ pM + 1, q ≤ qM + 1, P ∈ Ap(M,E) and Q ∈

Aq(M,E). By induction we conclude that E(P,Q, f, η) = 0 for all p, q ∈ Z, P ∈ Ap(M,E)

and Q ∈ Aq(M,E).

Lemma 5.4.2. Let (E, τ,M, ρ) be a Lie algebroid, p, q, r ∈ Z, P ∈ Ap(M,E), Q ∈

Aq(M,E) and R ∈ Ar(M,E). Then

i(R) ◦ [[i(P ), dρ], i(Q)] = (−1)(p+q−1)r[[i(P ), dρ], i(Q)] ◦ i(R).

Proof. Let us first assume that R = V ∈ A1(M,E). We may write

i(V ) ◦
[
[i(P ), dρ], i(Q)

]
= i(V ) ◦ i(P ) ◦ dρ ◦ i(Q) − (−1)pi(V ) ◦ dρ ◦ i(P ) ◦ i(Q)

− (−1)(p−1)qi(V ) ◦ i(Q) ◦ i(P ) ◦ dρ

+ (−1)(p−1)q+pi(V ) ◦ i(Q) ◦ dρ ◦ i(P ).

We transform the right hand side by pushing the operator i(V ) towards the right, using

the formulae (proven in 4.2.3(v) and in Property 1 of 5.2.3)

i(V ) ◦ i(P ) = (−1)pi(P ) ◦ i(V ) and i(V ) ◦ dρ = Lρ(V ) − dρ ◦ i(V ).

We obtain, after rearrangements,

i(V ) ◦ [[i(P ), dρ], i(Q)] = (−1)p+q−1[[i(P ), dρ], i(Q)] ◦ i(V )

+ (−1)pi(P ) ◦ Lρ(V ) ◦ i(Q) − (−1)pLρ(V ) ◦ i(P ) ◦ i(Q)

− (−1)(p−1)q+p+qi(Q) ◦ i(P ) ◦ Lρ(V )

+ (−1)(p−1)q+p+qi(Q) ◦ Lρ(V ) ◦ i(P ).
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Now we transform the last four terms of the right hand side by pushing to the right the

operator Lρ(V ), using formulae, proven in 4.2.3(v) and in Property 4 of 5.1.6, of the type

i(P ) ◦ i(Q) = i(P ∧Q) and Lρ(V ) ◦ i(P ) = i(P ) ◦ Lρ(V ) + i(Lρ(V )P ).

The terms containing Lρ(V ) become

(−1)pi
(
P ∧ Lρ(V )Q+ (Lρ(V )P ) ∧Q− Lρ(V )(P ∧Q)

)
,

so they vanish, by Property 3 of 5.1.6. So we have

i(V ) ◦ [[i(P ), dρ], i(Q)] = (−1)(p+q−1)[[i(P ), dρ], i(Q)] ◦ i(V ).

Now let R = V1 ∧ · · · ∧ Vr be a decomposable element in Ar(M,E). Since

i(R) = i(V1) ◦ · · · ◦ i(Vr),

by using r times the above result we obtain

i(R) ◦ [[i(P ), dρ], i(Q)] = (−1)(p+q−1)r[[i(P ), dρ], i(Q)] ◦ i(R).

Finally, the same result holds for all R ∈ Ar(M,E) by linearity.

Theorem 5.4.3. Let (E, τ,M, ρ) be a Lie algebroid. Let p, q ∈ Z, and let P ∈ Ap(M,E),

Q ∈ Aq(M,E). There exists a unique element in Ap+q−1(M,E), called the Schouten–

Nijenhuis bracket of P and Q, and denoted by [P,Q], such that the interior product

i([P,Q]), considered as a graded endomorphism of degree p+ q− 1 of the exterior algebra

Ω(M,E), is given by the formula

i([P,Q]) = [[i(P ), dρ], i(Q)],

the brackets on the right hand side being the graded brackets of graded endomorphism

(Definition 4.1.3).

Proof. We observe that for all r ∈ Z, the map

η 7→ [[i(P ), dρ], i(Q)]η,

defined on Ωr(M,E), with values in Ωr−p−q+1(M,E), is R-linear. Let us prove that it is

in fact C∞(M,R)-linear. Let f ∈ C∞(M,R). By developing the double graded bracket

of endomorphisms, we obtain after some calculations

[[i(P ), dρ], i(Q)](fη) = f [[i(P ), dρ], i(Q)]η

+ i(P )(df ∧ i(Q)η) − (−1)pdf ∧ (i(P ) ◦ i(Q)η)

+ (−1)(p−1)qi(Q) ◦ i(P )(df ∧ η) + (−1)(p−1)q+pi(Q)(df ∧ i(P )η).

Lemma 5.4.1 shows that the sum of the last four terms of the right hand side vanishes,

so

[[i(P ), dρ], i(Q)](fη) = f [[i(P ), dρ], i(Q)]η.

Let us take r = p+ q − 1, and η ∈ Ωp+q−1(M,E). The map

η 7→ [[i(P ), dρ], i(Q)]η,

defined on Ωp+q−1(M,E), takes its values in Ω0(M,E) = C∞(M,R), and is C∞(M,R)-

linear. This proves the existence of a unique element [P,Q] in Ωp+q−1(M,E) such that,
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for all η ∈ Ωp+q−1(M,E),

[[i(P ), dρ], i(Q)]η = i([P,Q])η.

We still have to prove that the same formula holds for all r ∈ Z and all η ∈ Ωr(M,E).

The formula holds trivially when r < p+ q − 1, so let us assume that r > p+ q − 1. Let

η ∈ Ωr(M,E) and R ∈ Ar−p−q+1(M,E). By using Lemma 5.4.2, we may write

i(R) ◦ [[i(P ), dρ], i(Q)](η) = (−1)(p+q−1)(r−p−q+1)[[i(P ), dρ], i(Q)](i(R)η)

= (−1)(p+q−1)(r−p−q+1)i([P,Q])(i(R)η),

since i(R)η ∈ Ωp+q−1(E). Therefore

i(R) ◦ [[i(P ), dρ], i(Q)](η) = (−1)(p+q−1)(r−p−q+1)i([P,Q]) ◦ i(R)η) = i(R) ◦ i([P,Q])η.

Since this equality holds for all η ∈ Ωr(M,E) and R ∈ Ar−p−q+1(M,E), we conclude

that [[i(P ), dρ], i(Q)] = i([P,Q]), and the proof is complete.

In Proposition 5.1.1, we introduced the Lie derivative with respect to a section of

the Lie algebroid (E, τ,M, ρ). Now we define, for all p ∈ Z and P ∈ Ap(M,E), the Lie

derivative with respect to P . The reader will observe that Property 1 of Proposition 5.2.3

shows that for p = 1, the following definition is in agreement with the definition of the

Lie derivative with respect to an element in A1(M,E) given in 5.1.1.

Definition 5.4.4. Let (E, τ,M, ρ) be a Lie algebroid, p ∈ Z and P ∈ Ap(M,E). The

Lie derivative with respect to P is the graded endomorphism of Ω(M,P ), of degree 1−p,

denoted by Lρ(P ),

Lρ(P ) = [i(P ), dρ] = i(P ) ◦ dρ − (−1)pdρ ◦ i(P ).

Remark 5.4.5. Under the assumptions of Theorem 5.4.3, the above definition allows us

to write

i([P,Q]) = [Lρ(P ), i(Q)] = Lρ(P ) ◦ i(Q) − (−1)(p−1)qi(Q) ◦ Lρ(P ).

For p = 1 and P = V ∈ A1(M,E), this formula is simply Property 4 of Proposition 5.1.6,

as shown by the following proposition.

Proposition 5.4.6. Under the assumptions of Theorem 5.4.3, let p = 1, P = V ∈

A1(M,E) and Q ∈ Aq(M,E). The Schouten–Nijenhuis bracket [V,Q] is simply the Lie

derivative of Q with respect to V , as defined in Proposition 5.1.5:

[V,Q] = Lρ(V )Q.

Proof. As seen in Remark 5.4.5, we may write

i([V,Q]) = [Lρ(V ), i(Q)] = Lρ(V ) ◦ i(Q) − i(Q) ◦ Lρ(V ).

Property 4 of Proposition 5.1.6 shows that

i(Lρ(V )Q) = Lρ(V ) ◦ i(Q) − i(Q) ◦ Lρ(V ).

Therefore, i([V,Q]) = i(Lρ(V )Q), and finally [V,Q] = Lρ(V )Q, which ends the proof.
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Remarks 5.4.7. (i) The Lie derivative of elements in Ap(M,E). One might wish to

extend the range of application of the Lie derivative with respect to a multivector P ∈

Ap(M,E) by setting, for all q ∈ Z and Q ∈ Aq(M,E),

Lρ(P )Q = [P,Q],

the bracket on the right hand side being the Schouten–Nijenhuis bracket. However, we will

avoid the use of this notation because it may lead to confusion: for p > 1, P ∈ Ap(M,E),

q = 0 and Q = f ∈ A0(M,E) = C∞(M,R), the Schouten–Nijenhuis bracket [P, f ] is an

element in Ap−1(M,E) which does not vanish in general. But f can also be considered

as an element in Ω0(M,E), and the Lie derivative of f with respect to P , in the sense

of Definition 5.4.4, is an element in Ω−(p−1)(M,E), therefore vanishes identically. So it

would not be a good idea to write Lρ(P )f = [P, f ].

(ii) Lie derivatives and derivations. We have seen (Property 3 of 5.1.4) that the Lie

derivative Lρ(V ) with respect to a section V ∈ A1(M,R) of the Lie algebroid (E, τ,M, ρ)

is a derivation of degree 0 of the exterior algebra Ω(M,E). For p > 1 and P ∈ Ap(M,E),

the Lie derivative Lρ(P ) is a graded endomorphism of degree −(p−1) of Ω(M,E). There-

fore, it vanishes identically on Ω0(M,E) and on Ω1(M,E). Unless it vanishes identically,

Lρ(P ) is not a derivation of Ω(M,E).

Proposition 5.4.8. Let (E, τ,M, ρ) be a Lie algebroid, p, q ∈ Z, P ∈ Ap(M,E) and

Q ∈ Aq(M,E).

1. The graded bracket of the Lie derivative Lρ(P ) and the exterior differential dρ vanishes

identically:

[Lρ(P ), dρ] = Lρ(P ) ◦ dρ − (−1)p−1dρ ◦ Lρ(P ) = 0.

2. The graded bracket of the Lie derivatives Lρ(P ) and Lρ(Q) is equal to the Lie derivative

Lρ([P,Q]):

[Lρ(P ),Lρ(Q)] = Lρ(P ) ◦ Lρ(Q) − (−1)(p−1)(q−1)Lρ(Q) ◦ Lρ(P ) = Lρ([P,Q]).

Proof. 1. We have seen (4.1.8(ii)) that the space of graded endomorphisms of Ω(M,E),

with the graded bracket as composition law, is a graded Lie algebra. By using the graded

Jacobi identity, we may write

(−1)p[[i(P ), dρ], dρ] + (−1)p[[dρ, dρ], i(P )] − [[dρ, i(P )], dρ] = 0.

But

[dρ, dρ] = 2dρ ◦ dρ = 0 and [i(P ), dρ] = −(−1)p[dρ, i(P )].

So we obtain

2[[i(P ), dρ], dρ] = 2[Lρ(P ), dρ] = 0.

2. We have

Lρ([P,Q]) = [i([P,Q]), dρ] = [[Lρ(P ), i(Q)], dρ].

Using the graded Jacobi identity, we may write

(−1)p−1[[Lρ(P ), i(Q)], dρ] + (−1)q(p−)[[i(Q), dρ],Lρ(P )] + (−1)q[[dρ,Lρ(P )], i(Q)] = 0.
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But, according to 5.4.4 and Property 1 above,

[i(Q), dρ] = Lρ(Q) and [dρ,Lρ(P )] = 0.

So we obtain

Lρ([P,Q]) = −(−1)(p−1)(q−1)
[
Lρ(Q),Lρ(P )

]
=

[
Lρ(P ),Lρ(Q)

]
,

as announced.

Proposition 5.4.9. Under the same assumptions as those of Theorem 5.4.3, the Schou-

ten–Nijenhuis bracket has the following properties.

1. For f, g ∈ A0(M,E) = C∞(M,R),

[f, g] = 0.

2. For V ∈ A1(M,E), q ∈ Z and Q ∈ Aq(M,E),

[V,Q] = Lρ(V )Q.

3. For V,W ∈ A1(M,E),

[V,W ] = {V,W},

the bracket on the right hand side being the Lie algebroid bracket.

4. For all p, q ∈ Z, P ∈ Ap(M,E) and Q ∈ Aq(M,E),

[P,Q] = −(−1)(p−1)(q−1)[Q,P ].

5. Let p ∈ Z and P ∈ Ap(M,E). The map Q 7→ [P,Q] is a derivation of degree p− 1 of

the graded exterior algebra A(M,E). In other words, for q1, q2 ∈ Z, Q1 ∈ Aq1(M,E)

and Q2 ∈ Aq2(M,E),

[P,Q1 ∧Q2] = [P,Q1] ∧Q2 + (−1)(p−1)q1Q1 ∧ [P,Q2].

6. Let p, q, r ∈ Z, P ∈ Ap(M,E), Q ∈ Aq(M,E) and R ∈ Ar(M,E). The Schouten–

Nijenhuis bracket satisfies the graded Jacobi identity:

(−1)(p−1)(r−1)[[P,Q], R] + (−1)(q−1)(p−1)[[Q,R], P ] + (−1)(r−1)(q−1)[[R,P ], Q] = 0.

Proof. 1. Let f, g ∈ A0(M,E). Then [f, g] ∈ A−1(M,E) = {0}.

2. See Proposition 5.4.6.

3. See Property 1 of Proposition 5.1.6.

4. Let p, q ∈ Z, P ∈ Ap(M,E) and Q ∈ Aq(M,E). By using the graded Jacobi identity

for graded endomorphisms of Ω(M,E), we may write

(−1)pq[[i(P ), dρ], i(Q)] + (−1)p[[dρ, i(Q)], i(P )] + (−1)q[[i(Q), i(P )], dρ] = 0.

By using

[i(Q), i(P )] = i(Q ∧ P ) − i(Q ∧ P ) = 0 and [dρ, i(Q)] = −(−1)q[i(Q), dρ],

we obtain

(−1)pq[[i(P ), dρ], i(Q)] + (−1)p+q−1[[i(Q), dρ], i(P )] = 0,

so the result follows immediately.
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5. Let p, q1, q2 ∈ Z, P ∈ Ap(M,E), Q1 ∈ Aq1(M,E) and Q2 ∈ Aq2(M,E). We may

write

i([P,Q1 ∧Q2]) = [Lρ(P ), i(Q1 ∧Q2)]

= Lρ(P ) ◦ i(Q1 ∧Q2) − (−1)(p−1)(q1+q2)i(Q1 ∧Q2) ◦ Lρ(P ).

We add and subtract (−1)(p−1)q1i(Q1)◦Lρ(P )◦i(Q1) from the last expression, and replace

i(Q1 ∧Q2) by i(Q1) ◦ i(Q2). We obtain

i([P,Q1 ∧Q2]) = [Lρ(P ), i(Q1)] ◦ i(Q2) + (−1)(p−1)q1i(Q1) ◦ [Lρ(P ), i(Q2)].

The result follows immediately.

6. Let p, q, r ∈ Z, P ∈ Ap(M,E), Q ∈ Aq(M,E) and R ∈ Ar(M,E). By using

Property 2 of Proposition 5.4.8, we may write

i([[P,Q], R]) = [Lρ([P,Q]), i(R)] = [[Lρ(P ),Lρ(Q)], i(R)].

Using the graded Jacobi identity, we obtain

(−1)(p−1)r[[Lρ(P ),Lρ(Q)], i(R)] + (−1)(q−1)(p−1)[[Lρ(Q), i(R)],Lρ(P )]

+ (−1)r(q−1)[[i(R),Lρ(P )],Lρ(Q)] = 0.

But

[[Lρ(Q), i(R)],Lρ(P )] = [i([Q,R]),Lρ(P )] = −(−1)(q+r−1)(p−1)[Lρ(P ), i([Q,R])]

= −(−1)(q+r−1)(p−1) i([P, [Q,R]])

= (−1)(q+r−1)(p−1)+(p−1)(q+r−2) i([[Q,R], P ])

= (−1)p−1 i([[Q,R], P ]).

Similarly,

[[i(R),Lρ(P )],Lρ(Q)] = −(−1)(p−1)r [[Lρ(P ), i(R)],Lρ(Q)]

= −(−1)(p−1)r [i([P,R]),Lρ(Q)]

= (−1)(p−1)r+(p+r−1)(q−1) [Lρ(Q), i([P,R])]

= (−1)(p−1)(r+q−1)+r(q−1) i([Q, [P,R]])

= −(−1)(p−1)q+(q−1)(p−2) i([[R,P ], Q])

= −(−1)p+q i([[R,P ], Q]).

Using the above equalities, we obtain

(−1)(p−1)(r−1) i([[P,Q]), R]) + (−1)(q−1)(p−1) i([[Q,R], P ])

+ (−1)(r−1)(q−1) i([[R,P ], Q]]) = 0.

The proof is complete.

Remarks 5.4.10. Let (E, τ,M, ρ) be a Lie algebroid.

(i) Degrees for the two algebra structures of A(M,E). The algebra A(M,E) =⊕
p∈Z

Ap(M,E) of sections of the exterior powers (
∧p

E, τ,M), with the exterior prod-

uct as composition law, is a graded associative algebra; for that structure, the space of

homogeneous elements of degree p is Ap(M,E). Proposition 5.4.9 shows that A(M,E),
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with the Schouten–Nijenhuis bracket as composition law, is a graded Lie algebra; for that

structure, the space of homogeneous elements of degree p is not Ap(M,E), but rather

Ap+1(M,E). For homogeneous elements in A(M,E), one should therefore make a dis-

tinction between the degree for the graded associative algebra structure and the degree

for the graded Lie algebra structure; an element in Ap(M,E) has degree p for the graded

associative algebra structure, and degree p− 1 for the graded Lie algebra structure.

(ii) The anchor as a graded Lie algebras homomorphism. The anchor ρ : E → TM allows

us to associate to each smooth section X ∈ A1(M,E) a smooth vector field ρ ◦ X on

M ; according to Definition 3.1.1, that correspondence is a Lie algebra homomorphism.

We can extend that map, for all p ≥ 1, to the space Ap(M,E) of smooth sections of the

pth exterior power (
∧p

E, τ,M). First, for a decomposable element X1 ∧ · · · ∧ Xp with

Xi ∈ A1(M,E), we set

ρ ◦ (X1 ∧ · · · ∧Xp) = (ρ ◦X1) ∧ · · · ∧ (ρ ◦Xp).

For p = 0 and f ∈ A0(M,E) = C∞(M,R), we set, by convention,

ρ ◦ f = f.

Then we extend that correspondence to all elements in A(M,E) by C∞(M,R)-linearity.

The map P 7→ ρ ◦ P obtained in that way is a homomorphism from A(M,E) into

A(M,TM), both for their graded associative algebra structures (with the exterior prod-

ucts as composition laws) and their graded Lie algebra structures (with the Schouten–

Nijenhuis brackets, associated to the Lie algebroid structure of (E, τ,M, ρ) and to the

Lie algebroid structure of the tangent bundle (TM, τM ,M, idTM ) as composition laws).

In 6.2.2(iii), we will see that when the Lie algebroid under consideration is the cotan-

gent bundle to a Poisson manifold, the anchor map has yet another property: it induces

a cohomology anti-homomorphism.

6. Poisson manifolds and Lie algebroids

In this final section we will show that there exist very close links between Poisson mani-

folds and Lie algebroids.

6.1. Poisson manifolds. Poisson manifolds were introduced by A. Lichnerowicz in the

important paper [33]. Their importance was soon recognized, and their properties were

investigated in depth by A. Weinstein [49]. Let us recall briefly their definition and some

of their properties. The reader is referred to [33, 49, 48] for the proofs of these properties.

Definition 6.1.1. Let M be a smooth manifold. We assume that the space C∞(M,R)

of smooth functions on M is endowed with a composition law, denoted by (f, g) 7→ {f, g},

for which C∞(M,R) is a Lie algebra, which moreover satisfies the Leibniz-type formula

{f, gh} = {f, g}h+ g{f, h}.

We say that the structure defined on M by such a composition law is a Poisson structure,

and that the manifold M , equipped with that structure, is a Poisson manifold .
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The following proposition is due to A. Lichnerowicz [33]. Independently, A. Kirillov

[23] introduced local Lie algebras (which include both Poisson manifolds and Jacobi

manifolds, which were also introduced by A. Lichnerowicz [34]) and obtained, without

using the Schouten–Nijenhuis bracket, an equivalent result and its generalization for

Jacobi manifolds.

Proposition 6.1.2. On a Poisson manifold M , there exists a unique smooth section of

the bundle of bivectors, Λ ∈ A2(M,TM), called the Poisson bivector, which satisfies

[Λ,Λ] = 0, (∗)

such that for any f, g ∈ C∞(M,R),

{f, g} = Λ(df, dg). (∗∗)

The bracket on the left hand side of (∗) is the Schouten–Nijenhuis bracket of multivectors

on M for the canonical Lie algebroid structure of (TM, τM ,M) (with idTM as anchor).

Conversely, let Λ be a smooth section of A2(TM,M). We use formula (∗∗) to define

a composition law on C∞(M,R). The structure defined on M by that composition law is

a Poisson structure if and only if Λ satisfies formula (∗).

In what follows, we will denote by (M,Λ) a manifold M equipped with a Poisson

structure whose Poisson bivector is Λ.

6.2. The Lie algebroid structure on the cotangent bundle of a Poisson man-

ifold. The next theorem shows that the cotangent bundle of a Poisson manifold has a

canonical structure of Lie algebroid. That property was discovered by Dazord and Son-

daz [13].

Theorem 6.2.1. Let (M,Λ) be a Poisson manifold. The cotangent bundle (T ∗M,πM ,M)

has a canonical structure of Lie algebroid characterized by the following properties:

(i) the bracket [η, ζ] of two sections η and ζ of (T ∗M,πM ,M), i.e., of two Pfaff forms

on M , is given by the formula

〈[η, ζ], X〉 = 〈η, [Λ, 〈ζ,X〉]〉 − 〈ζ, [Λ, 〈η,X〉]〉 − [Λ, X](η, ζ),

where X is any smooth vector field on M ; the bracket on the right hand side is the

Schouten–Nijenhuis bracket of multivectors on M ;

(ii) the anchor is the vector bundle map Λ♯ : T ∗M → TM such that, for all x ∈ M and

t, s ∈ T ∗
xM ,

〈β,Λ♯α〉 = Λ(α, β).

Proof. We define a linear endomorphism δΛ of A(M,TM) by setting, for each P ∈

A(M,TM),

δΛ(P ) = [Λ, P ],

where the bracket on the right hand side is the Schouten–Nijenhuis bracket of multivectors

on M , i.e., the Schouten–Nijenhuis bracket for the canonical Lie algebroid structure

of (TM, τM ,M) (with idTM as anchor map). When P is in Ap(M,TM), δΛ(P ) is in
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Ap+1(M,TM), therefore δΛ is homogeneous of degree 1. For each P ∈ Ap(M,TM) and

Q ∈ Aq(M,TM), we have

δΛ(P ∧Q) = [Λ, P ∧Q] = [Λ, P ] ∧Q+ (−1)pP ∧ [Λ, Q]

= δΛ(P ) ∧Q+ P ∧ δΛ(Q).

This proves that δΛ is a graded derivation of degree 1 of the exterior algebra A(M,TM).

Moreover, for each P ∈ Ap(M,TM) we obtain, by using the graded Jacobi identity,

δΛ ◦ δΛ(P ) = [Λ, [Λ, P ]] = (−1)p−1[Λ, [P,Λ]] − [P, [Λ,Λ]]

= −[Λ, [Λ, P ]] − [P, [Λ,Λ]] = −δΛ ◦ δΛ(P ) − [P, [Λ,Λ]].

Therefore

2δΛ ◦ δΛ(P ) = −[P, [Λ,Λ]] = 0,

since [Λ,Λ] = 0. We have proven that the graded derivation δΛ, of degree 1, satisfies

δ2Λ = δΛ ◦ δΛ = 0.

Now we observe that the tangent bundle (TM, τM ,M) can be considered as the dual

bundle of the cotangent bundle (T ∗M,πM ,M). Therefore, we may apply Theorem 5.3.3,

which shows that there exists on (T ∗M,πM ,M) a Lie algebroid structure for which δM
is the associated derivation on the space Ω(M,T ∗M) = A(M,TM) (with the notations

defined in 4.2.4). That theorem also shows that the bracket of two smooth sections of

(T ∗M,πM ,M), i.e., of two Pfaff forms η and ζ on M , is given by the formula, where X

is any smooth vector field on M ,

〈[η, ζ], X〉 = 〈η, [Λ, 〈ζ,X〉]〉 − 〈ζ, [Λ, 〈η,X〉]〉 − [Λ, X](η, ζ).

The anchor map ρ is such that, for each η ∈ Ω1(M,TM) and each f ∈ C∞(M,R),

i(ρ ◦ η) df = 〈η, [Λ, f ]〉.

The bracket which appears on the right hand sides of these two formulae is the Schouten–

Nijenhuis bracket of multivectors on M . By using Theorem 5.4.3, we see that

[Λ, f ] = −Λ♯(df).

Therefore,

〈df, ρ ◦ η〉 = i(ρ ◦ η) df = 〈η,−Λ♯(df)〉 = 〈df,Λ♯(η)〉.

So we have ρ = Λ♯.

Remarks 6.2.2. Let (M,Λ) be a Poisson manifold.

(i) The bracket of forms of any degrees on M . Since, by Theorem 6.2.1, (T ∗M,πM ,M,Λ♯)

is a Lie algebroid, we can define a composition law in the space A(M,T ∗M) = Ω(M,R)

of smooth differential forms of all degrees on M : the Schouten–Nijenhuis bracket for

the Lie algebroid structure of (T ∗M,πM ,M), with Λ♯ as anchor. With that composition

law, denoted by (η, ζ) 7→ [η, ζ], Ω(M,R) is a graded Lie algebra. Observe that a form

η ∈ Ωp(M,R), of degree p for the graded associative algebra structure whose composition

law is the exterior product, has degree p− 1 for the graded Lie algebra structure.

The bracket of differential forms on a Poisson manifold was first discovered for Pfaff

forms by Magri and Morosi [38]. It is related to the Poisson bracket of functions by the
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formula

[df, dg] = d{f, g}, f, g ∈ C∞(M,R).

That bracket was extended to forms of all degrees by Koszul [28], and rediscovered, with

the Lie algebroid structure of T ∗M , by Dazord and Sondaz [13].

(ii) The Lichnerowicz–Poisson cohomology . The derivation δΛ,

P 7→ δΛ(P ) = [Λ, P ], P ∈ A(M,TM),

used in the proof of 6.2.1, was first introduced by A. Lichnerowicz [33], who observed

that it may be used to define a cohomology with elements in A(M,TM) as cochains.

He began the study of that cohomology, often called the Poisson cohomology (but which

should be called the Lichnerowicz–Poisson cohomology). The study of that cohomology

was carried on by Vaisman [48], Huebschmann [20], Xu [54] and many other authors.

(iii) The map Λ♯ as a cohomology anti-homomorphism. In 5.4.10(ii), we have seen that

the anchor map ρ of a Lie algebroid (E, τ,M, ρ) yields a map P 7→ ρ ◦ P from A(M,E)

into A(M,TM), which is both a homomorphism of graded associative algebras (the com-

position laws being the exterior products) and a homomorphism of graded Lie algebras

(the composition laws being the Schouten brackets). When applied to the Lie algebroid

(T ∗M,πM ,M,Λ♯), this property shows that the map η 7→ Λ♯ ◦η is a homomorphism from

the space of differential forms Ω(M,R) into the space of multivectors A(M,R), both for

their structures of graded associative algebras and graded Lie algebras. As observed by

A. Lichnerowicz [33], this map exchanges the exterior derivation d of differential forms

and the derivation δΛ of multivectors (with a sign change, under our sign conventions),

in the following sense: for any η ∈ Ωp(M,R), we have

Λ♯(dη) = −δΛ(Λ♯(η)) = −[Λ,Λ♯(η)].

This property is an easy consequence of the formula, valid for any smooth function

f ∈ C∞(M,R), which can be derived from Theorem 5.4.3,

Λ♯(df) = −[Λ, f ].

The map Λ♯ therefore induces an anti-homomorphism from the Lichnerowicz–Poisson

cohomology of the Poisson manifold (M,Λ) into its de Rham cohomology.

(iv) Lie bialgebroids. Given a Poisson manifold (M,Λ), we have Lie algebroid structures

both on the tangent bundle (TM, τM ,M) and on the cotangent bundle (T ∗M,πM ,M),

with idTM : TM → TM and Λ♯ : T ∗M → TM as their respective anchor maps. Moreover,

these two Lie algebroid structures are compatible in the following sense: the derivation

δΛ : P 7→ [Λ, P ] of the graded associative algebra A(M,TM) (the composition law being

the exterior product) determined by the Lie algebroid structure of (T ∗M,πM ,M) is also

a derivation for the graded Lie algebra structure of A(M,E) (the composition law being

now the Schouten–Nijenhuis bracket). We have indeed, as an easy consequence of the

graded Jacobi identity, for P ∈ Ap(M,TM) and Q ∈ Aq(M,TM),

δΛ([P,Q]) = [Λ, [P,Q]) = [[Λ, P ], Q] + (−1)p−1[P, [Λ, Q]]

= [δΛP,Q] + (−1)p−1[P, δΛQ].
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When two Lie algebroid structures on two vector bundles in duality satisfy such a compat-

ibility condition, the pair of Lie algebroids is said to be a Lie bialgebroid . The important

notion of a Lie bialgebroid is due to K. Mackenzie and P. Xu [37]. Its study was devel-

oped by Y. Kosmann-Schwarzbach [25] and her student M. Bangoura [2] and many other

authors. D. Iglesias and J. C. Marrero have introduced a generalization of that notion in

relation with Jacobi manifolds [21].

6.3. The Poisson structure on the dual bundle of a Lie algebroid. We will now

prove that there is a 1-1 correspondence between Lie algebroid structures on a vector

bundle (E, τ,M) and homogeneous Poisson structures on the total space of the dual

bundle (E∗, π,M). This will allow us to recover some well known results (Remarks 6.3.7).

We will use the following definition.

Definition 6.3.1. Let (E, τ,M) be a vector bundle and (E∗, π,M) its dual bundle. To

each smooth section X∈A1(M,E), we associate a smooth function ΦX defined on E∗ by

ΦX(ξ) = 〈ξ,X ◦ π(ξ)〉, ξ ∈ E∗.

We will say that ΦX is the vertical function on E∗ associated to the smooth section X.

Lemma 6.3.2. Let (E, τ,M) be a vector bundle and (E∗, π,M) its dual bundle.

1. If, for some smooth section X ∈ A1(M,E), some smooth function f ∈ C∞(M,R) and

some ξ ∈ E∗, d(ΦX + f ◦ π)(ξ) = 0, where ΦX is the vertical function associated to

X (Definition 6.3.1), then X(π(ξ)) = 0.

2. For each ξ ∈ E∗ and each η ∈ T ∗
ξ E

∗, there exists a smooth section X ∈ A1(M,E) and

a smooth function f ∈ C∞(M,R) such that d(ΦX + f ◦ π)(ξ) = η.

Proof. These properties being local, we may work in an open subset U of M on which

there exists a system of local coordinates (x1, . . . , xn) and smooth sections (s1, . . . , sk)

of τ such that for each x ∈ U , (s1(x), . . . , sk(x)) is a basis of Ex. A smooth section X

of τ defined on U can be written as

X =

k∑

r=1

Xrsr,

where the Xr are smooth functions on U . We will denote by the same letters Xr the

expression of these functions in local coordinates (x1, . . . , xn). Similarly we will denote

by f both a smooth function in C∞(M,R) and its expression in local coordinates. The

vertical function, defined on π−1(U), which corresponds to X is

ΦX(ξ) =

k∑

r=1

ξrX
r(π(ξ)), ξ ∈ π−1(U), where ξr = 〈ξ, sr(π(ξ))〉.

On π−1(U), (x1, . . . , xn, ξ1, . . . , ξk) is a smooth system of local coordinates, in which

d(ΦX + f ◦ π)(ξ)

=
k∑

r=1

Xr(x1, . . . , xn) dξr +
n∑

j=1

( k∑

r=1

ξr
∂Xr(x1, . . . , xn)

∂xj
+
∂f(x1, . . . , xn)

∂xj

)
dxj .

This result shows that if d(ΦX + f ◦ π)(ξ) = 0, then X(π(ξ)) = 0.
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Let ξ ∈ E∗ and η ∈ T ∗
ξ E

∗ be given. The above formula shows that if ξ 6= 0, we can

take f = 0 and choose X such that dΦX(ξ) = η. If ξ = 0, we can take X = 0 and f such

that d(f ◦ π)(ξ) = η.

Definition 6.3.3. Let (E, τ,M) be a vector bundle and (E∗, π,M) its dual bundle. A

Poisson structure on E∗ is said to be homogeneous if the Poisson bracket of two vertical

functions (Definition 6.3.1) is vertical.

Proposition 6.3.4. Let (E, τ,M) be a vector bundle, (E∗, π,M) its dual bundle, and Λ

be a Poisson structure on E∗. The following properties are equivalent.

1. There exists a dense subset U of E∗ and a subset F of the set of vertical functions on

E∗ whose differentials df(ξ), f ∈ F , span the cotangent space T ∗
ξ E

∗, for all ξ ∈ U ,

such that the Poisson bracket of any two functions in F is vertical.

2. Let ZE∗ be the vector field on E∗ whose flow generates homotheties in the fibres. We

recall that its value at ξ ∈ E∗ is

ZE∗(ξ) =
d(exp(t)ξ)

dt

∣∣∣∣
t=0

.

The Poisson structure on E∗ satisfies

[ZE∗ ,Λ] = −Λ.

3. The Poisson structure Λ is homogeneous.

Proof. The reduced flow of the vector field ZE∗ is the one-parameter group of homotheties

in the fibres (t, ξ) 7→ Ht(ξ) = exp(t)ξ with t ∈ R, ξ ∈ E∗. For any smooth section

X ∈ A1(M,E) and any t ∈ R, we have

(H∗
t ΦX)(ξ) = ΦX ◦Ht(ξ) = ΦX(exp(t)ξ) = exp(t)ΦX(ξ),

therefore

H∗
t ΦX = exp(t)ΦX , L(ZE∗)ΦX =

dH∗
t ΦX
dt

∣∣∣∣
t=0

= ΦX .

Let us assume that Property 1 is true. Let X,Y ∈ A1(M,E) be such that ΦX and ΦY
are in the subset F . Then {ΦX ,ΦY } is vertical, so for all t ∈ R we have

H∗
t (Λ(dΦX , dΦY )) = {ΦX ,ΦY } ◦Ht = exp(t){ΦX ,ΦY }.

But we may also write

H∗
t (Λ(dΦX , dΦY )) = (H∗

t Λ)(H∗
t dΦX , H

∗
t dΦY ) = exp(2t)(H∗

t Λ)(dΦX , dΦY ).

Since for each ξ ∈ U , the differentials at ξ of functions in F generate T ∗
ξ E

∗, this result

proves that in U ,

H∗
t (Λ) = exp(−t)Λ.

Since U is dense in E∗ this equality holds everywhere on E∗, therefore

[ZE∗ ,Λ] = L(ZE∗)Λ =
dH∗

t Λ

dt

∣∣∣∣
t=0

= −Λ.
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We have proven that Property 1 implies 2. Let us now assume that 2 is true. For all

X,Y ∈ A1(M,E),

L(ZE∗)({ΦX ,ΦY }) = L(ZE∗)(Λ(dΦX , dΦY ))

= (L(ZE∗)Λ)(dΦX , dΦY ) + Λ(L(ZE∗)ΦX ,ΦY ) + Λ(ΦX ,L(ZE∗)ΦY )

= Λ(ΦX ,ΦY ) = {ΦX ,ΦY }.

Since {ΦX ,ΦY } is smooth on E∗, including on the zero section, this function is linear

on each fibre of E∗, in other words it is vertical, and we have proven that Property 2

implies 3.

Finally, 3 of course implies 1, and our proof is complete.

Theorem 6.3.5. Let (E, τ,M) be a vector bundle and (E∗, π,M) its dual bundle. There

is a 1-1 correspondence between Lie algebroid structures on (E, τ,M) and homogeneous

Poisson structures on E∗ (Definition 6.3.3) such that, for each pair (X,Y ) of smooth sec-

tions of τ , ΦX and ΦY being the corresponding vertical functions on E∗ (Definition 6.3.1),

{ΦX ,ΦY } = Φ{X,Y },

the bracket on the left hand side being the Poisson bracket of functions on E∗, and the

bracket on the right hand side the bracket of sections for the corresponding Lie algebroid

structure on (E, τ,M).

Proof. First let Λ be a homogeneous Poisson structure on E∗. Let (X,Y ) be a pair

of smooth sections of τ , and ΦX and ΦY the corresponding vertical functions on E∗.

Since Λ is homogeneous, there exists a unique smooth section of τ whose corresponding

vertical function on E∗ is {ΦX ,ΦY }. We define {X,Y } as being that section. So we have

a composition law on the space A1(M,E) of smooth sections of τ , which is bilinear and

satisfies the Jacobi identity, and therefore is a Lie algebra bracket. Now let f be a smooth

function on M . Then

{ΦX ,ΦfY } = {ΦX , (f ◦ π)ΦY } = (f ◦ π){ΦX ,ΦY } + {ΦX , f ◦ π}ΦY

= (f ◦ π)Φ{X,Y } + {ΦX , f ◦ π}ΦY

= (f ◦ π)Φ{X,Y } +
(
i(Λ♯(dΦX))d(f ◦ π)

)
ΦY .

The term (f ◦ π)Φ{X,Y } is the vertical function which corresponds to the smooth section

f{X,Y }. Therefore the other term of the right hand side,
(
i(Λ♯(dΦX))d(f ◦π)

)
ΦY , must

be a vertical function. But ΦY is vertical, so
(
i(Λ♯(dΦX))d(f ◦ π)

)
ΦY is vertical for

all Y ∈ A1(M,E) if and only if the function i(Λ♯(dΦX))d(f ◦ π) is constant on each

fibre π−1(x), x ∈ M . This happens for any function f ∈ C∞(M,R) if and only if for

each x ∈ M , Tξπ(Λ♯(dΦX)) does not depend on ξ ∈ π−1(x). In other words, for any

X ∈ A1(M,E) the vector field Λ♯(dΦX) must be projectable by π on M . We take ξ = 0

(the origin of the fibre E∗
x) and use the formula for dΦX given in the proof of Lemma 6.3.2

to obtain for that projection the expression in local coordinates

k∑

r=1

Xr(x1, . . . , xn)Tπ(Λ♯(dξr)).

The value of that vector field at a point x ∈M only depends ofX(x), and that dependence
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is linear. So there exists a smooth vector bundle map ρ : E → TM with all the properties

of an anchor map. The Lie algebra structure we have defined on A1(M,E) is a Lie

algebroid bracket.

Conversely, let us assume that we have on (E, π,M) a Lie algebroid structure with

anchor ρ. We must prove that there exists a Poisson structure on E∗ such that for

each pair (X,Y ) of smooth sections of τ , ΦX and ΦY being the corresponding vertical

functions on E∗ (Definition 6.3.1), {ΦX ,ΦY } = Φ{X,Y }. More generally, let (X,Y ) be

a pair of smooth sections of τ , and f and g two smooth functions. Let us write that

{ΦfX ,ΦgY } = {f◦π)ΦX , (g◦π)ΦY } = Φ{fX,gY }. We use the property of the Lie algebroid

bracket

{fX, gY } = fg{X,Y } + (fL(ρ ◦X)g)Y − (gL(ρ ◦ Y )f)X,

which implies

Φ{fX,gY } = (fg ◦ π)Φ{X,Y } + (fL(ρ ◦X) ◦ π)ΦY − (gL(ρ ◦ Y )f ◦ π) ΦX .

This calculation shows that if such a Poisson structure on E∗ exists, it must be such that

{ΦX , g ◦ π} = (L(ρ ◦X)g) ◦ π, {f ◦ π, g ◦ π} = 0.

For each ξ ∈ E∗ and η, ζ ∈ T ∗
ξ E

∗, point 2 of Lemma 6.3.2 shows that there exists a

(nonunique) pair (X,Y ) of sections of τ and a (nonunique) pair (f, g) of smooth functions

on M such that η = d(ΦX + f ◦ π)(ξ), ζ = d(ΦY + g ◦ π)(ξ). Our Poisson bivector Λ is

therefore

Λ(ξ)(η, ζ) = {ΦX + f ◦ π,ΦY + g ◦ π}(ξ).

This proves that if such a Poisson structure exists, it is unique. By point 1 of Lemma 6.3.2,

the right hand side of the above formula depends only on η and ζ, and not on the

particular choices we have made for (X, f) and (Y, g). Moreover, it is smooth, bilinear

and skew-symetric with respect to the pair ((X, f), (Y, g)), so Λ is a smooth bivector.

When restricted to vertical functions on E∗, the bracket defined by Λ satisfies the Ja-

cobi identity. Therefore, for each ξ ∈ E∗ \{0} and all η, ζ, θ ∈ T ∗
ξ E

∗ which are the differen-

tials, at ξ, of vertical functions, the Schouten bracket [Λ,Λ] satisfies [Λ,Λ](ξ)(η, ζ, θ) = 0.

Point 2 of Lemma 6.3.2 proves that [Λ,Λ] vanishes identically on E∗ \{0}. By continuity,

it vanishes everywhere on E∗. So Λ is a Poisson structure on E∗ with all the stated

properties.

Proposition 6.3.6. Let (E, τ,M, ρ) be a Lie algebroid and (E∗, π,M) its dual bundle.

The Poisson structure on E∗ defined in Theorem 6.3.5 has the following properties:

1. For any X ∈ A1(M,E) and f, g ∈ C∞(M,R),

{ΦX , g ◦ π} = (L(ρ ◦X)g) ◦ π, {f ◦ π, g ◦ π} = 0,

where ΦX is the function on M associated to the section X as indicated in Theo-

rem 6.3.5.

2. The transpose tρ : T ∗M → E∗ of the anchor map ρ : E → TM is a Poisson map (the

cotangent bundle being endowed with the Poisson structure associated to its canonical

symplectic structure).
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Proof. We have proven Property 1 in the proof of Theorem 6.3.5. In order to prove

Property 2, we must prove that for all pairs (h1, h2) of smooth functions on E∗,

{h1 ◦
tρ, h2 ◦

tρ} = {h1, h2} ◦
tρ,

the bracket on the left hand side being the Poisson bracket of functions on T ∗M , and

the bracket on the right hand side the Poisson bracket of functions on E∗. It is enough

to check that property when h1 and h2 are of the type ΦX where X ∈ A1(M,E), or of

the type f ◦ π with f ∈ C∞(M,R), since the differentials of functions of these two types

generate T ∗E∗. For h1 = ΦX and h2 = ΦY with X,Y ∈ A1(M,E), and ζ ∈ T ∗M , we

have

{ΦX ,ΦY } ◦
tρ(ζ) = Φ{X,Y } ◦

tρ(ζ) = 〈 tρ(ζ), {X,Y } ◦ π ◦ tρ(ζ)〉

= 〈ζ, ρ ◦ {X,Y } ◦ πM (ζ〉 = 〈ζ, [ρ ◦X, ρ ◦ Y ] ◦ πM (ζ〉,

since the canonical projection πM : T ∗M → M satisfies π ◦ tρ = πM . But let us recall

a well known property of the Poisson bracket of functions on T ∗M ([32, Exercise 17.5,

p. 182]). To any vector field X̂ on M , we associate the function Ψ
X̂

on T ∗M by setting,

for each ζ ∈ T ∗M ,

Ψ
X̂

(ζ) = 〈ζ, X̂ ◦ πM (ζ)〉.

Then, for any pair (X̂, Ŷ ) of vector fields on M ,

{Ψ
X̂
,Ψ

Ŷ
} = Ψ

[X̂,Ŷ ]
.

By using πM = π ◦ tρ, we easily see that for each X ∈ A1(M,E),

Ψρ◦X = ΦX ◦ tρ.

Returning to our pair of sections X,Y ∈ A1(M,E), we see that

{ΦX ,ΦY } ◦
tρ(ζ) = Ψ[ρ◦X,ρ◦Y ](ζ) = {Ψρ◦X ,Ψρ◦Y }(ζ) = {ΦX ◦ tρ,ΦY ◦ tρ}(ζ).

Now for h1 = ΦX and h2 = f ◦ π with X ∈ A1(M,E) and f ∈ C∞(M,R), we have

{ΦX ◦ tρ, f ◦ π ◦ tρ} = {Ψρ◦X , f ◦ πM} = L(ρ ◦X)f ◦ πM

= L(ρ ◦X)f ◦ π ◦ tρ = {ΦX , f ◦ π} ◦ tρ.

Similarly, for h1 = f ◦ π and h2 = g ◦ π, we have

{f ◦ π, g ◦ π} ◦ tρ = 0 = {f ◦ πM , g ◦ πM} = {f ◦ π ◦ tρ, g ◦ π ◦ tρ}.

Property 2 is proven, and our proof is complete.

Remarks 6.3.7. (i) The symplectic structure of a cotangent bundle. Let us take as Lie

algebroid the tangent bundle (TM, τM ,M) with idTM as anchor. Its dual bundle is the

cotangent bundle (T ∗M,πM ,M). The transpose of the anchor map being idT∗M , Propo-

sition 6.3.6 shows that the Poisson structure on T ∗M given by Theorem 6.3.5 is the

structure associated to its canonical symplectic 2-form.

(ii) The symplectic structure on the dual of a Lie algebra. Now we take as Lie algebroid

a finite-dimensional Lie algebra G. The Poisson structure on its dual vector space G∗

given by Theorem 6.3.5 is the well known Kirillov–Kostant–Souriau Poisson structure

[23, 26, 45].
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6.4. Tangent lifts. G. Sanchez de Alvarez [43] discovered the lift of a Poisson structure

on a manifold P to the tangent bundle TP . We show below that its existence and prop-

erties can be easily deduced from Theorems 6.2.1 and 6.3.5. The reader will find many

other properties of tangent and cotangent lifts of Poisson and Lie algebroid structures

in [16, 17].

Theorem 6.4.1. Let (P,Λ) be a Poisson manifold. There exists on its tangent bundle

TP a Poisson structure, determined by that of P and called its tangent lift. It is such

that if f, g ∈ C∞(P,R), then

{df, dg}TP = d{f, g}P , {f ◦ τP , g ◦ τP }TP = 0, {df, g ◦ τP }TP = {f, g}P ◦ τP .

In these formulae we have denoted by { , }P and { , }TP the Poisson brackets of func-

tions on P and TP , respectively, and we have considered df , dg and d{f, g}P as vertical

functions on TP .

Proof. The cotangent bundle (T ∗P, πP , P ) has a Lie algebroid structure, with Λ♯ : T ∗P →

TP as anchor (Theorem 6.2.1). Its dual is the tangent bundle (TP, τP , P ), and by Theo-

rem 6.3.5, there exists on its total space TP a Poisson structure such that, for each pair

(η, ζ) of sections of πP ,

{Φη,Φζ}TP = Φ[η,ζ].

We have denoted by Φη and Φζ the vertical functions on TP associated to the sections

η and ζ of πP (6.3.1), and by [η, ζ] the bracket of the Pfaff forms η and ζ on the Poisson

manifold (P,Λ) (6.2.1). When η = df and ζ = dg, we have [df, dg] = d{f, g}P . The

properties of the Poisson bracket on TP follow from Proposition 6.3.6.

Example 6.4.2. Let us assume that P is of even dimension 2m and that its Poisson struc-

ture is associated to a symplectic 2-form ωP . In local Darboux coordinates (x1 . . . , xm,

y1, . . . , ym) we have

ωP =
m∑

i=1

dyi ∧ dx
i, ΛP =

m∑

i=1

∂

∂yi
∧

∂

∂xi
.

Let (x1, . . . , xm, y1, . . . , ym, ẋ
1, . . . , ẋm, ẏ1, . . . , ẏm) be the local coordinates on TP natu-

rally associated to the local coordinates (x1, . . . , xm, y1, . . . , ym) on P . We easily see that

the lift to TP of the Poisson structure on P is associated to a symplectic structure ωTP ,

and that the expressions of ΛTP and ωTP in local coordinates are

ωTP =

m∑

i=1

(dẏi ∧ dx
i + dyi ∧ dẋ

i), ΛTP =

m∑

i=1

(
∂

∂ẏi
∧

∂

∂xi
+

∂

∂yi
∧

∂

∂ẋi

)
.

The symplectic form ωTP was defined and used by W. M. Tulczyjew [46, 47], mainly when

P is a cotangent bundle. It can be defined by several other methods. For example, since

ΛP is associated to a symplectic structure, Λ♯P is a fibre bundle isomorphim from T ∗P

onto TP . There is on T ∗P a canonical symplectic form ωT∗P (the exterior differential of

its Liouville 1-form). With our sign conventions, ωTP = −((Λ♯P )−1)∗(ωT∗P ). The − sign

is in agreement with point 2 of 6.3.6, since the transpose on Λ♯P is −Λ♯P .
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For Lie algebroid structures, there is an even richer notion of lift: the next proposition

shows that a Lie algebroid structure on a vector bundle (E, τ,M) gives rise to Lie alge-

broid structures on two vector bundles: (T ∗E∗, πE∗ , E∗) and (TE, Tτ, TM). Formulae in

local coordinates for these algebroid structures are given in [17], and other properties of

these lifts can be found in [36].

Proposition 6.4.3. Let (E, τ,M, ρ) be a Lie algebroid. Let ΛE∗ be the associated Poisson

structure on the total space of the dual bundle (E∗, π,M) (6.3.5) and ΛTE∗ its lift to TE

(6.4.1).

1. The Poisson structure ΛTE∗ is homogeneous (Definition 6.3.3) for each of the two

vector fibrations (TE∗, τE∗ , E∗) and (TE∗, Tπ, TM).

2. The vector bundle dual to (TE∗, Tπ, TM) is (TE, Tτ, TM), and the Lie algebroid

structure on that dual associated to the homogeneous Poisson structure ΛTE∗ on the

total space of (TE∗, Tπ, TM) (6.3.5) is such that for each pair (X,Y ) of smooth sec-

tions of τ , the bracket {TX, TY } is equal to T{X,Y }.

3. The Lie algebroid structure on the vector bundle (T ∗E∗, πE∗ , E∗) associated to the ho-

mogeneous Poisson structure ΛTE∗ on the total space of its dual bundle (TE∗, τE∗ , E∗)

(6.3.5) is the same as the Lie algebroid structure on the cotangent bundle to the Pois-

son manifold E∗ (6.2.1).

Proof. Since E∗ is the total space of a vector bundle, TE∗ is a double vector bundle

([35, 36, 24]), i.e., it is the total space of two different vector fibrations: the tangent

fibration τE∗ : TE∗ → E∗, and the tangent lift Tπ : TE∗ → TM of the vector fibration π :

E∗ →M . As a consequence of its definition, the Poisson structure ΛTE∗ is homogeneous

with respect to the first vector fibration τE∗ : TE∗ → TM . Let us prove that it is also

homogeneous with respect to the second. That Poisson structure is characterized by the

following properties: for each pair (f, g) of smooth functions on E∗,

{df, dg}TE∗ = d{f, g}E∗ , {f ◦τE∗ , g◦τE∗}TE∗ = 0, {df, g◦τE∗}TE∗ = {f, g}E∗ ◦τE∗ .

We need to prove first a part of point 2: the duality between the vector bundles (TE∗, Tπ,

TM) and (TE, Tτ, TM). It is obtained by tangent lift of the duality between (E∗, π,M)

and (E, τ,M). Let Z ∈ TE and Ξ ∈ TE∗ be such that Tτ (Z) = Tπ(Ξ). There exist

smooth curves t 7→ ϕ(t) and t 7→ ψ(t), defined on an open interval I containing 0, with

values in E and in E∗, respectively, such that

dϕ(t)

dt

∣∣∣∣
t=0

= Z and
dψ(t)

dt

∣∣∣∣
t=0

= Ξ.

We may choose ϕ and ψ such that τ ◦ ϕ = π ◦ ψ, so
〈
ψ(t), ϕ(t)

〉
is well defined for all

t ∈ I. We define

〈Ξ, Z〉 =
d〈ψ(t), ϕ(t)〉

dt

∣∣∣∣
t=0

.

The left hand side does not depend on the choices of ϕ and ψ, so it is a legitimate definition

of 〈Ξ, Z〉. The vector bundles (TE∗, Tπ, TM) and (TE, Tτ, TM) are in duality.

For each smooth section X : M → E of τ , TX : TM → TE is a smooth section

of Tτ . Let ΦX : E∗ → R and ΨTX : TE∗ → R be the associated vertical functions
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(6.3.1), defined respectively on the total spaces of the vector bundles (E∗, π,M) and

(TE∗, Tπ, TM). For Ξ ∈ TE∗, let us calculate ΨTX(Ξ). We take a smooth curve t 7→ ψ(t)

in E∗ such that dψ(t)
dt

∣∣
t=0

= Ξ. The smooth curve ϕ = X◦π◦ψ in E is such that τ◦ϕ = π◦ψ

and dϕ(t)
dt

∣∣
t=0

= TX(Tπ(Ξ)), and

ΨTX(Ξ) =
d〈ψ(t), ϕ(t)〉

dt

∣∣∣∣
t=0

=
dΦX(ψ(t))

dt

∣∣∣∣
t=0

= dΦX(Ξ).

We have proven that ΨTX = dΦX . Now if Y : M → E is another smooth section of τ ,

we have

{ΨTX ,ΨTY }TE∗ = {dΦX , dΦY }TE∗ = d{ΦX ,ΦY }E∗ = dΦ{X,Y },

the last bracket {X,Y } being the Lie algebroid bracket of the sections X and Y of

(E, τ,M, ρ). These equalities prove that for each pair (X,Y ) of smooth sections of τ ,

the Poisson bracket {ΨTX ,ΨTY }TE∗ is a vertical function. Proposition 6.3.4 shows that

ΛTE∗ is homogeneous with respect to the vector fibration (TE∗, Tπ, TM). Point 1 is

proven.

Theorem 6.3.5 shows that associated to the Poisson structure ΛTE∗ , we have Lie

algebroid structures on the dual bundles of (TE∗, τE∗ , E∗) and (TE∗, Tπ, TM).

The last formula also proves that for each pair (X,Y ) of smooth sections of τ , the

bracket {TX, TY } is equal to T{X,Y }. So point 2 is proven.

For the Lie algebroid structure on (T ∗E∗, πE∗ , E∗) considered as the cotangent bundle

to the Poisson manifold (E∗,ΛE∗) (6.2.1), the bracket of two sections of πE∗ , that is, the

bracket of two Pfaff forms on E∗, is the bracket defined in Remark 6.2.2(i). Point 3 follows

from the properties of that bracket, as shown by Grabowski and Urbański [17].
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